调节器及其调节规律
调节器的调节规律
![调节器的调节规律](https://img.taocdn.com/s3/m/cd9bad79783e0912a2162aca.png)
• •
• • • • • •
•
调节器 P P= f(e) e>0,P>0,正作用调节器; e>0,P<0,反作用调节器。 比例P 三种基本调节规律 积分I 组成5种实用调节规律: 微分D 双位调节规律、比例调节规律P、比例积分 调节规律PI、比例微分调节规律PD、比例积分 微分调节规律PID。
• • • •
式中:e是被控量的变化量(偏差值); x max 是被控量允许变化的最大范围; P是调节器输出的变化量; Pmax是调节器输出的工作范围。
R
P max x max
• R是量程系数,对于指定的调节器,R为 常数;对于单元组合仪表,因采用统一 的标准信号,R=1,则PB=1/KP×100%。 • 显然比例带PB与比例系数成反比。
二、实例分析:
• 三、特点: • 被控参数不可能稳定在某一数值, 只能在给定值上、下作小范围的等 幅振于允许被调参数以一定幅 度上、下波动,且被控对象的时间 常 数较大,滞后时间较小的场合。
§4—2 比例调节规律
• 一、概念:调节器的输出P与偏 差输入e 成正
比。P=KP×e, KP为调节器的比例系数。 • e P • t t
e
§4—1双位调节规律
• 一、概念: • 调节器的输出只有两个状态,它不能 使被控参数稳定在某个值上。 • 当被控参数下降到下限值时,调节器 的输出接通电机电源使电机转动或使 电 磁阀通电阀门全开。 • 当被控参数上升到上限值时,调节器 的输出使电机断电停转或使电磁阀断电 阀门全关。 • 当被控参数在上、下限之间变化时, 调节器的输出状态不变。
4、比例带对系统过渡过程的影响:
• 四、特点:
• (1)调节及时,且调节器的调节量随 偏差增大以及比例系数增大而增大。 • (2)一般调节完毕,会有静差出现。
第三节调节器的调节规律及其实现方法
![第三节调节器的调节规律及其实现方法](https://img.taocdn.com/s3/m/e2409f310622192e453610661ed9ad51f01d543c.png)
e0 te 0ut01e δ第三节 调节器的调节规律及其实现方法自动控制系统的调节质量取决于它的动态特性,即取决于组成控制系统的控制对象和调节设备的动态特性。
控制对象的动态特性一般是难以人为改变的。
所以,对于对象结构一定的控制系统,调节过程质量的好坏主要取决于控制系统的结构形式和调节器的动态特性。
调节器的动态特性也称为调节器的动作规律,是调节器的输入信号(一般为被调量的偏差信号)与输出信号(一般代表了执行机构的位置)之间的动态关系。
为了得到一个满意的调节过程,必须根据控制对象的动态特性确定控制系统的结构形式,选择调节器的动作规律,使自动控制系统有一个较好的动态特性。
一、调节器的调节规律1、比例调节规律(P )所谓比例调节规律,是指调节器输出的控制作用u (t )与其偏差输入信号e (t )之间成比例关系,即)()(t e K t u p =(1-11)式中 K p ——比例增益。
比例调节器的传递函数:p p K s E s U s G ==)()()( (1-12)工程中,常用比例带δ来描述其控制作用的强弱,即:pK 1=δ (1-13)其物理意义是在调节机构的位移改变100%时,被调量应有的改变量,如δ=20%时,则表明调节器输出变化100%时,需要其输入信号变化20%。
比例调节器的阶跃响应曲线如图1-18所示。
比例调节器输出控制作用u (t )将与偏差e (t ) 成比例地变化,而且几乎是同时产生的。
控制作用的变化目的是调节进入对象的流入量,消除不平衡流量,使被调量回到原来的值上。
从这一点看,比例调节规律的特点之一就是调节及时、迅速。
还可看出,在∞→t时调节过程结束,但偏差信号e (t )仍存在;换言之,调节过程结束时被调量的偏差仍未完全消除。
因为采用比例调节规律的调节器,其输出的控制作用大小与偏差大小成比例关系,一定大小的控制作用是抵消扰动的影响,使系统重新稳定下来的保证。
在系统受到扰动后,被调量偏离了其给定值,而出现偏差,调节器的调节使系统再次进入稳定状态,但偏差或大或小还要存在,否则偏差为零,控制作用也随之消失,干扰信号的存在eue 0tt图1-19 积分调节器的阶跃响应曲线就不可能使系统稳定下来。
调节器及其调节规律
![调节器及其调节规律](https://img.taocdn.com/s3/m/f9f0937db80d6c85ec3a87c24028915f814d847f.png)
