重点高中物理选修33知识点整理
人教版高中物理选修3-3知识点复习(共52张PPT)
分子势能:由分子和分子间相对位置所决定的能.
分子力做功跟分子势能变化的关系: 分子力做正功时,分子势能减少,分子力做
负功时(克服分子力做功),分子势能增加.
物体的内能:物体中所有分子做热运动的动能和分 子势能的总和叫做物体的内能.
决定物体内能的因素 从微观上看:物体内能的大小由组成物体的分子总数、 分子热运动的平均动能和分子间的距离三个因素决 定.
• 间 接 说 明:分子间有间隙
• 2)布朗运动:悬浮在液体中的固体微粒的 无规则运动,不是液体分子的无规则运动 因微粒很小,所以要用光学显微镜来观察.
• 布朗运动发生的原因是受到包围微粒的液 体分子无规则运动地撞击的不平衡性造成 的.因而布朗运动说明了分子在永不停息 地做无规则运动.
• (1)布朗运动不是固体微粒中分子的无规 则运动.
• 热学包括:研究宏观热现象的热力学、研 究微观理论的统计物理学
• 统计规律:单个分子的运动都是不规则的、 带有偶然性的;大量分子的集体行为受到 统计规律的支配
气体温度的微观意义
1.氧气分子的速率分布图象特点: “中间多、两头少”
温度升高时, 速率大的分子数增加 速率小的分子数减少
T aEk a为比例常数
(4)当r<r0时,分子力随距离增大而减小;当r>r0 时, 分子力随距离先增大后减小
(5)当r>10r0时,分子力等于0,分子力是短程力。
取分子间距离无限远时分子势能为零
分子间距离从无限远逐渐减少至r0的过程,分子力做 正功,分子势能不断减小。 分子间距离从r0继续减小,克服斥力做功,使分子势 能不断增大。其数值将从负值逐渐变大至零,甚至 为正值。 当r=r0 时,分子势能最小。 F
重点高中物理选修3-3知识点总结归纳
高三物理复习资料选修3—3考点汇编1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210ANmol -=⨯(3)对微观量的估算: ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据空间看成立方体)②利用阿伏伽德罗常数联系宏观量与微观量a.分子质量:mol A M m N =b.分子体积:mol AVv N = c 分子数量:A A A A mol mol mol molM v M v n N N N N M M V V ρρ==== 2、分子永不停息的做无规则的热运动(布朗运动扩散现象)(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有间隙,温度越高扩散越快(2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。
①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。
②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀造成。
③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。
(3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈。
3、分子间的相互作用力分子之间的引力和斥力都随分子间距离增大而减小。
但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。
分子间同时存在引力和斥力,两种力的合力又叫做分子力。
在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。
30V L =36πV d =当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010-m ,相当于0r 位置叫做平衡位置。
当分子距离的数量级大于m 时,分子间的作用力变得十分微弱,可以忽略不计了。
高中物理选修3-3知识点
选修3—3考点汇编一、分子动理论1、物质是由大量分子组成的(1)单分子油膜法测量分子直径(2)1mol 任何物质含有的微粒数相同23 1N 6.02 10 molA(3)对微观量的估算①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体)Ⅰ.球体模型直径d=36V0.πⅡ.立方体模型边长d= 3 V0.(2013考试说明新要求):②利用阿伏伽德罗常数联系宏观量与微观量Ⅰ.微观量:分子体积V0、分子直径d、分子质量m0.Ⅱ.宏观量:物体的体积V、摩尔体积Vm,物体的质量m、摩尔质量M、物体的密度ρ.a.分子质量:Mmolm0 =NAVmolNAb.分子体积:Vmolv0 =NAM(气体分子除外)ρN AM v M vc.分子数量: A A A An N N N NM M V Vmol mol mol mol特别提醒:1、固体和液体分子都可看成是紧密堆集在一起的。
分子的体积V0=V m,仅适用于固体和N A液体,对气体不适用,仅估算了气体分子所占的空间。
