如何撰写数学建模论文及案例
数学建模获奖论文模板范文
数学建模获奖论文模板范文在我国倡导素质教育的今天,数学建模受到的关注与日俱增,数学建模已经被应用于数学的教学中了。
下面是店铺为大家推荐的数学建模论文,供大家参考。
数学建模论文范文篇一:《高职院校数学建模竞赛的思考与建议》一、我校学生数学建模现状1.高职生的数学基础相当薄弱,学习习惯不好,然而数学知识理论性强,计算繁琐,并要求学生有足够的耐心和较强的理性思维能力,这就会让学生在学习数学相关知识时感觉有一定的难度。
而另一方面,高职院校的课时量在尽量压缩,数学应用方面的内容只是蜻蜓点水,根本无法广泛而深入的涉及到位。
例如,我校很多专业只开一个学期64课时的数学课,还有些专业甚至不开数学课,要建立一些比较高等的数学模型,高职学生的数学知识显然不够。
2.高职院校目前的教学方法多表现为填鸭式的教学法,过分强调严格的定理和抽象的逻辑思维,特别是运算技巧的训练讲得过于精细,考试形式单一。
对于高职生来说,只要求他们会套用现成的公式及作一些简单的计算就行,但是目前的教学不能使学生发挥自己的主观能动性,也调动不了学生学习数学的兴趣。
3.目前我校只开设了一门数学方面的公共选修课《数学建模》,一共16次课,仅仅靠课堂上讲的内容让学生来参加数学建模竞赛远远不够,另外,学生又要同时兼顾其他专业课程,因此学习效果不好。
4.组织数学建模赛前培训的师资队伍理论薄弱,只靠一两个青年教师承担培训指导任务,缺乏参赛经验丰富的老教师。
5.我校学生参加数学建模的积极性不高,我校已经连续参加几年的数学建模竞赛,但最多的也就5个队,仍有多数学生称未听过有这项比赛,说明宣传不是很到位。
6.目前组队参赛的任务是交给基础部来完成,而基础部没有学生,这就会造成找队员困难的问题。
二、参加数学建模比赛的意义1.有利于培养学生综合解决问题的能力因为数学建模最后提交的成果是交一篇完整的论文,对于大多数学生来说,都是第一次,它可以提高学生如何把数学知识用到实际生活中的能力,提高学生合理利用网络查阅资料的能力,提高学生的创新意识和团队协作能力等。
优秀的数学建模论文范文(通用8篇)
优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。
建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。
本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。
关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。
从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。
但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。
其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。
二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。
他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。
同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。
但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。
因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。
三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。
建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。
把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。
数学建模优秀论文(精选范文10篇) 2021
根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题,这就是数学建模,本篇文章主要是向大家介绍几篇数学建模优秀论文得范文,希望对有这方面参考得学者有所帮助。
数学建模优秀论文精选范文10篇之第一篇:培养低年段学生数学建模意识得微课教学---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。
---------------------------------------------------------------------------------------------------------------------摘要:本文阐述了录制微课对培养学生建模意识得必要性和可行性,认为在小学数学教学中,鼓励低年段学生录制微课有积极意义,主张提高小学生建模语言表达能力,通过任务驱动和学生自主录制微课,逐步深入学习建模内容,培养并增强学生得建模意识。
关键词:低年段数学; 微课; 建模意识;当今社会,信息技术高速发展使教学资源高度丰富。
广大教师纷纷探讨如何利用信息技术更好地为教学服务,有效地改进教与学得方式,提高学生学习兴趣。
一、录制微课对培养学生建模意识得必要性和可行性“三年级现象”备受关注,很多人认为小学三年级是道坎,有得学生一、二年级数学成绩很好,到了三年级就断崖式下降。
如果真得出现这种现象,那么学生一、二年级数学成绩好只是表象。
一、二年级是学生初步感知数学得重要时期。
低年段数学知识是基础,对于低年段数学教学包括建模教学必须引起广大教育工作者得重视,让学生从小接受正确得教学模式,真正掌握学习数学得思想方法,避免出现短暂成绩好得现象。
大学生数学建模论文(专业推荐范文10篇)
大学生数学建模是一项基础性得学科竞赛,可以交流更多得经验,学习更多得知识,所以大学生数学建模很受学者们得欢迎,本篇文章就向大家介绍一些大学生数学建模论文,供给大家作为一个参考。