• 三、比例微分调节规律PD: • 1、概念: • 理想的比例微分调节规律,其表达式为:
P
Kp(e
Td
de dt
)
• 式中:Kp—比例系数;Td—微分时间;
•
de/dt—偏差的变化速度;
• 比例微分调节器的输出等于比例作用的输出和 微分作用的输出之和。比例度和微分时间是比例 微分调节器的两个重要特性参数。其大小反映了 比例作用和微分作用的强弱。
•
dP dt
= KIe
• 可见,只要偏差存在,调节器的输出就会变
化,只有e=0,输出信号才不再继续变化,执
行器才停止动作,系统才能稳定不来。
2、实例分析:
• 3、特点:
• a)积分调节完毕,能消除被控参数的静差。 • b)积分调节作用比较缓慢。 • c)积分作用的引入,会降低系统的稳定 • 性,最大动态偏差较大,调节时间增加。 • d)积分调节规律,容易使调节器输出产 • 生饱和状态。 • 总之,积分调节规律动态性能差,在实际
• 当t=T,PD= A( Kd-1)e-T/T=0.368 A( Kd-1)
• 可见:微分作用的输出下降了63.2%所需的时间
•
为时间常数T。
•
∴微分时间Td=Kd×T
• 3、不同时间常数下的阶跃响应曲线:
T1>T2>T3
• 微分时间Td表征微分作用的强弱,当T大,Td长, 微分作用强;反之Td短,微分作用弱。
• d)只适用于惯性较大的系统。
• 二、微分器:
• 1、何为微分器:
•
即比例微分调节,比例带PB=100%。对
阶
跃输入,输出瞬时增大到某数值,然后慢慢降
到和阶跃输入相等的值。
第四节 调节器的基本调节规律
![第四节 调节器的基本调节规律](https://img.taocdn.com/s3/m/9721127c9ec3d5bbfd0a74db.png)
2.比例积分调节规律及积分时间
比例调节规律是输出信号与输人偏差成 比例,因此作用快,但有余差;积分调节规 律能消除余差,但作用慢;比例积分调节规 律具有以上两种调节规律的优点,是生产 上常用的一种调节规律(常用PI表示)。比例 积分调节规律可用下式表示:
由于比例积分调节器具有比例和积分
两种调节器的优点,同时比例度、积分时 间两个参数均可以调整,因此适用面比较 广,多数系统都可采用。只有在对象纯滞 后时间特别大时,调节时间较长,最大偏 差较大;在负荷变化特别强烈时,由于积分 作用迟缓,调节作用不能及时,这时可增 加微分作用。
双位调节是位式调节的最简单形式。 双位调节的动作规律是,测量值大于给定 值时,调节器的输出为最小;测量值小于给 定值时,调节器的输出为最大(也可以是相 反的情况)。因此,双位调节只有两个输出 值,相应的调节机构也只有两个极限位置, 即不是最大就是最小。没有中间位置。而 且从一个位置变到另一个位置是很快的、 如图7-14所示。
第四节 调节器的基本调节规律
调节器接受偏差信号后,其输出随输人 变化的规律,即是调节器的基本调节规律。 在工业自动调节系统中最基本的调节规律 有:位式调节、比例调节、积分调节和微分 调节四种。
各种调节规律是为了适应不同的生产要 求设计的。因此,必须根据生产的要求来 选用适当的调节规律。
一、双位调节
2.ห้องสมุดไป่ตู้例积分微分调节规律
比例微分调节的结果是存在余差的。为
了消除余差,生产上常将比例、积分、微 分三种调节规律结合起来,称例积分微分 调节,习惯上用PID表示。
PID调节器综合了各类调节器的优点, 因此具有较好的调节性能。但这并不意味 着在任何条件下采用这种调节器都是最好 的,要从生产实际和经济价值等方面来选 用调节器。
3、调节器的调节规律及其对控制过程的影响
![3、调节器的调节规律及其对控制过程的影响](https://img.taocdn.com/s3/m/480a653b580216fc700afd88.png)
1 K K C t lim S t T1T2 S 2 T1 T2 S 1 K P K S 1 K P K S 0
上式表明,在系统受到扰动后,调节过程结束,被调量仍存
在稳态偏差K/(1+Kp· K),只是比无调节作用时减小。偏差大小与
+ -
调节器
执行器
变送器
图3-1
控制系统组成原理框图
实际中,在系统分析时又往往将执行器(包括调节阀)、对
象及变送器称为“广义对象”,这样就形成如图3-2所示的控制系 统组成方框图。
扰动 r +
d
调节器
广义对象
c
图3-2 控制系统等效原理框图
在上图中,基本的闭环控制系统由调节器和“广义对象” (下称对象)两部分组成;除调节阀对对象的扰动作用外,其他