32、对于气体分子,d=V0的值并非气体分子的大小,而是两个相邻的气体分子之间的平均距离.2、分子永不停息的做无规则的热运动(布朗运动扩散现象)(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有空隙,温度越高扩散越快。
可以发生在固体、液体、气体任何两种物质之间(2013考试说明新考点):(2)布朗运动:它是悬浮在液体(或气体)中的固体微粒的无规则运动,是在显微镜下观察到的。
①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。
②产生布朗运动的原因:它是由于液体分子无规则运动对固体微.小.颗.粒...各个方向撞击的不均匀性造成的。
③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。
高中物理3-3知识点总结
物理选修3-3知识点总结一、分子动理论1、物体是由大量分子组成的微观量:分子体积V 0、分子直径d 、分子质量m 0宏观量:物质体积V 、摩尔体积m ol V 、物体质量m 、摩尔质量mol M 、物质密度ρ。
联系桥梁:阿伏加德罗常数(N A =6.02×1023mol -1) molmol V MV m ==ρ (1)分子质量:Amolmol 0N V N M N m m A ρ===(2)分子体积:A mol A mol 0N M N V N V V ρ===(对气体,V 0应为气体分子占据的空间大小)(3)分子大小:(数量级10-10m) ○1球体模型.3mol mol 0)2(34d N M N V V A A πρ=== 直径306πV d =(固、液体一般用此模型) 油膜法估测分子大小:SVd =S ----单分子油膜的面积,V----滴到水中的纯油酸的体积 ○2立方体模型.30=V d (气体一般用此模型;对气体,d 应理解为相邻分子间的平均距离) 注意:固体、液体分子可估算分子质量、大小(认为分子一个挨一个紧密排列);气体分子间距很大,大小可忽略,不可估算大小,只能估算气体分子所占空间、分子质量。
(4)分子的数量:A A A N V N M N V N M m nN N molA mol mol A mol mv v ρρ===== 2、分子永不停息地做无规则运动(1)扩散现象:不同物质彼此进入对方的现象。
温度越高,扩散越快。
直接说明了组成物体的分子总是不停地做无规则运动,温度越高分子运动越剧烈。
运动对象是分子,肉眼看不到分子,可以观察到现象。
(2)布朗运动:悬浮在液体中的固体微粒的无规则运动。
运动对象是小颗粒,肉眼看不见,要用显微镜观察。
发生原因是固体微粒受到包围微粒的液体分子无规则运动地撞击的不平衡性造成的.因而间接..说明了液体分子在永不停息地做无规则运动.① 布朗运动是固体微粒的运动而不是固体微粒中分子的无规则运动. ②布朗运动反映液体分子的无规则运动但不是液体分子的运动. ③课本中所示的布朗运动路线,不是固体微粒运动的轨迹. ④微粒越小,布朗运动越明显;温度越高,布朗运动越明显. 3、分子间存在相互作用的引力和斥力①分子间引力和斥力一定同时存在,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但斥力变化快,实际表现出的分子力是分子引力和分子斥力的合力②分子力的表现及变化,对于曲线注意两个距离,即平衡距离r 0(约10-10m )与10r 0。
高中物理选修三的知识点
高中物理选修三的知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高中物理选修三的知识点学习知识容易,转化成为能力很难;提出问题容易,得到圆满答复很难;点评别人容易,身临其境去做很难;指责同事容易,正确评价自己很难。
高中物理选修3-3知识点梳理及习题
高中物理选修3-3知识点梳理及习题一、电流和电阻1.电流的概念:电荷在单位时间内通过导体的量。
电流的单位是安培(A),1A等于1C/s。
2.电流的计算:I=Q/t,其中I为电流,Q为通过截面的电荷量,t为通过截面的时间。
3.电阻的概念:材料对电流的阻碍程度。
电阻的单位是欧姆(Ω),1Ω等于1V/A。
4.欧姆定律:U=IR,其中U为电压,I为电流,R为电阻。
5.导体和绝缘体:导体具有较低的电阻,能够很容易地传导电流;绝缘体具有很高的电阻,不容易传导电流。
二、电阻的影响因素1.长度:电阻与电阻长度成正比,R∝l。
2.截面积:电阻与截面积的倒数成正比,R∝1/A。
3.材料电阻率:电阻与材料电阻率成正比,R∝ρ。
4.电阻串联:串联电阻等效电阻等于各电阻的总和。
5.电阻并联:并联电阻等效电阻满足倒数之和的倒数。
三、电压、电流和功率1.电压的概念:电荷的电位差,也称为电势差。
电压的单位是伏特(V),1V等于1J/C。
2.电流和电压的关系:U=IR,其中U为电压,I为电流,R为电阻。
3.功率的概念:单位时间内做功的量。
功率的单位是瓦特(W),1W等于1J/s。
4.功率的计算:P=IV,其中P为功率,I为电流,V为电压。
5.电阻的功率计算:P=I^2R=V^2/R,其中P为功率,I为电流,R为电阻,V为电压。
