不解三角形 判断解个数知识讲解

合集下载

高中数学必修五第一章《解三角形》知识点知识讲解

高中数学必修五第一章《解三角形》知识点知识讲解

高中数学必修五第一章《解三角形》知识点收集于网络,如有侵权请联系管理员删除高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。

初中数学讲义初二上册《三角形》全章复习与巩固—知识讲解(提高)

初中数学讲义初二上册《三角形》全章复习与巩固—知识讲解(提高)

《三角形》全章复习与巩固(提高)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和: 三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n 条边就叫做n 边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n-条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1.(2016•长沙模拟)一个三角形的三边长分别是3,2a-1,6,则整数a的值可能是( ).A.2,3 B.3,4 C.2,3,4 D.3,4,5【思路点拨】直接利用三角形三边关系,得出a的取值范围.【答案】B【解析】解:∵一个三角形的三条边长分别为3,2a-1,6,∴21 219 aa-⎧⎨-⎩>3<解得:2<a<5,则整数a的值可能是3,4,故选B.【总结升华】主要考察了三角形三边关系,正确得出a的取值范围是解题关键.举一反三:【变式】(2014秋•孝感月考)已知a、b、c是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.【答案】解:∵a、b、c是三角形三边长,∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,=b+c-a-b+c+a-c+a+b-a+b-c=2b.2.如图,O是△ABC内一点,连接OB和OC.(1)你能说明OB+OC<AB+AC的理由吗?(2)若AB=5,AC=6,BC=7,你能写出OB+OC的取值范围吗?【答案与解析】解:(1)如图,延长BO交AC于点E,根据三角形的三边关系可以得到,在△ABE中,AB+AE>BE;在△EOC中,OE+EC>OC,两不等式相加,得AB+AE+OE+EC>BE+OC.由图可知,AE+EC=AC,BE=OB+OE.所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC.(2)因为OB+OC>BC,所以OB+OC>7.又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11.【总结升华】充分利用三角形三边关系的性质进行解题.【高清课堂:与三角形有关的线段例1】类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.【高清课堂:与三角形有关的线段例5、】举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.(2015春•石家庄期末)已知△ABC中,AE平分∠BAC(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EPF=是否成立,并说明理由.【思路点拨】(1)利用三角形内角和定理和已知条件直接计算即可;(2)成立,首先求出∠1的度数,进而得到∠3的度数,再根据∠EPF=180°﹣∠2﹣∠3计算即可.【答案与解析】证明:(1)如图1,∵∠B=72°,∠C=36°,∴∠A=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠1==36°,∴∠3=∠1+∠C=72°,又∵AD⊥BC于D,∴∠2=90°,∴∠DAE=180°﹣∠2﹣∠3=18°.(2)成立.如图2,∵AE平分∠BAC,∴∠1===90°﹣,∴∠3=∠1+∠C=90°﹣+,又∵PF⊥BC于F,∴∠2=90°,∴∠EPF=180°﹣∠2﹣∠3=.【总结升华】本题考查了三角形的内角以及角平分线的性质,准确识别图形是解题的关键.举一反三:【高清课堂:与三角形有关的角练习(3)】【变式】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】3,2.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且实用,你知道它能收缩的原因和固定方法吗?【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。

专题1-9 《直角三角形》全章复习与巩固(知识讲解)-八年级数学下册(湘教版)

专题1-9 《直角三角形》全章复习与巩固(知识讲解)-八年级数学下册(湘教版)

1.9 《直角三角形》全章复习与巩固(知识讲解)【复习目标】1.了解直角三角形的概念,理解直角三角形的性质和判定;2.能用直角三角形的性质和判定解决简单问题;3.会运用直角三角形的知识解决有关问题.【知识梳理】要点一、直角三角形定义1.直角三角形定义:有一个角是直角的三角形叫做直角三角形.要点二、直角三角形性质(1)直角三角形中两锐角互余.(2)直角三角形中,30°锐角所对的直角边等于斜边的一半.(3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.(4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方.(5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.(6)直角三角形中,斜边上的中线等于斜边的一半.要点三、直角三角形的判定(1)有两内角互余的三角形是直角三角形.(2)一条边上的中线等于该边的一半,则这条边所对的角是直角,这个三角形是直角三角形.(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.要点四、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理. 要点五、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.【典型例题】类型一、直角三角形的性质1.已知:如图,在△ABC中,AB=AC=2a,∠ABC=∠ACB=15°,CD是腰AB上的高.求CD的长.【答案】CD=a【思路点拨】根据三角形的外角的性质得∠DAC=30°,再根据含30°角的直角三角形的性质可得DC=a.解:∵∠ABC=∠ACB=15°∴∠DAC=30°∵CD是腰AB上的高AB=AC=2a∴AC=2CD∴CD=a【点拨】此题主要考查含30°的直角三角形的性质,解题的关键是利用等腰三角形得出含30°角的直角三角形.2 已知,在,ABC中,,ACB,90°,CD,AB垂足为D,BC,6,AC,8,求AB与CD 的长.【答案】AB=10∠CD=4.8.解∠在△ABC中∠∠ACB=90°∠CD⊥AB垂足为D∠BC=6∠AC=8∠由勾股定理得∠AB=∵S△ABC=12AB•CD=12AC•BC∠∴CD=AC BCAB⋅=8610⨯=4.8∠【点拨】在直角三角形ABC中∠利用勾股定理求出AB的长∠再利用等面积法求出CD的长即可.3.已知:如图,在△ABC中,∠A=30°,∠ACB=90°,M、D分别为AB、MB的中点. 求证:CD⊥AB.【思路点拨】由∠ACB=90°,M为AB的中点.根据直角三角形斜边上的中线等于斜边的一半得到CM12=AB=BM,再根据在直角三角形中,30°所对的边等于斜边的一半得到CB12=AB=BM,则CM=CB,而D为MB的中点,根据等腰三角形的性质即可得到结论.解∵∠ACB=90°,M为AB中点,∴CM12=AB=BM.∵∠ACB=90°,∠A=30°,∴CB12=AB=BM,∴CM=CB.∵D为MB的中点,∴CD⊥BM,即CD⊥AB.【点拨】本题考查了含30°的直角三角形的性质:30°所对的边等于斜边的一半;也考查了直角三角形斜边上的中线等于斜边的一半以及等腰三角形的性质.类型二、直角三角形全等的判定——“HL”4、已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=CD:(2)AD∥BC.【思路点拨】先由“HL”证Rt△ABD≌Rt△CDB,再由内错角相等证两直线平行.证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD =∠CDB =90°在Rt △ABD 和Rt △CDB 中,∴Rt △ABD ≌Rt △CDB (HL )∴AB =CD (全等三角形对应边相等)(2)由∠ADB =∠CBD∴AD ∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.举一反三:【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .证明:∵AE ⊥AB ,BC ⊥AB ,∴∠DAE =∠CBA =90°在Rt △DAE 与Rt △CBA 中,∴Rt △DAE ≌Rt △CBA (HL )∴∠E =∠CAB∵∠CAB +∠EAF =90°,∴∠E +∠EAF =90°,即∠AFE =90°即ED ⊥AC .5、 判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:AD BC BD DB ⎧⎨=⎩=ED AC AE AB ⎧⎨⎩==,(1)一个锐角和这个角的对边对应相等;( )(2)一个锐角和斜边对应相等; ( )(3)两直角边对应相等; ( )(4)一条直角边和斜边对应相等. ( )【答案】(1)全等,“AAS ”;(2)全等,“AAS ”;(3)全等,“SAS ”;(4)全等,“HL ”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【总结升华】直角三角形全等可用的判定方法有5种:SAS 、ASA 、AAS 、SSS 、HL. 举一反三:【变式】下列说法正确的有( )(1)一个锐角及斜边对应相等的两个直角三角形全等;(2)一个锐角及一条直角边对应相等的两个直角三角形全等;(3)两个锐角对应等的两个直角三角形全等;(4)有两条边相等的两个直角三角形全等;(5)有斜边和一条直角边对应相等的两个直角三角形全等.A.2个B.3个C.4个D.5个 【答案】C .解:(1)一个锐角及斜边对应相等的两个直角三角形全等,根据AAS 可判定两个直角三角形全等;(2)一个锐角及一条直角边对应相等的两个直角三角形全等,根据AAS 或ASA 可判定两个直角三角形全等;(3)两个锐角对应等的两个直角三角形全等,缺少“边”这个条件,故不可判定两个直角三角形全等;(4)有两条边相等的两个直角三角形全等,根据SAS 或HL 可判定两个直角三角形全等;(5)有斜边和一条直角边对应相等的两个直角三角形全等,根据HL 可判定两个直角三角形全等.所以说法正确的有4个.故选C .6、 如图,AB ⊥AC 于A ,BD ⊥CD 于D ,若AC=DB ,则下列结论中不正确的是( ) A .∠A=∠D B .∠ABC=∠DCBC .OB=OD D .OA=OD O BC DA【思路点拨】根据已知及全等三角形的判定方法进行分析,从而得到答案.做题时要结合已知条件与全等的判定方法逐一验证.【答案与解析】解:∵AB⊥AC于A,BD⊥CD于D∴∠A=∠D=90°(A正确)又∵AC=DB,BC=BC∴△ABC≌△DCB(HL)∴∠ABC=∠DCB(B正确)∴AB=CD又∵∠AOB=∠C∴△AOB≌△DOC(AAS)∴OA=OD(D正确)C中OD、OB不是对应边,不相等.故选C.【总结升华】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.类型三、直角三角形的折叠问题7.将一张矩形纸片如图所示折叠,使顶点落在点.已知,,则折痕的长为( )A. B. C. D.【思路点拨】直角三角形是常见的几何图形,在习题中比较多的利用数形结合解决相应的问题.常用的是两锐角互余,三边满足勾股定理和直角三角形中,30°角所对的边等于斜边的一半.【答案】C.【解析】由折叠可知,∠CED=∠C′ED =30°,因为在矩形ABCD中,∠C等于90°,CD=AB=2,所以在Rt△DCE中,DE=2CD=4.故选C.【总结升华】折叠题型一定要注意对应的边相等,对应的角相等.【变式】如图,一张直角三角形纸片,两直角边AC=4cm,BC=8cm,将△ABC折叠,点B与点A重合,折痕为DE,则DE的长为( ).A. B. C. D.5【答案】B.解析:由折叠可知,AD=BD,DE⊥AB,∴BE=AB设BD为x,则CD=8-x∵∠C=90°,AC=4,BC=8,∴AC2+BC2=AB2∴AB2=42+82=80,∴AB=,∴BE=在Rt△ACD中,AC2+CD2=AD2 ,∴42+(8-x)2=x2,解得x=5在Rt△BDE中,BE2+DE2=BD2,即()2+DE2=52,∴DE=,故选B.类型四、直角三角形的性质和判定综合运用8.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.。

正弦定理余弦定理

正弦定理余弦定理

正弦定理余弦定理一、知识概述主要学习了正弦定理、余弦定理的推导及其应用,正弦定理是指在一个三角形中,各边和它所对角的正弦的比相等.即余弦定理是指三角形任何一边的平方等于其它两边平方的和减去这两边与它们夹角的余弦的积的两倍,即a2=b2+c2-2bccosA,b2=c2+a2-2cacosB, c2=a2+b2-2abcosC.通过两定理的学习,掌握正弦定理和余弦定理,并能利用这两个定理去解斜三角形,学会用计算器解决解斜三角形的计算问题,熟悉两定理各自解决不同类型的解三角形的问题.认识在三角形中,已知两边和其中一边的对角解三角形,产生多解的原因,并能准确判断解的情况.二、重点知识讲解1、三角形中的边角关系在△ABC中,设角A、B、C的对边分别为a、b、c,则有(1)角与角之间的关系:A+B+C=180°;(2)边与角之间的关系:正弦定理:余弦定理:a2=b2+c2-2bccosAb2=c2+a2-2accosBc2=a2+b2-2abcosC射影定理:a=bcosC+ccosBb=ccosA+acosCc=acosB+bcosA2、正弦定理的另三种表示形式:3、余弦定理的另一种表示形式:4、正弦定理的另一种推导方法——面积推导法在△ABC中,易证明再在上式各边同时除以在此方法推导过程中,要注意对面积公式的应用.例1、在△ABC中,ab=60, sinB=cosB.面积S=15,求△ABC的三个内角.分析:在正弦定理中,由可以把面积进行转化,进而可以利用三角函数之间的关系进行解题.解:由公式∴C=30°或150°又sinA=cosB ∴A+B=90°或A-B=90°显然A+B=90°不可能成立当C=30°时,由A+B=150°,A-B=90°得A=120°B=30°当C=150°时,由A-B=90°得B为负值,不合题意故所求解为A=120°,B=30°,C=30°.例2、在△ABC中,a、b、c分别是内角A、B、C的外边,若b=2a,B=A+60°,求A 的值.分析:把题中的边的关系b=2a利用正弦定理化为角的关系,2RsinB=4RsinA,即sinB=2sinA.解:∵B=A+60°∴sinB=sin(A+60°)=sinAcos60°+cosAsin60°=又∵b=2a∴2RsinB=4RsinA,∴sinB=2sinA例3、在△ABC中,若tanA︰tanB=a2︰b2,试判断△ABC的形状.分析:三角形分类是按边或角进行的,所以判定三角形形状时一般要把条件转化为边之间关系或角之间关系式,从而得到诸如a2+b2=c2,a2+b2>c2(锐角三角形),a2+b2<c2(钝角三角形)或sin(A-B)=0,sinA=sinB,sinC=1或cosC=0等一些等式,进而判定其形状,但在选择转化为边或是角的关系上,要进行探索.解法一:由同角三角函数关系及正弦定理可推得,∵A、B为三角形的内角,∴sinA≠0,sinB≠0.∴2A=2B或2A=π-2B,∴A=B或A+B=.所以△ABC为等腰三角形或直角三角形.解法二:由已知和正弦定理可得:整理得a4-a2c2+b2c2-b4=0,即(a2-b2)(a2+b2-c2)=0,于是a2=b2或a2+b2-c2=0,∴a=b或a2+b2=c2.∴△ABC是等腰三角形或直角三角形.5、利用正弦定理和余弦定理判定三角形形状,此类问题主要考查边角互化、要么同时化边为角,要么同时化角为边,然后再找出它们之间的关系,注意解答问题要周密、严谨.例4、若acosA=bcosB,试判断△ABC的形状.分析:本题既可以利用正弦定理化边为角,也可以利用余弦定理化角为边.解:解法一:由正弦定理得:2RsinAcosA=2RsinBcosB∴sin2A=sin2B∴2A=2B或2A+2B=180°∴A=B或A+B=90°故△ABC为等腰三角形或直角三角形解法二:由余弦定理得∴a2(b2+c2-a2)=b2(a2+c2-b2)∴(a2-b2)(a2+b2-c2)=0∴a=b或a2+b2=c2故△ABC为等腰三角形或直角三角形.6、正弦定理,余弦定理与函数之间的相结合,注意运用方程的思想.例5、如图,设P是正方形ABCD的一点,点P到顶点A、B、C的距离分别是1,2,3,求正方形的边长.分析:本题运用方程的思想,列方程求未知数.解:设边长为x(1<x<3),设∠ABP=α,则∠CBP=90°-α,在△ABP中设x2=t,则1<t<q,得(t+3)2+(t-5)2=16t三、难点剖析1、已知两边和其中一边的对角,解三角形时,将出现无解、一解和两解的情况,应分情况予以讨论.下图即是表示在△ABC中,已知a、b和A时解三角形的各种情况.(1)当A为锐角时(如下图),(2)当A为直角或钝角时(如下图),也可利用正弦定理进行讨论.如果sinB>1,则问题无解;如果sinB=1,则问题有一解;如果求出sinB<1,则可得B的两个值,但要通过“三角形内角和定理”或“大边对大角”等三角形有关性质进行判断.2、用方程的思想理解和运用余弦定理:当等式a2=b2+c2-2bccosA中含有未知数时,等式便成为方程.式中有四个量,知道任意三个,便可以解出另一个,运用此式可以求a或b或c或cosA.3、向量方法证明三角形中的射影定理在△ABC中,设三内角A、B、C的对边分别是a、b、c.4、正弦定理解三角形可解决的类型:(1)已知两角和任一边解三角形;(2)已知两边和一边的对角解三角形.5、余弦定理解三角形可解决的类型:(1)已知三边解三角形;(2)已知两边和夹角解三角形.6、三角形面积公式:例6、不解三角形,判断三角形的个数.①a=5,b=4,A=120°②a=30,b=30,A=50°③a=7,b=14,A=30°④a=9,b=10,A=60°⑤a=6,b=9,A=45°⑥c=50,b=72,C=135°解析:①a>b,A=120°,∴△ABC有一解.②a=b,A=50°<90°,∴△ABC有一解.③a<b,A=30°,∴B=90°,△ABC有一解.④a<b,A=60°,∴△ABC有两解(A为锐角和钝角).方法二:a2=b2+c2-2bccosA,∴92=102+c2-2×10×ccos60°,即c2-10c+19=0∵△=102-4×19=24>0∴△ABC有两解.⑤b>c,C=45°,∴△ABC无解(不存在).⑥b>c,C=135°>90°,又由b>c知∠B>∠C=135°,这样B+C>180°,∴△ABC无解.。