比例带成正比。
第三节 积分调节规律及其对调节过程的影响
一、积分调节规律
积分调节规律:调节器输出控制作用u(t)与其偏差输入信号
e(t)随时间的积累值成正比,即:
u (t ) 1 Ti
e(t )dt
传函为:WI
S T
1
i
S
积分调节器的阶跃响应如图3-7所示:
e(t)
E
u(t)
E t Ti t
点,从而克服了单纯比例作用时不能消除偏差的缺点和单纯积分
作用时控制不及时的缺点。
四、单容对象配比例积分调节器的控制过程
R(s)
+
-
1 k p (1 ) Ti s
+
+
D(s)
K 1 T S
C(s)
图3-10
PI控制系统传递方框图
调节器调节规律
![调节器调节规律](https://img.taocdn.com/s3/m/bc3caa7a27284b73f2425018.png)
稳态精度要求高,加积分作用;惯性较大,加微分作用。
放大环节:二级气动功率放大器反馈环节:节流分压室——做反馈回路,实现比例作用节流盲室——做反馈回路,实现积分作用比例惯性环节——做反馈回路,实现微分作用比较环节:位移平衡力平衡力矩平衡所有气动仪表的构成原理如图3-1-7所示,都是由三个基本环节(放大、反馈、比较)构成。
其中,放大环节起信号放大作用,要求它具有较高的灵敏性和足够大的功率输出;反馈环节起信号的运算作用,通常是把仪表的输出信号P 出通过反馈回路,送回到仪表的输入端与输入信号进行综合,如果放大环节放大倍数足够大,仪表的信号传递关系只决定于反馈回路的信号传递关系。
这样,可消除放大环节各种非线性因素的影响,提高仪表的精度。
同时,在调节器中,采用不同的反馈回路,可实现不同的调节作用规律;比较环节起信号比较作用,使输入信号与反馈信号在此比较,其输出信号等于各信号的代数和。
总之,只要我们掌握了放大、反馈和比较等三个基本环节,就能比较容易地分析一台仪表的工作原理及功能。
图3-1-7 气动仪表的组成原理1.气动仪表的放大环节前面介绍过,几乎所有气动仪表,在喷嘴挡板机构的输出端,都要串联一个气动功率放大器。
在结构上两者往往组成一体,称为二级气动功率放大器。
其中喷嘴挡板机构为一级放大。
图3-1-8是耗气型二级气动放大器的原理图。
这种类型的二级气动功率放大器的输入与输出之间的传递关系为:h K P B ∆⋅=∆式中,K =K 1·K 2是二级气动放大器的放大倍数;K 1是喷嘴挡板机构的放大倍数;K 2是耗气型气动放大器的放大倍数。
图3-1-8 耗气型二级气动放大器原理图2.气动仪表的反馈环节 基于反馈控制原理,如果仪表放大环节的放大倍数足够大,则仪表的信号传递关系只决定于反馈回路的信号传递关系。
因此,在气动仪表中,总是把输出端的输出信号引回到输入端,构成负反馈气路,但除1∶1的负反馈外,在调节器中引用不同的反馈气路,就可以实现比例、积分和微分的作用规律。
自动调节器典型调节规律及调节过程分析
![自动调节器典型调节规律及调节过程分析](https://img.taocdn.com/s3/m/6b6329f04028915f804dc289.png)
第八章 调节器调节规律及其对过程影响第一节 自动调节器典型调节规律及调节过程分析调节器的基本调节规律是模拟运行人员的基本操作,是运行人员调节动作精华的总结。
选择合适的调节器动作规律是热工自动人员的职责范畴,但运行人员如果能理解各种动作的调节过程,就能够使用好相应的自动调节系统。
自动调节的目的是要及时准确地进行调节,前面我们已经讲到基本环节由比例、积分、惯性、微分、迟延组成。
因为惯性、迟延环节不符合及时准确的要求,所以我们可考虑的就只有比例、积分、微分这三种特性了(积分、微分调节规律一般不能单独使用)。
自动调节器的典型动作规律按照环节特性可分为比例(P )、比例积分(PI )、比例微分(PD )、比例积分微分(PID )。
一、典型调节规律1. 比例(P )调节规律比例调节作用简称为P 作用,是所有调节器必不可少的一种典型调节作用。
P 作用实质上就是典型环节中的比例作用。
不过这个环节一般用电子元件构成的电路来实现,其输入输出都是电信号。
比例环节的传递函数P K W =,P K 称为比例环节的比例放大系数;而在比例(P )调节作用中,传递函数习惯上表示成δ1=P W , (8-1) 式中 PK 1=δ——调节器的比例带(比例度),δ越大,比例作用越弱。
下面以如图8-1所示的采用浮子式比例调节器的水位调节系统为例,说明比例调节器的调节规律。
该系统的被调对象是有自平衡能力的单容水箱;浮子起到检测器的作用,用于感受水位的变化;比例调节器就是杠杆本身,杠杆以O 点为支点可以顺时针或逆时针转动。
