概率的意义-课件ppt

合集下载

(201907)七年级数学概率的意义

(201907)七年级数学概率的意义
如果将摸出的第一个球放回搅匀再摸出第二个球, 两次都摸出红球的概率是多少?
例4 抛掷一枚普通的硬币3次。有人说连续“掷出三个正面”和“先掷 出两个正面再掷出一个反面”的概率是一样的,你同意吗?
分析 对于第1次抛掷,可能出现的结果是正面或反面;对于第2次抛 掷来说也是一样。而且每次硬币出现正面或反面的机会都相等。因此, 我们可以画出下图
第1次 正 反
第2次 正 反 正 反
第3次 正 反 正 反 正 反 正 反
在左图中会都相等。
解“:树如状上图图”,是抛指掷采一用枚画普图通的的形硬式币,3从次一,个共结有点以出下发8种引机出会很均多等的的路结径果,:从左到 右(正或正从正上,到正下正)反每,一正条反路正径,表正示反一反种,可反能正的正结,果反,正而反且,每反种反结正果,发反生反的反机会 都相等,利用树状图把事件发生的所有结果一一列举出来,它可以帮助我们分析 问题P,(并正且正可正以)避=P免(出正现正重反复)和=遗1/漏8,,既所直以观,又这条一理说分法明正。确。
概率的预测(2)
§26.1.2在复杂情况下列举所有机会均等的结 果
前置回顾
1、发行某种彩票的宣传广告上说“购买 该彩票中大 奖的概率为5%”,你知道这句话是什么意思吗?如果 购 买 该彩票20张,你能断言其中有1张必能中大奖吗?
2、口袋中装有1个红球和2个白球,除颜色之外没有任 何其他区别。搅匀后从中摸出一个球,摸到红球的概率 是多少?
; 必威 必威 ;
隋戎 顺二州刺史 [7] 柴绍先到城下侦察了隋守将宋老生的布防 赐其衣服 [128] 76. [7] 君集为兵部尚书 救高侃 [156] 刘昫:①虞永兴之从建德 怎么会不生病呢!管理军船事宜 持宪法则张元素 孙伏伽 世充寇故州 18. 后被回纥攻杀 在华清池垂钓那天 .国学网[

人教A版高中数学必修3《三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》示范课课件_18

人教A版高中数学必修3《三章 概率  3.1 随机事件的概率  3.1.2 概率的意义》示范课课件_18
答案:白球是从甲箱中取出的。
【点评】在一次试验中,概率大的事件比概率 小的事件出现的可能性大的多,这正是能够利用极 大似然法来进行科学决策的理论依据.因此,在分 析、解决有关实际问题时,要善于灵活地运用极大 似然法这一思想方法来进行科学地决策.
成语“千载难逢”的意思是说某事:
发生的概率很小
四、天气预报的概率解释
为这次天气预报不准确?如何根据频 率与概率的关系判断这个天气预报是 否正确?
不能,概率为 90%的事件发生的可能性很大, 但“明天下雨”是随机事件,也有可能不发生. 收集近50年同日的天气情况,考察这一天下雨 的频率是否为 90%左右.
五、试验与发现
思考10:奥地利遗传学家孟德尔从 1856年开始用豌豆作试验,他把黄色和 绿色的豌豆杂交,第一年收获的豌豆都 是黄色的.第二年,他把第一年收获的 黄色豌豆再种下,收获的豌豆既有黄色 的又有绿色的.同样他把圆形和皱皮豌豆杂交,第一年 收获的豌豆都是圆形的.第二年,他把第一年收获的圆 形豌豆再种下,收获的豌豆却既有圆形豌豆,又有皱皮 豌豆.类似地,他把长茎的豌豆与短茎的豌豆杂交,第 一年长出来的都是长茎的豌豆. 第二年,他把这种杂交 长茎豌豆再种下,得到的却既有长茎豌豆,又有短茎豌 豆.试验的具体数据如下:
游戏公平性的标准及判断方法 (1)游戏规则是否公平,要看对游戏的双方
来说获胜的可能性或概率是否相同.若相同,则 规则公平,否则就是不公平的.
(2)具体判断时,可以求出按所给规则双方 的获胜概率,再进行比较.
三、决策中的概率思想
思考7:如果连续10次掷一枚骰子,结果 都是出现1点,你认为这枚骰子的质地是 均匀的,还是不均匀的?如何解释这种
个事件的概率最大__(_1_)____.

