蛋白质结构与功能受体

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

G蛋白偶联系统的组成:膜结合机器
G-蛋白偶联型受体为7次跨膜蛋白
G蛋白偶联受体信号转导系统的特点
系统由三个部分组成,即7次跨膜的受体、 G蛋白和效应物(酶) 产生第二信使

G蛋白偶联型受体包括:
细 胞 表 面 受 体 与 细 胞 内 受 体
■根据表面受体进行
信号转导的方式,将表 面受体分为三种类型:
•离子通道偶联受体(ionchannel linked receptor) •G-蛋白偶联受体(G-protein linked receptor) •酶联受体(enzyme-linked receptor)
G 蛋 白 分 子 开 关
3. G蛋白偶联受体

Βιβλιοθήκη Baidu
G蛋白偶联型受体为7次跨膜蛋白(图11), 每一种G-蛋白偶联受体都有7个α螺旋的跨 膜区。信号分子与受体的细胞外结构域部 分结合,并引起受体的细胞内结构域部分 激活相邻的G-蛋白;通过与G蛋白偶联,调 节相关酶活性,在细胞内产生第二信使, 从而将胞外信号跨膜传递到胞内。
细胞内受体在接受脂溶性的信号分子并 与之结合形成受体-配体复合物后就成为 转录促进因子,作用于特异的基因调控 序列,启动基因的转录和表达
(a) 类固醇激素通过扩散穿过细胞质膜; (b)激素分子与胞质溶胶中的受体结合; (c)抑制蛋白与受体脱离,露出与DNA结合和 激活基因转录的位点; (d)被激活的复合物进入细胞核; (e)与DNA增强子区结合; (f)促进受激素调节的基因转录。
分子识别的基础

分子识别是生命活动中最为重要的反应之 一,各种生物大分子通过氢键、离子键等 相互结合,不同大分子之间的三维结构特 异性的相互识别,导致了生物体中各种生 命反应的发生。
■ 受体存在的部位 信号分子识别并结合的受体通常位于细胞质膜 或细胞内,所以有两类受体: ● 表面受体(surface receptor) 于细胞质膜上的称为表面受体(surface receptor) ● 细胞内受体(intracellular receptor) 位于胞质溶胶、核基质中的受体称为细胞内受 体(intracellular receptor)。 表面受体主要是同大的信号分子或小的亲水性 的信号分子作用,传递信息。而细胞内受体主要是 同脂溶性的小信号分子作用。
第一节 分子识别 第二节 离子通道偶联型受体 第三节 G蛋白偶联型受体 第四节 酶偶联型受体 第五节 细胞内受体

第一节 分子识别
细胞通讯中,由信号传导细胞送出的 信号分子必须被靶细胞接收才能触发靶细 胞的应答,接收信息的分子称为受体 ( receptor),信号分子则被称为配体 (ligand)。
第三节 G蛋白偶联型受体
1. G蛋白



三聚体GTP结合调节蛋白(trimeric GTP-binding regulatory protein)简称G蛋白,位于质膜胞质侧, 由α、β、γ三个亚基组成,总相对分子质量在 100kDa左右。α和γ亚基通过共价结合的脂肪酸链 尾结合在膜上。 G蛋白在信号转导过程中起着分子开关的作用, 当α亚基与GDP结合时处于关闭状态,与GTP结 合时处于开启状态。 α亚基具有GTP酶活性,能催化所结合的ATP水解, 恢复无活性的三聚体状态
糖皮质激素受体激活
第二节 离子通道偶联型受体
具有离子通道作用的细胞质膜受体称为离 子通道受体, 这种受体见于可兴奋细胞间 的突触信号传导,产生一种电效应。 离子通道偶联型受体又可分为阳离子通道, 如乙酰胆碱、谷氨酸和五羟色胺的受体 (图4、5),以及阴离子通道,如甘氨酸 和γ-氨基丁酸的受体


G蛋白循环(G protein cycle)


G蛋白能够以两种不同的状态结合在细胞质膜上: 一种是静息状态,即三体状态;另一种是活性状 态。G蛋白由非活性状态转变成活性状态,尔后 又恢复到非活性状态的过程称为G蛋白循环。 G蛋白的这种活性转变与三种蛋白相关联: GTPase激活蛋白(GTPase-activating protein, GAPs) ;鸟苷交换因子(guanine nucleotideexchange factors,GEFs) ;鸟苷解离抑制蛋白 (guanine nucleotide-dissociation inhibitors, GDIs)
某些G蛋白的功能
效应物 G蛋白 作用
腺苷酸环化酶
K+ 离子通道 磷脂酶C
Gs Gi
Gi Gp
激活酶活性 抑制酶活性
打开离子通道 激活酶活性
cGMP磷酸二脂酶
Gt
激活酶活性
2.小G蛋白
小G蛋白(Small G Protein)因分子量只有 20~30KD而得名,同样具有GTP酶活性, 在多种细胞反应中具有开关作用。 小G蛋白的共同特点是:当结合了GTP时即 成为活化形式,这时可作用于下游分子使 之活化,而当GTP水解成为GDP时(自身 为GTP酶)则回复到非活化状态。
■根据表面受体与质膜的结合方式,则可
分为单次跨膜、7次跨膜和多亚单位跨膜受 体
细胞内受体: 通常有两个不同的结构域, 一个是与DNA结合的结构 域, 另一个是激活基因转 录的N端结构域。此外有 两个结合位点,一个是与 配体结合的位点,位于C 末端,另一个是与抑制蛋 白结合的位点,在没有与 配体结合时,则由抑制蛋 白抑制了受体与DNA的结 合,若是有相应的配体, 则释放出抑制蛋白。
乙酰胆碱受体结构模型
乙酰胆碱受体的三种构象
神经肌肉接点处的离子通道型受体
γ-氨基丁酸(GABA)受体结构
离 子 通 道 偶 联 受 体 与 信 号 传 导
①动作电位到达突触末 端,引起暂时性的去极 化;②去极化作用打开 了电位门控钙离子通道, 导致钙离子进入突触球; ③Ca2+浓度提高诱导分 离的含神经递质分泌泡 的分泌,释放神经递质; ④Ca2+引起储存小泡分 泌释放神经递质;⑤分 泌的神经递质分子经扩 散到达突触后细胞的表 面受体;⑥神经递质与 受体的结合,改变受体 的性质;⑦离子通道开 放,离子得以进入突触 后细胞;⑧突触后细胞 中产生动作电位。
相关文档
最新文档