给定值的大小与给定值连杆的长短有关;选择流入侧阀门作为调节阀,由调节器来控制它的开度变化。
当某种扰动使水位升高时(说明此时流入量1q >流出量2q ),浮子随之升高,通过杠杆作用使阀门芯下移,关小调节阀,流入量1q 减小直至等于流出量2q 。
反之,当某种扰动使水位降低时(说明此时流入量1q <流出量2q ,浮子随之降低,通过杠杆作用使阀门芯上移,开大调节阀,流入量1q 加大直至等于流出量2q 。
调节器的作用规律
![调节器的作用规律](https://img.taocdn.com/s3/m/7f284465a98271fe910ef935.png)
第3节调节器的调节规律调节器输入是被控量的e ,调节器的输出是控制量P,作用规律为P= f(e)。
根据调节器的输出变化方向分类:e>0,P>0,正作用调节器;e>0,P<0,反作用调节器。
比例P三种基本调节规律积分I 组成5种实用调节规律:微分D双位调节规律、比例调节规律P、比例积分调节规律PI、比例微分调节规律PD、比例积分微分调节规律PID。
第3节调节器的调节规律•调节器输入是被控量的e ,调节器的输出是控制量P,作用规律为P= f(e)。
•根据调节器的输出变化方向分类:•e>0,P>0,正作用调节器;•e>0,P<0,反作用调节器。
•比例P•三种基本调节规律积分I 组成5种实用调节规律:•微分D•双位调节规律、比例调节规律P、比例积分调节规律PI、比例微分调节规律PD、比例积分微分调节规律PID。
一、双位调节规律•一、概念:•调节器的输出只有两个状态,它不能使被控参数稳定在某个值上。
•当被控参数下降到下限值时,调节器的输出接通电机电源使电机转动或使电磁阀通电阀门全开。
•当被控参数上升到上限值时,调节器的输出使电机断电停转或使电磁阀断电阀门全关。
•当被控参数在上、下限之间变化时,调节器的输出状态不变。
1.辅锅炉浮子式水位控制系统图1.12 浮子式水位双位调节器❖❖画出了采用浮子式对锅炉水位进行双位控制的原理图。
在锅炉外面的浮子室有气管和水管分别与锅炉的汽空间和水空间相通,故浮子室内水位与锅炉水位一致。
浮子与水位同步变化,浮子杆绕枢轴4转动,通过上、下锁钉5带动调节板3转动,调节板右边磁铁也跟随着转动,当水位达到上限值附近时,浮子杆与上面的销钉相接触,并带动调节板及永久磁铁12绕枢轴4顺时针转动,使磁铁12转至与同极性永久磁铁6在同一直线上时,由于同极性互相排斥,永久磁铁6立即被向上弹开,动触头11立即与静触头7断开,切断电机电源,给水泵停转,停止向锅炉供水。
3.1-调节器的调节规律
![3.1-调节器的调节规律](https://img.taocdn.com/s3/m/7eed6f1bcc7931b765ce159b.png)
3.1-调节器的调节规律
第3章 调节器 Controller
调节器的作用是把测量值和给定值进行比较,得出 被调量的偏差之后,根据一定的调节规律产生控制信 号,推动执行机构,对生产过程对象进行自动调节。
TN 2
TN 20
TN 16
微分调节-开环阶跃响应特性
理想微分作用:在阶跃 输入的瞬间,输出突然升 到无穷大。 实际上的工业控制器采用的 都是采用一种近似的微分作 用:在阶跃输入的瞬间,输 出突然升到一个较大的值, 然后按指数规律衰减至零。
TN 17
比例积分微分(PID)调节器
3.1.2.5 比例积分微分(PID)调节器
将比例、积分、微分三种调节规律结合在一起,只要三项 作用的强度配合适当,既可达到快速敏捷,又可达到平稳准 确,可得到满意的调节效果。 1 dx (t ) 理想PID时域模型: y (t ) k c ( x (t ) x (t )dt Td ) Ti dt
传递函数:
G ( s)
Y ( s) 1 k c (1 Td s) X ( s) Ti s
在PID调节器中,微分作用主要用来加快系统的动作速度,
减小超调,克服振荡;积分作用主要用以消除静差。
TN 18
实际PID-开环阶跃响应特性
TN
19
PID调节器-特点
比例积分微分控制是由三种作用的输出特性叠加而成。 由于在 PID 控制器中,比例度δ、积分时间 Ti ,和微分时 间 TD 三个参数都是可调的,所以,只要这三个参数选择的 合适,就可以获得良好的控制质量。 PID控制选用通用的控制器,可实现三作用控制规律。 若将微分时间调至零,就成一台比例积分控制器; 若将积分时间调至最大,就成一台比例微分控制器; 若将微分时间至零,积分时间至无穷大,就是一台比例控制 器.
