大学物理公式汇总(期末考试复习用)
大学物理 期末复习知识点总结
f (v的) 意义:
v0 N v N dv
表示一定量的气体,在温度为T 的平衡状态下,速率
在v 附近单位速率区间内的分子数占总数的百分比。
f (v) 的表达式: f (v) 4π(
m
) e v 3 2
mv2 2kT
2
2πkT
——麦克斯韦速率分布函数
式中,T — 气体的热力学温度
m — 一个气体分子的质量
N — v ~ v 的v 分子占总分子数的百分比
N
N — v 附近单位速率区间的分子数占总分子数 N v 的百分比
lim N —只与v 有关,
v0 N v
lim N f (v) 1 dN
v0 N v
N dv
上页
下页
速率分布函数: f (v) lim N 1 dN
T 是气体分子平均平动动能的量度,而不是总能量的量度。
2)对于一定量的给定的气体,ν、i 确定:E = E(T)
3)理想气体内能增量 : dE i R dT 2
ν一定,dT =1℃ :dE ∝i
i 大的气体比热大。
上页
下页
例1 两种气体自由度数目不同,温度相同,摩尔数相同, 下面哪种叙述正确;
2)v p v v2
3)三种速率用途不同:
vp 讨论速率分布 v 讨论分子碰撞
v2 讨论平均平动动能
上页
下页
例1 麦克斯韦速率分布中最概然速率 v的p 概念下面
哪种表述正确?
(A) vp 是气体分子中大部分分子所具有的速率. (B) vp是速率最大的速度值. (C) vp是麦克斯韦速率分布函数的最大值. (D) 速率大小与 vp相近的气体分子的比率最大.
((完整版))大学物理公式大全(大学物理所有的公式应有尽有),推荐文档
2.30 I r 2dm r 2 dv 转动惯量 (dv 为相应质元
m
v
dm 的体积元,p 为体积元 dv 处的密度)
2.31 L I 角动量
2.32 M Ia dL 物体所受对某给定轴的合外力矩等 dt
于物体对该轴的角动量的变化量
2.33 Mdt dL 冲量距
2.34
t
Mdt
v gt
y
1
at 2
v
2
2 2gy
v v0 gt
y
v0t
1 2
gt
2
v 2 v0 2 2gy
1.17
抛体运动速度分量
v
y
vx
v0
v0 cos a sin a gt
x v0 cos a t
1.18
抛体运动距离分量
y
v0 sin a t
1 2
gt 2
1.19 射程 X= v02 sin 2a g
F=ma 牛顿第三定律:若物体 A 以力 F1 作用与物体 B,则同 时物体 B 必以力 F2 作用与物体 A;这两个力的大小相等、 方向相反,而且沿同一直线。
万有引力定律:自然界任何两质点间存在着相互 吸引力,其大小与两质点质量的乘积成正比,与两质点 间的距离的二次方成反比;引力的方向沿两质点的连线
dv d 2r
1.8 瞬时加速度 a= =
dt dt 2
1.11 匀速直线运动质点坐标 x=x0+vt 1.12 变速运动速度 v=v0+at
1
1.13 变速运动质点坐标 x=x0+v0t+ at2
2
1.14 速度随坐标变化公式:v2-v02=2a(x-x0) 1.15 自由落体运动 1.16 竖直上抛运动
大学物理公式大全大学物理所有的公式应有尽有
第一章质点运动学和牛顿运动定律1.1平均速度v =t △△r1.2瞬时速度v=lim△t →△t △r =dtdr1. 3速度v=dt ds ==→→lim lim△t 0△t △t △r1.6平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim△t →△t △v =dtdv1.8瞬时加速度a=dt dv =22dt rd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度v=v 0+at1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动1.16竖直上抛运动1.17抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 001.18抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x1.19射程X=g av 2sin 21.20射高Y=gav 22sin 201.21飞行时间y=xtga —g gx 21.22轨迹方程y=xtga —av gx 2202cos 21.23向心加速度a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25加速度数值a=22n t a a +1.26法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv 1.28ωΦR dtd R dt ds v ===1.29角速度dtφωd =1.30角加速度22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR R R R v ==a t =αωR dtd R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。
大物期末公式总结
大物期末公式总结一、力学部分公式总结1. 速度与位移的关系:v = Δs/Δt其中,v为速度,Δs为位移,Δt为时间。
2. 加速度与速度的关系:a = Δv/Δt其中,a为加速度,Δv为速度变化量,Δt为时间。
3. 速度与加速度的关系:v = u + at其中,v为最终速度,u为初始速度,a为加速度,t为时间。
4. 位移与加速度的关系:Δs = ut + 1/2at²其中,Δs为位移,u为初始速度,a为加速度,t为时间。
5. 牛顿第一定律:F = ma其中,F为物体所受合力,m为物体质量,a为物体加速度。
6. 牛顿第二定律:F = dp/dt其中,F为物体所受合力,p为物体动量,t为时间。
7. 牛顿第三定律:F12 = -F21其中,F12为物体1对物体2的作用力,F21为物体2对物体1的作用力。
8. 力对应的功:W = F·s其中,W为力对应的功,F为力,s为位移。
9. 动能定理:W = ΔK其中,W为力对应的功,ΔK为动能的变化量。
10. 动能与动量的关系:K = 1/2mv²其中,K为动能,m为物体质量,v为物体速度。
11. 惯性力公式:F = -m•a'其中,F为惯性力,m为物体质量,a'为非惯性系中观察到的加速度。
12. 圆周运动的向心力公式:F = mv²/r其中,F为向心力,m为运动物体质量,v为物体速度,r为运动半径。
13. 圆周运动的角速度公式:ω = v/r其中,ω为角速度,v为物体速度,r为运动半径。
14. 动量守恒定律:Σmv1 = Σmv2其中,Σmv1为系统在初始时刻的总动量,Σmv2为系统在末时刻的总动量。
15. 能量守恒定律:ΣE1 = ΣE2其中,ΣE1为系统在初始时刻的总能量,ΣE2为系统在末时刻的总能量。
二、热学部分公式总结1. 温度变化公式:ΔT = Q/(mc)其中,ΔT为温度变化,Q为热量,m为物体质量,c为物体比热容。
大学物理公式汇总 (完整版)