勾股定理的应用(知识讲解)八年级数学上册基础知识讲与练(北师大版)

勾股定理的应用(知识讲解)八年级数学上册基础知识讲与练(北师大版)

专题1.6 勾股定理的应用(知识讲解)【学习目标】(1)利用勾股定理及逆定理解决生活中的实际问题。

(2)通过观察图形,探索图形间的关系,发展学生的空间观念.【要点梳理】勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,从而达到把三角形边的问题转化为角的问题,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 本专题分类进行巩固解决以下生活实际问题【典型例题】类型一、应用勾股定理解决梯子滑落高度问题1.一个25米长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24米,如果梯子的顶端A 沿墙下滑4米,那么梯子底端B 外移多少米?【答案】8米.【分析】梯子下滑4米,梯子的长度不变始终为25米,利用勾股定理分别求出OB 、OB '的长度,进而求出BB '的长度即可.解:如图,依题意可知AB =25(米),AO =24(米),∠O =90°,∠ BO 2=AB 2﹣AO 2=252-242,∠ BO =7(米),移动后,A O '=20(米),222222()()252015B O A B A O --''''===∠ 15B O '= (米),∠ =1578BB B O BO ''-=-=(米).答:梯子底端B 外移8米.【点拨】本题考查的是勾股定理的应用及勾股定理在直角三角形中的正确运用,本题中求B O 的长度是解题的关键.举一反三:【变式】一架梯子长13米,斜靠在一面墙上,梯子底端离墙5米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了7米到C,那么梯子的底端在水平方向滑动了几米?【答案】(1)12米;(2)7米【分析】(1)由题意易得AB=CD=13米,OB=5米,然后根据勾股定理可求解;(2)由题意得CO= 5米,然后根据勾股定理可得求解.解:(1)由题意得,AB=CD=13米,OB=5米,在Rt AOB,由勾股定理得:AO2=AB2-OB2=132-52=169-25=144,解得AO=12米,答:这个梯子的顶端距地面有12米高;(2)由题意得,AC=7米,由(1)得AO=12米,∠CO=AO-AC=12-7=5米,△,由勾股定理得:在Rt CODOD2=CD2-CO2=132-52=169-25=144,解得OD=12米∠BD=OD-OB=12-5=7米,答:梯子的底端在水平方向滑动了7米.【点拨】本题主要考查勾股定理,熟练掌握勾股定理是解题的关键.类型二、应用勾股定理解决旗杆高度2.数学综合实验课上,同学们在测量学校的高度时发现:将旗杆顶端升旗用的绳子垂到地面还多2米;当把绳子的下端拉开拉直后,下端刚好接触地面,测得绳子的下端离开旗杆底端8米,如图,根据以上数据,同学们就可以准确求出了旗杆的高度,你知道他们是如何计算出来的吗?【答案】旗杆的高度为15m【分析】由题可知,旗杆,绳子与地面构成直角三角形,根据题中的数据,用勾股定理解答即可.解:设旗杆高x 米,则绳子长为()2x +米,∠旗杆垂直于地面,∠旗杆,绳子与地面构成直角三角形,在Rt ABC 中,222AB BC AC +=,∠()22282x x +=+,解方程得:15x =,答:旗杆高度为15米.【点拨】本题考查的是勾股定理的应用,根据题意得出∠ABC 是直角三角形式解答此题的关键.举一反三:【变式】滑撑杆在悬窗中应用广泛.如图,某款滑撑杆由滑道OC ,撑杆AB 、BC 组成,滑道OC 固定在窗台上.悬窗关闭或打开过程中,撑杆AB 、BC 的长度始终保持不变.当悬窗关闭时,如图∠,此时点A 与点O 重合,撑杆AB 、BC 恰与滑道OC 完全重合;当悬窗完全打开时,如图∠,此时撑杆AB 与撑杆BC 恰成直角,即90B ∠=︒,测量得12cm OA =,撑杆15cm AB =,求滑道OC 的长度.【答案】滑道OC 的长度为51cm .【分析】设OC m =cm ,可得出(15)BC m =-cm ,(12)AC m =-cm ,在在Rt ∠ABC 中,根据勾股定理可得m 的值,由此可得结论.解:设OC m =cm ,则由图∠可知(15)BC OC AB m =-=- cm ,由图∠可知(12)AC OC OA m =-=-cm ,∠90B ∠=︒,∠在Rt∠ABC 中,根据勾股定理可得,222AB BC AC +=,∠22215(15)(12)m m +-=-,解得51m =,∠滑道OC 的长度为51cm .【点拨】本题考查勾股定理的应用,能结合撑杆AB 、BC 的长度始终保持不变正确表示出BC 和AC 是解题关键.类型三、应用勾股定理解决小鸟飞行的距离3.有一只喜鹊在一棵3m 高的小树上觅食,它的巢筑在距离该树24m 的一棵大树上,大树高14m ,且巢离树顶部1m .当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m /s ,那它至少需要多少时间才能赶回巢中?【答案】它至少需要5.2s 才能赶回巢中.【分析】根据题意,构建直角三角形,利用勾股定理解答.解:如图,由题意知AB =3,CD =14-1=13,BD =24.过A 作AE ∠CD 于E .则CE =13-3=10,AE =24,∠在Rt ∠AEC 中,AC 2=CE 2+AE 2=102+242.∠AC =26,26÷5=5.2(s ).答:它至少需要5.2s 才能赶回巢中.【点拨】本题考查了勾股定理的应用.关键是构造直角三角形,同时注意:时间=路程÷速度.举一反三:【变式】有一只喜鹊在一棵高3米的小树的树梢上觅食,它的巢筑在距离该树24米,高为14米的一棵大树上,且巢离大树顶部为1米,这时,它听到巢中幼鸟求助的叫声,立刻赶过去,如果它的飞行速度为每秒5米,那么它至少几秒能赶回巢中?【答案】它至少5.2秒能赶回巢中.【分析】过点A 作AF CD ⊥于点F .求出AF,EF,再根据勾股定理求出AE ,从而求出时间.解:如图所示,3AB =米,14CD =米,1DE =米,24BC =米.过点A 作AF CD ⊥于点F .在Rt AEF ∆中,24AF BC ==米,10EF CD CF DE =--=米,所以222222410676AE AF EF =+=+=.所以喜鹊离巢的距离26AE =米.喜鹊赶回巢所需的时间为265 5.2÷=(秒).即它至少5.2秒能赶回巢中.【点拨】考核知识点:勾股定理和逆定理运用.构造直角三角形是解题关键.类型四、应用勾股定理解决大树折断前的高度4.如图,在一次地震中,一棵垂直于地面且高度为16米的大树被折断,树的顶部落在离树根8米处,即8BC =,求这棵树在离地面多高处被折断(即求AC 的长度)?【答案】这棵树在离地面6米处被折断【分析】设AC x =,利用勾股定理列方程求解即可.解:设AC x =,∠在Rt ABC △中,222AC BC AB +=,∠()222816x x +=-,∠6x =.答:这棵树在离地面6米处被折断【点拨】本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键.直角三角形两条直角边的平方和等于斜边的平方. 当题目中出现直角三角形,且该直角三角形的一边为待求量时,常使用勾股定理进行求解.有时也可以利用勾股定理列方程求解.举一反三:【变式】我国古代的数学名著《九章算术》中记载“今有竹高一丈八,末折抵地,去本6尺.问:折者高几何?”译文:一根竹子,原高一丈八,虫伤有病,一阵风将竹子折断,其竹梢恰好着地,着地处离原竹子根部6尺远.问:折处离地还有多高的竹子?(1丈=10尺)【答案】8尺【分析】设原处还有x 尺高的竹子,由题意得到折后竹子竖直高度+斜倒部分的长度=18尺,再运用勾股定理列方程即可求解.解:设折处离地还有x 尺高的竹子,如图,在Rt ABC 中,AC =x 尺,则AB =一丈八- AC =(18-x )尺由勾股定理得222AC BC AB +=,所以2226(18)x x +=-,解得:8x =.答:折处离地还有8尺高的竹子.【点拨】此题考查勾股定理解决实际问题.此题中的直角三角形只知道一直角边,另两边未知往往要列方程求解.类型五、应用勾股定理解决水杯中的筷子问题5.如图,一个直径为20cm 的杯子,在它的正中间竖直放一根小木棍,木棍露出杯子外2cm ,当木棍倒向杯壁时(木棍底端不动),木棍顶端正好触到杯口,求木棍长度.【答案】26cm【分析】设杯子的高度是x cm ,那么小木棍的高度是(x +2)cm ,因为直径为20cm 的杯子,可根据勾股定理列方程求解.解:设杯子的高度是x cm ,那么小木棍的高度是(x +2)cm ,∠杯子的直径为20cm ,∠杯子半径为10cm ,∠x 2+102=(x +2)2,即x 2+100=x 2+4x +4,解得:x =24,24+2=26(cm ).答:小木棍长26cm .【点拨】本题考查了勾股定理的运用,解题的关键是看到构成的直角三角形以及各边的长.举一反三:【变式】如图,有一个水池,水面是一个边长为16尺的正方形,在水池正中央有一根芦苇,它高出水面2尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,则水池里水的深度是多少尺?请你用所学知识解答这个问题.【答案】水池里水的深度是15尺【分析】根据勾股定理列出方程,解方程即可.解:设水池里水的深度是x 尺,由题意得,()22282x x +=+,解得:x =l5,答:水池里水的深度是15尺.【点拨】本题考查的是勾股定理的应用,掌握勾股定理、根据勾股定理正确列出方程是解题的关键. 类型六、应用勾股定理解决航海问题6.如图,某港口P 位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于点Q ,R 处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?【答案】北偏东45°(或西北)【分析】直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角即可得到“海天”号航行方向.解:由题意可得:RP=18海里,PQ=24海里,QR=30海里,∠182+242=302,∠∠RPQ是直角三角形,∠∠RPQ=90°,∠“远航”号沿东北方向航行,即沿北偏东45°方向航行,∠∠RPS=45°,∠“海天”号沿北偏西45°(或西北)方向航行.【点拨】本题考查了勾股定理的应用,解题的重点主要是能够根据勾股定理的逆定理发现直角三角形,关键是从实际问题中抽象出直角三角形,难度不大.举一反三:【变式】在寻找某坠毁飞机的过程中,两艘搜救艇接到消息,在海面上有疑似漂浮目标A、B.于是,一艘搜救艇以16海里/时的速度离开港口O(如图)沿北偏东40°的方向向目标A前进,同时,另一艘搜救艇也从港口O出发,以12海里/时的速度向着目标B出发,1.5小时后,他们同时分别到达目标A、B.此时,他们相距30海里,请问第二艘搜救艇的航行方向是北偏西多少度?【答案】第二艘搜救艇的航行方向是北偏西50度.【分析】根据题意求出OA、OB,根据勾股定理的逆定理求出∠AOB=90°,即可得出答案.解:根据题意得:OA =16海里/时×1.5小时=24海里;OB =12海里/时×1.5小时=18海里,∠OB 2+OA 2=242+182=900,AB 2=302=900,∠OB 2+OA 2=AB 2,∠∠AOB =90°,∠艘搜救艇以16海里/时的速度离开港口O (如图)沿北偏东40°的方向向目标A 的前进,∠∠BOD =50°,即第二艘搜救艇的航行方向是北偏西50度.【点拨】本题考查了方向角,勾股定理的逆定理的应用,能熟记定理的内容是解此题的关键,注意:如果三角形两边a 、b 的平方和等于第三边c 的平方,那么这个三角形是直角三角形.类型七、应用勾股定理解决河的宽度7.湖的两岸有A ,B 两棵景观树,数学兴趣小组设计实验测量两棵景观树之间的距离,他们在与AB 垂直的BC 方向上取点C ,测得30BC =米,50AC =米.求:(1)两棵景观树之间的距离;(2)点B 到直线AC 的距离.【答案】(1)A ,B 两点间的 距离是40米;(2)点B 到直线AC 的距离是24米.【分析】(1)根据勾股定理解答即可;(2)根据三角形面积公式解答即可.解:(1)因为ABC 是直角三角形,所以由勾股定理,得222AC BC AB =+.因为50AC =米,30BC =,所以22250301600AB =-=.因为0AB >,所以40AB =米.即A ,B 两点间的 距离是40米.(2)过点B 作BD AC ⊥于点D . 因为1122ABC S AB BC AC BD =⋅=⋅△, 所以AB BC AC BD ⋅=⋅. 所以30402450AB BC BD AC ⋅⨯===(米), 即点B 到直线AC 的距离是24米.【点拨】本题考查了勾股定理的应用,属于基础题,关键是掌握勾股定理在直角三角形中的表达式.举一反三:【变式】著名的赵爽弦图(如图∠,其中四个直角三角形较大的直角边长都为a ,较小的直角边长都为b ,斜边长都为c ),大正方形的面积可以表示为2c ,也可以表示为214()2ab a b ,由此推导出重要的勾股定理:如果直角三角形两条直角边长为a ,b ,斜边长为c ,则222+=a b c .(1)图∠为美国第二十任总统伽菲尔德的“总统证法”,请你利用图∠推导勾股定理.(2)如图∠,在一条东西走向河流的一侧有一村庄C ,河边原有两个取水点A ,B ,其中AB AC =,由于某种原因,由C 到A 的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H (A 、H 、B 在同一条直线上),并新修一条路CH ,且CH AB ⊥,测得 1.2CH =千米,0.9HB =千米,求新路CH 比原路CA 少多少千米?(3)在第(2)问中若AB AC ≠时,CH AB ⊥,4AC =,5BC =,6AB =,设AH x =,求x 的值.【答案】(1)见分析;(2)新路CH 比原路CA 少0.05千米;(3) 2.25x =.【分析】(1)梯形的面积可以由梯形的面积公式求出,也可利用三个直角三角形面积求出,两次求出的面积相等列出关系式,化简即可得证;(2)设CA x =,则AH 0.9x =-,根据勾股定理列方程,解得即可得到结果;(3)在Rt∠ACH 和Rt∠BCH 中,由勾股定理得求出CH 2=CA 2-AH 2=CB 2-BH 2,列出方程求解即可得到结果.解:(1)梯形ABCD 的面积为()()()21122b a b a a b ++=+, 也可以表示为2111222ab ab c ++, ∠()2211112222a b ab ab c +=++, 整理得:222a b c +=;(2)∠CA x =,∠AH 0.9x =-,在Rt∠ACH 中,222CA CH AH =+,即()2221.20.9x x =+-,解得x=1.25,即CA=1.25,CA -CH=1.25-1.2=0.05(千米),答:新路CH 比原路CA 少0.05千米;(3)设AH x =,则BH 6x =-,在Rt∠ACH 中,222CH CA AH =-,在Rt∠BCH 中,222CH CB BH =-,∠2222CA AH CB BH -=-,即()2222456x x -=--,解得: 2.25x =.【点拨】本题主要考查了勾股定理的证明与应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法, 类型八、应用勾股定理解决台阶上地毯问题8.如图所示,是一个三级台阶,它的每一级的长、宽、高分别为55cm ,10cm ,6cm ,点A 和点B 是这个台阶的两个相对的端点,A 点处有一只蚂蚁,那么这只蚂蚁从点A 爬到点B 的最短路程是多少?【答案】73cm【分析】首先把楼梯展开得到平面几何图,根据“两点之间,线段最短”得到蚂蚁所走的最短路线为AB ,则问题是求AB 的长,根据已知数据得出AC 、BC 的长,再利用勾股定理求出AB 的长,即可完成解答.解:如图所示,将这个台阶展开成一个平面图形,则蚂蚁爬行的最短路程就是线段AB 的长.在Rt ABC ∆中,55cm BC =,10+6+10+6+10+6=48cm AC =.由勾股定理,得222=5329AB AC BC +=.所以73cm AB =.因此,蚂蚁从点A 爬到点B 的最短路程是73cm.【点拨】此题考查勾股定理的应用,把立体几何图中的问题转化为平面几何图中的问题是解题的关键.举一反三:【变式】如图,小明准备把一支笔放入铅笔盒ABCD ,竖放时笔的顶端E 比铅笔盒的宽AB 还要长2cm ,斜着放入时笔的顶端F 与铅笔盒的边缘AB 距离为6cm ,求铅笔盒的宽AB 的长度.【答案】铅笔盒的宽AB 的长度为8cm .【分析】设铅笔盒的宽AB 的长度为cm x ,则笔长(2)cm x +,然后根据勾股定理列方程解答即可.解:设铅笔盒的宽AB 的长度为cm x ,则笔长(2)cm x +,由题意得2226(2)x x +=+,解得8x =.答:铅笔盒的宽AB 的长度为8cm .【点拨】本题考查了勾股定理的应用,弄清题意、根据勾股定理列出方程是解答本题的关键.类型九、应用勾股定理解决汽车是否超速问题9.我市《道路交通管理条例》规定:小汽车在城市街道上的行驶速度不得超过60km /h .如图,一辆小汽车在一条城市街道上沿直道行驶,某一时刻刚好行驶到车速检测点A 正前方30m 的C 处,2秒后又行驶到与车速检测点A 相距50m 的B 处.请问这辆小汽车超速了吗?若超速,请求出超速了多少?【答案】超速了,超速了12km /h【分析】由勾股定理可求得小汽车行驶的距离,再除以小汽车行驶的时间即为小汽车行驶的车速,再与限速比较即可.解:.由已知得50m,30m AB AC ==∠在直角三角形ABC 中AB 2=AC 2+BC 2∠BC 2=AB 2-AC 2=222503040-=,40m BC ∴= 又4020m /s 22BC == 20m /s 72km/h 60km/h =>∠72-60=12km /h∠这辆小汽车超速了,超速了12km /h .【点拨】本题考查了勾股定理,其中1 米/秒=3.6 千米/时的速度换算是易错点. 举一反三:【变式】“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 的正前方50米处的C 点,过了6秒后,测得小汽车所在的B 点与车速检测仪A 之间的距离为130米.(1)求BC 间的距离;(2)这辆小汽车超速了吗?请说明理由.【答案】(1)120米;(2)超速,理由见分析【分析】(1)根据勾股定理求出BC 的长;(2)直接求出小汽车的时速,进而比较得出答案.解:(1)在Rt∠ABC 中,∠AC=50m ,AB=130m ,且AB 为斜边,根据勾股定理得:BC=120(m );(2)这辆小汽车超速了.理由:∠120÷6=20(m/s ),平均速度为:20m/s ,20m/s=72km/h ,72>70,∠这辆小汽车超速了.【点拨】此题主要考查了勾股定理的应用,利用勾股定理求出BC 的长是解题关键. 类型十、应用勾股定理解决是否受台风影响问题10.台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向AB 由A 行驶向B ,已知点C 为海港,并且点C 与直线B 上的两点A ,B 的距离分别为300km AC =,400km BC =,又500km AB =,以台风中心为圆心周围250km 以内为受影响区域.(1)求ACB ∠的度数;(2)海港C 受台风影响吗?为什么?【答案】(1)90°;(2)受台风影响,理由见分析(1)利用勾股定理的逆定理得出∠ABC 是直角三角形,进而得出∠ACB 的度数; (2)利用三角形面积得出CD 的长,进而得出海港C 是否受台风影响.解:(1)∠AC =300km ,BC =400km ,AB =500km ,∠AC 2+BC 2=AB 2,∠∠ABC 是直角三角形,∠ACB =90°;(2)海港C 受台风影响,理由:过点C 作CD ∠AB ,∠∠ABC 是直角三角形,∠AC ×BC =CD ×AB ,∠300×400=500×CD ,∠CD =240(km ),∠以台风中心为圆心周围250km 以内为受影响区域,∠海港C 受台风影响.【点拨】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.举一反三:【变式】如图,在甲村到乙村的公路旁有一块山地正在开发,现有C 处需要爆破.已知点C 与公路上的停靠站AB 、的距离分别为300m 和400m ,且AC BC ,为了安全起见,如果爆破点C 周围半径250m 的区域内不能有车辆和行人,问在进行爆破时,公路AB 段是否需要暂时封闭,为什么?【答案】爆破公路AB 段有危险,需要暂时封锁.过点C 作CD∠AB 于点D ,根据勾股定理求出AB 的长,再由面积公式求得CD 的长,并比较,即可得出公路AB 上是否有危险.解:如图,过点C 作CD AB ⊥于点D .在Rt ABC 中,由勾股定理,得:22222300400250000AB AC BC ,所以500AB m = 由1122ABC S AB CD AC BC =⋅=⋅,得500300400CD ,解得240CD m , 因为240250<,所以爆破公路AB 段有危险,需要暂时封锁.【点拨】本题考查了勾股定理的应用和三角形的面积,解题的关键是利用直角三角形的面积列出方程求出CD 的长.类型十一、应用勾股定理解决选扯距离相离问题11.如图,烟台市正政府决定在相距50km 的A 、B 两村之间的公路旁E 点,修建一个大樱桃批发市场,且使C 、D 两村到E 点的距离相等,已知DA ∠AB 于A ,CB ∠AB 于B ,DA =30km ,CB =20km ,那么大樱桃批发市场E 应建什么位置才能符合要求?【答案】大樱桃批发市场E 应建在离A 站20千米的地方【分析】由勾股定理两直角边的平方和等于斜边的平方分别求出2DE 和2CE ,列等式求解即可.解:设大樱桃批发市场E 应建在离A 站x 千米的地方,则()50BE x =-千米.在直角ADE 中,根据勾股定理得:222AD AE DE +=,∠22230x DE +=,在直角CBE △中,根据勾股定理得:222CB BE CE +=,∠()222205x CE +-=.又∠C 、D 两村到E 点的距离相等,∠DE CE =,∠22DE CE =,所以()2222302050x x +=+-,解得20x .∠大樱桃批发市场E 应建在离A 站20千米的地方.【点拨】本题考查勾股定理的实际应用,掌握两直角边的平方和等于斜边的平方是解题的关键.举一反三:【变式】如图,小明家在一条东西走向的公路MN 北侧200米的点A 处,小红家位于小明家北500米(500AC =米)、东1200米(1200BC =米)点B 处.(1)求小明家离小红家的距离AB ;(2)现要在公路MN 上的点P 处建一个快递驿站,使PA PB +最小,请确定点P 的位置,并求PA PB +的最小值.【答案】(1)1300AB =米;(2)见分析,1500米【分析】(1)如图,连接AB ,根据勾股定理即可得到结论;(2)如图,作点A 关于直线MN 的对称点A ',连接A 'B 交MN 于点P .驿站到小明家和到小红家距离和的最小值即为A 'B ,根据勾股定理即可得到结论.解:(1)如图,连接AB ,由题意知AC =500,BC =1200,∠ACB =90°,在Rt∠ABC中,∠∠ACB=90°,∠AB2=AC2+BC2=5002+12002=1690000,∠AB>0∠AB=1300米;(2)如图,作点A关于直线MN的对称点A',连接A'B交MN于点P.驿站到小明家和到小红家距离和的最小值即为A'B,由题意知AD=200米,A'C∠MN,∠A'C=AC+AD+A'D=500+200+200=900米,在Rt∠A'BC中,∠∠ACB=90°,∠A'B2=A'C2+BC2=9002+12002=2250000,∠A'B>0,∠A'B=1500米,即从驿站到小明家和到小红家距离和的最小值为1500米.【点拨】本题考查轴对称-最短问题,勾股定理,题的关键是学会利用轴对称解决最短问题.。