调节器的PID调节规律及其对过渡过程的影响
![调节器的PID调节规律及其对过渡过程的影响](https://img.taocdn.com/s3/m/f154b97d571252d380eb6294dd88d0d233d43c85.png)
调节器的PI D调节规律及其对过渡过程的影响一.P ID各参数的作用先谈谈比例作用P, 比例调节器实际上就是个放大倍数可调的放大器,即:△P=Kce式中:Kc---比例增益,Kc既可大于1,也可小于1;e---调节器的输入,也就是测量值与给定值之差,又称为偏差。
要说明的是,对于大多数调节器而言,都不采用比例增益Kc作为刻度,而是用比例度来刻度,即δ=1/Kc*100%.也就是说比例度与调节器的放大倍数的倒数成比例;调节器的比例度越小,它的放大倍数越大,它把偏差放大的能力越大,反之亦然。
明白了上述关系,在参数整定中,就可知道比例度越大,调节器的放大倍数越小,被控温度曲线越平稳,比例度越小,调节器的放大倍数越大,被控温度曲线越波动。
比例调节有个缺点,就是会产生余差,要克服余差就必须引入积分作用。
再谈谈积分作用I,调节器的积分作用就是为了消除自控系统的余差而设置的。
所谓积分,就是随时间进行累积的意思,即当有偏差输入e存在时,积分调节器就要将偏差随时间不断累积起来,也就是积分累积的快慢与偏差e的大小和积分速度成正比。
只要有偏差e存在,积分调节器的输出就要改变,也就是说积分作用总是起作用的,只有偏差不存在时,积分才会停止。
积分时间T i是积分速度I的倒数(Ti=1/I),积分时间长,积分速度就小,即偏差随时间累积的速度就小。
调节器的积分单位,有的是按“分/重复”刻度,称为积分时间;有的则用“次数/分”刻度,称为积分增益。
它们互为倒数关系。
要记住的是:增加积分时间或降低积分增益,会使积分作用强度降低,反之亦然。
积分调节很少单独使用,通常与比例调节一起使用。
第3节 调节器及其调节作用规律
![第3节 调节器及其调节作用规律](https://img.taocdn.com/s3/m/0ad3eb94d0d233d4b14e6966.png)
在调节器上有两个旋钮,一个是比例带调整旋钮,另一个
是微分时间调整旋钮。如果把微分时间旋钮调整到Td=0 , 相当于切除微分作用,这时调节器就成为纯比例调节器。一 般来说,控制对象惯性很小的控制系统,其所采用的调节器 可不加微分作用。而控制对象惯性大的控制系统,加入微分 作用,可以有效地改善控制系统的动态过程。在调节器中, 加进微分作用后,其比例带PB可比纯比例控制时略小些。因 为微分作用能实现超前控制,具有抵制偏差出现的能力,尽
服的缺点
• 显然比例作用规律中,如果放大倍数K较大(比例作用越 强),那么稳态时只要有一个较小的静态偏差,调节阀就 会有一个较大的开度变化以适用负荷的要求。因此,K越 大,稳态时静态偏差越小,反之亦然。但不可能通过无限 制地增加比例系数的方法来达到消除静态偏差的目的,而 且当比例系数大到一定程度时将导致系统发生振荡。 • 比例控制系统虽然存在静态偏差,但这个偏差值是不大的 ,与自平衡对象受到扰动后,靠自平衡能力使被控量自行
水位才会稳定在比给定水位略低的值上。相反,若突然关小
出水阀,出水流量阶跃减少(即减少水柜的负荷),水位连 同浮子和浮子杆一起上移,通过杠杆作用使调节阀关小,减
Байду номын сангаас
少给水流量,直到为止,水位又会稳定在比给定值略高的值
上。当对水柜施加扰动(出水阀开度变化)后,水位的实际 值(浮子的位置)偏离给定水位的数值就是偏差值。
1.浮子式水位双位控制系统
在调节板上对应浮子杆的上、下限位置各有三个销钉孔, 调整上、下销钉5的位置,可调整水位的上、下限值,但如 果把上、下销钉之间的距离调整得太小,虽然可以减小水位 的波动范围,但将导致电机起停频繁,这是不利的。
2.双位式压力调节器(压力开关)
调节器调调节规律的选择
![调节器调调节规律的选择](https://img.taocdn.com/s3/m/5ba2c1ae767f5acfa0c7cd90.png)
调节器调调节规律的选择目前,工业上常用的主要有P、I、D 三种调节规律组合而成。
调节器的选型应根据调节系统的特性和工艺要求。
比例调节器的特点是:调节器的输出与偏差成比例,阀门位置与偏差之间有对应关系。