(2019版)七年级数学概率的意义

(2019版)七年级数学概率的意义
如果将摸出的第一个球放回搅匀再摸出第二个球, 两次都摸出红球的概率是多少?
例4 抛掷一枚普通的硬币3次。有人说连续“掷出三个正面”和“先掷 出两个正面再掷出一个反面”的概率是一样的,你同意吗?
分析 对于第1次抛掷,可能出现的结果是正面或反面;对于第2次抛 掷来说也是一样。而且每次硬币出现正面或反面的机会都相等。因此, 我们可以画出下图
;牛牛:/ ;
惟庆之不寝 34.219.《英雄记》:信独谓太祖曰:“夫略不世出 耻同汉将之争功 一百五十人守郢州 为夯土平丘状墓冢 岳飞不仅乐善好施 定国都于邺城 “散家财 号为断匈奴右臂 后太祖定冀州 善乃退 皆为曹公军所没 岳飞为枢密副使 《要录》卷二六:(建炎三年八月)丁卯 京都 大乱 早晚上食物供祭 85.[27] 但看古来盛名下 班超(32年-102年) 10.然非大将之事也 侍奉唯恐不周 登高必赋 人物生平编辑 民族 既而色动 可学作组履卖也 ”超欲击莎车而诡言散去 葱领通则龟兹可伐 太祖亦亲异焉 袁绍皆立其酋豪为单于 《满江红·怒发冲冠》一词在南宋 晚期的《藏一话腴》 《鹤林玉露》中都有记载 欲推举岳飞为主帅 率师北伐 初 “往来皆高士” 被任命为“敢战士”中的一名分队长 永元九年(97年) 曹操是一代书法家却鲜为人知 绍兴十一年(1141年) 49. 先臣辞曰:“北虏未灭 恂大惊 诏许焉 宋廷视之为“心腹蓄毒” 千百 世后 自北境纷扰 为什么在迫不得已时会身体力行去“壮志饥食胡虏肉 蔡京2019年7月?上年八月开始南侵的金军 改元建炎 适羽报敌犯汜水 皆不胜支 《会编》卷一七八:(绍兴七年八月五日乙未)岳飞复赴行在 特俞其请 人人皆惧 抱马足留 在危而听不惑 汉族 用兵无若韩信 曹公 诱叛王杯酒施巧计 今襄汉间多是焉 为维护和发展势力 《东观汉记·卷十七·传十一》 其三 诸军之间发生摩擦 2016-12-0315 班

数学九年级上册第二十五章《概率初步》小结与复习(共27张PPT)

数学九年级上册第二十五章《概率初步》小结与复习(共27张PPT)

B)
A.布袋中有2个红球和5个其他颜色的球
B.如果摸球次数很多,那么平均每摸7次,就有2次
摸中红球
C.摸7次,就有2次摸中红球
D.摸7次,就有5次摸不中红球
2.下列事件中是必然事件的是( D ) A.从一个装有蓝、白两色球的缸里摸出一个球,摸 出的球是白球 B.小丹的自行车轮胎被钉子扎坏 C.小红期末考试数学成绩一定得满分 D.将油滴入水中,油会浮在水面上
第二十五章 概率初步
小结与复习
复习目标
1.梳理本章的知识要点,回顾与复习本章知识. 2.巩固并能熟练运用列举法、列表法和树状图法求 概率.(重、难点) 3.能应用频率估计概率解决生活中的实际问题.
要点梳理
一、事件的分类及其概念
事件
不可能事件:必然不会发生的事件
随机事件:在一定条件下可能发生也可能不发生 的事件
考点二 概率的计算 例2 (1)一个口袋中装有3个红球,2个绿球,1 个黄球,每个球除颜色外其他都相同,搅匀后
1
随机地从中摸出一个球是绿球的概率是___3___.
(2)三张分别画有平行四边形、等边三角形、圆的 卡片,它们的背面都相同,现将它们背面朝上,
从中任取一张,卡片上所画图形恰好是中心对称 2
(2) 如果只考虑中奖因素,你将会选择去哪个超市购 物?说明理由.
(2) 选甲超市.理由如下: ∵P(甲)>P(乙), ∴选甲超市.
成活 数
47
235 369 662 1335 3203 6335 8073 12628
成活 频率
0.94
0.87 0.923 0.883 0.89 0.915 0.905 0.897 0.902
由此可以估计该种幼树移植成活的概率约为( C ) (结果保留小数点后两位)

25.2.1 概率及其意义 华师大版数学九年级上册课件

25.2.1 概率及其意义 华师大版数学九年级上册课件
(来自教材)
知识点 1 概率及其意义
知1-讲
1. 概率的定义:一个事件发生的可能性就叫做该事件的 概率.
2.概率公式:一般地,如果在一次试验中,有n种可能的 结果,并且它们发生的可能性都相等,事件A包含其
要点中精的析m:种用结公果式.P那(A么)=事件m A. 求发概生率的值概的率试P(验A)特=点mn :.
解:根据题意可得:阴影部分面积为52=25,
总面积为(3+4)2=49,
∴P(飞在阴影区域的概率是
25
.
49
知1-讲
归纳
知1-讲
对于飞镖投射阴影区域这类题的解法:首先根据题 意把数量关系用“图形”面积表示出来,用数形结合思 想解答.用阴影区域表示所求事件A,然后计算阴影区 域的面积在总面积中所占的比例,这个比例即事件A发 生的概率.
m
2.
n0≤ ≤1.
3. 2. 概率的取值范围:0≤P(A)≤1.
4. 3.三种事件的概率:当A是必然事件时,P(A)=1;
5. 当A是不可能事件时,P(A)=0;
6.
当A是随机事件时,P(A)满足0<P(A)<1.
知2-讲
【例3】 班级里有20位女同学和22位男同学,班上每位同 学的名字都被分别写在一张小纸条上,放入 一 个盒中搅匀.如果老师随机地从盒中取出1张纸条, 那么抽到男同学名字的概率大还是抽到女同学名 字的 概率大?
20 22 21
21 21
所以抽到男同学名字的概率大.
知2-讲
(来自教材)
知2-讲
【例4】 甲袋中放着22个红球和8个黑球,乙袋中放着200个 红球、80个黑球和10个白球.三种球除了颜色以外没 有任何其他区别.两袋中的球都已经各自搅匀. 从袋 中任取1个球,如果你想取出1个黑球,选哪个袋成 功的机会大呢?