人教版数学八上第8讲直角三角形全等判定(提高)知识讲解

人教版数学八上第8讲直角三角形全等判定(提高)知识讲解

直角三角形全等判定(提高)【学习目标】1.理解和掌握判定直角三角形全等的一种特殊方法——“斜边,直角边”(即“HL”). 2.能熟练地用判定一般三角形全等的方法及判定直角三角形的特殊方法判定两个直角三角形全等.【要点梳理】要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理. 要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.【典型例题】类型一、直角三角形全等的判定——“HL”1、判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和斜边对应相等;()(3)两直角边对应相等;()(4)一条直角边和斜边对应相等.()【答案】(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SAS”;(4)全等,“HL”. 【解析】理解题意,画出图形,根据全等三角形的判定来判断.【总结升华】直角三角形全等可用的判定方法有5种:SAS、ASA、AAS、SSS、HL.举一反三:【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()【答案】(1)√;(2)×;在△ABC和△DBC中,AB=DB,AE和DF是其中一边上的高,AE=DF(3)×. 在△ABC 和△ABD 中,AB =AB ,AD =AC ,AE 为第三边上的高,2、已知:如图,DE ⊥AC ,BF ⊥AC ,AD =BC ,DE =BF.求证:AB ∥DC.【思路点拨】从已知条件只能先证出Rt △ADE ≌Rt △CBF ,从结论又需证Rt △CDE ≌Rt △ABF. 【答案与解析】证明:∵DE ⊥AC ,BF ⊥AC ,∴在Rt △ADE 与Rt △CBF 中.AD BC DE BF ⎧⎨⎩=,=∴Rt △ADE ≌Rt △CBF (HL )∴AE =CF ,DE =BF∴AE +EF =CF +EF ,即AF =CE 在Rt △CDE 与Rt △ABF 中,DE BF DEC BFA EC FA =⎧⎪∠=∠⎨⎪=⎩∴Rt △CDE ≌Rt △ABF (SAS ) ∴∠DCE =∠BAF ∴AB ∥DC.【总结升华】我们分析已知能推证出什么,再看要证到这个结论,我们还需要哪些条件,这样从已知和结论向中间推进,从而证出题目.3、如图 AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 、CE 相交于F .求证:AF 平分∠BAC .【思路点拨】若能证得AD =AE ,由于∠ADB 、∠AEC 都是直角,可证得Rt △ADF ≌Rt △AEF ,而要证AD =AE ,就应先考虑Rt △ABD 与Rt △AEC ,由题意已知AB =AC ,∠BAC 是公共角,可证得Rt △ABD ≌Rt △ACE . 【答案与解析】证明: 在Rt △ABD 与Rt △ACE 中∴Rt △ABD ≌Rt △ACE(AAS)∴AD =AE(全等三角形对应边相等) 在Rt △ADF 与Rt △AEF 中∴Rt △ADF ≌Rt △AEF(HL)∴∠DAF =∠EAF(全等三角形对应角相等) ∴AF 平分∠BAC(角平分线的定义)【总结升华】条件和结论相互转化,有时需要通过多次三角形全等得出待求的结论. 举一反三:【变式】已知,如图,AC 、BD 相交于O ,AC =BD ,∠C =∠D =90° .求证:OC =OD.【答案】∵∠C =∠D =90°∴△ABD 、△ACB 为直角三角形 在Rt △ABD 和Rt △BAC 中AB BABD AC =⎧⎨=⎩∴Rt △ABD ≌Rt △BAC(HL) ∴AD =BC在△AOD 和△BOC 中D C AOD BOC AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOD ≌△BOC(AAS) ∴OD =OC .4、如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D. (1)求证:AE =CD ;(2)若AC =12cm ,求BD 的长.【答案与解析】(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°. ∴∠D =∠AEC .又∵∠DBC =∠ECA =90°, 且BC =CA ,∴△DBC ≌△ECA (AAS ). ∴AE =CD .(2)解:由(1)得AE =CD ,AC =BC , ∴△CDB ≌△AEC (HL ) ∴BD =EC =12BC =12AC ,且AC =12. ∴BD =6cm .【总结升华】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件 【巩固练习】 一、选择题1.下列命题中,不正确的是( )A.斜边对应相等的两个等腰直角三角形全等B.两条直角边对应相等的两个直角三角形全等C.有一条边相等的两个等腰直角三角形全等D.有一条直角边和斜边上的中线对应相等的两个直角三角形全等2. 如图,△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于点O ,AO 的延长线交BC 于F ,则图中全等直角三角形的对数为( ) A. 3对 B. 4对 C. 5对 D. 6对3. 如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A.1B.2C.3D.44. 在如图中,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中不正确的是()A. △ABE≌△ACFB. 点D在∠BAC的平分线上C. △BDF≌△CDED. 点D是BE的中点5.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是().A.相等 B.不相等C.互余或相等 D.互补或相等6. 已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A. 1B. 2C. 5D. 无法确定二、填空题7. 如图,E、B、F、C在同一条直线上,若∠D=∠A=90°,EB=FC,AB=DF.则ΔABC≌_____,全等的根据是_____.8. 如图,已知AB⊥BD于B,ED⊥BD于D,EC⊥AC,AC=EC,若DE=2,AB=4,则DB=______.9. 判定两直角三角形全等的各种条件:(1)一锐角和一边;(2)两边对应相等;(3)两锐角对应相等.其中能得到两个直角三角形全等的条件是_________.10. 如图,△ABC中,AM平分∠CAB,CM=20cm,那么M到AB的距离是_________cm.11. 如图,已知AD是△ABC的高,E为AC上一点,BE交AD于F,且BF=AC,FD=CD.则∠BAD=_______.12. 如图所示的网格中(4×4的正方形),∠1+∠2+∠3+∠4+∠5+∠6=________.三、解答题13.用三角板可按下面方法画角平分线:在已知∠AOB的两边上,分别取OM=ON (如图),再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB,请你说出其中的道理.14. 求证:有两边和其中一边上的高对应相等的两个锐角三角形全等.15. 如图,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,•若AB=CD,试证明BD平分EF.【答案与解析】一.选择题1. 【答案】C;【解析】C选项如果是一个等腰三角形的腰和另一个等腰三角形的底边对应相等,这是肯定不全等.2. 【答案】D;【解析】Rt△ABD≌Rt△ACE;Rt△BEO≌Rt△CDO;Rt△AEO≌Rt△ADO;Rt△ABF≌Rt△ACF;Rt△BEC≌Rt△CDB;Rt△BFO≌Rt△CFO.3. 【答案】A;【解析】本题可先根据AAS判定△AEH≌△CEB,可得出AE=CE,从而得出CH=CE-EH =4-3=1.4. 【答案】D;【解析】A选项:∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A∴△ABE≌△ACF(AAS),正确;B选项:∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴DF=DE故点D在∠BAC的平分线上,正确;C选项:∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴△BDF≌△CDE(AAS),正确.5. 【答案】D;【解析】如果两个三角形都是锐角三角形或钝角三角形,那么相等;如果一个是锐角三角形一个是钝角三角形,那么互补.6. 【答案】A;【解析】因为知道AD的长,所以只要求出AD边上的高,就可以求出△ADE的面积.过D 作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,构造出Rt△EDF≌Rt△CDG,求出GC的长,即为EF的长,然后利用三角形的面积公式解答即可二.填空题7. 【答案】△DFE ,HL ;【解析】EB +BF =FC +BF ,即EF =BC ,斜边相等; 8. 【答案】6;【解析】DB =DC +CB =AB +ED =4+2=6; 9. 【答案】(1)(2) 10.【答案】20;【解析】过M 作MD ⊥AB 于D ,可证△ACM ≌△ADM ,所以DM =CM =20cm . 11.【答案】45°;【解析】证△ADC 与△BDF 全等,AD =BD ,△ABD 为等腰直角三角形. 12.【答案】270°;【解析】∠1+∠6=∠2+∠5=∠3+∠4=90°,所以∠1+∠2+∠3+∠4+∠5+∠6=270°.三.解答题 13.【解析】证明:在Rt △OPM 和Rt △OPN 中, OP OPOM ON=⎧⎨⎩=∴Rt △OPM ≌Rt △OPN.∴∠POM =∠PON ,即OP 平分∠AOB.14.【解析】根据题意,画出图形,写出已知,求证.已知:如图,在△ABC 与△A B C '''中.AB =A B '',BC =B C '',AD ⊥BC 于D ,A D ''⊥B C '' 于D '且 AD =A D ''求证:△ABC ≌△A B C '''证明: 在Rt △ABD 与Rt △A B D '''中∵AB A B AD A D ''=⎧⎨''=⎩∴Rt △ABD ≌ Rt △A B D ''' (HL)∴∠B =∠B '(全等三角形对应角相等)在△ABC与△A B C'''中∵AB A BB B BC B C''=⎧⎪'∠=∠⎨⎪''=⎩∴△ABC≌△'''A B C (SAS)15.【解析】证明∵DE⊥AC,BF⊥AC,∴∠DEG=∠BFE=90°.∵AE=CF,AE+EF=CF+EF.即AF=CE.在Rt△ABF和Rt△CDE中,,, AB CD AF CE=⎧⎨=⎩∴Rt△ABF≌Rt△CDE(HL),∴BF=DE.在△BFG和△DEG中,,,,BFG DEGBGF DGE BF DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BFG≌△DEG(AAS),∴FG=EG,即BD平分EF.。