当负荷变化时,克服干扰能力强,过渡过程时间短,过程终了存在余差。
负荷变化愈大,余差愈大。
它适用于调节通道滞后较小,负荷变化不大,工艺参数只要求在一个范围内变化的系统。
如中间贮罐的液位、精馏塔塔釜液位,以及不太重要的蒸汽压力等。
比例积分调节器的特点是:积分作用使调节器的输出与偏差的积分成比例。
积分作用使过渡过程结束时无余差,但稳定性降低。
虽然加大比例度可以提高稳定性,但超调量和振荡周期都增大,回复时间也加长。
比例积分调节器适用于调通道滞后较小,负荷变化不大,工艺参数不允许有余差的系统。
例如流量、压力和要求严格的液位调节系统,都采用比例积分调节器。
这是使用最多,应用最广的调节器。
比例积分微分调节器的特点是:微分作用使调节器的输出与偏差变化速度成比例。
它对克服容量滞后有显著效果。
在比例的基础上加入微分作用则增加稳定性。
再加上积分作用可以消除余差。
对于滞后很小的对象,应避免引入微分作用,否则会导致系统的不稳定。
PID 三作用调节器用于容量滞后较大的对象(如温度对象),负荷变化大的系统可获得满意的调节质量调节参数的工程整定调节系统的过渡过程,与调节对象的特性、干扰形式和大小、调节方案的确定以及调节参数的整定有着密切的关系。
对象特性和干扰情况是受工艺操作和设备特性限制的。
在确定调节方案时,只能尽量设计合理,并不能任意改变它。
一旦方案确定之后,对象各通道的特性就已成定居。
这时调节系统的调节质量只取决于调节器参数的整定了。
所谓调节器参数的整定,就是求取最好的过渡过程中调节器的比例度S、积分时间T i、微分时间T D具体数值的工作。
整定调节器参数的方法,至今已有几十种,可分两大类。
一类是理论计算整定法。
如反应曲线法、频率特性法、根轨迹法等。
调节器的PID调节规律及其对过渡过程的影响
![调节器的PID调节规律及其对过渡过程的影响](https://img.taocdn.com/s3/m/070aaade3186bceb19e8bbd2.png)
要说明的是,对于大多数调节器而言,都不采用比例增益Kc作为刻度,而是用比例度来刻度,即δ=1/Kc*100%. 也就是说比例度与调节器的放大倍数的倒数成比例;调节器的比例度越小,它的放大倍数越大,它把偏差放大的能力越大,反之亦然。
明白了上述关系,在参数整定中,就可知道比例度越大,调节器的放大倍数越小,被控温度曲线越平稳,比例度越小,调节器的放大倍数越大,被控温度曲线越波动。
当输入阶跃信号后,微分器一开始输出的最大变化值与微分作用消失后的输出变化的比值就是微分放大倍数Kd,即微分增益,微分增益的单位是时间,设置微分时间(或者微分增益)为零会取消微分的功能。
为了方便记住比例、积分、微分三个作用,抄录一个很流行的顺口溜如下:
[比 一个PID控制系统质量的好坏,主要是看在外界干扰产生后,被控量偏离给定值的情况,假如偏离了以后能很快的平稳的回复到给定值,就认为是好的。
四.与精确控制温度有关的一些问题
要想用PID参数精确控制温度,除做好PID参数的整定工作外,影响精确控制温度的因素还有很多。应注意以下几点:
调节器的PID调节规律及其对过渡过程的影响
一.PID各参数的作用
先谈谈比例作用P, 比例调节器实际上就是个放大倍数可调的放大器,即:
△P=Kce
式中:Kc---比例增益,Kc既可大于1,也可小于1;
e---调节器的输入,也就是测量值与给定值之差,又称为偏差。
调节器及其调节规律
![调节器及其调节规律](https://img.taocdn.com/s3/m/826dd700482fb4daa58d4b5f.png)
2.PI电路分析
PI电路以A3为核心组成,开关S3为积分时间倍乘开关。当S3打向×1档时, 1K电阻被悬空,不起分压作用;当S3打向×10档时,1K电阻接到基准线, 静态V02被分压输入。
由于10μF电容积分需要 较大电流,在A3输出端加一功 放三极管。
3.1.3
PID运算电路(续6)
PI传递函数 IC负输入端节点电流方程(S3置于×10档):
例:当TI / TD = 4时,
TD F 1 =1.25 TI
各参数的实际值与F = 1时相差25%。
3.1.3 PID运算电路(续13)