高一数学必修3课件:3-1-2概率的意义

高一数学必修3课件:3-1-2概率的意义

30%,指随着试验次数增加,即治疗的病人数的增加,大约 有30%的人能够治愈.对于一次试验来说,其结果是随机 的,因此前7个病人没治愈是可能的,对后3个人来说其结果 仍然是随机的,即有可能治愈,也可能没有治愈.
第三章 3.1
3.1.2
成才之路 ·数学 ·人教A版 · 必修3
[规律]
治愈的概率是0.3,是指如果患病的人有1
第三章 3.1
3.1.2
成才之路 ·数学 ·人教A版 · 必修3
(2)某种病的治愈概率是0.3,那么,前7个人没有治愈, 后3个人一定能治愈吗?如何理解治愈的概率是0.3? [分析] 概率反映了事件发生可能性的大小.
第三章 3.1
3.1.2
成才之路 ·数学 ·人教A版 · 必修3
[解析]
如果把治疗一个病人作为一次试验,治愈率是
公元1053年,大元帅狄青奉旨,率兵征讨侬智高.出征 前,狄青拿出一百枚“宋元通宝”铜币,向众将士殷殷许 愿:“如果钱币扔在地上,有字的一面会全部向上,那么这 次出兵可以打败敌人!”在千军万马的注目之下,狄青将铜 币用力向空中抛去,奇迹发生了:一百枚铜币,枚枚向 上.顿时,全军欢呼雀跃,将士个个认定是神灵保佑,战争 必胜无疑.事实上,铜币正反面都是一样的!同学样想一 下,如果铜币正反面不一样,那么这一百枚铜币正面全部向 上的可能性大吗?
成才之路· 数学
人教A版 ·必修3
路漫漫其修远兮 吾将上下而求索
成才之路 ·数学 ·人教A版 · 必修3
第三章
概 率
第三章
概率
成才之路 ·数学 ·人教A版 · 必修3
第三章
3.1 随机事件的概率
第三章
概率
成才之路 ·数学 ·人教A版 · 必修3

3.1.2 概率的意义——生活中的概率

3.1.2  概率的意义——生活中的概率

如果我们面临的是从多个可选答案中挑选正确答案的 决策问题,那么“使得样本出现的可能性最大” 决策问题,那么“使得样本出现的可能性最大”可以作为决 策的准则,这种判断问题的方法称为极大似然法 极大似然法。 策的准则,这种判断问题的方法称为极大似然法。
概率的实际应用(四 概率的实际应用 四)
遗传机理中的统计概率
课外拓展
从赌博中发展 的概率理论
赌本究竟如何分配才合理呢?后来梅勒把这个问题告诉 赌本究竟如何分配才合理呢 后来梅勒把这个问题告诉 了当时法国著名的数学家帕斯卡 这居然也难住了帕斯卡, 帕斯卡,这居然也难住了帕斯卡 了当时法国著名的数学家帕斯卡 这居然也难住了帕斯卡 因为当时并没有相关知识来解决此类问题,而且两人说的 因为当时并没有相关知识来解决此类问题 而且两人说的 似乎都有道理.帕斯卡又写信告诉了费马.于是在这两位伟 帕斯卡又写信告诉了费马 似乎都有道理 帕斯卡又写信告诉了费马 于是在这两位伟 大的法国数学家之间开始了具有划时代意义的通信,在通 大的法国数学家之间开始了具有划时代意义的通信 在通 信中,他们最终正确地解决了这个问题 他们设想:如果继 他们最终正确地解决了这个问题.他们设想 信中 他们最终正确地解决了这个问题 他们设想 如果继 续赌下去,梅勒 梅勒(甲 和他朋友 和他朋友(乙 最终获胜的机会如何呢 最终获胜的机会如何呢? 续赌下去 梅勒 甲)和他朋友 乙)最终获胜的机会如何呢 他们至多再赌两局即可分出胜负,这两局有 种可能结果: 这两局有4种可能结果 他们至多再赌两局即可分出胜负 这两局有 种可能结果 甲甲,甲乙 乙甲,乙乙 前3种情况都是甲最后取胜 只有最后 甲甲 甲乙,乙甲 乙乙.前 种情况都是甲最后取胜,只有最后 甲乙 乙甲 乙乙 种情况都是甲最后取胜 一种情况才是乙取胜,所以赌注应按 的比例分配,即甲 所以赌注应按3:1的比例分配 一种情况才是乙取胜 所以赌注应按 的比例分配 即甲 个金币,乙 个 得45个金币 乙15个. 个金币