解三角形题型分类讲解

解三角形题型分类讲解

解三角形知识点总结及题型分类讲解一、 知识点复习 1、正弦定理及其变形2(sin sin sin a b cR R A B C===为三角形外接圆半径)12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式)2sin ,sin ,sin 222a b cA B C R R R===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b Bb Bc C c C===2、正弦定理适用情况: (1)已知两角及任一边(2)已知两边和一边的对角(需要判断三角形解的情况) 已知a ,b 和A ,求B 时的解的情况:如果B A sin sin ≥,则B 有唯一解;如果1sin sin <<B A ,则B 有两解; 如果1sin =B ,则B 有唯一解;如果1sin >B ,则B 无解. 3、余弦定理及其推论2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C=+-=+-=+-222222222cos 2cos 2cos 2b c a A bc a c b B aca b c C ab+-=+-=+-=4、余弦定理适用情况:(1)已知两边及夹角;(2)已知三边. 5、常用的三角形面积公式(1)高底⨯⨯=∆21ABC S ; (2)B ca A bc C ab S ABC sin 21sin 21sin 21===∆(两边夹一角).6、三角形中常用结论(1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边); (2)sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边). (3)在△ABC 中,π=++C B A ,所以C B A sin )sin(=+;C B A cos )cos(-=+;C B A tan )tan(-=+.(4)2sin 2cos ,2cos 2sinCB AC B A =+=+. 二、典型例题题型1、计算问题(边角互换)例1、在ABC ∆中,若7:5:3sin :sin :sin =C B A ,则角C 的度数为 答案:=C 23π 例2、已知∆ABC 中,∠A 60=︒,3a =,则sin sin sin a b cA B C++++=.答案:2例3、在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2asinB=b .求角A 的大小; 答案:π3题型2、三角形解的个数例1.在△ABC 中,已知b=40,c=20,C=60。

高中数学-《解三角形》测试讲评课教学设计学情分析教材分析课后反思全文编辑修改

高中数学-《解三角形》测试讲评课教学设计学情分析教材分析课后反思全文编辑修改

精选全文完整版可编辑修改《解三角形》检测题讲评教学设计教学内容:《解三角形》综合测试题(自编)教学目标:1.通过学生对7、9、10、12、13题的问题思考,发现并解决自身存在的问题;2.通过组长对5、6题的讲解,学会在不解三角形的前提下判断三角形解的个数以及边角转化,培养合作意识;3.通过尖子生对14、15题的讲解,学会正余弦定理的综合应用,带动讲解热情,提高讲解能力。

教学重点:1、查漏补缺,发现不足。

2、进一步加强各类题型的解题方法的指导。

教学难点:1、让学生进一步提高解题能力2、提高数学综合素质。

教学过程:一、分析考试情况1、老师用PPT展示,公布考试结果:对考试情况进行分析:表扬优秀的学生和进步明显的学生以及本次表现不理想的学生,并明确今后努力的目标。

2、学生通过导学案上的试卷自我客观评价表进行试卷自我总结:粗心马虎丢分;知识掌握不牢固丢分能力达不到而丢分二、明确本节课的学习目标通过老师的错题统计,将错误的题目分为三大块来解决:第一步:由于 7、9、10、12、13题的错误率较低,所以第一板块由学生自己进行订正,借助老师的问题进行思考,发现并解决自身存在的问题,总结今天注意的问题;第二步:由于第5、6两题的错误率达到一半,所以第二板块通过组长的带领在组内进行讨论解决,重点学会在不解三角形的前提下判断三角形解的个数以及边角转化,培养合作意识;第三步:由于第14、15题的错误率较高,所以第三版块通过尖子生的讲解,学会正余弦定理的综合应用,带动讲解热情,提高讲解能力。

三、反思总结以及反馈练习;1、自己自主订正后及时反思总结以后解答三角函数部分应注意的问题以及解题思想2、组长带领组员讨论解决后总结解题方法,并以一组反馈练习加以巩固反馈练习一:不解三角形,判断解的情况(1) a=20,b=28,A=120°(2) a=28,b=20,A=45°(3) 0ba=A,2=30,2=3、两个“小老师”进行讲解后自主订正两分钟,然后通过一个题目进行反馈练习反馈练习二:在ABC ∆中,角A,B,C 对应的边分别是a,b ,c ,已知()cos23cos 1A B C -+=.(1)求角A 的大小;(2)若ABC ∆的面积S =,5b =,求sin sin B C 的值.四、课堂小结:谈一谈本节课的你的收获以及今后解题的方向?五、课堂小测:1.在ABC ∆中,角A 、B 、C 所对应的边分别为a 、b 、c ,若角A 、B 、C依次成等差数列,且1,ABC a b S ∆==则=( )AB C .2D .22.已知△ABC 的面积是30,内角A ,B ,C 所对边长分别为a ,b ,c ,cos A =1213.(1)求AB →·AC →; (2)若c -b =1,求a 的值.首先,学生在初中已经学过三角形内角和180度,大边对大角,及求三角形面积等知识,解三角形知识既与初中这些知识有密切联系,同时,又与三角函数、平面向量等知识有密切关系,通过将新知识融入已有的知识体系,从而提高综合运用能力,形成新的知识体系,对学生形成理性思维,创新意识具有基础性的作用.其次,高二(10)班学生数学素质较强,有优秀的组长以及尖子生,所以本节试卷讲评课可以放手让组长带领组内成员解决一些有点难度的题目,而最后两个错误比较多的题目可以让尖子生当一次“老师”,讲台上讲解。

三角形解的个数问题

三角形解的个数问题

05
三角形解的个数问题的扩 展和深化
三角形解的个数问题的推广
要点一
推广到多边形
要点二
推广到组合优化
将三角形解的个数问题推广到多边形,研究多边形的可解 性、解的个数和最优解等问题。
将三角形解的个数问题看作是组合优化问题的一种,研究 其他组合优化问题的解法,如旅行商问题、排班问题等。
三角形解的个数问题的变种
详细描述
在几何问题中,三角形解的个数问题通常涉及到三角形边长和角度的条件约束。根据三角形的性质, 任意两边之和大于第三边,任意两边之差小于第三边。同时,角度的条件也会影响三角形解的个数。 通过分析这些条件,可以判断三角形解的个数。
三角函数中的三角形解的个数问题
总结词
三角函数中的三角形解的个数问题主要 涉及到三角函数的性质和图象,通过分 析三角函数的性质和图象,判断三角形 解的个数。
考虑三角形边的长度
在三角形解的个数问题中,可以考虑 三角形的边长限制,研究不同边长条 件下三角形的可解性。
考虑三角形角度
在三角形解的个数问题中,可以考虑 三角形的角度限制,研究不同角度条 件下三角形的可解性。
三角形解的个数问题与其他数学知识的结合
与几何学结合
将三角形解的个数问题与几何学知识相结合,研究几 何图形中的可解性问题,如多边形、曲面等。
与图论结合
将三角形解的个数问题与图论知识相结合,研究图论 中的可解性问题,如子图、路径、连通性等。
感谢您的观看
THANKS
三角形解的个数问题
目 录
• 三角形解的个数问题的定义和分类 • 三角形解的个数问题的基本定理和公式 • 三角形解的个数问题的应用实例 • 三角形解的个数问题的解题技巧和方法 • 三角形解的个数问题的扩展和深化

第08讲 正余弦定理解三角形(学生版) 备战2025年高考数学一轮复习学案(新高考通用)

第08讲 正余弦定理解三角形(学生版) 备战2025年高考数学一轮复习学案(新高考通用)

第08讲正余弦定理解三角形(10类核心考点精讲精练)1. 5年真题考点分布2. 命题规律及备考策略【命题规律】本节内容是新高考卷的必考内容,设题稳定,难度较中等,分值为13-15分【备考策略】1掌握正弦定理、余弦定理及其相关变形应用2会用三角形的面积公式解决与面积有关的计算问题.3会用正弦定理、余弦定理等知识和方法解决三角形中的综合问题【命题预测】本节内容是新高考卷的必考内容,一般给以大题来命题、考查正余弦定理和三角形面积公式在解三角形中的应用,同时也结合三角函数及三角恒等变换等知识点进行综合考查,需重点复习。