阶跃响应 整个曲线由比例项、积分项和有限制的微分项三部分组成。 调节范围:P =2~500%, TD=0.04~10分 TI =0.01~2.5分 (×1档), TI =0.1~25分 (×10档) V03
5输出限幅电路321调节器的基本组成续节器的作用是将参数测量值和规定的参数值给定值相比较后得出被调量的偏差再根据一定的调节规律产生输出信号从而推动执行器工作对生产过程中的参数进行自动调节
第 3章
调节器及其调节规律
任课教师:何王勇
简介
控制仪表又称控制器或调节器。其作用是把被控变量的测量值和给
定值进行比较,得出偏差后,按一定的调节规律(PID)进行运算,输出
Q1
不需要专门提供工 作能源。 例:自力式液位调 节器
h Q2
3.1
3.1.1
调节规律
概述
调节器根据被调量y 与规定值r的偏差信号e (或再加上一些补充 信号)而使执行机构按一定规律(即控制规律)动作,从而引起调节机关位置 μ的变化。调节器输入量为偏差e, 输出量为调节机关位置, 动态特性是指 调节器的输出量与输入量的动态关系, 常称作调节器的控制规律。常用的 调节器按其控制规律可分为比例调节器、比例积分调节器、比例微分调 节器、比例积分微分调节器。这些调节器的控制规律都是由基本调节作 用比例、积分、微分组合而成。
调节器及调节作用规律
![调节器及调节作用规律](https://img.taocdn.com/s3/m/0e3a1798f5335a8103d22016.png)
h TI
t
Ti 等于控制器的输出变化到与其阶跃输入量相等时所需的时间。
积分控制器的动态特性越陡,积分时间越小,表明控制器作用越快,积分作用越强,即控制作用积累到同一值 时所需时间越短。
积分时间小→积分作用强→系统稳定性差→上升时间短→振荡周期小
§1-3-4 比例积分作用规律
PI调节器的整定原则: • 在PI调节器上设有两个旋钮,分别用来整定PB、Ti 。 • 在整定 Ti 时,切忌值整定得太小,否则积分作用太强,系统稳定性差 • 如果 Ti 值不能进行准确地整定,可以采用宁大勿小的策略。因为 Ti 值略微偏大时,尽管积分作用偏弱,
如何调整水位的上下限值? 上下限值区间的幅度太小有什么样的结果?
1-浮子室 2-浮子 3-调节板框架 4-枢轴 5-上、下限销钉 6、12-同极性永久磁铁;7-静触点 8-开关箱 9-转轴 10-转杆 11-动触点
§1-3-1双位作用规律
例2:双位式压力调节器 根据测量压力的上限值和下限值输
出不同的开关量信号,如: • 锅炉蒸汽压力 • 日用淡水压力 • 空气瓶压力等
§1-3-1双位作用规律 被控量在设定的上限和下限之间变化,调节器的输出只有两个状态(0或1)。
例1 浮子式锅炉水位的双位控制系统 被控量输出曲线
被控量 开
执行机构 关
水位与电动机通断之间的关系图
动作范围
p(t) 1
emin emax e(t)
双位作用规律
§1-3-1双位作用规律
例1: 浮子式辅锅炉水位双位调节器
§1-3-2 比例作用规律
总结 1、比例作用规律实现简单,控制作用及时,是其它控制规律(双位除外)的基础; 2、比例作用强弱取决于比例带或比例系数,比例带大比例作用弱,比例系数大比例作用强; 3、比例作用控制导致系统存在静态偏差,比例作用强,静态偏差小,但无法避免。
第五章第三节 调节器及其调节作用规律
![第五章第三节 调节器及其调节作用规律](https://img.taocdn.com/s3/m/3741c4463c1ec5da50e27059.png)
比例作用规律
气 动 比 例 调 节 器
比例作用规律
• 设定测量值变化为△P测,调节器的输出变 化为△P出,由于给定值没有变,即给定力 矩的变化为0,杠杆平衡原理有: • △P测*F测L2+△P出△F反L3=0 • F测和F反分别是测量波纹管和反馈波纹管 的横截面积, L2和L3分别是测量力臂和反 馈力臂。 • 因此有:
第三节
调节器及其调节作用规律
调节器的作用规律
• 调节器的作用规律:1、双位式作用规律。 2、比例作用规律。3、比例积分作用规律。 4、比例微分作用规律。5、比例积分微分 作用规律。
一、位式调节器
• 特点:调节器只有俩个输出状态。它不能 使被控量稳定在某个值上。但能把被控量 控制在某个范围之内。
位式作用规律
de(t ) p(t ) Sd * dt
• Sd为微分系数 • 其作用规律如图:
比例微分调节器
