最新CO2驱油机理研究综述汇总

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C O2驱油机理研究综

CO2驱油机理研究综述

第一章概述

1.1 CO2驱国外发展概况

注入二氧化碳用于提高石油采油率已有30多年的历史。二氧化碳驱油作为一项日趋成熟的采油技术已受到世界各国的广泛关注,据不完全统计,目前全世界正在实施的二氧化碳驱油项目有近80个。

90年代的CO2驱技术日趋成熟,根据1994年油气杂志的统计结果,全世界有137个商业性的气体混相驱项目,其中55﹪采用的是烃类气体,42﹪采用的是CO2,其他气体混相驱仅占3﹪。目前,国外采用二氧化碳驱油的主要国家有:美国、俄罗斯、匈牙利、加拿大、法国、德国等。其中美国有十个产油区的292个油田适用CO2驱,一般提高采收率7﹪~15﹪,在西德克萨斯州,CO2驱最主要是EOR方法,一般可提高采收率30﹪左右。

1.1.1国外CO2驱项目情况

在国外,注二氧化碳()技术主要用于后期的高含水油藏、非均质油藏以及不适合热采的重质油藏。推广二氧化碳驱油的主要制约因素是天然的二氧化碳资源、二氧化碳的输送及二氧化碳向生产井的突进问题以及油井及设备腐蚀、安全和环境问题等。为解决以上问题,提出了就注提高原油采收率技术,这种技术是向地层中注入反应溶液,使其在油藏条件下充分反应而释放出气体,溶解于原油之中,降低原油粘度,膨胀原油体积,从而达到提高原油采收率的目的。

美国是CO2驱发展最快的国家。自20世纪80年代以来,美国CO2驱项目不断增加,已成为继蒸汽驱之后的第二大提高采收率技术。美国目前正在

实施的CO2混相驱项目有64个。最大的也是最早使用CO2驱的是始于1972 年的SACROC 油田。其余半数以上的大型气驱方案是于1984~1986年间开始实施的,目前其增产油量仍呈继续上升的趋势。大部分油田驱替方案中,注入的CO :体积约占烃类空隙体积的30 %,提高采收率的幅度为7 %~22%。

1.1.2小油田CO2混相驱的应用与研究

过去,CO2混相驱一般是大油田提高原油采收率的方法。大油田由于生育储量多,剩余开采期长,经济效益好,而小油田CO2驱一般不具有这些优点。近年来许多小油田实施了CO2混相驱提高原油采收率方案,同样获得了良好的经济效益。如位于美国密西西比州的Creek 油田就是一个小油田成功实施CO2驱的实例。该油田于1996 年被JP 石油公司收购时的原油产量只有143 m3 / d,因油田实施了CO2 驱技术,使该油田的原油采收率大大提高,其原油产量在1998 年达到了209 m3 / d,比1996年增加了46%。

1.1.3重油CO2非混相驱的研究与应用

CO2驱开采重油一般是在不适合注蒸汽开采的油田进行。这类油田的油藏地质条件是:油层薄,或埋藏太深,或渗透率太低,或含油饱和度太低等。注CO 2可有效提高这类油藏的采收率。大规模使用CO2非混相驱开发重油油田的国家是土尔其。土尔其有许多重油藏不适合热采方法。1986 年土尔其石油公司在几个油田实施了CO2非混相驱,取得了成功。其中Raman 油田大规模C02 非混相驱较为典型。

加拿大也有许多重油油藏被认为不适合进行热力开采,加拿大对CO2驱开采重油进行了大量的研究。试验得出,轻油粘度在30 饱和压力下从大约从1 . 4 降到20,降低了15倍。另外,在不同温度下重油粘度测量发现,

温度达到275 ℃左右才能降粘,而CO2一旦溶解在原油中就可使原油粘度降低,并且可以把粘度降低到用蒸汽驱替的水平。

1.2国内研究应用现状

我国东部主要产油区CO2气源较少,但注CO2提高采收率技术的研究和现场试验却一直没有停止。注CO2技术在油田的应用越来越多,已在江苏、中原、大庆、胜利等油田进行了现场试验。1996年江苏富民油田48井进行了CO2吞吐试验,并已开展了CO2驱试验。草3井位于苏北盆地漆渔凹陷草舍油田戴一段油藏高部位,产层为Ed1段,属底水衬托的“油帽子”。初期自喷生产,日产油约59t,不含水,无水采油期共367天,综合含水升至22﹪时停喷,转入机抽生产,后日产油4.55t,含水90﹪。为了增油降水,在该井进行了CO2吞吐试验,效果明显,原油产量上升,含水下降,泵效增加,有效地延缓了原油产量递减。江苏油田富14断块在保持最低混相压力的状态下,于1998年末开始了CO2水交替(WAG)注入试验注入6周期后水气比由0.86:1升至2:1,见到了明显的增油降水效果。水驱后油层中形成了新的含油富集带。试验区采油速度由0.5﹪升至1.2﹪,综合含水率由93.5﹪降至63.4﹪。

大庆油田从发现第一口二氧化碳气井,到研究应用二氧化碳驱油技术,已走过13个春秋,至2008年年底,已有6个采油厂建起二氧化碳驱油试验区,累计增油超过4000吨。

第二章 二氧化碳的驱油特点

2.1二氧化碳的基本性质

在标准条件下,也即在MPa 1.0压力下,K 2.273(绝对温度)下二氧化碳是气体状态,气态二氧化碳密度31.0~08.0D m kg =,气态二氧化碳粘度

s mpa ⋅=08.0~02.0μ,液态二氧化碳密度39.0~5.0D m kg =,液态二氧化碳粘度s mpa ⋅=1.0~05.0μ,但在高压(MPa P 15>)低温(40

临界温度K T 2.304cr =(绝对)2.31=,临界压力MPa P cr 28.7=,当温度超过临界温度时,压力对二氧化碳相态几乎不起作用,即在任何压力下二氧化碳均呈现气体状态,因此在地层温度较高的油层中应用二氧化碳驱油,二氧化碳通常是气体状态而与注入压力和地层压力无关。若地层埋深为1500~

2000m ,地温为310~350K (绝对),用10~20MPa 压力向该地层注入二氧化碳的话,它将位于超临界状态。

临界温度K T 2.304cr =(绝对)2.31=,临界压力MPa P cr 28.7=,当温度超过临界温度时,压力对CO2相态几乎不起作用,即在任何压力下CO2均呈现气体状态,因此在地层温度较高的油层中应用CO2驱油,CO2通常是气体状态而与注入压力和地层压力无关。若地层埋深为1500~2000m ,地温为310~350K (绝对),用10~20MPa 压力向该地层注入CO2的话,它将位于超临界状态。

CO2在水中溶解度随压力增加而增加,随温度的增加而降低,随地层水矿化度的增加而降低,这要求我们在应用二氧化碳水溶液时要考虑地层压力、温度、地层水矿化度的变化。

CO2溶于水中形成“碳化水”,结果使水的粘度有所增加,例如,溶解

3~5%质量比浓度时,水的粘度增加20~30%。CO2溶解于水时可形成碳酸,

相关文档
最新文档