1.正弦定理(1)基本公式:R CcB b A a 2sin sin sin ===(其中R 为ABC ∆外接圆的半径)(2)变形C B c b C A c a B A b a C B A c b a R C cB b A a sin sin sin sin sin sin sin sin sin 2sin sin sin ++=++=++=++++====CB A c b a sin :sin :sin ::=2.三角形中三个内角的关系π=++C B A ,A +B 2=π2-C2A CB sin )sin(=+∴,AC B cos )cos(-=+,AC B tan )tan(-=+2cot22πtan 2tan(,2sin 22πcos 2cos(,2cos 22πsin )2sin(C C B A C C B A C C B A =⎪⎭⎫ ⎝⎛-=+=⎪⎭⎫ ⎝⎛-=+=⎪⎭⎫ ⎝⎛-=+∴3.余弦定理(1)边的余弦定理A bc c b a cos 2222-+=,B ac c a b cos 2222-+=,Cab b a c cos 2222-+=(2)角的余弦定理bc a c b A 2cos 222-+=,ac b c a B 2cos 222-+=,ab c b a C 2cos 222-+=4.三角形的面积公式ah S ABC 21=∆A bc B ac C ab S ABCsin 21sin 21sin 21===∆1.(2023·全国·高考真题)在ABC V 中,内角,,A B C 的对边分别是,,a b c ,若cos cos a B b A c -=,且5C p=,则B Ð=( )A .10pB .5pC .310pD .25p 2.(2024·湖南永州·三模)已知在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,且cos cos 2cos a B b A c C +=-,π7sin 268A ⎛⎫+= ⎪⎝⎭,则()cos A B -=.3.(2024·四川凉山·二模)设ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos cos 1cos cos a B b A ba Bb A c-+=+,则A = .4.(2024·全国·高考真题)记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =sin sin 2C c B =,求ABC V 的周长.1.(2024·江西九江·三模)在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知22cos c a b A -=,则B =( )A .π6B .π3C .2π3D .5π62.(2024·河北沧州·模拟预测)记ABC V 的内角,,A B C 的对边分别为,,a b c ,若3cos cos cos b B a C c A =+,且34b c =,则C =.3.(2024·内蒙古呼和浩特·二模)在ABC V 中,记角A 、B 、C 的对边分别为a 、b 、c ,已知cos sin =+B c B .(1)求角C ;(2)已知点D 在AC 边上,且2AD DC =,6BC =,BD =,求ABC V 的面积.1.(2023·浙江·模拟预测)在ABC V 中,角,,A B C 所对的边分别为,,a b c .若π,43B a ==,且该三角形有两解,则b 的范围是( )A .()+¥B .()C .()0,4D .()42.(2024·陕西渭南·模拟预测)已知ABC V 的内角A ,B ,C 的对边分别为,,a b c ,则能使同时满足条件π,66A b ==的三角形不唯一的a 的取值范围是( )A .()36,B .()3,+¥C .()0,6D .()0,33.(2023·广东茂名·三模)(多选)ABC V 中,角,,A B C 所对的边分别为,,a b c .以下结论中正确的有( )A .若40,20,25a b B ===o ,则ABC V 必有两解B .若sin2sin2A B =,则ABC V 一定为等腰三角形C .若cos cos a B b A c -=,则ABC V 一定为直角三角形D .若π,23B a ==,且该三角形有两解,则b 的范围是)+¥1.(23-24高二下·浙江·期中)在ABC V 中,π,4,3A AB BC a Ð===,且满足该条件的ABC V 有两个,则a 的取值范围是( )A .()02,B .(2,C .()2,4D .()42.(2023·安徽·模拟预测)(多选)在ABC V 中,60AB B ==o ,若满足条件的三角形有两个,则AC 边的取值可能是( )A .1.5B .1.6C .1.7D .1.83.(2024·辽宁沈阳·模拟预测)(多选)在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c ,且已知2a =,则( )A .若45A =o ,且ABC V 有两解,则b 的取值范围是(2,B .若45A =o ,且4b =,则ABC V 恰有一解.C .若3c =,且ABC V 为钝角三角形,则b 的取值范围是D .若3c =,且ABC V 为锐角三角形,则b 的取值范围是1.(2023·北京·高考真题)在ABC V 中,()(sin sin )(sin sin )a c A C b A B +-=-,则C Ð=( )A .π6B .π3C .2π3D .5π62.(2021·全国·高考真题)在ABC V 中,已知120B =︒,AC 2AB =,则BC =( )A .1B C D .33.(2023·全国·高考真题)在ABC V 中,60,2,BAC AB BC Ð=︒==BAC Ð的角平分线交BC 于D ,则AD =.4.(2023·全国·高考真题)记ABC V 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c aA+-=.(1)求bc ;(2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC V 面积.1.(2021·安徽安庆·二模)在ABC V 中,a b c ,,分别是A Ð,B Ð,C 的对边.若2b ac =,且22a c ac +=+,则A Ð的大小是( )A .π6B .π3C .2π3D .5π62.(2024·安徽合肥·一模)在ABC V 中,内角,,A B C 的对边分别为,,a b c ,若()2cos 2b C a c =-,且π3B =,则=a ( )A .1B C D .23.(2023·广东广州·三模)在ABC V 中,点D 在边BC 上,AB =,3CD =,45B =︒,60ADB Ð=︒,则AC 的长为.4.(2023·全国·高考真题)在ABC V 中,已知120BAC Ð=︒,2AB =,1AC =.(1)求sin ABC Ð;(2)若D 为BC 上一点,且90BAD Ð=︒,求ADC △的面积.1.(22-23高三·吉林白城·阶段练习)已知ABC V 中,角A ,B ,C 所对的边分别是a ,b ,c ,若()()3a b c b c a bc +++-=,且sin 2sin cos A B C =,那么ABC V 是( )A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形2.(22-23高三上·河北·阶段练习)在ABC V 中,角,,A B C 对边为,,a b c ,且22cos2Ac b c ×=+,则ABC V 的形状为( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形3.(2024高三·全国·专题练习)设△ABC 的三边长为BC a =,=CA b ,AB c =,若tan2A a b c=+,tan2B ba c =+,则△ABC 是( ).A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形1.(2024高三·全国·专题练习)在ABC V 中,若cos cos a A b B =,则ABC V 的形状一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰或直角三角形2.(22-23高三·河南商丘·阶段练习)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin22A c bc-=,则△ABC 是( )A .直角三角形B .锐角三角形C .等边三角形D .30A =︒的三角形3.(22-23高三·阶段练习)设ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,若222b c a ca =+-,且sin 2sin A C =,则ABC V 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形4.(2023·四川凉山·二模)在ABC V 中,角A ,B ,C 对边分别为a ,b ,c .命题221tan cos()2:01tan2Ab A C p A a -++=+,命题:q ABC V 为等腰三角形.则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件1.(2023·全国·高考真题)在ABC V 中,已知120BAC Ð=︒,2AB =,1AC =.(1)求sin ABC Ð;(2)若D 为BC 上一点,且90BAD Ð=︒,求ADC △的面积.2.(2022·浙江·高考真题)在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c.已知34,cos 5a C ==.(1)求sin A 的值;(2)若11b =,求ABC V 的面积.3.(2024·全国·高考真题)记ABC V 的内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC V的面积为3c .4.(2022·北京·高考真题)在ABC V中,sin 2C C =.(1)求C Ð;(2)若6b =,且ABC V的面积为ABC V 的周长.1.(2024·北京大兴·三模)ABC V 中,角A ,B ,C 对边分别为a ,b ,c,cos a B =,sin 1b A =.(1)求B Ð的大小;(2)若b =ABC V 的面积.2.(2024·福建莆田·三模)在ABC V 中,内角,,A B C 的对边分别为,,a b c ,且()()cos 12cos b C c B +=-.(1)证明:2a b c +=.(2)若6a =,9cos 16C =,求ABC V 的面积.3.(2024·浙江·模拟预测)已知ABC V 中,角,,A B C 所对的边分别为,,.a b c 已知23,sin ABC c S b C ==V .(1)求a 的取值范围;(2)求B Ð最大时,ABC V 的面积.4.(2024·安徽滁州·三模)在ABC V 中,角,,A B C 的对边分别为,,,2cos 2a b c b C c a -=.(1)求B 的大小;(2)若3a =,且AC ABC V 的面积.1.(2024·贵州六盘水·三模)在ABC V 中,2AB =,3AC =, π3A Ð=,则ABC V 外接圆的半径为( )A B C D 2.(2024·浙江·模拟预测)如图,在平面内的四个动点A ,B ,C ,D 构成的四边形ABCD 中,1AB =,2BC =,3CD =,4=AD .(1)求ACD V 面积的取值范围;(2)若四边形ABCD 存在外接圆,求外接圆面积.3.(2023·湖北·二模)已知在ABC V 中,其角A 、B 、C 所对边分别为a 、b 、c ,且满足cos sin b C C a c =+.(1)若b =ABC V 的外接圆半径;(2)若a c +=,且6BA BC ×=uuu r uuu r,求ABC V 的内切圆半径1.(2024·河南信阳·模拟预测)设ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知9,8,5a b c ===,则ABC V 的外接圆的面积为( )A .225π11B .125π11C .123π6D .113π62.(2024·辽宁大连·一模)在ABC V 中,π,3,23A AB AC Ð=== (1)求点A 到边BC 的距离:(2)设P 为边AB 上一点,当22PB PC +取得最小值时,求PBC V 外接圆的面积.3.(2024·山西晋城·一模)在ABC V 中,AB =AC =,BC =.(1)求A 的大小;(2)求ABC V 外接圆的半径与内切圆的半径.4.(2024·全国·模拟预测)在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,且22sin 2sin 2sin sin 4A BA B ××=.(1)求C ;(2)若2c =,求ABC V 内切圆半径取值范围.1.(2024·福建泉州·一模)在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且cos cos c B b C a b -=-,点D 是BC 上靠近C 的三等分点(1)若ABC V 的面积为AD 的最小值;(2)若π6BAD Ð=,求sin 2B .2.(2024·山东日照·二模)ABC V 的内角,,A B C 的对边分别为,,a b c .分别以,,a b c 为边长的正三角形的面积依次为123,,S S S ,且123S S S --=.(1)求角A ;(2)若4BD CD =uuu r uuu r ,π6CAD Ð=,求sin ACB Ð.3.(2024·山东菏泽·模拟预测)在ABC V 中,D 为BC 边的中点.(1)若AC =π6ACD DAC Ð=Ð=,求AB 的长;(2)若π2BAD ACD ÐÐ+=,0AC AB ¹×u u r uu r uu,试判断ABC V 的形状.4.(2024·河北衡水·模拟预测)如图,在平面四边形ABCD 中,120AB AC ADC CAB ==Ð=Ð=︒,设DAC Ðq =.(1)若2AD =,求BD 的长;(2)若15ADB Ð=︒,求tan q .1.(2024·河北沧州·模拟预测)在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,已知()2a c c b =+.(1)求证:3πB C +=;(2)若ABC Ð的角平分线交AC 于点D ,且12a =,7b =,求BD 的长.2.(2024·河南·三模)已知P 是ABC V 内一点,π3π,,,44PB PC BAC BPC ABP ÐÐÐq ====.(1)若π,24BC q =,求AC ;(2)若π3q =,求tan BAP Ð.3.(23-24高三下·安徽·阶段练习)已知a ,b ,c 分别是△ABC 的三个内角的对边,且sin cos A a C b c +=+.(1)求A ;(2)若2BC =,将射线BA 和CA 分别绕点B ,C 顺时针方向旋转15o ,30o ,旋转后相交于点D (如图所示),且30DBC Ð=o ,求AD .1.(2024·全国·模拟预测)记ABC V 的内角,,A B C 的对边分别为,,a b c ,tan A =πsin 2sin()3b C C =+.(1)求c ;(2)若点D 在边BC 上,且13BD a =,AD =ABC V 的面积.1.(2024·山东济南·二模)如图,已知平面四边形ABCD 中,2,4AB BC CD AD ====.(1)若,,,A B C D 四点共圆,求AC ;(2)求四边形ABCD 面积的最大值.2.(2024·河北·二模)已知ABC V 中,角,,A B C 的对边分别为,,,a b c ABC V 的面积为,2S a b =.(1)若S ABC =V 为等腰三角形,求它的周长;(2)若3sin 5C =,求sin sin A,B .1.(23-24高二下·浙江杭州·期中)在ABC V 中,内角,,A B C 所对的边分别为,,a b c ,满足2cos b a b C =-.(1)求证:2C B =;(2)求2sin cos sin C B B +-的最大值.2.(2024·全国·模拟预测)在ABC V 中,点D ,E 都是边BC 上且与B ,C 不重合的点,且点D 在B ,E 之间,AE AC BD AD AB CE ××=××.(1)求证:sin sin BAD CAE =∠∠.(2)若AB AC ^,求证:222221sin AD AE BD CE DAE+=-Ð.3.(23-24高三上·河南信阳·阶段练习)设ABC V 的内角A 、B 、C 的对边分别为a 、b 、c ,已知1sin 1cos 2cos sin 2A BA B --=.(1)证明:22πA B +=.(2)求22a c的取值范围.1.(23-24高三上·广东·阶段练习)已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,D 是边BC 上一点,BAD Ð=a ,CAD b Ð=,AD d =,且2sin 2sin 3ac ab bc a b +=.(1)若5π6A =,证明:3a d =;(2)在(1)的条件下,且2CD BD =,求cos ADC Ð的值.2.(22-23高一下·山东枣庄·期中)ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知4sin sin cos sin cos a A b C A c A B =+.(1)求sin sin AC的值;(2)若BD 是ABC Ð的角平分线.(i )证明:2··BD BA BC DA DC =-;(ii )若1a =,求BD AC ×的最大值.3.(23-24高三上·江苏·开学考试)如图,在△ABC 内任取一点P ,直线AP 、BP 、CP 分别与边BC 、CA 、AB 相交于点D 、E 、F .(1)试证明:sin sin BD AB BADDC AC DACÐ=Ð(2)若P 为重心,5,4,3AD BE CF ===,求ABC V 的面积.1.(2021·全国·高考真题)魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A .´+表高表距表目距的差表高B .´-表高表距表目距的差表高C .´+表高表距表目距的差表距D .´-表高表距表目距的差表距2.(2024·陕西西安·模拟预测)在100m 高的楼顶A 处,测得正西方向地面上B C 、两点(B C 、与楼底在同一水平面上)的俯角分别是75o 和15o ,则B C 、两点之间的距离为( ).A .B .C .D .3.(2024·江苏扬州·模拟预测)《海岛算经》是魏晋时期数学家刘徽所著的测量学著作,书中有一道测量山上松树高度的题目,受此题启发,小李同学打算用学到的解三角形知识测量某建筑物上面一座信号塔的高度.把塔底与塔顶分别看作点C ,D ,CD 与地面垂直,小李先在地面上选取点A ,B ,测得AB =,在点A 处测得点C ,D 的仰角分别为30︒,60︒,在点B 处测得点D 的仰角为30︒,则塔高CD 为 m .1.(2024·广东·二模)在一堂数学实践探究课中,同学们用镜而反射法测量学校钟楼的高度.如图所示,将小镜子放在操场的水平地面上,人退后至从镜中能看到钟楼顶部的位置,此时测量人和小镜子的距离为1 1.00m a =,之后将小镜子前移 6.00m a =,重复之前的操作,再次测量人与小镜子的距离为20.60m a =,已知人的眼睛距离地面的高度为5m 1.7h =,则钟楼的高度大约是( )A .27.75mB .27.25mC .26.75mD .26.25m2.(2024·湖南·模拟预测)湖南省衡阳市的来雁塔,始建于明万历十九年(1591年),因鸿雁南北迁徙时常在境内停留而得名.1983年被湖南省人民政府公布为重点文物保护单位.为测量来雁塔的高度,因地理条件的限制,分别选择C 点和一建筑物DE 的楼顶E 为测量观测点,已知点A 为塔底,,,A C D 在水平地面上,来雁塔AB 和建筑物DE 均垂直于地面(如图所示).测得18m,15m CD AD ==,在C 点处测得E 点的仰角为30°,在E 点处测得B 点的仰角为60°,则来雁塔AB 的高度约为( ) 1.732»,精确到0.1m )A .35.0mB .36.4mC .38.4mD .39.6m3.(2024·山东临沂·一模)在同一平面上有相距14公里的,A B 两座炮台,A 在B 的正东方.某次演习时,A 向西偏北q 方向发射炮弹,B 则向东偏北q 方向发射炮弹,其中q 为锐角,观测回报两炮弹皆命中18公里外的同一目标,接着A 改向向西偏北2q方向发射炮弹,弹着点为18公里外的点M ,则B 炮台与弹着点M 的距离为( )A .7公里B .8公里C .9公里D .10公里一、单选题1.(2024·浙江·模拟预测)在ABC V 中,,,a b c 分别为角,,A B C 的对边,若tan 3A =,π4B =,bc ==a ( )A .2B .3C .D .2.(2024·重庆·模拟预测)记ABC V 的内角,,A B C 的对边分别为,,a b c ,若222π,6,33B b a c ac ==+=,则ABC V 的面积为( )A B .94C D .92二、多选题3.(2024·重庆·三模)在ABC V 中,角,,A B C 的对边为,,,a b c 若2,6b c C p ===,则ABC V 的面积可以是( )A B .3C .D .三、填空题4.(2024·山东威海·二模)在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a 4b c +=,cos C =.则sin A = .5.(2024·北京西城·三模)在ABC V 中,若2c =,a =π6A Ð=,则sin C = ,b = .四、解答题6.(2024·陕西西安·模拟预测)记ABC V 的内角,,A B C 的对边分别为,,a b c ,已知2b c =.(1)若cos sin B C =,求tan B ;(2)若3cos ,4A a =,求ABC V 的面积.7.(2024·河北·一模)在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足222a b c +=.(1)求角C 的大小;(2)若1b =,2cos c b B =,求ABC V 的面积.8.(2024·贵州黔东南·二模)在ABC V 中,角,,A B C 的对边分别为,,a b c ,且()sin sin 02A Cb A Bc ++-=.(1)求B ;(2)若5,8b a c =+=,求ABC V 的面积.9.(2024·江西新余·二模)在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且ABC V 的面积()2221sin 2S a c b B =+-.(1)求角B ;(2)若ABC Ð的平分线交AC 于点D ,3a =,4c =,求BD 的长.10.(2024·陕西西安·一模)在ABC V 中,角A B C ,,所对的边分别为,,a b c ,πsin sin 02c A C ⎛⎫+= ⎪⎝⎭,6c =.(1)求角C ;(2)若=c ,求ABC V 的周长.一、单选题1.(2024·安徽芜湖·模拟预测)记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,3sin()sin ,2B C A b -+=,则角C =( )A .π6B .π3C .π4D .π22.(2024·陕西·模拟预测)在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,()()()sin sin sin sin c A C a b A B -=-+,若ABC V 3b ,则AC 边上的高为( )A B C D .二、多选题3.(2024·江苏宿迁·三模)在ABC V 中,角A B C ,,所对的边分别为a b c ,,.若2cossin 2A Cb C +=,且边AC 上的中线BD )A .π3B =B .b 的取值范围为[2,C .ABC V 面积的最大值为D .ABC V 周长的最大值为三、填空题4.(2024·湖北武汉·二模)在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c ,4cos a bC b a+=.且tan tan tan tan tan tan B A B C A C +=,则cos A = .5.(2024·陕西安康·模拟预测)在ABC V 中,内角,,A B C 所对的边分别为,,a b c ,若2b =,22cos cos cos a cC B C=+,则2a c +的最大值为.四、解答题6.(2024·福建泉州·模拟预测)在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知a b c <<且tan ,tan ,tan A B C 均为整数.(1)证明:2tan 1tan tan B A C -=;(2)设AC 的中点为D ,求CDB Ð的余弦值.7.(2024高三下·全国·专题练习)在①()()()sin sin sin sin b A B c a C A +=+-,②tan tan B C +=sinsin 2A Bc B +=这三个条件中任选一个,补充在下面的横线上,并解答.在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且______.(1)求角C 的大小;(2)已知7c =,D 是边AB 的中点,且CD CB ^,求CD 的长.8.(2024·全国·模拟预测)记ABC V 的内角,,A B C 的对边分别为,,a b c .已知2222222b b c a c b a c b +-=-+-.(1)求A ;(2)若D 为AB 的中点,且6CD =,求cos ACB Ð.9.(2023·黑龙江佳木斯·三模)ABC V 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知sin cos sin cos cos c C B b C C A +=.(1)求∠A ;(2)若A ABC CB =Ð∠,满足3BD =,2CD =,四边形ABDC 是凸四边形,求四边形ABDC 面积的最大值.10.(2024·河北·二模)若ABC V 内一点P 满足PAB PBC PCA q Ð=Ð=Ð=,则称点P 为ABC V 的布洛卡点,q 为ABC V 的布洛卡角.如图,已知ABC V 中,BC a =,AC b =,AB c =,点P 为的布洛卡点,q 为ABCV 的布洛卡角.(1)若b c =,且满足PBPA=ABC Ð的大小.(2)若ABC V 为锐角三角形.(ⅰ)证明:1111tan tan tan tan BAC ABC ACBq =++ÐÐÐ.(ⅱ)若PB 平分ABC Ð,证明:2b ac =.1.(2024·上海·高考真题)已知点B 在点C 正北方向,点D 在点C 的正东方向,BC CD =,存在点A 满足16.5,37BAC DAC =︒=︒ÐÐ,则BCA Ð= (精确到0.1度)2.(2024·北京·高考真题)在ABC V 中,内角,,A B C 的对边分别为,,a b c ,A Ð为钝角,7a =,sin 2cos B B =.(1)求A Ð;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC V 存在,求ABC V 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.3.(2024·天津·高考真题)在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a B b c ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -的值.4.(2022·浙江·高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法S =a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边2a b c ===,则该三角形的面积S =.5.(2022·天津·高考真题)在ABC V 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值;(2)求sin B 的值;(3)求sin(2)A B -的值.6.(2022·全国·高考真题)记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-.(1)若2A B =,求C ;(2)证明:2222a b c =+7.(2022·全国·高考真题)记ABC V 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+;(2)若255,cos 31a A ==,求ABC V 的周长.8.(2022·全国·高考真题)记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C p=,求B ;(2)求222a b c +的最小值.9.(2021·天津·高考真题)在ABC V ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =.(I )求a 的值;(II )求cos C 的值;(III )求sin 26C p ⎛⎫- ⎪⎝⎭的值.10.(2021·北京·高考真题)在ABC V 中,2cos c b B =,23C p=.(1)求B Ð;(2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使ABC V 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件②:ABC V 的周长为4+条件③:ABC V 11.(2021·全国·高考真题)记ABC V 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C Ð=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC Ð.1.1.12.(2020·全国·高考真题)如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD =AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =.13.(2020·天津·高考真题)在ABC V 中,角,,A B C 所对的边分别为,,a b c .已知 5,a b c ===(Ⅰ)求角C 的大小;(Ⅱ)求sin A 的值;(Ⅲ)求sin 24A p ⎛⎫+ ⎪⎝⎭的值.14.(2020·北京·高考真题)在ABC V 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为已知,求:(Ⅰ)a 的值:(Ⅱ)sin C 和ABC V 的面积.条件①:17,cos 7c A ==-;条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.15.(2020·浙江·高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =.(I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.16.(2020·山东·高考真题)在①ac =②sin 3c A =,③=c 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC V ,它的内角,,A B C 的对边分别为,,a b c ,且sin A B =,6C p=,________?注:如果选择多个条件分别解答,按第一个解答计分.17.(2020·江苏·高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B ==︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC Ð=-,求tan DAC Ð的值.18.(2020·全国·高考真题)ABC V 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a ,b ,求ABC V 的面积;(2)若sin A C ,求C .19.(2020·全国·高考真题)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A p ++=.(1)求A ;(2)若b c -=,证明:△ABC 是直角三角形.20.(2020·全国·高考真题)ABC V 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC V 周长的最大值.。