大学物理公式汇总目录1力学31.1运动学 (3)1.2牛顿运动定律 (3)1.3动量和冲量 (3)1.4力的合成与分解 (4)1.5摩擦力 (4)1.6重力 (4)1.7弹力 (4)2功和能52.1功 (5)2.2功率 (5)2.3动能 (5)2.4重力势能 (5)2.5弹性势能 (5)2.6机械能守恒定律 (5)3转动动力学63.1角速度和角加速度 (6)3.2转动惯量 (6)3.3转动动能 (6)3.4转动定律 (6)3.5角动量 (6)3.6角动量守恒定律 (6)4流体力学74.1流体静力学 (7)4.2流体动力学 (7)5热力学75.1理想气体状态方程 (7)5.2热力学第一定律 (7)5.3热力学第二定律 (7)5.4卡诺循环 (8)6电磁学86.1静电场 (8)6.2恒定电流 (8)6.3磁场 (8)6.4电磁感应 (9)7光学9 8现代物理基础98.1狭义相对论 (9)8.2量子力学 (10)9原子物理与核物理109.1原子模型 (10)9.2核反应 (10)1力学1.1运动学位移、速度和加速度v=dxdt(1.1)速度v是位移x对时间t的导数。
a=dvdt=d2xdt2(1.2)加速度a是速度v对时间t的导数,等于位移x的二阶导数。
1.2牛顿运动定律牛顿第一定律(惯性定律)如果没有外力作用,物体将保持静止或匀速直线运动状态。
牛顿第二定律ìF=mìa(1.3)物体的加速度ìa与作用力ìF成正比,与物体的质量m成反比,加速度的方向与作用力的方向相同。
牛顿第三定律ìF作用=−ìF反作用(1.4)作用力和反作用力大小相等,方向相反。
1.3动量和冲量动量ìp=mìv(1.5)动量ìp是物体的质量m与速度ìv的乘积。
冲量ìJ=∫ìF dt(1.6)冲量ìJ是力ìF对时间t的积分。
大学物理公式大全
第一章 质点运动学和牛顿运动定律 平均速度 v =t△△r瞬时速度 v=lim△t →△t △r =dtdr1. 3速度v=dtds ==→→lim lim△t 0△t △t△r 平均加速度a =△t△v瞬时加速度加速度a=lim△t →△t △v =dtdv瞬时加速度a=dt dv =22dtrd匀速直线运动质点坐标x=x 0+vt 变速运动速度 v=v 0+at变速运动质点坐标x=x 0+v 0t+21at 2 速度随坐标变化公式:v 2-v 02=2ax-x 0 自由落体运动 竖直上抛运动抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 00抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x射程 X=g av 2sin 2射高Y=gav 22sin 20飞行时间y=xtga —ggx 2轨迹方程y=xtga —av gx 2202cos 2 向心加速度 a=Rv 2圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n加速度数值 a=22n t a a +法向加速度和匀速圆周运动的向心加速度相同a n =Rv 2切向加速度只改变速度的大小a t =dtdvωΦR dtd R dt ds v ===角速度 dtφωd =角加速度 22dt dtd d φωα== 角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR RR R v == a t =αωR dtd R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态;牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同; 1.37 F=ma牛顿第三定律:若物体A 以力F 1作用与物体B,则同时物体B 必以力F 2作用与物体A ;这两个力的大小相等、方向相反,而且沿同一直线;万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线F=G 221rmm G 为万有引力称量=×10-11N •m 2/kg 2重力 P=mg g 重力加速度 重力 P=G2rMm有上两式重力加速度g=G2rM物体的重力加速度与物体本身的质量无关,而紧随它到地心的距离而变 胡克定律 F=—kx k 是比例常数,称为弹簧的劲度系数 最大静摩擦力 f最大=μ0N μ0静摩擦系数滑动摩擦系数 f=μN μ滑动摩擦系数略小于μ0 第二章 守恒定律 动量P=mv 牛顿第二定律F=dtdPdt mv d =)( 动量定理的微分形式 Fdt=mdv=dmv F=ma=mdtdv⎰21t t Fdt =⎰21)(v v mv d =mv 2-mv 1 冲量 I= ⎰21t t Fdt动量定理 I=P 2-P 1平均冲力F 与冲量 I=⎰21t t Fdt =F t 2-t 1平均冲力F =12t t I -=1221t t Fdt t t -⎰=1212t t mv mv --质点系的动量定理 F 1+F 2△t=m 1v 1+m 2v 2—m 1v 10+m 2v 20左面为系统所受的外力的总动量,第一项为系统的末动量,二为初动量质点系的动量定理:∑∑∑===-=n i ni i i n i i i i v m v m t F 1101△作用在系统上的外力的总冲量等于系统总动量的增量质点系的动量守恒定律系统不受外力或外力矢量和为零∑=n i ii v m 1=∑=ni i i vm 1=常矢量mvR R p L =•=圆周运动角动量 R 为半径mvd d p L =•= 非圆周运动,d 为参考点o 到p 点的垂直距离 φsin mvr L = 同上φsin Fr Fd M == F 对参考点的力矩 F r M •= 力矩 dtdLM =作用在质点上的合外力矩等于质点角动量的时间变化率⎪⎭⎪⎬⎫==常矢量L dt dL 0如果对于某一固定参考点,质点系所受的外力矩的矢量和为零,则此质点对于该参考点的角动量保持不变;质点系的角动量守恒定律∑∆=ii i r m I 2 刚体对给定转轴的转动惯量αI M = 刚体的合外力矩刚体在外力矩M 的作用下所获得的角加速度a 与外合力矩的大小成正比,并于转动惯量I成反比;这就是刚体的定轴转动定律;⎰⎰==vmdv r dm r I ρ22 转动惯量 dv 为相应质元dm 的体积元,p 为体积元dv 处的密度ωI L = 角动量 dtdLIa M == 物体所受对某给定轴的合外力矩等于物体对该轴的角动量的变化量dL Mdt =冲量距000ωωI I L L dL Mdt LL tt -=-==⎰⎰常量==ωI L θcos Fr W =r F W •=力的功等于力沿质点位移方向的分量与质点位移大小的乘积 ds F dr F dW W b L a b L a b L a ab θcos )()()(⎰=•⎰=⎰=n b L a b L a WW W dr F F F dr F W +++=•++⎰=•⎰= 2121)()()(合力的功等于各分力功的代数和tWN ∆∆=功率等于功比上时间 dtdWt W N t =∆∆=→∆0lim v F v F tsF N t •==∆∆=→∆θθcos cos lim 0瞬时功率等于力F 与质点瞬时速度v 的标乘积2022121mv mv mvdv W v v -=⎰=功等于动能的增量221mv E k =物体的动能k k E E W -=合力对物体所作的功等于物体动能的增量动能定理 )(b a ab h h mg W -=重力做的功 )()(ba b a ab r GMmr GMm dr F W ---=•⎰=万有引力做的功222121b a baab kx kx dr F W -=•⎰=弹性力做的功p p p E E E W baab∆-=-=保势能定义mgh E p =重力的势能表达式r GMmE p -=万有引力势能221kx E p =弹性势能表达式k k E E W W -=+内外质点系动能的增量等于所有外力的功和内力的功的代数和质点系的动能定理k k E E W W W -=++非内保内外保守内力和不保守内力p p p E E E W ∆-=-=0保内系统中的保守内力的功等于系统势能的减少量 )()(0p k p k E E E E W W +-+=+非内外p k E E E +=系统的动能k 和势能p 之和称为系统的机械能0E E W W -=+非内外质点系在运动过程中,他的机械能增量等于外力的功和非保守内力的功的总和功能原理常量时,有、当非内外=+===p k E E E W W 00如果在一个系统的运动过程中的任意一小段时间内,外力对系统所作总功都为零,系统内部又没有非保守内力做功,则在运动过程中系统的动能与势能之和保持不变,即系统的机械能不随时间改变,这就是机械能守恒定律; 02022121mgh mv mgh mv +=+重力作用下机械能守恒的一个特例20202221212121kx mv kx mv +=+弹性力作用下的机械能守恒第三章 气体动理论1毫米汞柱等于 1mmHg=1标准大气压等户760毫米汞柱1atm=760mmHg=×105Pa 热力学温度 T=+t气体定律==222111T V P T V P 常量 即TV P =常量阿付伽德罗定律:在相同的温度和压强下,1摩尔的任何气体所占据的体积都相同;在标准状态下,即压强P 0=1atm 、温度T 0=时,1摩尔的任何气体体积均为v 0= L/mol 罗常量 N a =1023 mol -1 普适气体常量R 00T v P ≡ 国际单位制为: J/压强用大气压,体积用升×10-2 理想气体的状态方程: PV=RT M M molv=molM M质量为M,摩尔质量为M mol的气体中包含的摩尔数R 为与气体无关的普适常量,称为普适气体常量理想气体压强公式 P=231v mn n=VN为单位体积中的平均分字数,称为分子数密度;m 为每个分子的质量,v 为分子热运动的速率P=VNn nkT T N R V N mV N NmRT V M MRT A A mol ====(为气体分子密度,R 和N A 都是普适常量,二者之比称为波尔兹常量k=K J N RA/1038.123-⨯= 气体动理论温度公式:平均动能kT t 23=ε平均动能只与温度有关完全确定一个物体在一个空间的位置所需的独立坐标数目,称为这个物体运动的自由度;双原子分子共有五个自由度,其中三个是平动自由度,两个适转动自由度,三原子或多原子分子,共有六个自由度分子自由度数越大,其热运动平均动能越大;每个具有相同的品均动能kT 21kT it 2=ε i 为自由度数,上面3/2为一个原子分子自由度1摩尔理想气体的内能为:E 0=RT ikT N N A A 221==ε 质量为M,摩尔质量为M mol 的理想气体能能为E=RT iM M E M M E mol mol 200==υ 气体分子热运动速率的三种统计平均值最概然速率就是与速率分布曲线的极大值所对应哦速率,物理意义:速率在p υ附近的单位速率间隔内的分子数百分比最大mkT m kT p 41.12≈=υ温度越高,p υ越大,分子质量m 越大p υ因为k=AN R 和mNA=Mmol 所以上式可表示为molmol A p M RTM RT mN RTmkT41.1222≈===υ 平均速率molmol M RTM RT m kT v 60.188≈==ππ 方均根速率molmol M RTM RT v 73.132≈=三种速率,方均根速率最大,平均速率次之,最概速率最小;在讨论速率分布时用最概然速率,计算分子运动通过的平均距离时用平均速率,计算分子的平均平动动能时用分均根第四章 热力学基础 热力学第一定律:热力学系统从平衡状态1向状态2的变化中,外界对系统所做的功W ’和外界传给系统的热量Q 二者之和是恒定的,等于系统内能的改变E 2-E 1W ’+Q= E 2-E 1Q= E 2-E 1+W 注意这里为W 同一过程中系统对外界所做的功Q>0系统从外界吸收热量;Q<0表示系统向外界放出热量;W>0系统对外界做正功;W<0系统对外界做负功dQ=dE+dW 系统从外界吸收微小热量dQ,内能增加微小两dE,对外界做微量功dW平衡过程功的计算dW=PS dl =P dV W=⎰21V V PdV平衡过程中热量的计算Q=)(12T T C M Mmol-C 为摩尔热容量,1摩尔物质温度改变1度所吸收或放出的热量等压过程:)(12T T C M MQ p molp -= 定压摩尔热容量等容过程:)(12T T C M MQ v molv -=定容摩尔热容量内能增量 E 2-E 1=)(212T T R iM M mol - RdTiM M dE mol 2=等容过程2211 T P T P V RM M T P mol ===或常量 Q v =E 2-E 1=)(12T T C M Mv mol-等容过程系统不对外界做功;等容过程内能变化等压过程TV=)()(121221T T R M MV V P PdV W V V mol⎰-=-==W E E Q P +-=12等压膨胀过程中,系统从外界吸收的热量中只有一部分用于增加系统的内能,其余部分对于外部功R C C v p =- 1摩尔理想气体在等压过程温度升高1度时比在等容过程中要多吸收焦耳的热量,用来转化为体积膨胀时对外所做的功,由此可见,普适气体常量R 的物理意义:1摩尔理想气体在等压过程中升温1度对外界所做的功;泊松比 vp C C =γR i C R i C p v 222+== i i C Cv p 2+==γ 等温变化2211 V P V P RT M MPV mol===或常量121211ln lnV V RT M M W V V V P W mol ==或 等温过程热容量计算:12ln V V RT M MW Q mol T ==全部转化为功 绝热过程三个参数都变化γγγ2211 V P V P PV ==或常量绝热过程的能量转换关系 ⎥⎦⎤⎢⎣⎡--=-12111)(11r V V V P W γ )(12T T C M MW v mol--= 根据已知量求绝热过程的功W循环=21Q Q - Q2为热机循环中放给外界的热量 热机循环效率 1Q W 循环=η Q 1一个循环从高温热库吸收的热量有多少转化为有用的功 121211Q Q Q Q Q -=-=η< 1 不可能把所有的热量都转化为功制冷系数 212'2Q Q Q W Q -==循环ω Q2为从低温热库中吸收的热量第五章 静电场库仑定律:真空中两个静止的点电荷之间相互作用的静电力F的大小与它们的带电量q 1、q 2的乘积成正比,与它们之间的距离r 的二次方成反比,作用力的方向沿着两个点电荷的连线;221041r q q F πε=基元电荷:e=C 1910-⨯ ;0ε真空电容率=1210-⨯ ;41πε=910⨯r r q q F ˆ412210πε=库仑定律的适量形式场强 0q F E =r rQ q F E 3004πε==r 为位矢 电场强度叠加原理矢量和电偶极子大小相等电荷相反场强E 3041r Pπε-= 电偶极距P=ql电荷连续分布的任意带电体⎰⎰==rr dq dE E ˆ4120πε 均匀带点细直棒 θπελθcos 4cos 20l dxdE dE x == θπελθsin 4sin 20l dxdE dE y == []j sos a i a rE )(cos )sin (sin 40ββπελ-+-=无限长直棒 j rE 02πελ=dSd E EΦ=在电场中任一点附近穿过场强方向的单位面积的电场线数电通量θcos EdS EdS d E ==Φ dS E d E •=Φ ⎰⎰•=Φ=ΦsE E dS E d⎰•=ΦsE dS E 封闭曲面高斯定理:在真空中的静电场内,通过任意封闭曲面的电通量等于该封闭曲面所包围的电荷的电量的代数和的01ε⎰∑=•S q dS E 01ε 