四、电路中的能量变换1.电源的作用:提供电压差,驱动电荷在电路中流动。
2.电源的类型:干电池、蓄电池、发电机等。
3.电路的分类:串联电路、并联电路和混联电路。
4.串联电路中的电压:串联电路中各电器所接收的电压等于总电压。
5.并联电路中的电流:并联电路中各电器所接受的电流等于总电流。
综合练习题:1.一根电阻为10Ω的导线中通过电流2A,求导线两端的电压。
解:U=IR=10Ω×2A=20V2.一个电阻为5Ω的电灯接在12V的电压源上,求电灯的功率。
解:P=(12V)^2/5Ω=28.8W3.有一个串联电路,其中包括一个电阻为20Ω的灯泡和一个电阻为30Ω的电热器,接入220V的电压源,求电路总电阻和总电流。
高中物理选修3知识点总结
高中物理选修3知识点总结第一章电磁场中的导电电荷1.1 导体中的电荷分布导体中的电荷主要集中在导体的表面,由于导体内部不存在电场,电荷会受到电场的作用而在导体表面分布。
1.2 静电平衡条件导体内部内电场强度为零,静电平衡条件下导体表面法向电场强度为零。
1.3 费朗霍夫定律费朗霍夫定律描述了导体内部电场强度为零的条件,即电荷的分布使导体内部电场强度为零。
1.4 导体内部电场强度为零的应用利用导体内部电场强度为零的特性,可以快速求出导体内部电荷分布的问题。
1.5 导体表面法向电场强度为零的应用导体表面法向电场强度为零的特性可以用来判断导体表面电场分布的规律。
第二章电磁感应2.1 感生电动势磁场的变化会在闭合电路中产生感生电动势,感生电动势的大小与磁场变化速率成正比。
2.2 楞次定律楞次定律描述了感生电动势的方向规律,即感生电动势的方向使得引起它的磁场变化受到抑制。
2.3 法拉第电磁感应定律法拉第电磁感应定律描述了感生电动势大小与磁场变化速率的关系,即感生电动势的大小与磁场的变化速率成正比。
2.4 自感与互感自感是指线圈或电路本身产生的感生电动势,互感是指两个线圈或电路之间相互感应产生的感生电动势。
2.5 感应电流感应电动势在闭合电路中会引起感应电流,根据洛恩兹力规律,感应电流的方向使得引起它的磁场变化受到抑制。
第三章交变电磁场3.1 交流电的产生交流电是指电压大小和方向以一定规律随时间变化的电流,交流电可以通过旋转磁铁或变压器的变压器原理产生。
3.2 交流电的特点交流电的电压和电流大小和方向周期性地交变,交流电的频率是指单位时间内交变的周期数。
3.3 交流电的有效值交流电的有效值是指相同功率的直流电和交流电通过相同电阻时的电压或电流大小。
3.4 交流电的表示交流电可以用正弦函数表示,交流电的方向及大小可以用相位角表示。
第四章交变电路分析4.1 交变电路的效果交变电路中,电阻,电感和电容对电压和电流的相位差以及功率产生影响。
高中物理选修3-3知识点整理
单晶体 多晶体 • 如果一个物体就是一个完整的晶体,如食 盐小颗粒,这样的晶体就是单晶体(单晶 硅、单晶锗) • 如果整个物体是由许多杂乱无章的小晶体 排列而成,这样的物体叫做多晶体,多晶 体没有规则的几何外形,但同单晶体一样, 仍有确定的熔点。
四、气体
1.气体压强的微观解释 (1) 大量分子频繁的撞击器壁的结果 (2) 影响气体压强的因素: ①气体的平均分子动能(温度) ②分子的密集程度即单位体积内的分子数 (体积)
(1)定义:大量分子动能的平均值, 这个平均值叫做分子热运动的平均动 能. (2)温度是物体内分子热运动平均动 能的标志,
3.物体的内能
定义:物体中所有分子热运动的动能和分 子势能的总和,叫做物体的内能。
Hale Waihona Puke (1)分子势能 • 分子间存在着相互作用力,因此分子间具 有由它们的相对位置决定的势能,这就是 分子势能。分子势能的大小与分子间距离 有关. • 当时,分子力为引力,当r增大时,分子力 做负功,分子势能增加 • 当时,分子力为斥力,当r减少时,分子力 做负功,分子是能增加
• 气体的压强与气体温度和分子密度有关,温 度越高,单位体积内的分子数越多,气体的压 强越大
二、温度与内能
1、温度与分子平均动能
温度:宏观上的温度表示物体的 冷热程度,微观上的温度是物体大 量分子热运动平均动能的标志。热 力学温度与摄氏温度的关系:
T t 273.15K
2.分子平均动能
2.气体实验定律
①玻意耳定律:等温变化 • 微观解释:一定质量的理想气体,温度保持不变时, 分子的平均动能是一定的,在这种情况下,体积减少 时,分子的密集程度增大,气体的压强就增大。 • 适用条件:压强不太大,温度 不太低 p • 图象表达:
高中物理选修3-3知识点梳理及习题
选修3-3知识点梳理及习题定义特点说明扩散现象不同物质彼此进入对方(分子热运动)温度越高,扩散越快分子不停息地做无规则运动分子间有间隙扩散现象是分子运动的直接证明布朗运动悬浮在液体中的固体微粒的无规则运动微粒越小,温度越高,布朗运动越明显不是固体微粒分子的无规则运动布朗运动不是液体分子的运动.布朗运动示意图路线不是固体微粒运动的轨迹布朗运动间接证明了液体分子的无规则运动,不是分子运动1 分子间的作用力分子势能引力和斥力同时存在,都随r增加而减小,斥力变化更快,分子力本质为电磁力分子间距离f引与f斥对外表现分子力分子势能r=r0f引= f斥F=0Ep最小r<r0f引< f斥F为斥力Ep随减小而增大r>r0f引> f斥F为引力Ep随增大而减小r>10 r0f引f斥十分微弱F可以认为是零Ep可以认为是零2 分子动能,势能,内能及物体机械能项目定义决定微观量值分子的动能物体内分子永不与温度有关,温度是分分子永不停息永远不等于内能改变方法:做功和热传递对于改变内能来说,是等效的3 热力学第一定律与能的转化及守恒定律(注: 1 不能说物体具有多少热量,只能说物体吸收或放出了多少热量,热量是过程量,不能说“物体温度越高,所含热量越多”。