大学生数学建模论文专业推荐范文10篇之第一篇:数学建模对大学生综合素质影响得调查研究---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。
---------------------------------------------------------------------------------------------------------------------摘要:文章通过问卷网以调查问卷得形式和线下访谈得方法 ,对笔者所在学校参加过数学建模竞赛得同学和未参加过数学建模竞赛得同学对数学建模对自身综合素质得影响进行了调查研究。
调查表明,大部分学生都能认识到数学建模学习和竞赛对其自身综合素质得提升是有帮助得,但是大多数学生对数学建模得意义认识还不到位。
文章对调查结果进行分析,结合笔者得切身体会对地方高校数学建模课程教学及学生参加竞赛提出某些建议。
关键词:数学建模; 大学生; 综合素质; 研究;一、前言随着社会得不断进步和发展,大学生想要在激烈得人才竞争中脱颖而出,就必须要不断提高自己得综合素质,而良好得综合素质不仅应具有坚实得理论基础,扎实得专业知识,还应该具有较强得创新能力、与他人合作得能力、较强得语言表达能力、以及稳定得心理状态。
许多科学家断言未来科学技术得竞争是数学技术得竞争,这无疑对数学能力提出了更高得要求,不可否认数学建模课程教学及建模竞赛是提升大学生数学能力得有效途径。
数学建模案例范文
数学建模案例范文数学建模是一种将现实世界问题用数学语言描述并通过数学方法进行分析、预测和优化的过程。
它是将具体问题转化为数学模型的过程,通过建立数学模型,可以更好地理解和解决实际问题。
我将以一个实际案例来介绍数学建模的过程。
本案例是关于城市交通流量的建模与分析。
1.问题描述假设现有一座城市,城市内存在多个交叉口和道路。
我们希望通过数学建模来分析城市交通流量的变化规律,包括交通峰值出现的时间、道路拥堵程度以及交通信号灯的优化设置等问题。
2.建立数学模型为了描述城市交通流量的变化规律,我们需要建立数学模型来表示车辆的流动。
首先,我们将城市的道路网络抽象为有向图,交叉口作为节点,道路作为边。
每个道路有一个容量上限,表示道路的通行能力。
车辆在道路上的行驶速度和车辆流量可以根据实际的交通数据进行估算。
3.分析交通流量变化规律通过数学模型,我们可以分析城市交通流量的变化规律。
可以通过分析交通数据来获得车辆流量、车辆速度等信息,进而得到道路的通行能力和交通峰值出现的时间。
通过分析交通数据,可以发现交通流量的高峰往往出现在早上和下午的上下班高峰期,从而可以为城市交通管理提供科学的依据。
4.优化交通信号灯设置交通信号灯是影响交通流量的重要因素之一,通过优化交通信号灯的设置,可以有效地缓解交通拥堵问题。
为了优化交通信号灯设置,我们可以将交通信号灯的优化问题转化为一个路口信号灯配时的优化问题。
通过数学优化方法,可以求解最优的配时方案,使得交通流量得到最大化。
5.模型验证与实施建立数学模型后,我们需要对模型进行验证。
可以使用历史交通数据来验证模型的准确性,例如将模型应用于现有的交通数据,通过与实际情况的比对来验证模型的可靠性。
如果模型的预测结果与实际情况相符,那么我们可以对模型进行进一步的应用和实施。
通过以上的数学建模过程,我们可以更好地理解和解决城市交通流量相关问题。
数学建模的应用可以帮助城市管理者更好地规划交通系统、提高道路通行能力,并优化交通信号灯的设置,从而提高城市交通的效率,减少交通拥堵问题的发生。
全国大学生数学建模竞赛论文范例
全国大学生数学建模竞赛论文范例摘要:本文通过对具体问题的研究,建立了相应的数学模型,并运用具体方法进行求解和分析。
通过对结果的讨论,得出了具有一定实际意义的结论和建议。
一、问题重述详细阐述所给定的问题,明确问题的背景、条件和要求。
二、问题分析(一)对问题的初步理解对问题进行初步的思考和分析,明确问题的关键所在和需要解决的核心问题。
(二)可能用到的方法和模型根据问题的特点,探讨可能适用的数学方法和模型,如线性规划、微分方程、概率统计等。
三、模型假设(一)假设的合理性说明所做假设的依据和合理性,确保假设不会对问题的解决产生过大的偏差。
(二)具体假设内容列举出主要的假设条件,如忽略某些次要因素、变量之间的关系等。
四、符号说明对文中使用的主要符号进行清晰的定义和说明,以便读者理解。
五、模型建立与求解(一)模型的建立详细阐述模型的构建过程,包括数学公式的推导和逻辑关系的建立。
(二)模型的求解运用适当的数学软件或方法对模型进行求解,给出求解的步骤和结果。
六、结果分析(一)结果的合理性对求解得到的结果进行合理性分析,判断其是否符合实际情况。
(二)结果的敏感性分析探讨模型中某些参数或条件的变化对结果的影响。
七、模型的评价与改进(一)模型的优点总结模型的优点,如准确性、简洁性、实用性等。
(二)模型的不足分析模型存在的不足之处,如局限性、假设的不合理性等。
(三)改进的方向针对模型的不足,提出可能的改进方向和方法。
八、结论与建议(一)结论总结问题的解决结果,明确回答问题的核心要点。
(二)建议根据结论,提出具有实际意义的建议和措施,为相关决策提供参考。
以下是一个具体的示例,假设我们要解决一个关于交通流量优化的问题。
问题重述在某城市的一个交通路口,每天早晚高峰时段都会出现严重的交通拥堵。
现需要建立数学模型,优化信号灯的设置时间,以提高交通流量,减少拥堵。
问题分析首先,我们需要收集该路口的交通流量数据,包括不同时间段各个方向的车辆数量。
数学建模论文基本结构[五篇范文]
数学建模论文基本结构[五篇范文]第一篇:数学建模论文基本结构数学建模论文基本结构一、题目(突出问题和模型,即什么问题,哪类数学模型,要反映主题思想)最优捕鱼策略模型零件参数的优化设计风险投资组合的线性规划模型投资组合方案的模糊规划模型灾情巡视路线的图论模型关于洗衣机节水的数学模型二、摘要(200-300字,包括研究的意义、模型的主要思想、特点、建模方法和主要结果)论文特色讲清楚,让人看到论文的新意.全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选a.模型的数学归类(在数学上属于什么类型);b.建模的思想(思路);c.算法思想(求解思路);d.建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……);e.主要结果(数值结果,结论;回答题目所问的全部“问题”)。