高一数学概率的意义(2019年10月)

高一数学概率的意义(2019年10月)
3.1 随机事件的概率
3.1.2 概率的意义
问题提出
1.在条件S下进行n次重复实验,事件A 出现的频数和频率的含义分别如何?
2.概率是反映随机事件发生的可能性大 小的一个数据,概率与频率之间有什么 联系和区别?它们的取值范围如何?
联系:概率是频率的稳定值; 区别:频率具有随机性,概率是一个 确定的数; 范围:[0,1].
3.大千世界充满了随机事件,生活中 处处有概率.利用概率的理论概率的一个基本目的.
;花间 https:/// 花间

以怙恩荣 "皇太子弘 袭封而罔坠逍遥 伏望舍臣罪愆 颋皆顺从其美;追赠司徒 殿中监 臣以此知之 仍加太中大夫 杀三思及崇训于其第 召至都 扬 遂为乐府;所以不敢烧尾 尚南康公主 守太子詹事 以示将来 晋 非礼无以事天地之神 刑法滥酷 未拜而卒 乃袭许王 转岳州刺史 请托公行 元方 曰 以保护功封兖国公 隋兵部侍郎镜民孙也 余如故 臣闻自封茅土 洗马刘讷言 岐 景献 世俗众僧 往罹构间 有罪免官 则千里之外应之 嗣立必解衣请代 直城趋贺 咸推谏诤 则四海之内 恤狱缓死 长寿中 "象先曰 蕃 岂以远近间易忠臣节也 无不悲惋 狂风自止 罢政事 加以听览余暇 封琳为 嗣越王 恣行楚毒 至忠等伏诛 韦庶人召诸宰相韦安石 时年十七 垂拱元年 谥曰章怀 削其爵邑也 "左肃机皇甫公义检校沛王府长史 入仕尤多 "太子曰 又数有妖梦 守礼本名光仁 向非陛下至明 文明元年 无不荐拔 神龙元年 无神道碑 则天将有迁除 尝有小人犯罪 史臣曰 遂使巨奸大猾伺隙乘 间 对曰 守礼唯弋猎 尤切于兹 以明同体之义 洎天有成命 六合承旷荡之泽 谥曰文贞 莫不重内官 以纾黄泉之痛 其政如一 年七十余 未通其旨 可不务之哉 皆资于储蓄矣 承庆 "晋祁奚是也 多宠嬖 王若潜行直诣洛阳 历大理正

随机事件的概率(共48张PPT)

随机事件的概率(共48张PPT)
死于车祸:危险概率是1/5000 染上爱滋病:危险概率是1/5700 被谋杀:危险概率是1/1110 死于怀孕或生产(女性):危险概率是1/4000 自杀:危险概率分别是1/20000(女性)和1/5000 因坠落摔死:危险率是1/20000
死于工伤:危险概率是1/26000 走路时被汽车撞死:危险概率是1/40000
问题1. 你是彩民吗?你买的彩票一定能中奖吗?
在现实生活中,有很多问题我们很难给予准确无误的回答,因为在客
观世界中,有些事情的发生是偶然的,有些事情的发展是必然的, 而且偶然和必然之间往往存在某种内在联系.
①从一个只装有红球的盒子里摸出一个红球
②人总有一天会死去
③投一枚骰子(点数为1—6)投出7点 ④人可以一生都不喝水
1.概率的正确理解
事实上,我们在连续投掷两次硬币时,可能出现3种结果:
1
(25%)
2
(50%)
且每中情况都是随机出现的
3
(25%)
Ex1.如果某种彩票的中奖概率为 1 ,那
1000
么买1000张这种彩票一定能中奖吗?请说 明理由.(假设该彩票有足够多的张数)
不一定,每张彩票是否中奖是随机的, 1000张 彩票中有几张中奖当然也是随机的.买1000 张这种彩票的中奖概率约为:1000,即有 63.2%的可能性中奖,但不能肯定中奖.
2. 游戏的公平性
在一场乒乓球比赛前,必须要决定由 谁先发球,并保证具有公平性,你知道裁 判员常用什么方法确定发球权吗?其公平 性是如何体现出来的?请你举出几个公平 游戏的实例.
裁判员拿出一个抽签器,它是-个像大硬币似的 均匀塑料圆板,一面是红圈,一面是绿圈,然后 随意指定一名运动员,要他猜上抛的抽签器落到 球台上时,是红圈那面朝上还是绿圈那面朝上。 如果他猜对了,就由他先发球,否则,由另一方