2绝热过程:系统只通过做功而与外界交换能量,它不从外界吸热,也不向外界放热.3 物体对外界做功,内能可能增加,如果它从外界吸热.反之亦然)4 热力学第二定律的三种表述(1)克劳修斯表述:热量不能自发地从低温物体传递到高温物体。
(热传导的方向性表述)(2)开尔文表述:不可能从单一热源吸收热量并把它全部用来做功,而不收起其它变化。
热机效率不可能达到100%(内能和机械能转化的方向性表述)(3) 第二类永动机不可能制成.原因是第二类永动机虽然不违反能量守恒定律,但是其违反了机械能与内能的转化具有方向性.热力学第二定律的微观意义:一切自然过程总是沿着分子热运动无序性(熵)增大的方向进行.5 热力学第三定律:不可能通过有限的过程把一个物体冷却到绝对零度。
高中物理选修3-3知识点归纳
高中物理选修3-3知识点归纳选修3-3物理知识1、晶体与非晶体晶体:外观上有规则的几何外形,有确定的熔点,一些物理性质表现为各向异性。
非晶体:外观没有规则的几何外形,无确定的熔点,一些物理性质表现为各向同性。
①判断物质是晶体还是非晶体的主要依据是有无固定的熔点。
②晶体与非晶体并不是绝对的,有些晶体在一定的条件下可以转化为非晶体(石英→玻璃)。
2、单晶体、多晶体如果一个物体就是一个完整的晶体,如食盐小颗粒,这样的晶体就是单晶体(单晶硅、单晶锗)。
如果整个物体是由许多杂乱无章的小晶体排列而成,这样的物体叫做多晶体,多晶体没有规则的几何外形,但同单晶体一样,仍有确定的熔点。
3、晶体的微观结构:固体内部,微粒的排列非常紧密,微粒之间的引力较大,绝大多数微粒只能在各自的平衡位置附近做小范围的无规则振动。
晶体内部,微粒按照一定的规律在空间周期性地排列(即晶体的点阵结构),不同方向上微粒的排列情况不同,正由于这个原因,晶体在不同方向上会表现出不同的物理性质(即晶体的各向异性)。
4、表面张力当表面层的分子比液体内部稀疏时,分子间距比内部大,表面层的分子表现为引力,如露珠。
(1)作用:液体的表面张力使液面具有收缩的趋势。
(2)方向:表面张力跟液面相切,跟这部分液面的分界线垂直。
(3)大小:液体的温度越高,表面张力越小;液体中溶有杂质时,表面张力变小;液体的密度越大,表面张力越大。
5、液晶分子排列有序,光学各向异性,可自由移动,位置无序,具有液体的流动性。
各向异性:分子的排列从某个方向上看液晶分子排列是整齐的,从另一方向看去则是杂乱无章的。
6、饱和汽;湿度(1)饱和汽:与液体处于动态平衡的蒸汽.(2)未饱和汽:没有达到饱和状态的蒸汽.(3)饱和汽压①定义:饱和汽所具有的压强。
②特点:液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关。
(4)湿度①定义:空气的干湿程度。
②描述湿度的物理量a.绝对湿度:空气中所含水蒸气的压强。
高中物理选修3-3热学知识点总结
高中物理选修3-3热学知识点总结咱今儿就来说说这高中物理选修3 3热学那点儿知识点哈。
我跟你讲,一想到热学啊,我脑子里头就浮现出一幅热闹的景象。
就好比是在一个大厨房里,各种分子啊,就跟那热锅上的蚂蚁似的,忙得不亦乐乎。
它们在那热得发烫的空间里头,横冲直撞,你挤我,我挤你,闹得是不可开交啊。
先说这温度吧。
温度这玩意儿啊,就像是个严厉的指挥官,掌控着分子们的活跃程度。
温度一高啊,那些分子就跟打了鸡血似的,一个个兴奋得很,跑得那叫一个快,碰撞得也越发激烈了。
就好比是夏天,那太阳火辣辣地照着,地面都烫脚,这时候的分子啊,也跟中了暑似的,热得没边儿了。
我记得我上学那会啊,有个同学老是搞不清温度和热量的关系。
有一回课间,他皱着眉头,挠着头,跑过来问我:“哎,我说,这温度和热量到底啥区别啊?我老是弄混。
”我就笑着跟他说:“你看啊,温度呢,就像是一个人的情绪,高了就兴奋,低了就消沉;而热量呢,就好比是这个人吃进去的能量,吃得多了,可能情绪就高,吃得少了,情绪可能就低点。
但这俩可不能完全划等号啊,有时候吃得多,情绪也不一定就高,对吧?”他听了之后,眼睛一下子亮了,咧着嘴说:“你这么一说,我好像有点明白了。
”再说说这内能。
内能啊,就像是分子们的家底儿。
分子们的动能、势能啥的,都算在这内能里头。
这内能的大小啊,跟温度、质量、状态都有关系。
比如说,同样是一杯水,温度高的那杯,内能肯定就大,就好比是一个有钱的大户人家;而温度低的那杯呢,内能就小点,像是个普通的小家庭。
还有啊,要是水变成了水蒸气,那状态变了,内能也跟着变了,就好比一个人突然中了彩票,家底儿一下子就厚实起来了。
还有这热力学定律,那可是热学里的大规矩。
第一定律就像是个管家,管着能量的收支平衡。