高中数学判断三角形解的个数

高中数学判断三角形解的个数

高中数学判断三角形解的个数
在高中数学中,判断三角形解的个数是一道常见的题目。

一般来说,可以根据给定的条件来判断三角形是否存在以及解的个数。

首先,对于给定的三边长a、b、c,如果a+b>c,a+c>b,b+c>a
均成立,那么这三条边可以构成一个三角形。

如果有两边之和等于第三边,即a+b=c,a+c=b,b+c=a,则这个三角形是退化的,也称为直线三角形。

如果不满足以上两种情况,则这三条边不能构成三角形。

其次,根据三角形的性质,如果已知三角形的两边和夹角,那么可以通过余弦定理求出第三边的长度。

如果已知三角形的三个角度,则可以通过正弦定理或余弦定理求出三条边的长度。

根据解得的边长,可以进一步判断三角形是否存在以及解的个数。

需要注意的是,在计算中要注意精度问题,避免出现误差。

此外,有时会遇到无解或无穷多解的情况,需要根据题目要求进行判断。

综上所述,通过给定的条件来判断三角形解的个数是一道不容易的数学题目,需要仔细分析和计算。

- 1 -。

三角形解的个数问题专题演示教学

三角形解的个数问题专题演示教学

解三角形专题2三角形解的个数问题A 为锐角 A 为钝角或直角图形关系 A<bsinAA=bsinA bsinA<a<b a ≥b a ≤b解的个数无解 一解 两解 一解 无解1 已知下列三角形中的两边及其中一边的对角,判断三角形是否有解,并指出有几解?(1) 78105a ,b ,A ==∠=o(2) 102080a ,b ,A ==∠=o(3) 105660b ,c ,C ==∠=o(4) 23630a ,b ,A ==∠=o答案:(1) 90A ∠>o 而a b <,故无解(2) 90A ,a b sin A b ∠<<<o ,故有无解(3) c b >,故有一组解(4) 90A ,b sin A a b ∠<<<o ,故有两组解2在△ABC 中,A =45°,AB =3,则“BC=2”是“△ABC 只有一解且C =60°”的A .充分不必要条件B .必要不充分条件C .充要条件D .既为充分也不必要条件另解法法1:大角对大边在已知ABC ∆中的边长a ,b 和角A ,且已知a ,b 的大小关系,常利用正弦定理结合“大边对大角”来判断三角形解的个数,一般的做法如下,首先利用大边对大角,判断出角B 与角A 的大小关系,然后求出B 的值,根据三角函数的有界性求解.【例1】在ABC ∆中,已知a =b =45B =︒,求A 、C 及c .解:由正弦定理,得sin sin 2a B A b ===,∵4590B =︒<︒,b a <,∴60A =︒或120︒. 当60A =︒时,75C =︒,sin 75sin sin 452b C c B ︒===︒; 当120A =︒时,15C =︒,sin sin b C c B ===. 点评:在三角形中,sin sin a b A B A B >⇔>⇔>这是个隐含条件,在使用时我们要注意挖掘.法2:二次方程的正根个数一般地,在ABC ∆中的边长a ,b 和角A ,常常可对角A 应用余弦定理,并将其整理为关于c 的一元二次方程2222cos 0c bc A b a -+-=,若该方程无解或只有负数解,则该三角形无解;若方程有一个正数解,则该三角形有一解;若方程有两个不等的正数解,则该三角形有两解. 【例2】如图,在四边形ABCD 中,已知AD CD ⊥,10AD =,14AB =, 60BDA ∠=︒,135BCD ∠=︒,求BC 的长.解:在ABD ∆中,设BD x =,由余弦定理得2221410210cos60x x =+-⋅︒,整理得210960x x --=,解得16x =.由正弦定理,得sin 16sin30sin sin135BD CDB BC BCD ∠︒===∠︒点评:已知三角形两边和其中一边的对角,我们可以采用正弦定理或余弦定理求解,从上述例子可以看出,利用余弦定理结合二次方程来判断显得更加简捷.法3:画圆法已知ABC ∆中,A 为已知角(90≠︒),先画出A ,确定顶点A ,再在A 的一边上确定顶点C ,使ACA B C D边长为已知长度,最后以顶点C 为圆心,以CB 边长为半径画圆,看该圆与A 的另一边是否有交点,如果没有交点,则说明该三角形的解的个数为0;若有一个交点,则说明该三角形的解的个数为1;若有两个交点,则说明该三角形的解的个数为2.【例3】在ABC ∆中,60A ∠=︒,a =3b =,则ABC ∆解的情况( ) (A )无解 (B )有一解 (C )有两解 (D)不能确定 解:在A 的一边上确定顶点C ,使3AC b ==,作60CAD ∠=︒,以顶点C 为圆心,以CB a ==AD 没有交点,则说明该三角形的解的个数为0,故选A .A bC a D。

人教版八年级数学上册第11章《三角形》全章复习与巩固—知识讲解(提高)含习题答案

人教版八年级数学上册第11章《三角形》全章复习与巩固—知识讲解(提高)含习题答案
要点三、三角形的内角和与外角和
1.三角形内角和定理:三角形的内角和为 180°. 推论:1.直角三角形的两个锐角互余 2.有两个角互余的三角形是直角三角形
2.三角形外角性质: (1)三角形的一个外角等于与它不相邻的两个内角的和. (2)三角形的一个外角大于任意一个与它不相邻的内角.
3.三角形的外角和: 三角形的外角和等于 360°.
举一反三:
【变式】已知 a、b、c 是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.
【答案】解:∵a、b、c 是三角形三边长,
∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,
∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,
=b+c-a-b+c+a-c+a+b-a+b-c =2b. 2.如图,O 是△ABC 内一点,连接 OB 和 OC.
类型三、与三角形有关的角
4.已知△ABC 中,AE 平分∠BAC (1)如图 1,若 AD⊥BC 于点 D,∠B=72°,∠C=36°,求∠DAE 的度数; (2)如图 2,P 为 AE 上一个动点(P 不与 A、E 重合,PF⊥BC 于点 F,若∠B>∠C,则
∠EPF=
是否成立,并说明理由.
【思路点拨】 (1)利用三角形内角和定理和已知条件直接计算即可; (2)成立,首先求出∠1 的度数,进而得到∠3 的度数,再根据∠EPF=180°﹣∠2﹣∠3 计 算即可. 【答案与解析】 证明:(1)如图 1,∵∠B=72°,∠C=36°,
解:如图(1),设 AB=x,AD=CD= 1 x . 2

第十一章三角形16个必考点全梳理(教案)

第十一章三角形16个必考点全梳理(教案)
三、教学难点与重点
1.教学重点
-三角形的定义及分类:理解三角形的基本概念,掌握三角形的分类方法。
-重点举例:区分等腰三角形与等边三角形,识别锐角三角形、直角三角形和钝角三角形。
-三角形全等定理:掌握SSS、SAS、ASA、AAS全等定理。
-重点举例:通过实际操作,让学生理解全等三角形的性质,并能够运用全等定理解决具体问题。
-重心:三角形三边中线的交点
-外心:三角形三边垂直平分线的交点
-内心:三角形内角平分线的交点
-垂心:三角形三边高的交点
6.三角形面积计算公式
-底×高÷2
-海伦公式(已知三边长)
7.三角函数的定义及性质
-正弦(sin)
-余弦(cos)
-正切(tan)
-三角函数的周期性、奇偶性、单调性
8.解直角三角形
-利用正弦、余弦、正切函数求解
3.重点难点解析:在讲授过程中,我会特别强调三角形全等与相似定理、三角函数的定义和应用这两个重点。对于难点部分,我会通过图例和实际计算来帮助大家理解。
(三)实践活动
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形相关的问题,如三角形全等的判定条件或三角函数在实际问题中的应用。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用三角板和量角器测量角度,演示三角函数的计算过程。
-难点举例:在实际应用问题中,学生可能难以将问题抽象为直角三角形模型,需要教师引导学生进行问题分析和模型构建。
四、教学流程
(一)导入新课
同学们,今天我们将要学习的是《三角形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过测量三角形面积或解直角三角形的情况?”(如测量旗杆高度等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形的奥秘。

初一数学《三角形》全章复习与巩固(基础)《三角形》全章复习与巩固(基础)知识讲解

初一数学《三角形》全章复习与巩固(基础)《三角形》全章复习与巩固(基础)知识讲解

《三角形》全章复习与巩固(基础)责编:康红梅【学习目标】1. 理解三角形有关的概念,掌握三角形内角和定理的证明,能应用内角和定理进行相关的计算及证明问题.2. 理解并会应用三角形三边关系定理;3.了解三角形中三条重要的线段并能正确的作图.4.了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式,而且要用利用图形全等的解决实际生活中存在的问题.5. 掌握常见的尺规作图方法,并根据三角形全等判定定理利用尺规作一个三角形与已知三角形全等.【知识网络】【要点梳理】要点一、三角形的内角和三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.要点二、三角形的分类【高清课堂:与三角形有关的线段三角形的分类】1.按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.2.按边分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底边和腰不相等的等腰三角形等腰三角形等边三角形要点诠释:①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;③等边三角形:三边都相等的三角形.要点三、三角形的三边关系1.定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.2.三角形的重要线段:一个三角形有三条中线,它们交于三角形内一点,这点称为三角形的重心.一个三角形有三条角平分线,它们交于三角形内一点.三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.要点四、全等三角形的性质与判定1.全等三角形的性质全等三角形对应边相等,对应角相等.2.全等三角形的判定定理全等三角形判定1——“边边边”:三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”). “全等三角形判定2——“角边角”:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).全等三角形判定3——“角角边”:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)全等三角形判定4—— “边角边”:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).要点诠释:(1)如何选择三角形证全等,可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.要点五、用尺规作三角形1.基本作图利用尺规作图作一条线段等于已知线段、作一个角等于已知角,并利用全等三角形的知识作一个三角形与已知三角形全等;要点诠释:要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达.【典型例题】类型一、三角形的内角和1.在△ABC中,∠B=20°+∠A,∠C=∠B-10°,求∠A的度数.【思路点拨】由三角形的内角和,建立方程解决.【答案与解析】∵∠C=∠B-10°=∠A+10°,由三角形的内角和定理, 得∠A+∠B+∠C=∠A+∠A+20°+∠A+10°=180°,∴∠A=50°.【总结升华】本题根据三角形的内角和定理列出以∠A为未知数的方程,解方程即可求得∠A.建立方程求解,是本章求解角度数的常用方法.举一反三【变式】若∠C=50°,∠B-∠A=10°,那么∠A=________,∠B=_______【答案】60°,70°.类型二、三角形的三边关系及分类2.一个若三角形的两边长分别是2和7,则第三边长c的取值范围是_______.【思路点拨】三角形的两边a、b,那么第三边c的取值范围是│a-b│<c<a+b.【答案与解析】三角形的两边长分别是2和7, 则第三边长c的取值范围是│2-7│<c<2+7,即5<c<9.【总结升华】三角形任意两边之差小于第三边,若这两边之差是负数时需加绝对值.举一反三【变式】(2015•泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值( ) A.11B.5C.2D.1【答案】B.解:根据三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5.3.一个三角形的三个内角分别是75°、30°、75°,这个三角形是()A 锐角三角形B 等腰三角形C 等腰锐角三角形【答案】C举一反三【变式】一个三角形中,一个内角的度数等于另外两个内角的和的2倍,这个三角形是()三角形A 锐角B 直角C 钝角 D无法判断【答案】C【解析】利用三角形内角和是180°以及已知条件,可以得到其中较大内角的度数为120°,所以三角形为钝角三角形.类型三、三角形的重要线段4.(2015•常德)如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= .【思路点拨】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2);最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【答案】70°.【解析】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=40°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=110°(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=70°.故答案为:70°.【总结升华】此题主要考查了三角形内角和定理以及角平分线的性质,熟练应用角平分线的性质是解题关键.举一反三【变式】在△ABC中,∠B=60°,∠C=40°,AD、AE分别是△ABC的高线和角平分线, 则∠DAE 的度数为_________.【答案】10°.类型四、全等三角形的性质和判定5.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE .【思路点拨】△ABE与△ACD中,已经有两边,夹角可以通过等量代换找到,从而证明△ABE≌△ACD;通过全等三角形的性质,通过倒角可证垂直.【答案与解析】解:(1)△ABE≌△ACD 证明:∠BAC=∠EAD=90° ∠BAC+∠CAE=∠EAD+∠CAE 即∠BAE=∠CAD 又AB=AC,AE=AD, △ABE≌△ACD(SAS)(2)由(1)得∠BEA=∠CDA, 又∠COE=∠AOD ∠BEA+∠COE=∠CDA+∠AOD=90° 则有∠DCE=180°- 90°=90°, 所以DC⊥BE.【总结升华】我们可以试着从变换的角度看待△ABE与△ACD,后一个三角形是前一个三角形绕着A点逆时针旋转90°得到的,对应边的夹角等于旋转的角度90°,即DC⊥BE.举一反三【变式】如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.【答案】证明:∵AE⊥AB,AD⊥AC,∴∠EAB=∠DAC=90°∴∠EAB+∠DAE=∠DAC+∠DAE ,即∠DAB=∠EAC.在△DAB 与△EAC 中,DAB EAC AB ACB C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB≌△EAC (ASA )∴BD=CE.6.己知:在ΔABC 中,AD 为中线.求证:AD <()12AB AC+【答案与解析】证明:延长AD 至E ,使DE =AD ,∵AD 为中线,∴BD=CD在△ADC 与△EDB 中DC DB ADC BDEAD ED =⎧⎪∠=∠⎨⎪=⎩∴△ADC≌△EDB(SAS )∴AC=BE在△ABE 中,AB +BE >AE ,即AB +AC >2AD∴AD<.()12AB AC +【总结升华】用倍长中线法可将线段AC ,2AD ,AB 转化到同一个三角形中,把分散的条件集中起来.倍长中线法实际上是绕着中点D旋转180°.举一反三【变式】若三角形的两边长分别为5和7, 则第三边的中线长的取值范围是( )x A.1 << 6 B.5 << 7 C.2 << 12 D.无法确定x x x 【答案】A ;提示:倍长中线构造全等三角形,7-5<<7+5,所以选A 选项.2x 类型五、全等三角形判定的实际应用 7.如图,小叶和小丽两家分别位于A 、B 两处隔河相望,要测得两家之间的距离,请你设计出测量方案.【答案与解析】本题的测量方案实际上是利用三角形全等的知识构造两个全等三角形,是一个三角形在河岸的同一边,通过测量这个三角形中与AB 相等的线段的长,从而得知两家的距离.解:在点B 所在的河岸上取点C ,连结BC ,使CD=CB ,利用测角仪器使得∠B=∠D ,且A 、C 、E 三点在同一直线上,测量出DE 的长,就是AB 的长.在△ABC 和△ECD 中B D CD CBACB ECD ∠=∠=∠=∠⎧⎪⎨⎪⎩∴△ABC ≌△ECD (ASA )∴AB=DE .【总结升华】对于实际应用问题,首先要能将它化成数学模型,再根据数学知识去解决. 由已知易证△ABC ≌△ECD ,可得AB=DE ,所以测得DE 的长也就知道两家的距离是多少.类型六、用尺规作三角形8.作图:请你作出一个以线段a 为底边,以∠α为底角的等腰三角形(要求:用尺规作图,并写出已知,求作,保留作图痕迹,不写作法和结论)已知:求作:【思路点拨】可先画线段BC=a,进而在BC的同侧作∠MBC=∠α,∠NCB=∠α,MB,CN交于点A,△ABC就是所求的三角形.【答案与解析】解:已知:线段a,∠α.求作:△ABC,使BC=a,AB=AC,∠ABC=∠α.△ABC就是所求作的三角形.【总结升华】考查等腰三角形的画法;会作一个角等于已知角是解决本题的突破点;注意画图的顺序为边,角,角.举一反三【变式】作图题:(要求:用直尺、圆规作图,保留作图痕迹,不写作法.)已知:线段a与线段b.求作:线段AB,使AB=2a﹣b.【答案】解:如图所示:作线段AB即为所求.。

三角形全等的判定2(知识讲解)-2021-2022学年八年级数学上册基础知识专项讲练(人教版)