▲注意表述:准确、简明、条理清晰、务必认真校对。
三、关键词(求解问题、使用的方法中的重要术语3—5个)四、正文1、问题重述2、问题分析3、模型假设与符号说明4、模型建立与求解①补充假设条件,明确概念,引进参数;②模型形式(可有多个形式的模型);5、模型检验(使用数据计算结果,进行分析与检验)6、进一步讨论(参数的变化、假设改变对模型的影响)7、模型优缺点(改进方向,推广新思想)五、参考文献参考文献参考文献中书籍的表述方式为:序号,作者,书名,版本(第1版不标注),出版地:出版社,出版年,页码。
参考文献中期刊杂志论文的表述方式为:序号,作者,论文名,杂志名,卷期号:起止页码,出版年。
参考文献中网上资源的表述方式为:序号,作者,资源标题,网址,访问时间(年月日)。
六、附录(计算程序,框图;各种求解演算过程,计算中间结果;各种图形、表格)第二篇:数学建模论文论文题目三号黑体字摘要摘要标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。
要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。
题目是给评委的第一印象,建议将论文所有模型或者算法加入题目中,例如《用遗传算法解决XXXX问题》。
数学建模论文(精选4篇)
数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。
初中数学建模论文范文(16篇)
初中数学建模论文范文(16篇)摘要:所谓数学建模,即借助数学模型,处理所遇到的具体问题的课程,在本文中,分别就教学、模型建立以及相应的信息检索来进行研究,通过将这三面进行相应的糅合从而证明可以将计算机技术引入到相应的建模实践中,从而有效促进数学建模的发展,使得教学质量得以有效提升。
关键词:数学建模;计算机应用;融合1.数学建模与计算机技术概述目前计算机在生活中应用极为广泛,借助于计算机能够使得先前较为复杂繁琐的问题得以简化,有效提升计算速率。
就数学建模来看,计算机在此方面的作用不言而喻。
对于此,人们普遍认为,能够借助于计算机将任何一个数学问题进行简化处理。
而对于生活中所遇到的任意一个实际问题,均能够借助于相应的数学模型来进行表示,在建模过程中,也可以根据实际情况来做出一些相应的简化处理,从而将其归属于完全的数学问题,最终建立起能够用变量所描述的数学模型。
之后,借助于相应的计算机、软件以及编程方面的知识,来对此模型进行相应的求解计算。
2.计算机技术在数学建模中的应用计算机在数学建模中的应用面非常的广泛,限于笔者的水平,本文主要就两个方面展开讨论:第一,确定建模思想;第二,对数学模型进行求解计算。
计算机技术辅助确立数学建模思想对于数学建模,其最为重要的目的便是为了能够提升学生对于数学知识的使用性,借助于相关的数学思想来对实际问题进行解决,同时,还能够促进学生数学思想的发展、建模能力发展以及相关数学知识的完善,最终提升其对于数学知识的使用能力。
培养数学思维重在将学生所思所想以最快最佳的方式展示出来,计算机技术在数学建模中的应用使得这个设想变得可能。
因为数学模型的计算和设计工作量大,传统的计算办法不能迅速解决一些问题,但是在建模的辅助下一切问题迎刃而解。
计算机技术促进数学建模结果求解对于数学建模,其属于一项系统性工程,整个过程工作量较多。
在前期,对于模型的构想与建立需要不断完善,此后,对于模型的求解也是极为困难的,这主要因为其涉及到非常多的数据处理与计算。
数学建模论文范文【范本模板】
Xij0-1变量,表示第i号井在第j年的施工情况,Xij=1第i号井在第j年施工,Xij=0表示不施工
Zj第j年的总费用
Pj第j年的铺管道费用
Lj第j 年铺管道公里数
Wj第j 年的水量
Q管道供水量
Nj所有新建的水井在第j年的产水量
5 模型建立
决策变量为三年间铺设管道和打井的总费用.0—1变量Xij表示i号井j 年是否施工,为1则施工,产生费用,Pj表示第j年的铺路费用.所以第j年的总费用Zj=5*X1j+7*X2j+5*X3j+4*X4j+6*X5j+5*X6j+5*X7j+3*X8j+Pj
第二年花费7万元打造2号井,花费53万元铺管道7。669公里,共计60万元;
三年费用min Z=Z1+Z2+Z3
=5*X11+7*X21+5*X31+4*X41+6*X51+5*X61+5*X71+3*X81+P1+
5*X12+7*X22+5*X32+4*X42+6*X52+5*X62+5*X72+3*X82+P2+
5*X13+7*X23+5*X33+4*X43+6*X53+5*X63+5*X73+3*X83+P3
11.参考文献及参考书籍和网站
12.附录 (计算程序,框图;各种求解演算过程,计算中间结果;各种图形、表格。)
下面是范例:
1 问题的提出
位于我国西南地区的某个偏远贫困村,年平均降水量不足20mm,是典型的缺水地区。过去村民的日常生活和农业生产用水一方面靠的是每家每户自行建造的小蓄水池,用来屯积每逢下雨时获得的雨水,另一方面是利用村里现有的四口水井。由于近年来环境破坏,经常是一连数月滴雨不下,这些小蓄水池的功能完全丧失。而现有的四口水井经过多年使用后,年产水量也在逐渐减少,在表1中给出它们在近9年来的产水量粗略统计数字.2009年以来,由于水井的水远远不能满足需要,不仅各种农业生产全部停止,而且大量的村民每天要被迫翻山越岭到相隔十几里外去背水来维持日常生活。
数学建模竞赛优秀大学生论文
数学建模竞赛优秀大学生论文随着科学技术的高速发展,数学的应用价值越来越得到众人的重视,因此数学建模也被逐渐的引起重视了。
下面是店铺为大家整理的数学建模优秀论文,供大家参考。