能量不会凭空产生,也不会凭空消失,只能从一种形式转化成另一种形式,或者从一个物体转移到另一个物体。
就好比你兜里的钱,不会无缘无故多出来,也不会莫名其妙就没了,要么是你干活挣来的,要么是你花出去买东西了。
高中物理选修3-3知识点总结
高中物理选修3-3知识点总结一、分子动理论1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径(2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=⨯(3)对微观量的估算①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:molAM m N =b.分子体积:molAV v N =c.分子数量:A A A A mol mol mol molM v M vn N N N N M M V V ρρ==== 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象)(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有间隙,温度越高扩散越快(2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。
①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。
②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。
③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。
(3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力分子之间的引力和斥力都随分子间距离增大而减小。
但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。
分子间同时存在引力和斥力,两种力的合力又叫做分子力。
在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。
当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010-m ,相当于0r 位置叫做平衡位置。
当分子距离的数量级大于m 时,分子间的作用力变得十分微弱,可以忽略不计了 4、温度宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。
高中物理选修3-3知识点与题型复习
热学知识点复习 → 制作人:湄江高级中学:吕天鸿一、固、液、气共有性质1、组成物质的分子永不停息、无规则运动。
温度T 越高,运动越激烈,分子平均动能 。
注意:对于理想气体,温度T 还决定其内能的变化。
扩散现象:相互渗透的 反应 2、分子运动的表现布朗运动:看不见的固体小颗粒被分子不平衡碰撞,颗粒越大,运动越3、分子间同时存在引力与斥力,且都随着分子间距r 的增加而 。
(1)分子力的合力F 表现:是为F 引 还是F 斥?看间距与分界点r 0关系,看下图当r=r 0时,F 引=F 斥,分子力为0;当r>r 0时,F 引>F 斥,分子力表现为当r<r 0时,F 引<F 斥,分子力表现为 。
当分子间距离大于10r 0(约为10-9 m)时,分子力很弱,可以忽略。
(2)分子势能E P 与分子间距r 的关系。
用图像表示如右图补充线注:当r=r0时,分子势能最小。
(3)分子力做功与E P 的关系,类比三大势能一样关系二、晶体与非晶体 单晶体:物理性质:各向异性。
原子排列:有规则晶体:有固定熔点1、 多晶体:物理性质:各向同性。
原子排列:无规则非晶体:无确定的熔点。
→ 物理性质:各向同性。
原子排列:无规则2,、同一种物质可能以晶体与非晶体两种不同形态出现。
如碳形成的金刚石与石墨3、有些晶体与非晶体可以相互转化。
4、常考晶体有:金刚石与石墨、石英、云母、食盐。
常考非晶体有:玻璃、蜂蜡、松香。
三、热力学定律→研究高考对象为→主要还是理想气体做功W 热量Q 内能的改变ΔU 取正值“+”外界对物体做功 物体从外界吸收热量 物体的内能增加 取负值“-” 物体对外界做功 物体向外界放出热量 物体的内能减少2、气体实验定律与热力学第一定律的结合量是气体的体积和温度,当温度变化时,气体的内能变化,当体积变化时,气体将伴随着做功,解题时要掌握气体变化过程的特点:(1)等温过程:内能不变,即ΔU=0。
温度T ↑,则内能增加,ΔU >0(2)等容过程:W=0。
高考物理选修三知识点总结
高考物理选修三知识点总结选修三是高中物理课程的重要内容之一,主要涉及光学和原子物理两大领域。
这一部分内容在高考中所占的比重较大,因此掌握选修三的知识点对于考生来说是非常重要的。
下面将对选修三的知识点进行总结和分析,希望能够帮助考生更好地复习和应对高考。
1. 光的折射定律光的折射定律是光学领域的重要知识点,它描述了光线在介质之间折射时的规律。
根据光的折射定律,入射角、折射角和介质的折射率之间存在着一定的关系。
