实数说课稿

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数

尊敬的各位老师:

大家好!我今天说课的内容是北师大版八年级数学(上册)第二章第六节“实数”第一课时,下面,我将从以下几个方面对这节课的设计进行说明。

一、教材分析

1、教材的地位和作用

本节课是在数的开方的基础上引进无理数的概念,并将数从有理数范围扩充到实数范围。从有理数到实数,这是数的范围的一次重要扩充。对今后学习数学有重要意义。在中学阶段,多数数学问题是在实数范围内研究的。例如,函数的自变量和因变量都在实数范围内讨论,平面几何、立体几何中的几何量(长度、面积、体积等)都用实数表示等。

2、教学目标:(根据新课程标准的要求,结合本节教材的特点,以及八年级学生的认知规律,我制定如下目标)。

知识技能:1 了解无理数和实数的概念以及实数的分类。

2 知道实数与数轴上的点具有一一对应关系。

数学思考:1 经历对实数进行分类的过程,发展学生的分类意识。

2 经历从有理数逐步扩充到实数的过程,了解人类对数的认识是不断发展的。

解决问题:通过无理数的引入,使学生对数的认识由有理数扩充到实数。

情感态度:1 通过了解数系扩充体会数系扩充对人类发展的作用。

2 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。

3、教学重点、难点

重点:了解无理数和实数的概念;实数的分类。

难点:对无理数的认识。

二、学情分析

在学习本节课前,学生已掌握对一个非负数开平方和对一个数开立方运算。课本对学生掌握实数要求不高。只要求学生了解无理数和实数的意义。但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识。本节主要引导学生熟知实数的概念和意义,为后面学习打下基础。

三、教法学法分析:

教法分析:为了更好的把握教学内容的整体性、联续性,我采用问题情境导入法引入新课,用类比归纳法和探究分析法展开数学活动。在教学中注重学生的动手实践能力和自主探究能力的培养,使学生经历:观察、比较、交流、归纳、反思等理性思维的基本过程。

学法分析:为了有效地突出重点、突破难点,本节课我采用以学生自主探究、小组合作交流为主的学习方式,启发学生进行观察、类比、分析,让学生多动手动脑,积极参与到概念的建立,问题求解当中来,使学生的主观能动性得到最大程度的发挥。

四、教程分析:针对本节教材的特点,我把教学过程设计为以下五个环节:

一、创设问题情景,引出实数的概念

1、什么叫无理数,什么叫有理数,举例说明。

2、把下列各数分别填入相应的集合内。

32,41,7,π,2

5-,2,320,5-,38-,94,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)

教师引导学生得出实数概述并板书:有理数和无理数统称实数(real number )。 教师点明:实数可分为有理数与无理数。

二、议一议

1、在实数概念基础上对实数进行不同分类。

无理数与有理数一样,也有正负之分,如3是正的,π-是负的。

教师提出以下问题,让学生思考:

(1)你能把32,41,7,π,2

5-,2,320,5-,38-,94,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)等各数填入下面相应的集合中?

正有理数:

负有理数:

(2)0属于正数吗?0属于负数吗?

(3)实数除了可以分为有理数与无理数外,实数还可怎样分?

让学生讨论回答后,教师引导学生形成共识:实数也可以分为正实数、0、负实数。

2、了解实数范围内相反数、倒数、绝对值的意义:

在有理数中,有理数a 的的相反数是什么,不为0的数a 的倒数是什么。在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。

例如,2和2-是互为相反数,35和351互为倒数。

33=,00=,ππ=-,33-=-ππ。

三、想一想

让学生思考以下问题

1、a 是一个实数,它的相反数为 ,绝对值为 ;

2、如果0≠a ,那么它的倒数为 。

四、议一议。探索用数轴上的点来表示无理数

1、复习勾股定理。如图在Rt△ABC 中AB= a ,BC = b ,AC = c ,其中a 、b 、c 满足什么条件。

当a=1,b=1时,c 的值是多少?

2、出示投影(1)P55页图2—4,让学生探讨以下问题:

(A )如图OA=OB ,数轴上A 点对应的数是多少?

(B )如果将所有有理数都标到数轴上,那么数轴上被填满

了吗?

让学生充分思考交流后,引导学生达成以下共识:

(1)A 点对应的数等于2,它介于1与2之间。 (2)如果将所有有理数都标到数轴上,数轴未被填满,在数轴上还可以表示无理数。

(3)每一个褛都可以用数轴上的点来表示;反过来数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。

(4)一样地,在数轴上,右边的点比左边的点表示的数大。

五、随堂练习

1、判断下列说法是否正确:(1)无限小数都是无理数;(2)无理数都是无限小数; (3)带根号的数都是无理数。

2、求下列各数的相反数、倒数和绝对值:

(1)3.8 (2)21- (3)π-

3、在数轴上作出5对应的点。

六、小结

1、实数的概念

2、实数可以怎样分类

3、实数a 的相反数为a -,绝对值a ,若0≠a ,它的倒数为

a 1。 4、数轴上的点和实数一一对应。

七、作业

板书设计:

最后,我说下教学评价分析:

本节课的设计,我根据八级学生已有的生活知识经验,通过自主学习得到“实数”概念,在“合作交流”中加深对实数概念的理解。在教学活动中,教师应注重学生的个体差异,适时调整教学过程,激发学生的学习兴趣和求知欲,培养他们科学的探索精神和创新精神。

以上是我对本节课的初浅认识,不足之处敬请各位专家批评、指正,谢谢! A C

B 1

相关文档
最新文档