若连续分布在带电体上=⎰Qdq 01ε) ˆ4120R r r rQ E 〉=(πε 均匀带点球就像电荷都集中在球心E=0 r<R 均匀带点球壳内部场强处处为零2εσ=E 无限大均匀带点平面场强大小与到带点平面的距离无关,垂直向外正电荷)11(400ba ab r r Qq A -=πε 电场力所作的功 ⎰=•Ldl E 0 静电场力沿闭合路径所做的功为零静电场场强的环流恒等于零电势差 ⎰•=-=ba b a ab dl E U U U 电势⎰•=无限远aa dl E U 注意电势零点)(b a ab ab U U q U q A -=•= 电场力所做的功r rQ U ˆ40πε=带点量为Q 的点电荷的电场中的电势分布,很多电荷时代数叠加,注意为r∑==ni ii a r q U 104πε电势的叠加原理⎰=Qa r dqU 04πε 电荷连续分布的带电体的电势rrPU ˆ430πε=电偶极子电势分布,r 为位矢,P=ql21220)(4x R Q U +=πε 半径为R 的均匀带电Q 圆环轴线上各点的电势分布W=qU 一个电荷静电势能,电量与电势的乘积E E 00εσεσ==或 静电场中导体表面场强UqC = 孤立导体的电容U=RQ 04πε 孤立导体球R C 04πε= 孤立导体的电容21U U qC -=两个极板的电容器电容dS U U qC 021ε=-=平行板电容器电容)ln(2120R R L U QC πε==圆柱形电容器电容R2是大的rUU ε=电介质对电场的影响0U U C C r ==ε 相对电容率 dSdC C r r εεεε===00 ε= 0εεr 叫这种电介质的电容率介电系数充满电解质后,电容器的电容增大为真空时电容的r ε倍;平行板电容器rE E ε0=在平行板电容器的两极板间充满各项同性均匀电解质后,两板间的电势差和场强都减小到板间为真空时的r ε1E=E 0+E / 电解质内的电场 省去几个2033r R DE r εερε==半径为R 的均匀带点球放在相对电容率r ε的油中,球外电场分布2221212CU QU C Q W ===电容器储能 第六章 稳恒电流的磁场dtdq I = 电流强度单位时间内通过导体任一横截面的电量j dS dI j ˆ垂直=电流密度 安/米2⎰⎰•==SSdS j jd I θcos 电流强度等于通过S 的电流密度的通量dtdqdS j S -=•⎰电流的连续性方程 ⎰•SdS j =0 电流密度j 不与与时间无关称稳恒电流,电场称稳恒电场;⎰+-•=dl E K ξ 电源的电动势自负极经电源内部到正极的方向为电动势的正方向⎰•=L K dl E ξ电动势的大小等于单位正电荷绕闭合回路移动一周时非静电力所做的功;在电源外部E k =0时,就成了qvF B max=磁感应强度大小 毕奥-萨伐尔定律:电流元Idl 在空间某点P 产生的磁感应轻度dB 的大小与电流元Idl 的大小成正比,与电流元和电流元到P 电的位矢r 之间的夹角θ的正弦成正比,与电流元到P 点的距离r 的二次方成反比;20sin 4rIdl dB θπμ=πμ40为比例系数,A m T •⨯=-70104πμ为真空磁导率⎰-==)cos (4sin 421020θθπμθπμcon R IrIdl B 载流直导线的磁场R 为点到导线的垂直距离RIB πμ40=点恰好在导线的一端且导线很长的情况RIB πμ20=导线很长,点正好在导线的中部232220)(2χμ+=R IR B 圆形载流线圈轴线上的磁场分布RIB 20μ=在圆形载流线圈的圆心处,即x=0时磁场分布302x ISB πμ≈在很远处时 平面载流线圈的磁场也常用磁矩P m ,定义为线圈中的电流I 与线圈所包围的面积的乘积;磁矩的方向与线圈的平面的法线方向相同;ISn P m = n 表示法线正方向的单位矢量;NISn P m = 线圈有N 匝 3024xP B mπμ=圆形与非圆形平面载流线圈的磁场离线圈较远时才适用RIB απϕμ40=扇形导线圆心处的磁场强度 RL=ϕ为圆弧所对的圆心角弧度nqvS QI ==t△ 运动电荷的电流强度 20ˆ4r rqv B ⨯=πμ 运动电荷单个电荷在距离r 处产生的磁场dS B ds B d •==Φθcos 磁感应强度,简称磁通量单位韦伯Wb⎰•=ΦSm dS B 通过任一曲面S 的总磁通量⎰=•SdS B 0 通过闭合曲面的总磁通量等于零I dl B L 0μ=•⎰ 磁感应强度B 沿任意闭合路径L 的积分⎰∑=•L I dl B 内0μ在稳恒电流的磁场中,磁感应强度沿任意闭合路径的环路积分,等于这个闭合路径所包围的电流的代数和与真空磁导率0μ的乘积安培环路定理或磁场环路定理I lNnI B 00μμ== 螺线管内的磁场 rIB πμ20=无限长载流直圆柱面的磁场长直圆柱面外磁场分布与整个柱面电流集中到中心轴线同rNIB πμ20=环形导管上绕N 匝的线圈大圈与小圈之间有磁场,之外之内没有θsin BIdl dF =安培定律:放在磁场中某点处的电流元Idl,将受到磁场力dF,当电流元Idl 与所在处的磁感应强度B 成任意角度θ时,作用力的大小为:B Idl dF ⨯= B 是电流元Idl 所在处的磁感应强度;⎰⨯=LB Idl Fθsin IBL F = 方向垂直与导线和磁场方向组成的平面,右手螺旋确定aI I f πμ22102=平行无限长直载流导线间的相互作用,电流方向相同作用力为引力,大小相等,方向相反作用力相斥;a 为两导线之间的距离;aI f πμ220= I I I ==21时的情况θθsin sin B P ISB M m •== 平面载流线圈力矩B P M m ⨯= 力矩:如果有N 匝时就乘以N6.42 θsin qvB F = 离子受磁场力的大小垂直与速度方向,只改变方向不改变速度大小B qv F ⨯= F 的方向即垂直于v 又垂直于B,当q 为正时的情况)(B v E q F ⨯+= 洛伦兹力,空间既有电场又有磁场Bm q vqB mv R )(==带点离子速度与B 垂直的情况做匀速圆周运动qBmv R T ππ22==周期 qBmv R θsin = 带点离子v 与B 成角θ时的情况;做螺旋线运动qBmv h θπcos 2= 螺距dBIR U HH =霍尔效应;导体板放在磁场中通入电流在导体板两侧会产生电势差vBl U H = l 为导体板的宽度 d BI nq U H 1=霍尔系数nqR H 1=由此得到公式B Br =μ 相对磁导率加入磁介质后磁场会发生改变大于1顺磁质小于1抗磁质远大于1铁磁质'0B B B +=说明顺磁质使磁场加强 '0B B B -=抗磁质使原磁场减弱 )(0S LI NI dl B +=•⎰μ 有磁介质时的安培环路定理 I S 为介质表面的电流NI I NI S μ=+ r μμμ0=称为磁介质的磁导率∑⎰=•内I dl BLμH B μ= H 成为磁场强度矢量⎰∑=•LI dl H 内 磁场强度矢量H 沿任一闭合路径的线积分,等于该闭合路径所包围的传导电流的代数和,与磁化电流及闭合路径之外的传导电流无关有磁介质时的安培环路定理nI H =无限长直螺线管磁场强度nI nI H B r μμμμ0===无限长直螺线管管内磁感应强度大小第七章 电磁感应与电磁场 电磁感应现象:当穿过闭合导体回路的磁通量发生变化时,回路中就产生感应电动势;楞次定律:闭合回路中感应电流的方向,总是使得由它所激发的磁场来阻碍感应电流的磁通量的变化任一给定回路的感应电动势ε的大小与穿过回路所围面积的磁通量的变化率dt d m Φ成正比dt d Φ=ξ dt d Φ-=ξdtd Ndt d Φ-=ψ-=ξ ψ叫做全磁通,又称磁通匝链数,简称磁链表示穿过过各匝线圈磁通量的总和Blv dtdx Bl