三角形全等的判定2(知识讲解)-2021-2022学年八年级数学上册基础知识专项讲练(人教版)

专题12.5 三角形全等的判定2(知识讲解)【学习目标】1.理解和掌握全等三角形判定方法3——“角边角”,判定方法4——“角角边”;能运用它们判定两个三角形全等.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定3——“角边角”全等三角形判定3——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 特别说明:如图,如果∠A =∠,AB =,∠B =∠,则△ABC ≌△.要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边” 两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”) 特别说明:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:'A ''A B 'B '''A BC2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】 类型一、全等三角形的判定3——“角边角”1. 如图,已知在ABC 中,AC BC AD ==,CDE B ∠=∠,求证:ADE BCD △≌△.【分析】证明ADE BCD ∠=∠,为三角形的全等提供条件即可.证明:ADE CDE B BCD ∠+∠=∠+∠,CDE B∠=∠,ADE BCD ∴∠=∠,AC BC =,A B ∴∠=∠,在ADE 和BCD △中A B AD BCADE BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩,ADE ∴≌BCD △(ASA) .【点拨】本题考查了ASA 证明三角形的全等,抓住题目的特点,补充全等需要的条件是解题的关键.举一反三:【变式】 如图,已知:≌AEC=≌ADB ,AD=AE .BD 与CE 相等吗?为什么?【答案】BD CE =,理由见解析;【分析】根据三角形全等即可得到结果.解答:BD CE =,理由如下:在≌AEC 和≌ADB 中,A A AD AEADB AEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ≌ADB AEC ≅,≌BD CE =.【点拨】本题主要考查了全等三角形的判定与性质,准确证明是解题的关键.类型二、全等三角形的判定4——“角角边”2、 如图,已知DE ≌AB ,≌DAE =≌B ,DE =2,AE =4,C 为AE 的中点.求证:≌ABC ≌≌EAD .【分析】根据中点的定义,再根据AAS 证明≌ABC ≌≌EAD 解答即可.证明:≌C 为AE 的中点,AE =4,DE =2,≌AC =12AE =2=DE , 又≌DE≌AB ,≌≌BAC =≌E ,在≌ABC 和≌EAD 中,B DAE BAC E AC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,≌≌ABC≌≌EAD (AAS ).【点拨】此题考查全等三角形的判定,关键是根据AAS 证明≌ABC≌≌EAD 解答. 举一反三:【变式1】 将Rt ABC △的直角顶点C 置于直线l 上,AC BC =,分别过点 A 、B 作直线l 的垂线,垂足分别为点D 、E ,连接AE .若3BE =, 5DE =.求ACE △的面积.【答案】32【分析】根据AAS 即可证明ACD CBE ≌,根据全等三角形的对应边相等,得出 3CD BE ==, AD CE =,所而 358CE CD DE =+=+=,从而求出AD 的长,则可得到ACE △的面积.解:≌AD CE ⊥, BE CE ⊥, ≌90ADC CEB ∠=∠=︒,≌90ACB ∠=︒,≌90ACD CBE ECB ∠=∠=︒-∠,在ACD △与CBE △中,ADC CEBACD CBE AC BC≌ACD CBE ≌(AAS) ≌ 3CD BE ==, AD CE =,≌ 358CE CD DE =+=+=,≌ 8AD =.ACE 11883222S CE AD △.【点拨】本题考查全等三角形的判定与性质,余角的性质等知识,熟悉相关性质是解题的关键.【变式2】、 如图,在ABC 中,AB AC =,D 为BC 的中点,DE AB ⊥,DF AC ⊥,垂足为E 、F ,求证:DE DF =.【分析】根据等腰三角形的性质得到B C ∠=∠,根据D 为BC 的中点,得到BD CD =,再根据DE AB ⊥,DF AC ⊥,得到90BED CFD ∠=∠=,利用全等三角形的性质和判定即可证明DEDF =. 解:AB AC =,∴B C ∠=∠,DE AB ⊥,DF AC ⊥,∴90BED CFD ∠=∠=,D 为BC 的中点,∴BD CD =,在BED 与CFD △中BED CFD B CBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴BED ≌CFD △()AAS ,≌DE DF =.【点拨】本题考查了等腰三角形的性质以及全等三角形的性质和判定,找到全等的条件是解题的类型三、添加条件构造三角形全等3.如图,已知∠B =∠DEC ,AB =DE ,要推得∠ABC ∠∠DEC ;(1)若以“SAS ”为依据,还缺条件______________;(2)若以“ASA ”为依据,还缺条件__________________;(3)若以“AAS ”为依据,还缺条件_____________________;【答案】BC=EC ≌A=≌EDC ≌ACB=≌DCE (或≌ACD=≌BCE)【解析】根据三角形全等的判定方法,和题目中所给的条件,依次去判断添加哪一个条件;现有的条件是,≌B =≌DEC ,AB =DE ,如以“SAS”为依据,还缺边相等,找边即可;若以“ASA”为依据,还缺角相等,找角即可;以“AAS”为依据,也是缺角相等,找角即可. 解答:≌≌B=≌DEC ,AB=DE≌(1)要利用SAS ,则还缺少一边即:BC=EC(2)要利用ASA ,则缺少一角即:≌A=≌EDC(3)要利用AAS ,则缺少一角即:≌ACB=≌DCE .故填BC=EC ,≌A=≌EDC ,≌ACB=≌DCE .点睛:本题属开放型的题目,解答关键是明白SAS 、ASA 、AAS的含义,据已知,缺什么条件,找什么条件,直接或间接的都可以.答案不唯一是本题的特点.要根据已知条件的位置选择方法.【变式1】如图,点C ,F 在线段BE 上,BF=EC ,∠1=∠2,请你添加一个条件,使∠ABC∠∠DEF ,并加以证明.(不再添加辅助线和字母)【答案】AC=DF(答案不唯一),理由见解析【分析】先求出BC=EF ,添加条件AC=DF ,根据SAS 推出两三角形全等即可. 解答:添加AC=DF .证明:≌BF=EC ,≌BF ﹣CF=EC ﹣CF ,≌BC=EF ,在≌ABC 和≌DEF 中12AC DF BC EF =⎧⎪∠=∠⎨⎪=⎩,≌≌ABC≌≌DEF (SAS ).考点:全等三角形的判定.【变式2】如图,点D ,C 分别在线段AB ,AE 上,ED 与BC 相交于O 点,已知AB =AE ,请添加一个条件(不添加辅助线)使∠ABC ∠∠AED ,并说明理由.【分析】根据全等三角形的判定方法即可解决问题.解:根据SAS 可以条件AC =AD ,根据ASA 可以条件≌B =≌C ,根据AAS可以条件≌ACB=≌ADC.【点拨】本题考查全等三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式3】如图,在∠AEC和∠DFB中,∠E=∠F,点A,B,C,D在同一直线上,有如下三个关系式:∠AE∠DF,∠AB=CD,∠CE=BF.(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果∠,∠,那么∠”);(2)选择(1)中你写出的一个命题,说明它正确的理由.解:(1)命题1:如果①,②,那么③;命题2:如果①,③,那么②(2)命题1的证明:∵①AE∥DF,∴∠A=∠D,∵②AB=CD,∴AB+BC=CD+BC,即AC=DB,在△AEC和△DFB中,∵∠E=∠F,∠A=∠D,AC=DB,∴△AEC≌△DFB(AAS),∴CE=BF③(全等三角形对应边相等);命题2的证明:∵①AE∥DF,∴∠A=∠D,在△AEC和△DFB中,∵∠E=∠F,∠A=∠D,③CE=BF,∴△AEC≌△DFB(AAS),∴AC=DB(全等三角形对应边相等),则AC-BC=DB-BC,即AB=CD②.注:命题“如果②,③,那么①”是假命题.类型四、全等三角形判定的综合训练4 如图(1),已知ABC 中,90BAC ∠=︒,AB AC =;AE 是过A 的一条直线,且B ,C 在AE 的异侧,BD AE ⊥于D ,CE AE ⊥于E .(1)求证:BD DE CE =+;(2)若直线AE 绕A 点旋转到图(2)位置时(BD CE <),其余条件不变,问BD 与DE ,CE 的数量关系如何?请给予证明.(3)若直线AE 绕A 点旋转到图(3)位置时(BD CE >),其余条件不变,问BD 与DE ,CE 的数量关系如何?请直接写出结果,不需证明;(4)根据以上的讨论,请用简洁的语言表达直线AE 在不同位置时BD 与DE ,CE 的位置关系.【答案】(1)见解析;(2)BD DE CE =-,见解析;(3)BD DE CE =-;(4)当B ,C 在AE 的同测时,BD DE CE =-;当B ,C 在AE 的异侧时,若BD CE >,则BD DE CE =+,若BD CE <,则BD CE DE =-【分析】(1)在直角三角形中,由题中条件可得≌ABD=EAC ,又有AB=AC ,则有一个角及斜边相等,则可判定≌BAD≌≌AEC ,由三角形全等可得三角形对应边相等,进而通过线段之间的转化,可得出结论;(2)由题中条件同样可得出≌BAD≌≌AEC ,得出对应线段相等,进而可得线段之间的关系; (3)同(2)的方法即可得出结论.(4)利用(1)(2)(3)即可得出结论.解:(1)≌BD≌AE ,CE≌AE≌≌ADB=≌CEA=90°≌≌ABD+≌BAD=90°又≌≌BAC=90°≌≌EAC+≌BAD=90° ≌≌ABD=≌CAE 在≌ABD 与≌ACE 中 ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩≌≌ABD≌≌ACE ≌BD=AE ,AD=EC , ≌BD=DE+CE (2)≌BD≌AE ,CE≌AE ∴∠ADB=∠CEA=90° ∴∠ABD+∠BAD=90° 又∵∠BAC=90° ∴∠EAC+∠BAD=90° ∴∠ABD=∠CAE 在△ABD 与△ACE 中ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩≌≌ABD≌≌ACE ≌BD=AE ,AD=EC ≌BD=DE -CE ,(3)≌≌BAC=90°, ≌≌BAD+≌EAC=90°, 又≌BD≌AE ,CE≌AE , ≌≌BDA=≌AEC=90°, ≌BAD+≌ABD=90°, ≌≌ABD=≌EAC , 在≌ABD 与≌CAE 中,BDA AEC ABD EAC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩≌≌ABD≌≌CAE ,≌BD=AE ,AD=CE ,≌DE=AD+AE=BD+CE ,≌BD=DE -CE .(4)归纳:由(1)(2)(3)可知:当B ,C 在AE 的同侧时,若BD> CE,则BD= DE +CE,若BD> CE,则BD= DE +CE,若BD< CE,则BD= CE - DE.【点拨】此题是几何变换综合题,主要考查了三角形全等的判定方法,余角的性质,线段的和差,熟练掌握全等三角形的判定和性质是解题的关键.举一反三:【变式】 如图1,≌ABC 中,AB =AC ,≌BAC =90°,点D 是线段BC 上一个动点,点F 在线段AB 上,且≌FDB =12≌ACB ,BE ≌DF .垂足E 在DF 的延长线上.(1)如图2,当点D 与点C 重合时,试探究线段BE 和DF 的数量关系.并证明你的结论; (2)若点D 不与点B ,C 重合,试探究线段BE 和DF 的数量关系,并证明你的结论.【答案】(1)BE =12FD .证明见解析;(2)BE =12FD ,证明见解析. 【分析】(1)首先延长CA 与BE 交于点G ,根据≌FDB=12≌ACB ,BE≌DE ,判断出BE=EG=12BG ;然后根据全等三角形的判定方法,判断出≌ABG≌≌ACF ,即可判断出BG=CF=FD ,再根据BE=12BG ,可得BE=12FD ,据此判断即可. (2)首先过点D 作DG≌AC ,与AB 交于H ,与BE 的延长线交于G ,根据DG≌AC ,≌BAC=90°,判断出≌BDE=≌EDG ;然后根据全等三角形的判定方法,判断出≌DEB≌≌DEG,即可判断出BE=EG=12BG ;最后根据全等三角形的判定方法,判断出≌BGH≌≌DFH ,即可判断出BG=FD ,所以BE=12FD ,据此判断即可. 解:(1)如图,延长CA 与BE 交于点G ,≌≌FDB =12≌ACB , ≌≌EDG =12≌ACB , ≌≌BDE =≌EDG ,即CE 是≌BCG 的平分线,又≌BE≌DE ,≌BE =EG =12BG , ≌≌BED =≌BAD =90°,≌BFE =≌CFA ,≌≌EBF =≌ACF ,即≌ABG =≌ACF ,在≌ABG 和≌ACF 中,90ABG ACF AB AC BAG CAF ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ≌≌ABG≌≌ACF (ASA ),≌BG =CF =FD ,又≌BE =12BG , ≌BE =12FD . (2)BE =12FD , 理由如下:如图,过点D 作DG≌AC ,与AB 交于H ,与BE 的延长线交于G ,,≌DG≌AC ,≌BAC =90°,≌≌BDG =≌C ,≌BHD =≌BHG =≌BAC =90°,又≌≌BDE =12≌ACB , ≌≌EDG =≌BDG ﹣≌BDE =≌C ﹣12≌C =12≌C , ≌≌BDE =≌EDG ,在≌DEB 和≌DEG 中,90BDE EDG DE DE DEB DEG ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ≌≌DEB≌≌DEG (ASA ),≌BE =EG =12BG , ≌AB =AC ,≌BAC =90°,≌≌ABC =≌ACB =≌GDB ,≌HB =HD ,≌≌BED =≌BHD =90°,≌BFE =≌DFH ,≌≌EBF =≌HDF ,即≌HBG =≌HDF ,在≌BGH 和≌DFH 中,HBG HDF HB HDBHG DHF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ≌≌BGH≌≌DFH (ASA ),≌BG =FD ,又≌BE =BG ,≌BE =12FD .【点拨】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.类型四、全等三角形判定的实际应用5、如图,小颖站在堤岸边的A 处,正对她的S 点停有一艘游艇.她想知道这艘游艇距离她有多远,于是她沿堤岸走到电线杆B 旁,接着再往前走相同的距离,到达C 点.然后她向左直行,当看到电线杆与游艇在一条直线上时停下来,此时她位于D 点.那么C ,D 两点间的距离就是在A 点处小颖与游艇间的距离.请你用所学的数学知识解释其中的道理.【分析】先根据题目条件证明()SBA DBC ASA △≌△,再由全等三角形的性质即可得到答案;解:根据题意,可知:90A C ∠=∠=︒,AB CB =,SBA DBC ∠=∠.在SBA ∆和DBC △中,A C AB CBSBA DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩所以()SBA DBC ASA △≌△.所以SA DC =(全等三角形对应边相等).即,C D 两点间的距离就是在A 点处小颖与游艇间的距离.【点拨】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定、全等三角形对应边相等的性质是解题的关键.举一反三:【变式】如图,小明站在乙楼BE 前方的点C 处,恰好看到甲、乙两楼楼顶上的点A 和E 重合为一点,若B 、C 相距30米,C 、D 相距60米,乙楼高BE 为20米,小明身高忽略不计,则甲楼的高AD 是多少米?【答案】甲楼的高AD是40米.【分析】由图可知,EF≌DC,AD≌DC,EB≌BC,证明≌AEF≌≌ECB,根据全等三角形的判定和性质定理即可得到结论.解:∵EF∥DC,AD⊥DC,EB⊥BC,∴∠AEF=∠C,∠AFE=∠EBC=90°,∵B、C相距30米,C、D相距60米,∴EF=DB=BC=30米,∴△AEF≌△ECB(ASA),∴AF=BE,∵DF=BE,∴AD=2BE=2×20=40(米).答:甲楼的高AD是40米.【点拨】本题考查了全等三角形的判定和性质,解题的关键是找出证明三角形全等的条件.。

【精品】小学数学几何精讲精析专题2 平面图形-类型2 三角形

【精品】小学数学几何精讲精析专题2  平面图形-类型2  三角形

【精品】小学数学几何精讲精析专题2 平面图形-类型2三角形专题2 平面图形类型2 三角形【知识讲解】1.三角形的特征(1)由三条线段围成的封闭图形。

(2)三角形的内角和是180度。

(3)三角形具有稳定性。

(4)三角形有三条高。

2. 三角形的三边关系任意两边之和大于第三边,任意两边之差小于第三边。

3. 三角形的分类锐角三角形:三个角都小于90度(都是锐角)按角分直角三角形:有一个角等于90度(一个直角,两个锐角)三钝角三角形:有一个角大于90度(一个钝角,两个锐角)角等边三角形:三条边全相等(三个角也相等,都是60度)形按边分等腰三角形:只有两条边相等(两个底角相等)不等边三角形:三条边都不相等4.三角形的面积公式三角形的面积=底×高÷2【典例精讲】看图计算下列各角的度数。