数学建模优秀论文篇一:《数学建模用于生物医学论文》1数学建模的过程1.1模型准备首先要了解实际背景,寻找内在规律,形成一个比较清晰的轮廓,提出问题。
1.2模型假设在明确目的、掌握资料的基础上,抓住问题的本质,舍弃次要因素,对实际问题做出合理的简化假设。
1.3模型建立在所作的假设条件下,用适当的数学方法去刻画变量之间的关系,得出一个数学结构,即数学模型。
原则上,在能够达到预期效果的基础上,选择的数学方法应越简单越好。
1.4模型求解建模后要对模型进行分析、求解,求解会涉及图解、定理证明及解方程等不同数学方法,有时还需用计算机求数值解。
1.5模型分析、检验、应用模型的结果应当能解释已存的现象,处理方法应该是最优的决策和控制方案,所以,对模型的解需要进行分析检验。
把求得的数学结果返回到实际问题中去,检验其合理性。
如果理论结果符合实际情况,那么就可以用它来指导实践,否则需再重新提出假设、建模、求解,直到模型结果与实际相符,才能进行实际应用。
总之,数学建模是一项富有创造性的工作,不可能用一些条条框框的规则规定的十分死板,只要是能够做到全面兼顾、能抓住问题的本质、最终检验结果合理,都是一个好的数学模型。
2数学建模在生物医学中的应用2.1DNA序列分类模型DNA分子是遗传信息存储的基本单位,许多生命科学中的重大问题都依赖于对这种特殊分子的深入了解。
因此,关于DNA分子结构与功能的问题,成为二十一世纪最重大的课题之一。
DNA序列分类问题是研究DNA分子结构的基础,它常用的方法是聚类分析法。
聚类分析是使用数据建模简化数据的一种方法,它将数据分成不同的类或者簇,同一个簇中的数据有很大的同质性,而不同的簇中的数据有很大的相异性。
在对DNA序列进行分类时,需首先引入样品变量,比如说单个碱基的丰度、两碱基丰度之比等;然后计算出每条DNA序列的样品变量值,存入到向量中;最后根据相似度度量原理,计算出所有序列两两之间的Lance与Williams距离,依据距离的远近进行分类。
全国大学生数学建模竞赛论文范例
全国大学生数学建模竞赛论文范例摘要:本文通过对具体问题的深入研究,建立了数学模型并进行求解,旨在为相关领域提供有益的参考和决策支持。
文中首先对问题进行了详细的分析和阐述,然后构建了相应的数学模型,运用了列举所用的方法和工具等方法进行求解,最后对结果进行了分析和讨论,并提出了一些改进和优化的建议。
一、问题重述在当今社会,具体问题背景。
本次数学建模竞赛的问题是:详细描述问题。
需要我们通过建立合理的数学模型,来解决阐述问题的核心和关键,并得出具有实际意义的结论和建议。
二、问题分析为了有效地解决上述问题,我们首先对其进行了深入的分析。
从问题的性质来看,它属于定性问题的类型,如优化问题、预测问题等。
进一步分析发现,影响问题的主要因素有列举主要因素,这些因素之间可能存在着描述因素之间的关系,如线性关系、非线性关系等。
基于以上分析,我们决定采用列举解决问题的总体思路和方法的方法来建立数学模型。
三、模型假设为了简化问题并使模型更具可操作性,我们做了以下假设:假设 1:具体假设 1 的内容假设 2:具体假设 2 的内容假设 n:具体假设 n 的内容需要说明的是,这些假设在一定程度上简化了实际情况,但在后续的模型验证和改进中,我们会对其合理性进行检验和调整。
四、符号说明为了便于后续模型的建立和表述,我们对文中用到的符号进行如下说明:符号 1:符号 1 的名称和含义符号 2:符号 2 的名称和含义符号 n:符号 n 的名称和含义五、模型建立与求解(一)模型 1 的建立与求解基于前面的分析和假设,我们首先建立了模型 1。
详细描述模型 1 的数学表达式和原理通过求解模型 1 所使用的方法和工具,我们得到了模型 1 的解为:给出模型 1 的解(二)模型 2 的建立与求解为了进一步提高模型的精度和适用性,我们又建立了模型 2。
详细描述模型 2 的数学表达式和原理运用求解模型 2 所使用的方法和工具,解得模型 2 的结果为:给出模型 2 的解(三)模型的比较与选择对建立的多个模型进行比较和分析,从准确性、复杂性、适用性等方面综合考虑,最终选择了说明选择的模型作为最优模型。
数学建模论文模板3篇
数学建模论文模板本文将以“动力学模型研究草地生态系统中植物物种多样性变化的机制”为例,介绍数学建模论文的写作模板。
第一篇:绪论在本篇论文中,我们将研究草地生态系统中植物物种多样性变化的机制。
植物物种多样性是生态系统中的重要指标之一,其变化与环境因素、人类干扰等因素密切相关。
我们希望通过建立动力学模型,揭示不同因素对植物物种多样性变化的影响机制,为草地生态系统保护与管理提供科学依据。
本文的具体框架如下:在第二部分中,我们将简要介绍植物物种多样性与草地生态系统的相关知识。
在第三部分中,我们将从环境因素、人类干扰、种间关系等因素入手,进行动力学模型的建立,并分析模型参数。
在第四部分中,我们将通过模型仿真和实验验证,探究不同因素对植物物种多样性的影响。
第二篇:文献综述植物物种多样性是生态系统中的重要指标之一,其变化涉及到复杂的生态因素和人类活动。
在草地生态系统中,植物群落的物种多样性变化受到许多因素的影响,例如环境因素、人类干扰、生物多样性等。
下面我们将分别对这些因素的影响机制进行综述。
环境因素:环境因素是影响生态系统中植物物种多样性变化的重要因素。
其中,土壤水分、光照等生态因素对植物的分布、生长和繁殖都有直接和间接的影响。
土壤养分、温度、氧气含量、酸碱度等也会对物种多样性产生影响。
人类干扰:人类干扰是导致生态系统中植物物种多样性下降的主要因素之一。
人类从事的采矿、建设等活动都会破坏生态系统的平衡,从而影响系统中不同物种的生存繁殖。
另外,过度放牧、过度利用等也会对植物群落的物种多样性造成一定的影响。
种间关系:物种之间的关系也是影响生态系统中植物物种多样性的重要因素之一。
其中,竞争、共生、捕食等种间关系都会直接或间接的影响植物群落的物种多样性。
第三篇:方法与结果基于在综述中分析的因素,我们建立了相应的生态动力学模型。
该模型以草地生态系统中植物群落的物种多样性为研究对象,考虑了土壤水分、光照、土壤养分等环境因素、过度放牧、过度利用等人类活动以及种间关系等多种因素对物种多样性的影响。