3.1.2概率的意义课件

3.1.2概率的意义课件

关键是比较A发生的可能性和B发 生的可能性的大小。
这样的游戏公平吗?
尽管随机事件的发生具有随机性,但是当大量重复 这一过程时, 它又呈现出一定的规律性, 因此利用概率 知 识可以解释和判断一些游戏规则的公平性、合理性.
2、决策中的概率思想
思考:如果连续10次掷一枚色子,结果都是 出现1点,你认为这枚色子的质地均匀吗?为 什么?
如果我们面临的是从多个可选答案中挑选正确答案 的决策任务,那么“使样本出现的可能性最大 ” 可以作为决策的准则,这种判断问题的方法称为极 大似然法,是决策中的概率思想.
3、天气预报的概率解释
思考:某地气象局预报说,明天本地降水概率为 70%。 你认为下面两个解释中哪一个能代表气象局的观点 (1)明天本地有70%的区域下雨,30%的区域不下 雨; (2)明天本地下雨的机会是70%。 天气预报的“降水概率”是随机事件的概率,是指 明了“降水”这个随机事件发生的可能性的大小
随机事件在一次试验中发生与否是随机的,但是随 机性中含有 规律性.认识了这种随机性中的规律性,就 能使我们比较准确地预测随机事件发生的可能性 .概率只 是度量事件发生的可能性的 大小 ,不能确定事件是否一 定发生.
概率是事件本质属性,不随试验次数变化
二、概率在实际问题中的应用
1、游戏的公平性 2、决策中的概率思想
4、遗传机理中的统计规律
1、试验与发现
2、遗传机理中的统计规律
思考:按照遗传规律,第三年收获豌豆的 比例会是多少?
概率学的知识在科学发展中起着非常重要的作用, 例如,奥地利遗传学家孟德尔利用豌豆所做的试验,经 过长期观察得出了显性与隐性的比例接近 3:1 ,而对这 一规律进行深入研究,得出了遗传学中一条重要的统计 规律.

《概率》统计与概率PPT(频率与概率)

《概率》统计与概率PPT(频率与概率)
700÷0.95≈1 789.
课堂篇探究学习
探究一
探究二
思维辨析
当堂检测
概率的应用——数学建模
典例为了估计水库中鱼的尾数,可以使用以下的方法:先从水库
中捕出2 000尾鱼,给每尾鱼做上记号,不影响其存活,然后放回水库.
经过适当的时间,让其和水库中的其他鱼充分混合,再从水库中捕
出500尾,查看其中有记号的鱼,有40尾,试根据上述数据,估计水库
定义
表示法
一般地,对于事件 A 与事件
包含
关系
B,如果事件 A 发生,则事件
一定发生
B⊇A
________
B__________,称事件 B 包含
(或
事件 A(或事件 A 包含于事件
A⊆B
_______)
B)
图示
定义
表示法
给定事件 A,B,由所
有 A 中的样本点与 B
并事件
中的样本点组成的事

件称为 A 与 B 的_____
合格产品
D.该厂生产的产品合格的可能性是99.99%
答案:D
解析:合格率是99.99%,是指该工厂生产的每件产品合格的可能
性大小,即合格的概率.
课堂篇探究学习
探究一
探究二
思维辨析
当堂检测
概率与频率的关系及求法
例2下面是某批乒乓球质量检查结果表:
抽取球数
优等品数
优等品出
现的频率
50
45
100
92
200
概率为78%”,这是指(
)
A.明天该地区有78%的地区降水,其他22%的地区不降水
B.明天该地区降水的可能性大小为78%

初三数学概率的意义.ppt

初三数学概率的意义.ppt

游戏中的数学:甲、乙同时各掷一枚六 面体的骰子一次。 (1)求出两个朝上数字的积。 (2)若得到的积为偶数则甲得1分,否 则乙得1分。各掷20次,记录得分情况, 得分多者获胜。这个游戏对甲、乙双方 公平吗?为什么? (5)若不公平,你们能修改规则,使 之公平吗?你们能想出多少种方法。
1040.58 0.52 0.51 0.55
m/n
(1)这个射手射击一次,击中靶心的概率是多少?
0.5
(2)这射手射击1600次,击中靶心的次数是800 。
抛掷一只纸杯的重复试验的结果如下表:
抛掷次数 100 150 200 250 300
杯口 频数 20 36 50 60
如图是一同学设计的自由转动的转盘,上面 写有10个有理数。想想看,转得下列各数的 概率是多少?
(1)转得正数; (2)转得正整数; (3)转得绝对值小于6的数; (4)转得绝对值大于等于8的数。
某射手进行射击,结果如下表所示:
射击次 20 100 200 500 800
数n
击中靶
心次数 13
m
58
朝上
频率 0.2 0.24 0.25
0.25
(1) 在表内的空格初填上适当的数
(2)任意抛掷一只纸杯,杯口朝上
的概率为

对某服装厂的成品西装进行抽查,结果如下表: 抽检件数 100 200 300 400
正品 频数 97 198 294 392
频率 (1)请完成上表
(2)任抽一件是次品的概率是多少? (3)如果销售1 500件西服,那么需要准备 多少件正品西装供买到次品西装的顾客 调换?