具体表述为:当光线从一个介质射入另一个介质时,入射角i、折射角r和两个介质的折射率n1和n2之间满足下面的关系式:n1*sin(i) = n2*sin(r)其中,n1为入射介质的折射率,n2为折射介质的折射率,i为入射角,r为折射角。
光的折射定律在实际生活中有着广泛的应用,如眼镜、显微镜、望远镜、水箱、水面渔网等都是根据光的折射定律制作的。
2. 透镜成像透镜成像是光学领域的另一个重要知识点,它涉及透镜的焦距、物距、像距等概念,通过透镜成像公式可以计算物体在透镜前后的位置、像的大小等参数。
对于薄透镜来说,可以利用透镜成像公式来计算透镜成像的规律。
透镜成像公式可以表示为:1/f = 1/v + 1/u其中,f为透镜的焦距,v为像距,u为物距。
通过透镜成像公式,可以确定物体在透镜前后的位置、像的大小,进而分析成像的特点和规律。
透镜成像在实际生活中有很多应用,如相机、望远镜、显微镜等都是依靠透镜成像原理来工作的。
3. 原子的结构原子的结构是原子物理领域的重要知识点,它涉及原子的组成、结构和性质等方面的内容。
根据现代原子理论,原子由原子核和围绕原子核运动的电子组成。
原子核中包含质子和中子,电子以环绕原子核的轨道上运动。
在原子的结构方面,考生需要掌握原子的基本组成、元素的周期表、原子的质量数、原子的电荷数、原子的稳定性等内容。
理解原子的结构对于理解化学反应、核反应、物质的性质等有着重要的作用。
总的来说,选修三涉及的内容较为复杂,需要考生在复习时注重理论的联系和实际的应用。
物理选修3-3知识点
物理选修3-3知识点物理选修3-3通常指的是高中物理课程中的一个选修模块,这个模块主要涉及分子动理论、热力学定律、气体的性质、振动和波等知识点。
以下是物理选修3-3的主要内容概述:1. 分子动理论- 物质是由大量分子组成的,分子在不停地做无规则运动。
- 分子间的相互作用力包括引力和斥力。
- 温度是分子热运动平均动能的标志。
- 扩散现象表明分子在不停地做无规则运动。
2. 热力学定律- 第零定律:如果两个系统分别与第三个系统处于热平衡状态,则这两个系统之间也处于热平衡状态。
- 第一定律:能量守恒定律在热力学中的表现形式,即系统的内能变化等于热量与做功的代数和。
- 第二定律:自然过程中熵总是增加的,或者不可能从单一热源吸热使之完全变为功,而不向其他热源排热。
3. 气体的性质- 理想气体状态方程:\( pV = nRT \),其中\( p \)是压强,\( V \)是体积,\( n \)是摩尔数,\( R \)是气体常数,\( T \)是温度。
- 气体压强的微观意义:大量分子对容器壁的频繁碰撞产生了压强。
- 气体分子的平均速率和根均方速率。
4. 振动和波- 简谐振动的特征和描述,包括位移、回复力、周期和频率。
- 阻尼振动、受迫振动和共振现象。
- 机械波的产生、传播和接收,包括横波和纵波。
- 波速、波长、频率和振幅的关系。
- 声波的特性,包括声速、响度、音调和音色。
5. 光学现象- 光的反射定律和折射定律。
- 平面镜、凹面镜和凸面镜的成像规律。
- 光的干涉、衍射和偏振现象。
- 光的粒子性和波动性,即波粒二象性。
6. 电磁学基础- 静电场的基本概念,包括电场强度、电势和电容。
- 直流电路的基本规律,如欧姆定律和基尔霍夫定律。
- 磁场的基本概念,包括安培力、洛伦兹力和磁通量。
- 电磁感应现象,包括法拉第电磁感应定律和楞次定律。
以上是物理选修3-3的主要知识点概述,每个知识点都需要通过实验、问题解决和理论学习来深入理解。
高中物理选修3-3知识点总结
物理选修3-3知识点汇总一、宏观量与微观量及互相关系微观量:分子体积V0、分子直径d、分子质量宏观量:物体的体积V、摩尔体积V m,物体的质量m、摩尔质量M、物体的密度ρ.1.分子的大小:分子直径数目级:10-10m.V2.油膜法测分子直径:d=S单分子油膜,V 是油滴的体积,S 是水面上形成的单分子油膜的面积.3.宏观量与微观量及互相关系m(1) 分子数N= nN A=M N A4. 宏观量与微观量及互相关系M(2) 分子质量的预计方法:每个分子的质量为:m0=N A( 3)分子体积(所占空间)的预计方法:V0=V m M此中ρ 是液体或固=N ρNA A体的密度(4) 分子直径的预计方法:把固体、液体分子看作球形,则0=13. 分子直径V 6πdd=3;把固体、液体分子看作立方体,则d=3V0.6Vπ5.气体分子微观量的预计方法(1)摩尔数 n=错误!,V为气体在标况下的体积.(标况是指0摄氏度、一个标准大气压的条件, V 的单位为升 L,假如m3)注意:同质量的同一气体,在不同样状态下的体积有很大差异,不像液体、固体体积差异不大,因此求气体分子间的距离应说明实质状态.二、分子的热运动1.扩散现象和布朗运动:扩散现象和布朗运动都说明分子做无规则运动.(1) 扩散现象:不同样物质互相接触时互相进入对方的现象.温度越高,扩散越快.(2) 布朗运动: a. 定义:悬浮在液体中的小颗粒所做的无规则运动.b.特色:永不暂停;无规则运动;颗粒越小,运动越强烈;温度越高,运动越强烈;运动轨迹不确立;肉眼看不到.c.产生的原由:由各个方向的液体分子对微粒碰撞的不均衡惹起的.d.