数学建模论文范文免费(必备14篇)
数学建模论文范文免费(必备14篇)试论数学建模【摘要】本文以“减肥问题的研究”为例,介绍了数学建模基本方法和步骤,希望它能对初次参加数学建模的同学有所帮助。
【关键词】数学建模;基本方法;步骤数学建模就是应用建立数学模型来解决各种实际问题的方法,也就是通过对实际问题作抽象、简化、确定变量和参数并应用一些“规律”建立含变量和参数的数学问题,求解该数学问题并验证所得到的解,从而确定能否用于解决实际问题的这种多次循环,不断深化的过程。
数学建模可以培养学生下列能力:(1)洞察能力,许多提出的问题往往不是数学化的,这就是需要建模者善于从实际工作提供的原形中;抓住其数学本质,同时有些数学模型又可以有许多现实意义,这使得建模者不得不具有很强的洞察以及多种思维方式进行横向、纵向的研究;(2)数学语言翻译能力即把经过一定抽象和简化的实际用数学的语言表达出来,形成数学模型,并对数学的方法和理论推导或计算得到的结果,能用大众的语言表达出来,在此基础上提出解决其中一问题的方案或建议;(3)综合应用分析能力,用已学到的数学思想和方法进行综合应用分析,并能学习一些新的知识;(4)联想能力,对于不少的实际问题,看起来完全不同,但在一定的简化层次下它们的数学建模是相同的或相似的,这正是数学应用广泛性的体现,这就要培养学生有广泛的兴趣,多思考,勤奋踏实地学习,通过熟能生巧达到触类旁通地境界。
因此,目前有越来越多的高等院校自己组织或参加全国乃至国际大学生数学建模竟赛。
然而,有部分学生特别是初次参加数学建模的学生对数学建模感到很茫然,本人多次承担数学建模指导老师,撰写该论文,希望对初次参加数学建模的同学有所帮助。
1.建立数学模型的一般步骤使问题理想化在众多因素中孤立出所研究的问题是科学研究的经典方法。
按照辩证唯物主义观点,世界上一切事物都是相互依赖、相互依存的,要精细地研究一个问题常常无从下手,就是因为思考相关问题太多所致。
因此,对初学者最好的方法就是使问题简单化、理想化,在特殊或极端情况下进入课题,然后加入相关因素,修正结果,使问题深化。
数学建模论文模板(10篇)
数学建模论文模板(10篇)创新是知识经济的灵魂,创新能力培养是本科教育的根本目的之一、大学数学作为本科基础教学课程,在培养学生创新思维和创新能力方面具有举足轻重的作用,而数学建模能力的培养正是实现这一目的的最好途径。
2.数学教学中渗透数学建模思想是大学数学教学的必然要求。
目前,高校中高等数学教学普遍存在内容多、课时少的问题,教师在教学中往往只注重理论知识的教学,忽视了知识的应用;只注重数学学科本身知识的讲解,不注重学科之间的结合,这样使学生体会不到数学的真正用处。
为了克服这一教学中的不足,应将数学建模思想融入大学数学教学中去,使学生具备扎实的数学理论基本功和数学技能的同时,更具备运用数学思想解决实际问题的创新能力和应用能力。
3.数学建模有助于提高学生的多方面能力数学建模是将数学知识应用到实际问题中的一种创造性实践活动,它能增强学生将数学理论应用到实际问题中的社会实践意识。
数学建模具有思维的灵活性和结论的不确定性,在解决实际问题时可以从不同的角度,采用不同的数学方法建立数学模型,因此,可以激发学生的想象力、观察力和创造力。
另外,在建模时往往需要查阅相关文献资料,从中吸取有用的信息用于建模,这无形之中拓宽了学生的知识面,培养了学生的科研能力。
二、大学数学教学中渗透数学建模思想的主要措施在教学中渗入数学建模思想,必须改进原有的大学数学教学体制,从教学内容、教学方法、教学手段、教育观点、考核方式等各个方面做调整,以适应新体制下大学数学教学要求和人才培养目标。
1.从教学内容上改进以促进数学建模思想的普及和深入。
科学合理地修订教学大纲和调整教学内容,适当增加数学建模以及数学实验的教学环节势在必行。
为了让学生了解数学和数学建模的思想和理念,我校主要从课堂上和课外两方面采取了一些措施,并取得了一定的成效。
(1)在不改变现行课程主体结构下,教师从概念引入、定理证明、例题编排、课后练习各个教学环节都融入数学建模的思想和方法,这需要教师挖掘数学课程中能通过构建数学模型来解决的数学问题,合理地将数学建模的思想方法穿去,从而展示数学思想的形成过程。
数学建模论文六篇
数学建模论文六篇数学建模论文范文1那么当前我国高中同学的数学建模意识和建模力量如何呢?下面是节自有关人士对某次竞赛中的一道建模题目同学的作答状况所作的抽样调查。
题目内容如下:某市教育局组织了一项竞赛,聘请了来自不同学校的数名老师做评委组成评判组。
本次竞赛制定四条评分规章,内容如下:(1)评委对本校选手不打分。
(2)每位评委对每位参赛选手(除本校选手外)都必需打分,且所打分数不相同。
(3)评委打分方法为:倒数第一名记1分,倒数其次名记2分,依次类推。
(4)竞赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。
本次竞赛中,选手甲所在学校有一名评委,这位评委将不参与对选手甲的评分,其他选手所在学校无人担当评委。
(Ⅰ)公布评分规章后,其他选手觉得这种评分规章对甲更有利,请问这种看法是否有道理?(请说明理由)(Ⅱ)能否给这次竞赛制定更公正的评分规章?若能,请你给出一个更公正的评分规章,并说明理由。
本题是一道开放性很强的好题,给同学留有很大的发挥空间,不少同学都有精彩的表现,例如关于评分规章的修正,就有下列几种方案:方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数其次名记2+,…依次类推;(评分标准)方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;然而也有不少同学为空白,究其缘由可能除了时间因素,同学对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。
同时,一些同学由于不能正确理解规章(3),得出选手甲的平均得分为,其他选手的平均得分为,从而得出错误结论.不少同学消失“甲所在学校的评委会有意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。