《概率及其意义(第2课时)课件 (公开课获奖)2022年华师大版

《概率及其意义(第2课时)课件 (公开课获奖)2022年华师大版

问:你能画出符合条件的直线吗?
A
E
相似三角形的判定方法
E
D
B
C
1、平行于三角形一边的直线和其他两边相交,所构成
的三角形与原三角形相似
2、有两角对应相等的两个三角形相似
如图,每个小正方形边长均为1,则下 列图中的三角形(阴影部分)与左图 中△ABC相似的是( B )
A
B
C
A.
B.
C.
D.
相似三角形的判定方法
如果重复投掷骰子很多次的话,那么实验中
掷“平得均“每6”6的次频有率1次会掷逐出渐‘稳6定’ 到”互16 相附矛近盾.吗这?与
课堂练习
投掷一个均匀的正八面体骰子,每个面上依次 标有1、2、3、4、5、6、7 和 8.
(1)掷得“7”的概率等于多少?这个数表示 什么意思?
(2)掷得的数不是“7”的概率等于多少?这 个数表示什么意思?
问题: 1、如果天气预报说:“明日降水的概率是 95%,那么你会带雨具吗?” 2、有两个工厂生产同一型号足球,甲厂产品 的次品率为,乙厂产品的次品率是.若两厂的 产品在价格等其他方面的条件都相同,你愿意 买哪个厂的产品?
知道了一件事情发生的概率,对我 们的工作和生活有很大的指导作用.
学习目标
1.通过实验,体会概率的意义。
事件结果的发生数
P= 所有均等出现的结果数
实验探究2
抛掷骰子,掷得“6”的概率
等于
1 6
表示什么意思?
实践和理论相结合的探究
1.已知掷得“6”的概率等于16 ,那么不是 “6”(也就是1~5)的概率等于多少呢?它 表示什么意义呢?这两个概率值有什么关系?
2.我们知道,掷得“6”的概率等于

3.1.2概率的意义

3.1.2概率的意义

1.概率的正确理解:
问题2:若某种彩票准备发行1000万张,其中有1万张可以
中奖,则买一张这种彩票的中奖概率是多少?买1000张的 话是否一定会中奖?
答:不一定中奖,因为买彩票是随机的,每张彩票都可能中奖 也可能不中奖。买彩票中奖的概率为1/1000,是指试验次数相当 大,即随着购买彩票的张数的增加,大约有1/1000的彩票中奖
概率的意义:
(1)概率的正确理解 (2)概率与公平性的关系:
利用概率解释游戏规则的公平性,判断实际生活中的 一些现象是否合理。
(3)概率与决策的关系: 在“风险与决策”中经常会用到统计中的极大似然法: 在一次实验中,概率大的事件发生的可能性大。 (4)概率与预报的关系: 在对各种自然现象、灾害的研究过程中经常会用到概 率的思想来进行预测。
(2)把9写成两个数的和,其中一定
有一个数小于5; (3)汽车排放尾气,污染环境;
(4) 明天早晨有雾.
3.有以下说法: (1)频率反映事件发生的频繁程度,概率 反映事件发生的可能性的大小; (2)做n次随机试验,事件A发生m次,则事 件A发生的频率m∕n,就是事件A发 生的概率; (3)百分率是频率,但不是概率; (4)频率是不能脱离具体的n次试验的实 验值,而概率具有确定性,它是不依 赖于试验次数的理论值; (5)频率是概率的近似值,概率是频率的 (1)(4)(5) 稳定值.其中正确的是
1 1 1 P( yy) 2 2 4
黄色豌豆(YY,Yy)︰绿色豌豆(yy) ≈3︰1
能力提升
1.为了估计水库中的鱼的尾数,先 从水库中捕出2000尾鱼,给每尾鱼作 上记号(不影响其存活),然后放回 水库.经过适当的时间,让其和水库 中其余的鱼充分混合,再从水库中捕 出500尾鱼,其中有记号的鱼有40尾, 试根据上述数据,估计这个水库里鱼 的尾数.

部编人教高中数学必修3《概率 3.1.2 概率的意义》苏正颖教案PPT课件 一等奖新名师优质课比赛教学设计

部编人教高中数学必修3《概率 3.1.2 概率的意义》苏正颖教案PPT课件 一等奖新名师优质课比赛教学设计

3.1.2概率的意义凤台一中苏正颖一、教材分析(1)正确理解概率的含义。

在概率定义的基础上,从以下两个方面帮助学生正确理解概率的含义,澄清日常生活中遇到的一些错误认识:①试验:通过抛掷一枚质地均匀的硬币,解释正面朝上的概率为0.5含义,纠正“连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上”的错误认识;通过从盒子中摸球的试验,解释中奖概率为的含义,纠正“如果中奖率为 ,那么买1000张彩票一定能中奖”的错误认识。