布朗颗粒:布朗颗粒用肉眼直接看不到,但在显微镜下能看到,因此用肉眼看到的颗粒所做的运动不可以叫做布朗运动.布朗颗粒大小约为10-6 m( 包括约 1021 个分子 ) ,而分子直径约为10-10 m.布朗颗粒的运动是分子热运动的间接反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重点高中物理选修33知识点整理————————————————————————————————作者:————————————————————————————————日期:选修3—3考点汇编一、分子动理论1、物质是由大量分子组成的(1)单分子油膜法测量分子直径(2)1mol任何物质含有的微粒数相同2316.0210AN mol-=⨯(3)对微观量的估算①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体)②利用阿伏伽德罗常数联系宏观量与微观量Ⅰ.微观量:分子体积V0、分子直径d、分子质量m0.Ⅱ.宏观量:物体的体积V、摩尔体积Vm,物体的质量m、摩尔质量M、物体的密度ρa.分子质量:b.分子体积:c.分子数量:A A A Amol mol mol molM v M vn N N N NM M V Vρρ====特别提醒:1、固体和液体分子都可看成是紧密堆集在一起的。
分子的体积V0=Vm/N A,仅适用于固体和液体,对气体不适用,仅估算了气体分子所占的空间。
2、对于气体分子,d=3 V0的值并非气体分子的大小,而是两个相邻的气体分子之间的平均距离.2、分子永不停息的做无规则的热运动(布朗运动扩散现象)(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有间隙,温度越高扩散越快(2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。
①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。
②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。
③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。
(3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈3、分子间的相互作用力(1)分子间同时存在引力和斥力,两种力的合力又叫做分子力。
(2)分子之间的引力和斥力都随分子间距离增大而减小,随分子间距离的 减小而增大。
但总是斥力变化得较快。
(3)图像:两条虚线分别表示斥力和引力;实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。
r 0位置叫做平衡位置,r 0的数量级为10 -10m 。
理解+记忆:(1)当r=r 0 时,F 引=F 斥,F =0;(2)当r <r 0时,F 引和F 斥都随距离的减小而增大,但F 引<F 斥,F 表为斥力; (3)当r >r 0时,F 引和F 斥都随距离的增大而减小,但F 引>F 斥,F 表现为引力;(4)当r >10r 0( 10-9m)时,F 引和F 斥都已经十分微弱,可以认为分子间没有相互作用力(F =0)4、温度宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。
热力学温度与摄氏温度的关系:273.15T t K =+5、内能 ①分子势能分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。
分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。
(0r r =时分子势能最小)当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加当r =r 0时,分子势能最小,但不为零,为负值,因为选两分子相距无穷远时分子势能为零②物体的内能物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。
一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。
(理想气体的内能只取决于温度)③改变内能的方式做功与热传递在使物体内能改变(两种方式是等效的)特别提醒: (1)物体的体积越大,分子势能不一定就越大,如0 ℃的水结成0 ℃的冰后体积变大,但分子势能却减小了.(2)理想气体分子间相互作用力为零,故分子势能忽略不计,一定质量的理想气体能只与温度有关.(3)内能都是对宏观物体而言的,不存在某个分子的内能的说法. 由物体内部状态决定二、气体6、分子热运动速率的统计分布规律(1)气体分子间距较大,分子力可以忽略,因此分子间除碰撞外不受其他力的作用,故气体能充满它能达到的整个空间.(2)分子做无规则的运动,速率有大有小,且时而变化,大量分子的速率按“中间多,两头少”的规律分布.(3)温度升高时,速率小的分子数减少,速率大的分子数增加,分子的平均速率....将增大(并不是每个分子的速率都增大),但速率分布规律不变.7、气体实验定律①玻意耳定律:pV C=(C为常量)→等温变化微观解释:一定质量的理想气体,温度保持不变时,分子的平均动能是一定的,在这种情况下,体积减少时,分子的密集程度增大,气体的压强就增大。