有些同学在正确理解题意的基础上,提出了“规章对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。
数学建模论文范文
数学建模论文范文摘要:本文通过对某实际问题的分析,建立了相应的数学模型,并利用数学方法和软件工具进行求解和验证。
旨在展示数学建模的过程和方法,为解决类似问题提供参考。
一、问题背景在现实生活中,我们常常会遇到各种各样的问题,需要运用数学的思维和方法来解决。
例如,在交通规划中,如何优化公交线路以提高运输效率;在生产管理中,如何安排生产计划以最小化成本;在资源分配中,如何合理分配有限的资源以满足不同的需求等等。
数学建模就是将这些实际问题转化为数学问题,并通过建立数学模型来求解和分析。
二、问题提出假设我们面临一个城市的垃圾处理问题。
城市每天产生大量的垃圾,需要运往垃圾处理厂进行处理。
目前有多个垃圾收集点和一个垃圾处理厂,已知每个收集点的垃圾产生量、位置以及运输车辆的载重量和运输成本等信息。
如何安排运输车辆的路线,使得运输成本最小,同时满足垃圾处理的需求?三、模型假设为了简化问题,我们做出以下假设:1、运输车辆的行驶速度恒定。
2、垃圾收集点的垃圾产生量在一天内是固定的。
3、运输车辆的载重量是有限的,且不能超载。
4、运输成本只与运输距离和车辆使用数量有关。
四、符号说明为了便于描述和计算,我们定义以下符号:1、$n$:垃圾收集点的数量。
2、$m$:运输车辆的数量。
3、$C_{ij}$:从收集点$i$ 到收集点$j$ 的运输成本(包括燃料费、车辆损耗等)。
4、$d_{ij}$:从收集点$i$ 到收集点$j$ 的距离。
5、$q_{i}$:收集点$i$ 的垃圾产生量。
6、$Q$:运输车辆的载重量。
五、模型建立我们可以将这个问题转化为一个线性规划问题。
目标是最小化运输总成本,约束条件包括垃圾处理需求、车辆载重量限制等。
目标函数:\\min Z =\sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} x_{ij}\其中,$x_{ij}$表示从收集点$i$ 到收集点$j$ 的运输量。
约束条件:1、垃圾处理需求约束:\\sum_{j=1}^{n} x_{ij} = q_{i},\quad i = 1, 2, \cdots, n \\\sum_{i=1}^{n} x_{ij} = q_{j},\quad j = 1, 2, \cdots, n \2、车辆载重量约束:\\sum_{i=1}^{n} \sum_{j=1}^{n} x_{ij} \leq Q \times m \3、非负约束:\x_{ij} \geq 0, \quad i, j = 1, 2, \cdots, n\六、模型求解我们可以使用数学软件(如 Lingo、Matlab 等)来求解上述线性规划模型。
数学建模优秀论文(精选范文10篇)2021
数学建模优秀论文(精选范文10篇)2021一、基于数学建模的空气质量预测研究本文以某城市为研究对象,通过数学建模方法对空气质量进行预测。
通过收集历史空气质量数据,构建空气质量预测模型。
运用机器学习算法对模型进行训练和优化,提高预测精度。
通过对预测结果的分析,为城市环境管理部门提供决策支持,有助于改善城市空气质量。
二、数学建模在物流优化中的应用本文针对某物流公司配送路线优化问题,运用数学建模方法进行求解。
建立物流配送模型,考虑配送成本、时间、距离等因素。
运用线性规划、遗传算法等优化算法对模型进行求解。
通过对求解结果的分析,为物流公司提供优化配送路线的建议,降低物流成本,提高配送效率。
三、基于数学建模的金融风险管理研究本文以某银行为研究对象,通过数学建模方法对金融风险进行管理。
构建金融风险预测模型,考虑市场风险、信用风险、操作风险等因素。
运用风险度量方法对模型进行评估。
通过对预测结果的分析,为银行提供风险控制策略,降低金融风险,提高银行稳健性。
四、数学建模在能源消耗优化中的应用本文针对某工厂能源消耗优化问题,运用数学建模方法进行求解。
建立能源消耗模型,考虑设备运行、生产计划等因素。
运用优化算法对模型进行求解。
通过对求解结果的分析,为工厂提供能源消耗优化策略,降低能源消耗,提高生产效益。
五、基于数学建模的交通流量预测研究本文以某城市交通流量为研究对象,通过数学建模方法进行预测。
收集历史交通流量数据,构建交通流量预测模型。
运用时间序列分析方法对模型进行训练和优化。
通过对预测结果的分析,为城市交通管理部门提供决策支持,有助于缓解城市交通拥堵。
数学建模优秀论文(精选范文10篇)2021六、数学建模在医疗资源优化配置中的应用本文以某地区医疗资源优化配置问题为研究对象,通过数学建模方法进行求解。
建立医疗资源需求模型,考虑人口分布、疾病类型等因素。
运用线性规划、遗传算法等优化算法对模型进行求解。
通过对求解结果的分析,为政府部门提供医疗资源优化配置策略,提高医疗服务质量。
数学建模论文范文
数学建模论文范文数学建模是一门综合性学科,它将数学知识与实际问题相结合,通过建立数学模型来解决实际问题。
数学建模论文是数学建模比赛的重要成果之一,它既是对问题的深入分析和解决方案的提出,也是对数学建模能力的一种检验。
下面我们以一篇数学建模论文为范例,来探讨一下数学建模的具体应用。
首先,我们来看一下论文的题目:“城市交通拥堵问题的数学建模与优化研究”。
这个题目明确了研究的方向和目标,即通过数学建模和优化方法来解决城市交通拥堵问题。
这个题目具有一定的挑战性和实际意义,因为城市交通拥堵一直是困扰城市发展的重要问题之一。
在论文的引言部分,作者首先对城市交通拥堵问题进行了描述和分析,指出了城市交通拥堵对城市发展和居民生活的影响。
然后,作者介绍了数学建模和优化方法在解决实际问题中的重要性和应用前景。
通过引言部分,读者可以清晰地了解到论文的研究背景和意义。
接着,论文进入了问题的具体分析和建模过程。
作者首先对城市交通拥堵问题进行了数学描述,包括交通流量、道路容量、车辆速度等相关参数。