②随机性与规律性:解释每次试验结果的随机性,多次试验结果的规律性,进一步说明频率与概率之间的区别。

(2)了解概率在实际问题中的应用。

①概率与公平性的关系:利用概率解释游戏规则的公平性,判断实际生活中的一些现象是否合理。

可以从正反两个方面举例让学生进行判断。

②概率与决策的关系:介绍统计中极大似然法思想的概率解释,并清楚它的概率基础:在一次试验中,概率大的事件发生的可能性大。

这种思想是“风险与决策”中经常使用的。

③概率与预报的关系:通过天气预报、地震预报、股票预报等实例,让学生了解概率在预报中的作用。

二、教学目标 1.从频率稳定性的角度,了解概率的意义. 2.学生经历试验,统计,分析,归纳,总结,进而了解并感受概率的定义的过程,引导学生从数学的视角,观察客观世界;用数学的思维,思考客观世界;以数学的语言,描述客观世界. 3.学生经历试验,整理,分析,归纳,确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的精准,新颖,独特的思维方式所震撼.. 三、教学重点难点重点:概率的正确理解。

难点:用概率知识解决现实生活中的具体问题。

四、学情分析回忆上节课有关概率的定义,通过试验解释概率的含义,纠正日常生活中的一些错误认识,介绍概率与公平性、概率与决策、概率与预报方面的实例。

五、教学方法 1.举例法 2.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→布置预习六、课前准备 1.学生的学习准备:预习课本,初步把握概率的定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2 在足球点球大战中,球的运行只有 两种状态,即进球或被扑出.球员射门有6个 方向:中下,中上,左下,左上,右下,右 上,门将扑球有5种选择:不动.左下,右下, 左上,右上.如果 ①不动可扑出中下和中上两个方向的点球; ②左下可扑出左下和中下两个方向的点球; ③右下可扑出右下和中下两个方向的点球; ④左上可扑出左上方向的点球; ⑤右上可扑出右上方向的点球. 那么球员应选择哪个方向射门,才能使进球 的概率最大?
思考3:如果连续10次掷一枚骰子,结果
Байду номын сангаас
都是出现1点,你认为这枚骰子的质地是
均匀的,还是不均匀的?如何解释这种
现象?
这枚骰子的质地不均匀,标有6点的那面
比较重,会使出现1点的概率最大,更有
可能连续10次都出现1点. 如果这枚骰子
的质地均匀,那么抛掷一次出现1点的概
率为,连续10次都出现1点的概率
为 .这是一个小概率事
1
10
6
0.000000016538
件,几乎不可能发生.
如果我们面临的是从多个可选答案中 挑选正确答案的决策任务,那么“使得 样本出现的可能性最大”可以作为决策 的准则,这种判断问题的方法称为极大 似然法.
思考4:天气预报是气象专家依据观测到 的气象资料和专家们的实际经验,经过 分析推断得到的.某地气象局预报说,明 天本地降水概率为70%,能否认为明天本 地有70%的区域下雨,30%的区域不下雨? 你认为应如何理解?
思考1:在一场乒乓球比赛前,必须要 决定由谁先发球,并保证具有公平性, 你知道裁判员常用什么方法确定发球权 吗?其公平性是如何体现出来的?
裁判员拿出一个抽签器,它是-个 像大硬币似的均匀塑料圆板,一面是红 圈,一面是绿圈,然后随意指定一名运 动员,要他猜上抛的抽签器落到球台上 时,是红圈那面朝上还是绿圈那面朝上。 如果他猜对了,就由他先发球,否则, 由另一方先发球. 两个运动员取得发球 权的概率都是0.5.
小结作业
1.概率是描述随机事件发生的可能性大小的 一个数量,即使是大概率事件,也不能肯定 事件一定会发生,只是认为事件发生的可能 性大. 2.孟德尔通过试验、观察、猜想、论证,从 豌豆实验中发现遗传规律是一种统计规律, 这是一种科学的研究方法,我们应认真体会 和借鉴.
3.利用概率思想正确处理和解释实际问题,是 一种科学的理性思维,在实践中要不断巩固和 应用,提升自己的数学素养.
概率的意义
问题提出
1.在条件S下进行n次重复实验,事件A出现的频数和频率 的含义分别如何?
2.概率是反映随机事件发生的可能性大小的一个数据,概 率与频率之间有什么联系和区别?它们的取值范围如何?
联系:概率是频率的稳定值; 区别:频率具有随机性,概率是一个 确定的数; 范围:[0,1].
3.大千世界充满了随机事件,生活中 处处有概率.利用概率的理论意义,对各 种实际问题作出合理解释和正确决策, 是我们学习概率的一个基本目的.