【答案】15°;55°.【解析】因为三角形的内角和是180°,知道两个角的度数求另一个角的度数,用180度分别减去知道的两个角的度数即可。

解:180°﹣40°﹣125°=140°﹣125°=15°180°﹣90°﹣35°=90°﹣35°=55°【点评】知道三角形内角和为180度,是解答此题的关键。

【巩固练习】一、选择题1.小猴要给一块地围上篱笆,你认为()的围法更牢固些。

2.下面三组小棒,不能围成三角形的是()3.画△ABC中AB边上的高,下列画法中正确的是()。

4.只看三角形的一个角,()判断出它是什么三角形。

A. 能B. 不能C. 不一定能D. 肯定不能5.不管是什么三角形,至少有()个锐角。

A.1 B.2 C.36.把一个三角形纸片剪成两个小三角形,每个小三角形的内角和()180度。

A.大于 B.小于 C.等于7.下面三组线段能围成三角形的是()。

A. 0.5cm,1cm,1.8cmB. 1dm,ldm,ldmC. 2cm,2cm,4cm8.三角形中最小的一个角是50°,按角分类这是一个()三角形。

新人教版八年级上册数学[《三角形》全章复习与巩固—知识点整理及重点题型梳理](提高)

新人教版八年级上册数学[《三角形》全章复习与巩固—知识点整理及重点题型梳理](提高)

新人教版八年级上册数学知识点梳理及巩固练习重难点突破课外机构补习优秀资料《三角形》全章复习与巩固(提高)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形. 要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和: 三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n 条边就叫做n 边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1.(2016•长沙模拟)一个三角形的三边长分别是3,2a-1,6,则整数a的值可能是( ).A.2,3 B.3,4 C.2,3,4 D.3,4,5【思路点拨】直接利用三角形三边关系,得出a的取值范围.【答案】B【解析】解:∵一个三角形的三条边长分别为3,2a-1,6,∴21 219 aa-⎧⎨-⎩>3<解得:2<a<5,则整数a的值可能是3,4,故选B.【总结升华】主要考察了三角形三边关系,正确得出a的取值范围是解题关键.举一反三:【变式】(2014秋•孝感月考)已知a、b、c是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.【答案】解:∵a、b、c是三角形三边长,∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,=b+c-a-b+c+a-c+a+b-a+b-c=2b.2.如图,O是△ABC内一点,连接OB和OC.(1)你能说明OB+OC<AB+AC的理由吗?(2)若AB=5,AC=6,BC=7,你能写出OB+OC的取值范围吗?【答案与解析】解:(1)如图,延长BO交AC于点E,根据三角形的三边关系可以得到,在△ABE中,AB+AE>BE;在△EOC中,OE+EC>OC,两不等式相加,得AB+AE+OE+EC>BE+OC.由图可知,AE+EC=AC,BE=OB+OE.所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC.(2)因为OB+OC>BC,所以OB+OC>7.又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11.【总结升华】充分利用三角形三边关系的性质进行解题.【与三角形有关的线段例1】类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.【与三角形有关的线段例5、】举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.(2015春•石家庄期末)已知△ABC中,AE平分∠BA C(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EPF=是否成立,并说明理由.【思路点拨】(1)利用三角形内角和定理和已知条件直接计算即可;(2)成立,首先求出∠1的度数,进而得到∠3的度数,再根据∠EPF=180°﹣∠2﹣∠3计算即可.【答案与解析】证明:(1)如图1,∵∠B=72°,∠C=36°,∴∠A=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠1==36°,∴∠3=∠1+∠C=72°,又∵AD⊥BC于D,∴∠2=90°,∴∠DAE=180°﹣∠2﹣∠3=18°.(2)成立.如图2,∵A E平分∠BAC,∴∠1===90°﹣,∴∠3=∠1+∠C=90°﹣+,又∵PF⊥BC于F,∴∠2=90°,∴∠EPF=180°﹣∠2﹣∠3=.【总结升华】本题考查了三角形的内角以及角平分线的性质,准确识别图形是解题的关键.举一反三:【与三角形有关的角练习(3)】【变式】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】3,2.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且实用,你知道它能收缩的原因和固定方法吗?【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。

人教版初二数学上册:全等三角形判定一(SSS,SAS)(基础)知识讲解

人教版初二数学上册:全等三角形判定一(SSS,SAS)(基础)知识讲解

全等三角形判定一(SSS ,SAS )(基础)【学习目标】1.理解和掌握全等三角形判定方法1——“边边边”,和判定方法2——“边角边”; 2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等. 【要点梳理】【高清课堂:379109 全等三角形判定一,基本概念梳理回顾】 要点一、全等三角形判定1——“边边边” 全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“边角边” 1. 全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【典型例题】类型一、全等三角形的判定1——“边边边”【高清课堂:379109 全等三角形的判定(一)同步练习4】1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等. 【答案与解析】证明:∵M 为PQ 的中点(已知), ∴PM =QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等). 即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.类型二、全等三角形的判定2——“边角边”2、(2016•泉州)如图,△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°,点E 在AB 上.求证:△CDA ≌△CEB .【思路点拨】根据等腰直角三角形的性质得出CE=CD ,BC=AC ,再利用全等三角形的判定证明即可.【答案与解析】证明:∵△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°, ∴CE=CD ,BC=AC ,∴∠ACB ﹣∠ACE=∠DCE ﹣∠ACE , ∴∠ECB=∠DCA ,在△CDA 与△CEB 中,∴△CDA ≌△CEB .【总结升华】本题考查了全等三角形的判定,熟记等腰直角三角形的性质是解题的关键,同时注意证明角等的方法之一:利用等式的性质,等量加等量,还是等量. 举一反三: 【变式】(2014•房县三模)如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE .求证:△ACD ≌△BCE .【答案】证明:∵C 是线段AB 的中点,∴AC=BC ,∵CD 平分∠ACE ,CE 平分∠BCD , ∴∠ACD=∠ECD ,∠BCE=∠ECD , ∴∠ACD=∠BCE , 在△ACD 和△BCE 中,∴△ACD ≌△BCE (SAS ).3、如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案与解析】AE =CD ,并且AE ⊥CD 证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形 ∴AB =BC ,BD =BE 在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△CBD(SAS)∴AE=CD,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC=90°∴AE⊥CD【总结升华】通过观察,我们也可以把△CBD看作是由△ABE绕着B点顺时针旋转90°得到的.尝试着从变换的角度看待全等.举一反三:【变式】已知:如图,AP平分∠BAC,且AB=AC,点Q在PA上,求证:QC=QB【答案】证明:∵ AP平分∠BAC∴∠BAP=∠CAP在△ABQ与△ACQ中∵∴△ABQ≌△ACQ(SAS)∴ QC=QB类型三、全等三角形判定的实际应用4、(2014秋•兰州期末)如图,点D为码头,A,B两个灯塔与码头的距离相等,DA,DB为海岸线.一轮船离开码头,计划沿∠ADB的角平分线航行,在航行途中C点处,测得轮船与灯塔A和灯塔B的距离相等.试问:轮船航行是否偏离指定航线?请说明理由.【思路点拨】只要证明轮船与D点的连线平分∠ADB就说明轮船没有偏离航线,也就是证明∠ADC=∠BDC.要证明角相等,常常通过把角放到两个三角形中,利用题目条件证明这两个三角形全等,从而得出对应角相等.【答案与解析】解:此时轮船没有偏离航线.理由:由题意知:DA=DB,AC=BC,在△ADC和△BDC中,,∴△ADC≌△BDC(SSS),∴∠ADC=∠BDC,即DC为∠ADB的角平分线,∴此时轮船没有偏离航线.【总结升华】本题考查了全等三角形的应用,解答本题的关键是:根据条件设计三角形全等,巧妙地借助两个三角形全等,寻找对应角相等.要学会把实际问题转化为数学问题来解决.举一反三:【变式】工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,边OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D、E重合,这时过角尺顶点P的射线OP就是∠AOB的平分线,你能先说明△OPE与△OPD全等,再说明OP平分∠AOB吗?【答案】证明:在△OPE与△OPD中∵OE OD OP OP PE PD=⎧⎪=⎨⎪=⎩∴△OPE≌△OPD (SSS)∴∠EOP=∠DOP(全等三角形对应角相等)∴ OP平分∠AOB.附录资料:《三角形》全章复习与巩固(基础)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力. 【知识网络】【要点梳理】要点一、三角形的有关概念和性质 1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围. 2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外. (2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和; ②已知多边形内角和,求其边数.2.多边形外角和:n 边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数; ②已知正多边形边数,求外角度数. (2)多边形的边数与内角和、外角和的关系:①n 边形的内角和等于(n -2)·180°(n≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1、定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同. 要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边. (2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用. 【典型例题】类型一、三角形的三边关系1. (2016•丰润区二模)若三角形的两条边长分别为6cm 和10cm ,则它的第三边长不可能为( )A .5cmB .8cmC .10cmD .17cm【思路点拨】直接利用三角形三边关系得出第三边的取值范围,进而得出答案. 【答案与解析】解:∵三角形的两条边长分别为6cm 和10cm , ∴第三边长的取值范围是:4<x <16, ∴它的第三边长不可能为:17cm . 故选:D .【总结升华】此题主要考查了三角形三边关系,正确得出第三边的取值范围是解题关键. 【高清课堂:与三角形有关的线段 例1】举一反三【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8. 【答案】(1)能; (2)不能; (3)能.2.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______. 【答案】59c <<【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7,即 5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b. 举一反三【变式】(浙江金华)已知三角形的两边长为4,8,则第三边的长度可以是________(写出一个即可)【答案】5,注:答案不唯一,填写大于4,小于12的数都对.类型二、三角形中重要线段3. (江苏连云港)小华在电话中问小明:“已知一个三角形三边长分别为4,9,12,如何求这个三角形的面积?”小明提示:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( ) .【答案】C【解析】三角形的高就是从三角形的顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.解答本题首先应找到最长边,再找到最长边所对的顶点.然后过这个顶点作最长边的垂线即得到三角形的高.【总结升华】锐角三角形、直角三角形、钝角三角形都有三条高,并且三条高所在的直线交于一点.这里一定要注意钝角三角形的高中有两条高在三角形的外部.举一反三【变式】如图所示,已知△ABC,试画出△ABC各边上的高.【答案】解:所画三角形的高如图所示.4.如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC =8cm,求边AC的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD=BD,②△BCD的周长比△ACD的周长大3.【答案与解析】解:依题意:△BCD 的周长比△ACD 的周长大3cm , 故有:BC+CD+BD-(AC+CD+AD)=3. 又∵ CD 为△ABC 的AB 边上的中线,∴ AD =BD ,即BC-AC =3. 又∵ BC =8,∴ AC =5. 答:AC 的长为5cm .【总结升华】运用三角形的中线的定义得到线段AD =BD 是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法. 举一反三【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S △,则S 阴影为________.【答案】1类型三、与三角形有关的角5、(2014春•新泰市期末)已知:如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 平分线,∠B=50°,∠DAE=10°, (1)求∠BAE 的度数; (2)求∠C 的度数.【思路点拨】(1)根据AD 是BC 边上的高和∠DAE=10°,求得∠AED 的度数;再进一步根据三角形的外角等于和它不相邻的两个内角的和求解;(2)根据(1)的结论和角平分线的定义求得∠BAC 的度数,再根据三角形的内角和定理就可求得∠C 的度数. 【答案与解析】 解:(1)∵AD 是BC 边上的高,∴∠ADE=90°.∵∠ADE+∠AED+∠DAE=180°,∴∠AED=180°﹣∠ADE﹣∠DAE=180°﹣90°﹣10°=80°. ∵∠B+∠BAE=∠AED,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°. (2)∵AE 是∠BAC 平分线,∴∠BAC=2∠BAE=2×30°=60°. ∵∠B+∠BAC+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°.【总结升华】本题主要考查了三角形的内角和定理、角平分线的定义以及三角形的外角性质.【高清课堂:与三角形有关的角例1、】举一反三:【变式】已知,如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中, BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°类型四、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.类型五、多边形内角和及外角和公式7.一个多边形的内角和等于它的外角和的5倍,它是几边形?【思路点拨】本题实际告诉了这个多边形的内角和是.【答案与解析】设这个多边形是边形,则它的内角和是,∴,解得.∴这个多边形是十二边形.【总结升华】本题是多边形的内角和定理和外角和定理的综合运用. 只要设出边数,根据条件列出关于的方程,求出的值即可,这是一种常用的解题思路.举一反三【变式】(2015•徐州)若正多边形的一个内角等于140°,则这个正多边形的边数是.【答案】9.解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,边数:360°÷40°=9.类型六、多边形对角线公式的运用8.一个十二边形有几条对角线.【思路点拨】根据多边形对角线条数公式,把边数代入计算即可.【答案与解析】解:∵过十二边形的任意一个顶点可以画9条对角线,∴十二个顶点可以画12×9条对角线,但每条对角线在每个顶点都数了一次,∴实际对角线的条数应该为12×9÷2=54(条)∴十二边形的对角线共有54条.【总结升华】对于一个n边形的对角线的条数,我们可以总结出规律条,牢记这个公式,以后只要用相应的n的值代入即可求出对角线的条数,要记住这个公式只有在理解的基础之上才能记得牢.举一反三【变式】一个多边形共有20条对角线,则多边形的边数是().A.6 B.7 C.8 D.9【答案】C;类型七、镶嵌问题9.分别用形状、大小完全相同的①三角形木板;②四边形木板;③正五边形木板;④正六边形木板作平面镶嵌,其中不能镶嵌成地板的是( )A、①B、②C、③D、④【答案】C【总结升华】用多边形组合成平面图形,实质上是相关多边形“交接处各角之和能否拼成一个周角”的问题.。

不解三角形判断解个数

不解三角形判断解个数

不解三⾓形判断解个数
不解三⾓形,确定下列判断中正确的是
[ ]
A.a=7,b=14,A=30°,有两解
B.a=30,b=25,A=150°,有⼀解
C.a=6,b=9,A=45°,有两解
D.b=9,c=10,B=60°,⽆解
答案B
考点名称:正弦定理
1、正弦定理:在⼀个三⾓形中,各边和它所对⾓的正弦的⽐相等,即
=2R。

有以下⼀些变式:
(1);
(2);
(3)。

4、正弦定理在解三⾓形中的应⽤:
(1)已知两⾓和⼀边解三⾓形,只有⼀解。

(2)已知两边和其中⼀边的对⾓,解三⾓形,要注意对解的个数的讨论。

可按如下步骤和⽅法进⾏:先看已知⾓的性质和已知两边的⼤⼩关系。

如已知a,b,A,
(⼀)若A为钝⾓或直⾓,当b≥a时,则⽆解;当a≥b时,有只有⼀个解;
(⼆)若A为锐⾓,结合下图理解。

①若a≥b或a=bsinA,则只有⼀个解。

②若bsinA<a<b,则有两解。

③若a<bsinA,则⽆解。

也可根据a,b的关系及与1的⼤⼩关系来确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档
精品文档 不解三角形,确定下列判断中正确的是
[ ]
A .a=7,b=14,A=30°,有两解
B .a=30,b=25,A=150°,有一解
C .a=6,b=9,A=45°,有两解
D .b=9,c=10,B=60°,无解
答案B
考点名称:正弦定理
1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
=2R 。

有以下一些变式:
(1);
(2);
(3)。

4、正弦定理在解三角形中的应用:
(1)已知两角和一边解三角形,只有一解。

(2)已知两边和其中一边的对角,解三角形,要注意对解的个数的讨论。

可按如下步骤和方法进行:先看已知角的性质和已知两边的大小关系。

如已知a ,b ,A ,
(一)若A 为钝角或直角,当b≥a 时,则无解;当a≥b 时,有只有一个解;
(二)若A 为锐角,结合下图理解。

①若a≥b 或a=bsinA ,则只有一个解。

②若
bsinA <a <b ,则有两解。

③若a <bsinA ,则无解。

也可根据a ,b 的关系及与1的大小关系来确定。

相关文档
最新文档