然后,作者建立了城市交通拥堵的数学模型,考虑了交通信号灯控制、车辆流动规律等因素,并对模型进行了数学分析和求解。
通过这一部分的内容,读者可以了解到作者对问题的深入分析和建模能力。
在论文的核心部分,作者提出了一种针对城市交通拥堵问题的优化算法,并给出了详细的算法流程和数学推导。
该算法结合了交通工程学、运筹学和优化理论的方法,能够有效地减少城市交通拥堵并提高交通效率。
通过对算法的详细介绍和分析,读者可以了解到作者对问题的解决方案和创新能力。
最后,论文进行了实例分析和数值模拟。
作者选择了一个实际的城市交通拥堵案例,对该案例进行了数学建模和优化求解,并进行了相应的数值模拟和结果分析。
通过实例分析,读者可以了解到作者提出的算法和方法在实际问题中的应用效果和实际意义。
综上所述,这篇数学建模论文以城市交通拥堵问题为研究对象,通过深入分析和建模,提出了一种有效的优化算法,并进行了实例分析和数值模拟。
精选五篇数学建模优秀论文
精选五篇数学建模优秀论文一、基于深度学习的股票价格预测模型研究随着金融市场的发展,股票价格预测成为投资者关注的焦点。
本文提出了一种基于深度学习的股票价格预测模型,通过分析历史数据,预测未来股票价格走势。
实验结果表明,该模型具有较高的预测精度和鲁棒性,为投资者提供了一种有效的决策支持工具。
二、基于优化算法的智能交通信号控制策略研究随着城市化进程的加快,交通拥堵问题日益严重。
本文提出了一种基于优化算法的智能交通信号控制策略,通过优化信号灯的配时方案,实现交通流量的均衡分配,提高道路通行能力。
实验结果表明,该策略能够有效缓解交通拥堵,提高交通效率。
三、基于数据挖掘的电商平台用户行为分析电商平台在电子商务领域发挥着重要作用,用户行为分析对于电商平台的发展至关重要。
本文提出了一种基于数据挖掘的电商平台用户行为分析模型,通过分析用户购买行为、浏览行为等数据,挖掘用户偏好和需求。
实验结果表明,该模型能够有效识别用户行为特征,为电商平台提供个性化的推荐服务。
四、基于机器学习的疾病预测模型研究疾病预测对于公共卫生管理具有重要意义。
本文提出了一种基于机器学习的疾病预测模型,通过分析历史疾病数据,预测未来疾病的发生趋势。
实验结果表明,该模型具有较高的预测精度和可靠性,为疾病预防控制提供了一种有效的手段。
五、基于模糊数学的农业生产决策支持系统研究农业生产决策对于提高农业效益和农民收入具有重要意义。
本文提出了一种基于模糊数学的农业生产决策支持系统,通过分析农业环境、市场需求等因素,为农民提供合理的生产决策建议。
实验结果表明,该系统能够有效提高农业生产效益,促进农业可持续发展。
精选五篇数学建模优秀论文一、基于深度学习的股票价格预测模型研究随着金融市场的发展,股票价格预测成为投资者关注的焦点。
本文提出了一种基于深度学习的股票价格预测模型,通过分析历史数据,预测未来股票价格走势。
实验结果表明,该模型具有较高的预测精度和鲁棒性,为投资者提供了一种有效的决策支持工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/5/9
8
0. 摘要
a. 模型的数学归类(在数学上属于什么类型) b. 建模的思想(思路) c . 算法思想(求解思路) d. 建模特点(模型优点,建模思想或方法,
算法特点,结果检验,灵敏度分析, 模型检验…….) e. 主要结果(数值结果,结论)(回答题目所问 的全部“问题”) ▲表述:准确、简明、条理清晰、合乎语法; 符合打印文章格式。务必认真校对。
一列出;
➢ (4) 列数据问题:考虑是否需要列出多组数据,或额 外数据 对数据进行比较、分析,为各种方案的提出提供依据;
➢ (5) 结果表示:要集中,一目了然,直观,便于比较 分析
➢ (6) 必要时对问题解答,作定性或规律性的讨论。最 后结论要明确。
2020/5/9
22
(2) 对数值结果或模拟结果进行 必要的检验。
2) 基本模型,要求完整,正确,简明
2020/5明确说明:简化思想,依据 2) 简化后模型,尽可能完整给出
2020/5/9
16
(3) 模型要实用,有效,有特 色,以解决问题有效为原则。
数学建模面临的、要解决的是实际问题,较复杂的问题, 力求简单化不追求数学上:高(级)、深(刻)、难 (度大)。
说明相结合 忌:外行话,专业术语不明确,表述混乱,冗长。
2020/5/9
19
4. 模型的求解
计算方法设计或选择; 算法设计或选择, 算法思想依据,步骤及实 现,计算框图; 所采用的软件名称;
引用或建立必要的数学命题和定理; 求解方案及流程
2020/5/9
20
4. 模型求解
(1) 需要建立数学命题时 命题叙述要符合数学命题的表述规范,尽可能论 证严密。能用定理总结的,尽量给出定理,并证 明(专业性强)
2020/5/9
9
例1:本文获2004年全国数学建模竞赛一等奖。(国防科大:黄立波) 摘要:本文所要讨论的问题可以归结为一个二元整数规划问题。首先,我们根据三次
预演运动会的调查结果推断出奥运会期间观众在出行方式、餐饮、消费水平三个方面
的行为规律以及不同性别、年龄的人群在这三个方面上的差异,然后根据这些规律估
2020/5/9
3
一、写好数模论文的重要性
➢ 1. 评定参赛队的成绩好坏、高低,获奖级别 数模论文,是唯一依据。
➢ 2. 论文是竞赛活动的成绩结晶的书面形式。 ➢ 3. 写好论文的训练,是科技写作的一种基本训练。
2020/5/9
4
二、论文的基本内容,需要重视的 问题
▪ Ⅰ. 评阅原则 ▪ Ⅱ. 论文的文章结构 ▪ Ⅲ. 要重视的问题
2020/5/9
17
(4)鼓励创新,但要切实,不要 离题搞标新立异
数模创新可出现在 ▲建模中,模型本身,简化的好方法、好策略 等, ▲模型求解中 ▲结果表示、分析、检验,模型检验 ▲推广部分
2020/5/9
18
(5)在问题分析推导过程中,需 要注意的问题:
分析:中肯、确切 术语:专业、内行 原理、依据:正确、明确 表述:简明,关键步骤要列出,可将公式与中文
能用初等方法解决的,就不用高级方法 能用简单方法解决的,就不用复杂方法 能用被更多人看懂、理解的方法,就不用只能少数人看懂、理
解的方法。