dt d -=-=Φ-=ξ动生电动势 B v ef E mk ⨯=-=作用于导体内部自由电子上的磁场力就是提供动生电动势的非静电力,可用洛伦兹除以电子电荷⎰⎰++•⨯=•=__)(dl B v dl E k ξBlv dl B v ba =•⨯=⎰)(ξ 导体棒产生的动生电动势θξsin Blv = 导体棒v 与B 成一任一角度时的情况⎰•⨯=dl B v )(ξ磁场中运动的导体产生动生电动势的普遍公式IBlv I P =•=ξ 感应电动势的功率 t NBS ωωξsin =交流发电机线圈的动生电动势ωξNBS m = 当t ωsin =1时,电动势有最大值m ξ 所以可为t m ωωξξsin =⎰•-=s dS dtdBξ 感生电动势 ⎰•=LE dl 感ξ感生电动势与静电场的区别在于一是感生电场不是由电荷激发的,而是由变化的磁场所激发;二是描述感生电场的电场线是闭合的,因而它不是保守场,场强的环流不等于零,而静电场的电场线是不闭合的,他是保守场,场强的环流恒等于零;1212I M =ψ M 21称为回路C 1对C2额互感系数;由I1产生的通过C2所围面积的全磁通2121I M =ψM M M ==21回路周围的磁介质是非铁磁性的,则互感系数与电流无关则相等1221I I M ψ=ψ=两个回路间的互感系数互感系数在数值上等于一个回路中的电流为1安时在另一个回路中的全磁通dt dI M12-=ξ dtdIM 21-=ξ 互感电动势dtdI dtdI M 2112ξξ-=-= 互感系数LI =ψ 比例系数L 为自感系数,简称自感又称电感IL ψ=自感系数在数值上等于线圈中的电流为1A 时通过自身的全磁通dtdIL-=ξ 线圈中电流变化时线圈产生的自感电动势 dtdI L ξ-=V n L 20μ=螺线管的自感系数与他的体积V 和单位长度匝数的二次方成正比221LI W m =具有自感系数为L 的线圈有电流I 时所储存的磁能V n L 2μ= 螺线管内充满相对磁导率为r μ的磁介质的情况下螺线管的自感系数nI B μ=螺线管内充满相对磁导率为r μ的磁介质的情况下螺线管内的磁感应强度221H w m μ=螺线管内单位体积磁场的能量即磁能密度⎰=Vm BHdV W 21磁场内任一体积V 中的总磁场能量r NIH π2=环状铁芯线圈内的磁场强度 22R IrH π=圆柱形导体内任一点的磁场强度 第八章 机械振动022=+kx dtxd m 弹簧振子简谐振动2ω=mkk 为弹簧的劲度系数 0222=+x dtxd ω弹簧振子运动方程 )cos(ϕω+=t A x 弹簧振子运动方程 )sin('ϕω+=t A x 2'πϕϕ+=)sin(ϕωω+-==t A dtdx u 简谐振动的速度x a 2ω-=简谐振动的加速度 πω2=T ωπ2=T 简谐振动的周期T1=ν简谐振动的频率πνω2= 简谐振动的角频率弧度/秒 ϕcos 0A x = 当t=0时 ϕωsin 0A u =-22020ωu x A += 振幅00x u tg ωϕ-= 00x uarctg ωϕ-= 初相 )(sin 21212222ϕωω+==t mA mu E k 弹簧的动能)cos(2121222ϕωω+==t kA kx E p 弹簧的弹性势能222121kx mu E += 振动系的总机械能2222121kA A m E ==ω总机械能守恒)cos(ϕω+=t A x 同方向同频率简谐振动合成,和移动位移)cos(212212221ϕϕ-++=A A A A A 和振幅22112211cos cos sin sin ϕϕϕϕϕA A A A tg ++=第九章 机械波9.1 νλλ==Tv 波速v 等于频率和波长的乘积介质的杨氏弹介质的切变弹性模量纵波横波ρρN Yv Nv ==固体 ρBv =纵波 B 为介质的荣变弹性模量在液体或气体中传播)(cos λωxt A y -= 简谐波运动方程)(2cos )(2cos )(2cos x vt A x T t A x vt A y -=-=-=λπλπλπ νλ=v 速度等于频率乘以波长简谐波运动方程的几种表达方式 )(2)(1212x x vv --=∆--=∆λπϕχχωϕ或简谐波波形曲线P2与P1之间的相位差负号表示p2落后)(2cos )(2cos )(cos λπλπωx T t A x vt A v x t A y +=+=+=沿负向传播的简谐波的方程)(sin 21222vxt VA E k -∆=ωωρ 波质点的动能)(sin )(21222vxt A V E P -∆=ωωρ波质点的势能)(sin 21222vx t VA E E p k -∆==ωωρ波传播过程中质元的动能和势能相等 )(sin 222vxt VA E E E p k -∆=+=ωωρ质元总机械能 )(sin 222vxt A V E -=∆=ωωρε波的能量密度2221ωρεA =波在一个时间周期内的平均能量密度 vS ε=P 平均能流2221ωρεvA v I == 能流密度或波的强度logI IL = 声强级 )cos(21ϕω+=+=t A y y y 波的干涉,2,1,02)(2)(1212=±=---=∆k k r r πλπϕϕϕ波的叠加两振动在P 点的相位差为派的偶数倍时和振幅最大,3,2,1,0)12()(2)(1212=+±=--=∆-k k r r πλπϕϕϕ波的叠加两振动在P 点的相位差为派的偶数倍时和振幅最小,2,1,0,2221=±=-=k k r r λδ两个波源的初相位相同时的情况,2,1,0,2)12(21=+±=-=k k r r λδ第十章 电磁震荡与电磁波0122=+q LC dtq d 无阻尼自由震荡有电容C 和电感L 组成的电路 )cos(0ϕω+=t Q q )sin(0ϕω+-=t I I LC 1=ω LC T π2= LC121πυ=震荡的圆频率角频率、周期、频率με00B E =电磁波的基本性质电矢量E,磁矢量BB E με1=和磁导率分别为介质中的电容率和με)(212μεBE W W W m e +=+= 电磁场的总能量密度 EB v W S μ1=•= 电磁波的能流密度με1=v第十一章 波动光学12r r -=δ 杨氏双缝干涉中有S 1,S 2发出的光到达观察点P 点的波程差2221)2(D dx r +-= D 为双缝到观测屏的距离,d 为两缝之间的距离,r1,r2为S1,S2到P 的距离 Ddx •=δ 使屏足够远,满足D 远大于d 和远大于x 的情况的波程差D dx •=∆λπϕ2相位差)2,1,0( ±±==k dDk x λ 各明条文位置距离O 点的距离屏上中心节点)2,1,0(2)12( ±±=•+=k d D k x λ各暗条文距离O 点的距离 λdDx =∆ 两相邻明条纹或暗条纹间的距离明条纹) 2,1,0(222==+=k kh λλδ 劈尖波程差 2sin λθ=l 两条明暗条纹之间的距离l相等R k r k λ= 牛顿环第k 几暗环半径R为透镜曲率半径 2λ•=∆N d 迈克尔孙干涉仪可以测定波长或者长度N 为条纹数,d 为长度时为暗纹中心) 3,2,1(22sin =±=k ka λϕ单缝的夫琅乔衍射 ϕ为衍射角,a 为缝宽时为明纹中心))( 3,2,1(22sin =+±=k k a λϕ aλϕϕ=≈sin 半角宽度 af ftg x λϕ22≈=∆单缝的夫琅乔衍射中央明纹在屏上的线宽度 Dm λθδθ22.1=<如果双星衍射斑中心的角距离m δθ恰好等于艾里斑的角半径即此时,艾里斑虽稍有重叠,根据瑞利准则认为此时双星恰好能被分辨,m δθ成为最小分辨角,其倒数 λδθ22.11Dm R ==叫做望远镜的分辨率或分辨本领与波长成反比,与透镜的直径成正比)3,2,1,0(sin =±=k k d λϕ 光栅公式满足式中情况时相邻两缝进而所有缝发出的光线在透镜焦平面上p 点会聚时将都同相,因而干涉加强形成明条纹 a I I 20cos = 强度为I0的偏振光通过检偏器后强度变为第十二章 狭义相对论基础 2')(1cv l l -= 狭义相对论长度变换 2')(1cvt t -∆=∆狭义相对论时间变换2''1cvu v u u xx x ++= 狭义相对论速度变换 20)(1c v m m -=物体相对观察惯性系有速度v 时的质量 dm c dE k 2= 动能增量202c m mc E k -= 动能的相对论表达式 200c m E = 2mc E =物体的静止能量和运动时的能量 爱因斯坦纸能关系式420222c m p c E +=相对论中动量和能量的关系式p=E/c第十三章 波和粒子2021m mv eV = V 0为遏制电压,e 为电子的电量,m 为电子质量,v m 为电子最大初速A hv mv eV m -==2021h 是一个与金属无关的常数,A 是一个随金属种类而不同的定值叫逸出功;遏制电压与入射光的强度无关,与入射光的频率v 成线性关系A mv hv m +=221爱因斯坦方程22c hvc m ==ε光 光子的质量λhc hv c m p ==•=光光子的动量。
大学的物理公式大全(大学的物理所有地公式应有尽有)
第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r1.2 瞬时速度 v=lim△t →△t △r =dtdr1. 3速度v=dtds ==→→lim lim△t 0△t △t△r 1.6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim△t →△t △v =dtdv1.8瞬时加速度a=dt dv =22dt rd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gyv v gt t v y gt v v 221202200 1.17 抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-∙=∙=20021sin cos gt t a v y t a v x 1.19射程 X=g av 2sin 21.20射高Y=gav 22sin 201.21飞行时间y=xtga —ggx21.22轨迹方程y=xtga —av gx 2202cos 2 1.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR RR R v == a t =αωR dt d R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
大学物理复习公式
2 1 2 2
2. 同方向、不同频率的简谐振动的合成 同方向、 3. 垂直方向、同频率简谐振动的合成 垂直方向、
(二)、机械波 )、机械波
u ∴ L = L 1− β = L 1− 2 0 0 c
2
2
五、 时间膨胀效应(time dilation) 时间膨胀效应( ) 原时: 系中同一地点 同一地点发生的两个事件的时间间隔 原时:S 系中同一地点发生的两个事件的时间间隔 称为原时 固有时) 原时( 原时最短。 称为原时(固有时) τ0 = t2-t1,原时最短。
τ0 τ= 2 1− β
六、 相对论动量
v v p = mv
m = m (v )
七、相对论质量
m v) = (
m 0 v 1− 2 c
2
质点的相对论动能公式: 八、 质点的相对论动能公式:
2ne +
λ
λ
2
2n sin θ
暗条纹: = kλ 暗条纹: 2ne +
λ
2
= (2k + 1)
λ
2
明环半径: 明环半径: rk = 暗环半径: 暗环半径: rk =
( 2 k − 1) Rλ 2n
kR λ n
4. 等倾干涉:薄膜厚度均匀。同一级条纹对应入 等倾干涉:薄膜厚度均匀。 射线倾角相同。同心圆环状干涉条纹。 射线倾角相同。同心圆环状干涉条纹。
2π
λ 2 相消干涉: 相消干涉: ∆ϕ = ϕ 2 − ϕ 1 − π ( r2 − r1 ) = ± ( 2k + 1)π λ
大学物理公式大全
大学物理公式大全大学物理公式大全(上)1. 运动学公式1.1 一维运动公式- 平均速度(v):v = Δx / Δt- 匀变速直线运动:v = v0 + at,x = v0t + (1/2)at^2,v^2 = v0^2 + 2aΔx- 重力加速度(g):g = 9.8 m/s^21.2 二维运动公式- 向心加速度(a):a = v^2 / r- 圆周运动速度(v):v = 2πr / T- 圆周运动周期(T):T = 2πr / v- 圆周运动角度(θ):θ = s / r2. 力学基本公式1.3 牛顿定律- 牛顿第一定律:物体静止或匀速直线运动时,合力 F = 0- 牛顿第二定律:物体的加速度与作用力成正比,反比于质量,F = ma- 牛顿第三定律:作用力与反作用力大小相等,方向相反,分别作用于两个物体1.4 摩擦力公式- 静摩擦力(fs):fs ≤μsN(µs为静摩擦因数,N为垂直于接触面的合力)- 动摩擦力(fd):fd = μdN(µd为动摩擦因数,N为垂直于接触面的合力)1.5 弹力公式- 弹簧定律:F = -kx(k为弹簧劲度系数,x为弹簧伸长量)3. 动量和能量1.6 动量公式- 动量(p):p = mv(m为质量,v为速度)- 冲击力(F):F = Δp/Δt1.7 动能公式- 动能(K):K = (1/2)mv^21.8 动能定理- 动能定理:W = ΔK = FΔx(W为外力所做的功,ΔK为动能变化量,F为力,Δx为力的位移)4. 旋转运动1.9 角度和弧度- 弧长(s)与半径(r)的关系:s = rθ(θ为角度)- 角度与弧度(rad)的转换关系:θ(rad) = θ(°) x (π/180)1.10 角速度公式- 角速度(ω):ω = ∆θ / ∆t1.11 角加速度公式- 角加速度(α):α = ∆ω / ∆t大学物理公式大全(下)5. 静电学1.12 库仑定律- 库仑定律(静电力):F = k |q1q2| / r^2(q1、q2为电荷,r为距离,k 为库仑常数)1.13 电场强度- 电场强度(E):E = F / q(F为电场力,q为测试电荷)1.14 电势能- 电势能(U):U = k |q1q2| / r(U为电势能,q1、q2为电荷,r为距离,k为库仑常数)6. 电磁感应1.15 法拉第电磁感应定律- 法拉第电磁感应定律:ε = -dΦ / dt(ε为感应电动势,Φ为磁通量,t 为时间变化率的负值)1.16 洛伦兹力公式- 洛伦兹力(F):F = q(v x B)(q为电荷,v为电荷的速度,B为磁场的磁感应强度)7. 光学1.17 折射公式- 折射定律:n1sinθ1 = n2sinθ2(n1、n2为介质的折射率,θ1、θ2为入射角和折射角)1.18 薄透镜公式- 薄透镜公式:1/f = 1/do + 1/di(f为透镜焦距,do为物距,di为像距)1.19 光的干涉- 杨氏双缝干涉:dsinθ = mλ(d为缝宽,θ为干涉角,m为干涉级次,λ为波长)8. 热学1.20 热传导公式- 热传导定律:Q = kA (∆T / L)(Q为传热量,k为导热系数,A为截面积,∆T为温差,L为长度)1.21 热膨胀公式- 线膨胀公式:∆L = αL∆T(∆L为长度变化,α为线膨胀系数,L为初始长度,∆T为温差)以上是大学物理的一些基本公式,希望对你的学习有所帮助。
大学物理全册公式大全完整版