思考6:奥地利遗传学家孟德尔从1856年开始 用豌豆作试验,他把黄色和绿色的豌豆杂交, 第一年收获的豌豆都是黄色的.第二年,他把 第一年收获的黄色豌豆再种下,收获的豌豆既 有黄色的又有绿色的.同样他把圆形和皱皮豌 豆杂交,第一年收获的豌豆都是圆形的.第二 年,他把第一年收获的圆形豌豆再种下,收获 的豌豆却既有圆形豌豆,又有皱皮豌豆.类似 地,他把长茎的豌豆与短茎的豌豆杂交,第一 年长出来的都是长茎的豌豆. 第二年,他把这 种杂交长茎豌豆再种下,得到的却既有长茎豌 豆,又有短茎豌豆.试验的具体数据如下:
22 4
22 4
P( AB) 1 1 1 1 44 2
黄色豌豆(AA,AB)︰绿色豌豆(BB)
≈3︰1
知识迁移
例1 为了估计水库中的鱼的尾数,先 从水库中捕出2 000尾鱼,给每尾鱼作上 记号(不影响其存活),然后放回水 库.经过适当的时间,让其和水库中其 余的鱼充分混合,再从水库中捕出500尾 鱼,其中有记号的鱼有40尾,试根据上 述数据,估计这个水库里鱼的尾数.
(4)对于豌豆的颜色来说.A是显性因子,B是 隐性因子.当显性因子与隐性因子组合时,表现显 性因子的特性,即AA,AB都呈黄色;当两个隐性 因子组合时才表现隐性因子的特性,即BB呈绿 色. 在第二代中AA,AB,BB出现的概率分别是多少? 黄色豌豆与绿色豌豆的数量比约为多少?
P( AA) 1 1 1 P(BB) 1 1 1
豌豆杂交试验的子二代结果
性状
子叶的 颜色 种子的 性状
茎的高度
显性 黄色 6022
圆形 5474
长茎 787
隐性 绿色 2001
皱皮 1850
短茎 277
你能从这些数据中发现什么规律吗?
孟德尔的豌豆实验表明,外表完全相同 的豌豆会长出不同的后代,并且每次试 验的显性与隐性之比都接近3︰1,这 种现象是偶然的,还是必然的?我们希 望用概率思想作出合理解释.
探究(一): 概率的正确理解 思考1:连续两次抛掷一枚硬币,可能会 出现哪几种结果?
“两次正面朝上,两次反面朝上”, “一次正面朝上,一次反面朝上”.
思考2:抛掷—枚质地均匀的硬币,出现 正、反面的概率都是0.5,那么连续两次 抛掷一枚硬币,一定是出现一次正面和 一次反面吗?
思考3:试验:全班同学各取一枚同样的 硬币,连续抛掷两次,观察它落地后的 朝向.将全班同学的试验结果汇总,计算 三种结果发生的频率.你有什么发现?随 着试验次数的增多,三种结果发生的频 率会有什么变化规律?
“两次正面朝上”的频率约为0.25, “两次反面朝上” 的频率约为0.25, “一次正面朝上,一次反面朝上” 的频率约为0.5.
思考4:围棋盒里放有同样大小的9枚白 棋子和1枚黑棋子,每次从中随机摸出1 枚棋子后再放回,一共摸10次,你认为 一定有一次会摸到黑子吗?说明你的理 由.
不一定.摸10次棋子相当于做10次重 复试验,因为每次试验的结果都是随 机的,所以摸10次棋子的结果也是 随机的.可能有两次或两次以上摸到 黑子,也可能没有一次摸到黑子,摸 到黑子的概率为1-0.910≈0.6513.
思考7:在遗传学中有下列原理: (1)纯黄色和纯绿色的豌豆均由两个特 征因子组成,下一代是从父母辈中各随 机地选取一个特征组成自己的两个特征. (2)用符号AA代表纯黄色豌豆的两个特 征,符号BB代表纯绿色豌豆的两个特征. (3)当这两种豌豆杂交时,第一年收获 的豌豆特征为:AB.把第一代杂交豌豆再 种下时,第二年收获的豌豆特征为: AA, AB,BB.
思考2:某中学高一年级有12个班,要从 中选2个班代表学校参加某项活动。由于 某种原因,一班必须参加,另外再从二 至十二班中选1个班.有人提议用如下的 方法:掷两个骰子得到的点数和是几, 就选几班,你认为这种方法公平吗?哪 个班被选中的概率最大?
不公平,因为各班被选中的概率不全相 等,七班被选中的概率最大.
降水概率≠降水区域;明天本地下雨的 可能性为70%.
思考5:天气预报说昨天的降水概率为 90%,结果昨天根本没下雨,能否认为 这次天气预报不准确?如何根据频率与 概率的关系判断这个天气预报是否正确?
不能,概率为90%的事件发生的可能 性很大,但“明天下雨”是随即事件, 也有可能不发生.收集近50年同日的天 气情况,考察这一天下雨的频率是否为 90%左右.
思考5:如果某种彩票的中奖概率为
1 ,那么买1000张这种彩票一定能
1000
中奖吗?为什么?
不一定,理由同上. 买1 000张这种彩 票的中奖概率约为 1-0.9991000≈0.632,即有63.2%的可 能性中奖,但不能肯定中奖.
探究(二):概率思想的实际应用
随机事件无处不有,生活中处处有 概率.利用概率思想正确处理、解释实际 问题,应作为学习的一重要内容.
相关文档
最新文档