对较简单的问题,做出自己的特色,你想如果自己能做, 别人也能这样做,只有比赛各自的创新。
人无我有,别人想不到的,大胆去想 人有我新,别人容易想到的,我比你想得更全面,更好
(2) 需要说明计算方法或算法的原理、思想、 依据、步骤。 若采用现有软件,说明采用此软件的理由,软件 名称
(3) 计算过程,中间结果可要可不要的,如果 篇辐大的,不要列出。
(4) 设法算出合理的数值结果。
2020/5/9
21
5. 结果分析、检验;模型检验及 模型修正;结果表示
➢ (1) 最终数值结果的正确性或合理性是第一位的 ; ➢ (2) 对数值结果或模拟结果进行必要的检验。 ➢ (3) 题目中要求回答的问题,数值结果,结论,须一
的“最短路径”前提下,模拟出观众的行进路线,从而跟踪计算出各商区的 人流量比例。结果见表1。对各商区的MS 设置的方案设计,是一个多目标规 划问题,目标函数为:满足观众购物需求、分布均衡以及商业上盈利。我们 首先根据基于网络的Hu® 模型,研究了人群进入商区的购物欲望曲线, 计算出每个商区的总消费量,从而得到每个商区需要的MS 的大致数目。为 了得到最优的设计方案,我们定义了饱和指数指标 ¾2,来衡量整个 商业区的MS 分布情况,再通过改进的模拟退火算法求出各商区间MS 分布 方差最小的设计方案,即为所求的最优解。由于存在两种不同规模的MS, 我们严格讨论了其性质与特征,并根据不同情况,在满足目标函数的前提下, 对MS 和LMS 在商区内的数量分布进行了设计,结果见表2。最后,我们对 模型的科学性与现实性进行了阐述。根据雅典奥运体育场的构造图,验证了 各商区的MS 个数比例是符合实际的。
最终或简化模型 等) ➢ 4. 模型的求解 ➢ 5. 结果表示、分析与检验,误差分析,模型检
验…… ➢ 6. 模型评价,特点,优缺点,改进方法,推广……. ➢ 7. 参考文献 ➢ 8. 附录
2020/5/9
7
Ⅲ. 要重视的问题
➢ 0. 摘要。 ➢ 1. 问题重述。 ➢ 2. 模型假设 ➢ 3. 模型的建立 ➢ 4. 模型求解 ➢ 5. 结果分析、检验;模型检验及模型修正;结果
2020/5/9
25
7.参考文献
• 力求规范,清晰:标号,作者,论文名称,杂志名 称或出版社名称,时间(年、月),页
例: [1]赵静,但琦,数学建模与数学实验,高等教育出版社,2003.6 [2]徐茂良,张勇等,矩阵在基金使用计划模型中的应用,成都大学学报
(自然科学版),2005(1):1~4
• 文中引用文献处,最要标出
键数据 每个量,列出一组还是多组数――要计算一组还是多
组数……
2020/5/9
30
五、论文要求的原理
准确――科学性 条理――逻辑性 简洁――数学美 创新――研究、应用目标之一,人才培养需
要 实用――建模,实际问题要求。
2020/5/9
31
建模理念:
1. 应用意识:要解决实际问题,结果、结论要符 合实际; 模型、方法、结果要易于理解,便于实际应用; 站在应用者的立场上想问题,处理问题。
2. 数学建模:用数学方法解决问题,要有数学模 型; 问题模型的数学抽象,方法有普适性、科学性, 不局限于本具体问题的解决。
3. 创新意识:建模有特点,更加合理、科学、有 效、符合实际; 更有普遍应用意义;不单纯为创新而创新。
2020/5/9
32
第二部分 数学建模案例 (奥运场馆问题)
2008年北京奥运会临时超市网点设计 (2004年全国大学生建模比赛A题)
平竞争原则和共同盈利原则四个方面对模型的合理性进行了分析说明。在模型的进一
步讨论中,我们讨论了经济增长、旅游人口等因素对设计方案可能产生的影响。另外,
为了使同一商区内的超市间避免盲目竞争,同时也是为了奥运会结束后能更好地现有
的临时商业点地面进行二次开发,我们利用商圈理论对商区内超市的布局原则做了讨
论并得出“大店分散,小店聚集”的规律。最后,我们根据模型求解的结果给北京奥
例:……资料表明,小型超市的面积一般为120~400平方米…… [3]
2020/5/9
26
8.附录
计算框图 详细图表
较详细的结果,较详细的数据表格,可在此列 出。
但不要错,错的宁可不列。 主要结果数据,应在正文中列出。
注:切忌过于冗长的数据列表,因为太多的数 据一般应用独立于主程序的数据文件来表示, 以免主程序太长
模型求解 、结果分析、检验、模型检验及模 型修正、结果表示 、模型评价 、参考文献 、 附录 各自安排要合理恰当,体现出既专业又 中肯
2020/5/9
29
四、关于写论文前的思考和工作规 划
论文需要回答哪几个问题――建模需要解决哪几个问 题
问题以怎样的方式回答――结果以怎样的形式表示 每个问题要列出哪些关键数据――建模要计算哪些关
2020/5/9
27
检查论文的主要三点,把三关:
模型的正确性、合理性、创新性 结果的正确性、合理性 文字表述清晰,分析精辟,摘要精彩
2020/5/9
28
三、对分工执笔的同学的要求
执笔者思路清晰,文字流畅通顺,语言优美 文章结构层次分明,思想表述明确又简洁 摘要、问题重述、模型假设 、模型的建立 、
结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进;
2020/5/9
23
(5) 结果表示:要集中,一目了 然,直观,便于比较分析
▲数值结果表示:精心设计表格;可能的话, 用图形图表形式
▲求解方案,用图示更好
2020/5/9
24
6.模型评价
优点突出,缺点不回避。 改变原题要求,重新建模可在此做。 推广或改进方向时,不要玩弄新数学术语。
组委提出几点建议:关注市场规模的增长、流动人口对市场的影响以及及时制定临时 商业用地的二次开发方案。
2020/5/9
10
例2:本文获2004年全国数学建模一等奖。(国防科大 于旭东) 摘要:本文首先对三次问卷调查的结果进行统计分析,以年龄结构、出行方
式、用餐习惯以及消费水平为不同划分标准,得出人群的分布规律以及各规 律间的内在联系: 1. 选择不同出行方式的各类人群在消费水平方面的分布是 相似的。 2. 选择不同用餐习惯的各类人群在消费水平方面的分布是相似的。 在对人流量分布问题的处理上,我们根据题目给出的假设,在保证每位观众