向外界放出热量;W>0系统对外界做正功;W<0系统对外界做负功)
• dQ=dE+dW(系统从外界吸收微小热量dQ,内能增加微小两dE,对外界做微量功dW
• 平衡过程功的计算dW=PS =P
• 平衡过程中热量的计算 Q=
热量)
W= 2
1
(2 − 1 ) (C为摩尔热容量,1摩尔物质温度改变1度所吸收或放出的
2
• =
i为自由度数
1
2
2
• 1摩尔理想气体的内能为:E0= = =
i为自由度数
• 质量为M,摩尔质量为Mmol的理想气体能能为
E=0 =
0
=
2
气体分子热运动速率的三种统计平均值
• 最概然速率(就是与速率分布曲线的极大值所对应的速率,物理意义:速率在 附近的单位速率间隔内的分子数百分比最
2
2
2
2
气体动理论
• 急促只是知识
• 1毫米汞柱等于133.3Pa 1mmHg=133.3Pa
• 1标准大气压等户760毫米汞柱1atm=760mmHg=1.013×105Pa
• 热力学温度 T=273.15+t
• 气体定律
1 1
1
=
2 2
2
=常量 即
PV
=C
T
常数
• 阿伏伽德罗定律:
=
+2
2
•
• 等温变化
= 常量
• = 1 1
2
1
1 1 = 2 2
或
或 =
大学物理公式总结(二)2024
大学物理公式总结(二)引言:大学物理公式总结(二)旨在整理和总结大学物理中重要的公式,帮助学生系统学习和复习物理知识。
本文将从五个大点出发,详细介绍这些公式的应用和推导。
正文:一、力学1. 牛顿第二定律- 描述了物体受力产生的加速度,公式为F=ma。
- 推导过程包括从牛顿第一定律推得第二定律以及应用牛顿第二定律解决动力学问题。
2. 动能定理- 描述了物体动能的变化与物体受力之间的关系,公式为ΔK=W。
- 证明过程包括力的功的定义和计算。
3. 动量定理- 描述了物体动量的变化与物体受力之间的关系,公式为Δp=FΔt。
- 推导过程包括牛顿第二定律与加速度的关系以及应用动量定理解决动量守恒问题。
4. 弹性碰撞- 描述了在碰撞过程中动能守恒和动量守恒的应用,公式包括动能守恒公式和动量守恒公式。
- 推导过程包括动能守恒与动量守恒的推导及应用。
5. 万有引力定律- 描述了质点之间存在引力的力学规律,公式为F=G(m1m2)/r²。
- 证明过程包括万有引力定律的推导和应用。
二、热学1. 热力学第一定律- 描述了物质热的增加等于对物体做的功与传递给物体的热量之和,公式为ΔU=Q-W。
- 证明过程包括内能的定义和计算。
2. 理想气体状态方程- 描述了理想气体的状态与压强、体积和温度之间的关系,公式为PV=nRT。
- 推导过程包括气体微观运动理论和状态方程的推导。
3. 热传导定律- 描述了热量在不同物体之间传递的规律,公式为Q=ksAT/Δx。
- 推导过程包括传热的基本原理和推导。
4. 热容定律- 描述了物体在升温或降温时吸收或释放的热量,公式为Q=mc ΔT。
- 证明过程包括热容的定义和计算。
5. 热力学第二定律- 描述了自然界中热量自发从高温物体传递到低温物体的不可逆性,公式为ΔS=Q/T。
- 证明过程包括熵的定义和计算。
三、电磁学1. 库仑定律- 描述了两个带电体之间电力的大小与距离的关系,公式为F=k(q1q2)/r²。
大学物理上公式集(必备)
大学物理上公式集概念(定义和相关公式)1. 位置矢量:r,其在直角坐标系中:k z j y i x r++=;222z y x r ++=角位置:θ2. 速度:dtr d V =平均速度:tr V ∆∆=速率:dtds V =(τ V V =)角速度:dtd θω=角速度与速度的关系:V=rω3. 加速度:dtV d a =或22dtr d a =平均加速度:tV a ∆∆= 角加速度:dtd ωβ=在自然坐标系中n a a a n+=ττ其中dtdV a =τ(=rβ),rV na 2=(=r 2 ω)4. 力:F =ma(或F =dtp d ) 力矩:F r M ⨯=(大小:M=rFcos θ方向:右手螺旋法则)5. 动量:V m p=,角动量:V m r L ⨯=(大小:L=rmvcos θ方向:右手螺旋法则)6. 冲量:⎰=dtF I(=F Δt);功:⎰⋅=rd F A(气体对外做功:A=∫PdV )7. 动能:mV 2/2 8. 势能:A 保= – ΔE p 不同相互作用力势能形式不同且零点选择不同其形式不同,在默认势能零点的情况下: 机械能:E=E K +E P9. 热量:CRTMQ μ=其中:摩尔热容量C 与过程有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R 10. 压强:ωn tSI S F P 32=∆==11. 分子平均平动能:kT 23=ω;理想气体能:RT s r t M E )2(2++=μ 12. 麦克斯韦速率分布函数:NdVdN V f =)((意义:在V 附近单位速度间隔的分子数所占比率)mg(重力) → mgh-kx (弹性力) → kx 2/2 F= rrMm G ˆ2- (万有引力) →rMm G - =E p rrQq ˆ420πε(静电力) →rQq 04πε13. 平均速率:πμRTNdN dV V Vf VV 80)(==⎰⎰∞方均根速率:μRTV 22=;最可几速率:μRTpV 3=14. 熵:S=Kln Ω(Ω为热力学几率,即:一种宏观态包含的微观态数)定律和定理1. 矢量叠加原理:任意一矢量A可看成其独立的分量iA 的和。
大学物理公式大全 大学物理所有的公式应有尽有
大学物理公式大全大学物理所有的公式应有尽有大学物理公式大全大学物理是一门基础科学课程,它研究物质的运动、能量与力的相互作用关系。
作为学习物理的学生,熟练掌握各种物理公式是非常重要的。
本文将为大家提供一份大学物理公式大全,以帮助读者更好地学习和理解物理知识。
1. 动力学公式1.1 速度公式:v = Δx/Δt1.2 加速度公式:a = Δv/Δt1.3 位移公式:Δx = v * Δt + 1/2 * a * (Δt)^21.4 牛顿第二定律公式:F = m * a1.5 动量公式:p = m * v1.6 冲量公式:J = F * Δt1.7 功公式:W = F * Δx1.8 功率公式:P = W/Δt2. 静力学公式2.1 引力公式:F = G * (m1 * m2) / r^22.2 压强公式:P = F/A2.3 压强传递原理公式:p1 * A1 = p2 * A22.4 浮力公式:F = ρ * V * g2.5 杨氏模量公式:Y = F/A * ΔL/L2.6 霍克定律公式:F = k * Δx3. 动能和势能公式3.1 动能公式:E_k = 1/2 * m * v^23.2 势能公式:E_p = m * g * h3.3 机械能守恒公式:E_k1 + E_p1 + W_nc = E_k2 + E_p24. 热学公式4.1 温度转换公式:F = 9/5 * C + 324.2 热量传递公式:Q = m * c * ΔT4.3 热平衡条件公式:m1 * c1 * ΔT1 = m2 * c2 * ΔT24.4 热功定理公式:Q = W4.5 热力学第一定律公式:ΔU = Q - W4.6 熵变公式:ΔS = Q/T5. 电学公式5.1 电场强度公式:E = F/q5.2 电势公式:V = U/q5.3 电流公式:I = Q/Δt5.4 电阻公式:R = V/I5.5 欧姆定律公式:V = I * R5.6 等效电阻公式(串联):1/R = 1/R1 + 1/R2 + ...5.7 等效电阻公式(并联):1/R = 1/R1 + 1/R2 + ...6. 波动和光学公式6.1 波长公式:λ = v/f6.2 光速公式:c = λ * f6.3 光的折射公式:n1 * sinθ1 = n2 * sinθ26.4 焦距公式:1/f = 1/d_o + 1/d_i6.5 图像放大率公式:m = h_i/h_o = -d_i/d_o7. 声学公式7.1 声速公式:v = λ * f7.2 声强公式:I = P/A7.3 声品质公式:Q = f/Δf7.4 谐振频率公式:f = nv/2L8. 磁学公式8.1 洛伦兹力公式:F = q * (v × B)8.2 磁感应强度公式:B = μ * N * I/L本文只是简要列举了大学物理中的一些常用公式,并不全面。