适用条件:压强不太大,温度不太低图象表达:1 pV -②查理定律:pCT=(C为常量)→等容变化微观解释:一定质量的气体,体积保持不变时,分子的密集程度保持不变,在这种情况下,温度升高时,分子的平均动能增大,气体的压强就增大。
适用条件:温度不太低,压强不太大图象表达:p V-③盖吕萨克定律:VCT=(C为常量)→等压变化微观解释:一定质量的气体,温度升高时,分子的平均动能增大,只有气体的体积同时增大,使o分子的密集程度减少,才能保持压强不变适用条件:压强不太大,温度不太低图象表达:V T-8、理想气体宏观上:严格遵守三个实验定律的气体,实际气体在常温常压下(压强不太大、温度不太低)实验气体可以看成理想气体微观上:理想气体的分子间除碰撞外无其他作用力,分子本身没有体积,即它所占据的空间认为都是可以被压缩的空间.故一定质量的理想气体的内能只与温度有关,与体积无关(即理想气体的内能只看所用分子动能,没有分子势能)理想气体状态方程:pVCT=可包含气体的三个实验定律:9、气体压强的微观解释大量分子频繁的撞击器壁的结果影响气体压强的因素:①气体的平均分子动能(温度)②分子的密集程度即单位体积内的分子数(体积)三、物态和物态变化10、晶体:外观上有规则的几何外形,有确定的熔点,一些物理性质表现为各向异性非晶体:外观没有规则的几何外形,无确定的熔点,一些物理性质表现为各向同性①判断物质是晶体还是非晶体的主要依据是有无固定的熔点②晶体与非晶体并不是绝对的,有些晶体在一定的条件下可以转化为非晶体(石英→玻璃)11、单晶体多晶体如果一个物体就是一个完整的晶体,如食盐小颗粒,这样的晶体就是单晶体(单晶硅、单晶锗)如果整个物体是由许多杂乱无章的小晶体排列而成,这样的物体叫做多晶体,多晶体没有规则的几何外形,但同单晶体一样,仍有确定的熔点。
12、晶体的微观结构:固体内部,微粒的排列非常紧密,微粒之间的引力较大,绝大多数微粒只能在各自的平衡位置附近做小范围的无规则振动。
晶体内部,微粒按照一定的规律在空间周期性地排列(即晶体的点阵结构),不同方向上微粒的排列情况不同,正由于这个原因,晶体在不同方向上会表现出不同的物理性质(即晶体的各向异性)。
13、表面张力当表面层的分子比液体内部稀疏时,分子间距比内部大,表面层的分子表现为引力。
如露珠14、液晶分子排列有序,各向异性,可自由移动,位置无序,具有流动性各向异性:分子的排列从某个方向上看液晶分子排列是整齐的,从另一方向看去则是杂乱无章的15、改变系统内能的两种方式:做功和热传递①热传递有三种不同的方式:热传导、热对流和热辐射②这两种方式改变系统的内能是等效的③区别:做功是系统内能和其他形式能之间发生转化;热传递是不同物体(或物体的不同部分)之间内能的转移16、热力学第一定律①表达式u W Q∆=+符号W Q u∆+ 外界对系统做功系统从外界吸热系统内能增加- 系统对外界做系统向外界放系统内能减②功热少几种特殊情况(1)若过程是绝热的,则Q=0,W=ΔU,外界对物体做的功等于物体内能的增加.(2)若过程中不做功,即W=0,则Q=ΔU,物体吸收的热量等于物体内能的增加.(3)若过程的始末状态物体的内能不变,即ΔU=0,则W+Q=0或W=-Q,外界对物体做的功等于物体放出的热量.17、热力学第二定律(1)常见的两种表述①克劳修斯表述(按热传递的方向性来表述):热量不能自发地从__低温__物体传到_高温_物体.②开尔文表述(按机械能与内能转化过程的方向性来表述):不可能从__单一热源__吸收热量,使之完全变成功,而不产生其他影响.a、“自发地”指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助.b、“不产生其他影响”的涵义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响.如吸热、放热、做功等.(2)热力学第二定律的实质热力学第二定律的每一种表述,都揭示了大量分子参与宏观过程的方向性,进而使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性.(3)热力学过程方向性实例特别提醒:热量不可能自发地从低温物体传到高温物体,但在有外界影响的条件下,热量可以从低温物体传到高温物体,如电冰箱;在引起其他变化的条件下内能可以全部转化为机械能,如气体的等温膨胀过程.18、能量守恒定律能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一物体,在转化和转移的过程中其总量不变第一类永动机不可制成是因为其违背了热力学第一定律第二类永动机不可制成是因为其违背了热力学第二定律(一切自然过程总是沿着分子热运动的无序性增大的方向进行)熵是分子热运动无序程度的定量量度,在绝热过程或孤立系统中,熵是增加的。
19、能量耗散系统的内能流散到周围的环境中,没有办法把这些内能收集起来加以利用。