大学物理公式大全完整版2024
引言概述:大学物理是一门基础而重要的学科,涵盖了广泛的知识领域,其中包括了许多重要的物理公式。
这些公式是研究物理现象和解决物理问题时的基础工具。
本文将为您提供一份大学物理公式的完整指南,详细介绍了五个主要领域的公式,并对每个公式的应用和推导进行深入讨论。
正文内容:一、牛顿力学1.牛顿第一定律公式:F=ma2.牛顿第二定律公式:F=dp/dt=md^2x/dt^23.牛顿第三定律公式:F_1=F_24.大轨道运动定律公式:F=Gm_1m_2/r^25.动能定理公式:K=1/2mv^26.动量守恒定律公式:m_1v_1i+m_2v_2i=m_1v_1f+m_2v_2f 7.动量冲量定理公式:Fdt=dp8.万有引力定律公式:F=G(m_1m_2)/r^29.刚体转动定律公式:τ=Iα二、电磁学1.库仑定律公式:F=k(q_1q_2/r^2)2.电场强度公式:E=F/q3.电势能公式:U=k(q/r)4.法拉第电磁感应定律公式:ε=dΦ/dt5.汤姆生公式公式:U_L=1/2LI^26.麦克斯韦方程组公式:∇E=ρ/ε_0,∇H=0,∇xE=∂B/∂t,∇xH=J/ε_0+∂D/∂t 7.安培定律公式:Bl=μI8.毕奥萨伐尔定律公式:F=μ0I_1I_2(l/2πr)9.弗朗西斯电磁感应定律公式:V=NdΦ/dt三、光学1.折射定律公式:n_1sin(θ_1)=n_2sin(θ_2)2.薄透镜公式公式:1/f=1/do+1/di3.杨氏双缝干涉公式公式:x=λL/d4.光的多普勒效应公式:f'=f(v+v_observer)/(v+v_source)5.镜面成像公式公式:1/do+1/di=1/f6.光程差公式公式:ΔL=nλ7.马吕斯定律公式:θ_1/θ_2=v_1/v_2=λ_1/λ_2 8.射电天文学公式公式:v_r=cΔλ/λ9.艾里斑公式公式:asinθ=mλ四、热学1.热力学第一定律公式:ΔU=QW2.理想气体状态方程公式:PV=nRT3.熵增定律公式:ΔS=Q/T4.热传导公式公式:dQ/dt=kAdT/dx5.热容定律公式:Q=mcΔT6.热平衡定理公式:m_1c_1T_1+m_2c_2T_2=m_3c_3T_3 7.热工学效率公式公式:η=(W/Q_H)100%8.理想气体绝热过程公式公式:PV^γ=常数9.热平衡定理公式:Q_H=Q_C+W五、量子力学1.德布罗意波长公式公式:λ=h/p2.斯特恩格拉赫实验公式公式:Δθ=eV/h3.声子的能量公式公式:E=hf4.泡利不相容原理公式:ΔpΔq≥h/2π5.薛定谔方程公式:iħ∂ψ/∂t=ħ^2/(2m)∇^2ψ+Vψ6.库仑势能公式公式:V(r)=k/r7.波恩定则公式:N=2l+18.熟悉派塞尔公式公式:Ψ=[2/(πa_0^3)]^1/2exp(r/a_0)9.波尔理论公式:E=13.6Z^2/n^2总结:大学物理中的公式是解决物理问题和研究物理现象的重要工具。
大学物理公式大全
大学物理公式大全大学物理公式大全物理学是研究物质的性质和运动规律的科学,是自然科学的一个重要分支。
以下是一些大学物理中常用的公式,它们可以帮助我们理解和描述物理现象。
1. 运动力学速度(v)= 位移(s)/ 时间(t)加速度(a)= 变化的速度(Δv)/ 时间(Δt)平均速度(v)= 总位移(Δs)/ 总时间(Δt)势能(PE)= 质量(m)× 重力加速度(g)× 高度(h)动能(KE)= (1/2) × 质量(m)× 速度(v)^22. 牛顿定律牛顿第一定律:如果某个物体没有受到外力作用,它将保持静止或匀速直线运动。
牛顿第二定律:物体的加速度与作用在其上的合力成正比,与物体的质量成反比。
F = m × a牛顿第三定律:作用力与反作用力大小相等、方向相反、作用在不同物体上。
3. 力学重力(F)= 质量(m)× 重力加速度(g)弹簧力(F)= 弹性系数(k)× 弹性变形(x)压强(P)= 力(F)/ 面积(A)阻力(F)= 阻力系数(k)× 速度(v)4. 静电学库仑定律:两个电荷之间的作用力与它们的电荷量成正比,与它们之间的距离平方成反比。
F = k × (|q1 × q2|) / r^2电场强度(E)= 电场力(F)/ 电荷量(q)电势差(V)= 电场力(F)/ 电荷量(q)5. 电磁学电流(I)= 电量(Q)/ 时间(t)电阻(R)= 电压(V)/ 电流(I)电功率(P)= 电压(V)× 电流(I)磁感应强度(B)= 磁力(F)/ (电流(I)× 距离(r)) 法拉第定律:电解质电解过程中的电解物质的质量与通过该电解质的电量成正比。
6. 光学光速(c)= 波长(λ)× 频率(ν)折射定律:入射光线与介质表面的法线之间的夹角和折射光线与法线之间的夹角满足:n1 × sin(θ1) = n2 × sin(θ2)光的能量(E)= 光子数(n)× 光子能量(E)光的强度(I)= 光的能量(E)/ 传播时间(t)/ 面积(A)以上是一些大学物理中常用的公式,它们在解决物理问题和分析物理现象时起着重要的作用。
大学物理公式归纳总结
大学物理公式归纳总结导言:物理作为一门自然科学,探讨了自然界的规律和现象。
在学习物理过程中,公式是不可或缺的一部分,它们帮助我们理解事物之间的关系,推导出一些定律,从而解释自然界的各类现象。
本文将对大学物理中常见的公式进行归纳总结,并探讨其应用。
1. 力学公式:1.1 牛顿第二定律:F = ma在给定质量m的物体上,施加一个力F,该物体将产生加速度a。
这个公式是力学中最基本的公式之一。
1.2 重力定律:F = G * (m1 * m2) / r^2该公式描述了两个物体之间引力的大小,其中G是引力常数,m1和m2是两个物体的质量,r是它们之间的距离。
1.3 动能定理:K = (1/2) * m * v^2这个公式表明物体的动能取决于其质量m和速度v。
动能是物体运动时所具有的能量。
2. 热学公式:2.1 热量传递公式:Q = mcΔT该公式表示了热量的传递过程,其中Q是传递的热量,m是物体的质量,c是物体的比热容,ΔT是温度变化。
2.2 热力学第一定律:ΔU = Q - W这个公式表明了内能ΔU是通过热量Q和功W的传递而发生变化。
2.3 热力学第二定律:ΔS ≥ 0热力学第二定律阐述了热能自然流动的方向,熵ΔS在一个孤立系统中始终是增加的或保持不变的。
3. 电磁学公式:3.1 库仑定律:F = k * (q1 * q2) / r^2库仑定律描述了两个电荷之间的电力相互作用,其中F是力,k是库仑常数,q1和q2是两个电荷,r是它们之间的距离。
3.2 电场强度:E = F / q该公式表示电荷所受到的电场力与电荷本身的比例关系。
3.3 法拉第电磁感应定律:ε = -dΦ/dt该公式描述了导线中感应电动势与磁通变化率的关系。
4. 光学公式:4.1 折射定律:n1 * sin(θ1) = n2 * sin(θ2)折射定律描述了光从一种介质传播到另一种介质时的折射关系,其中n1和n2分别是两种介质的折射率,θ1和θ2是入射光线和折射光线的入射角和折射角。