实际微分作用的输出特性
比例微分调节器
• 二、比例微分作用规律: • 比例微分作用规律是在比例作用规律的基础 上加入微分作用而得到的一宗作用规律:
de(t ) de(e) p(t ) Ke(t ) Sd K [e(t ) Td ] dt dt
YT-1226型压力调节器
比例作用规律(propotion)
• 调节器的作用规律:
P(t ) K * e(t )
• K为放大倍数,输入相通的偏差e(t),放大倍数越大, 输出量越大。反之越小。 • 以下图为例讲解比例作用的调节过程
比例作用规律
比例作用规律
• 比例作用的特点:能够较及时的反应被控 制对象负荷的大小。负荷变化大,偏差大, 阀的开度就大,对被控量控制比较及时。 • 比例调节的缺点:当对象受到挠动后,被 控量不能回到给定值上来,只能回复到给 定值附近。被控量稳态值于给定值之间从 在较小的静态偏差。这是比例调节器固有 的不可克服的缺点。因为调节器的输入与 输出存在一一对应的硬性关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t
3.1.2
基本比例控制(续6)
积分控制的特点
当有偏差存在时,积分输出将随时间增长(或减小);当偏差消 e 失时,输出能保持在某一值上。
E
t
积分作用具有保持功能,故积分 控制可以消除余差。 积分输出信号随着时间逐渐增强 ,控制动作缓慢,故积分作用不单独使 用。
y
t
3.1.2
基本比例控制(续7)
简介(续)
2.气动仪表 以 140kPa 的气压信号作为工作能源,其输入输出信号均采用 20~100kPa的标准气压信号。 3.自力式仪表
Q1
不需要专门提供工 作能源。 例:自力式液位调 节器
h Q2
3.1
3.1.1
调节规律
概述
调节器根据被调量y 与规定值r的偏差信号e (或再加上一些补充 信号)而使执行机构按一定规律(即控制规律)动作,从而引起调节机关位置 μ的变化。调节器输入量为偏差e, 输出量为调节机关位置, 动态特性是指 调节器的输出量与输入量的动态关系, 常称作调节器的控制规律。常用的 调节器按其控制规律可分为比例调节器、比例积分调节器、比例微分调 节器、比例积分微分调节器。这些调节器的控制规律都是由基本调节作 用比例、积分、微分组合而成。
3.1.2 基本比例控制(续4)
比例带P的物理意义:
使控制器输出变化 100% 时,所对应的偏差变化相对量。如 P=50% 表明:
y
100%
P=50%
50%
P=100%
0
控制器输入偏差变化50% , 就可使控制器输出变化100%, 若输入偏差变化超过此量,则 控制器输出饱和,不再符合比 例关系。
xmin
或变化的瞬间,微分立即产生强烈的调 节作用,使偏差尽快地消除于萌芽状态
t
y
之中。
t 微分对静态偏差毫无控制能力。当偏差存在,但不变化时,微分输
出为零,因此不能单独使用。必须和P或PI结合,组成PD控制或PID控制。
3.1.2
基本比例控制(续10)
A
e
(2)比例微分控制(PD)
理想的比例微分控制
1 de y (e TD ) P dt 1 W ( s ) (1 TD s ) P
理想微分作用持续时间太短,执行 器来不及响应。一般使用实际的比例微 分作用。
t
y
t y
t
3.1.2
基本比例控制(续11)
比例积分微分控制(PID)
1 1 y (e P TI
de 0 edt TD dt )
t
1 1 W ( s) (1 TD s) P TI s
将比例、积分、微分三种控制规律结合在一起,只要三项作用的强 度配合适当,既能快速调节,又能消除余差,可得到满意的控制效果。
3.1.1
概述(续)
PID 控制具有以下优点: 原理简单 适应性强 鲁棒性强
3.1.2
基本调节作用
1.基本比例控制(P)
控制器输出y(t)和偏差信号e(t)成比例关系
y(t) Kpe(t)
传递函数为
Kp——比例增益
Y( s) W( s) KP E( s)
e + -
被控变量 测量值x
在实际的比例控制器中,习惯上使用比例度P来表示比例控制作用的 强弱。
所谓比例度就是指控制器输入偏差的相对变化值与相应的输出相对变 化值之比,用百分数表示。
P(
x max
e y / ) 100% x min y max y min
式中e为输入偏差;y为控制器输出的变化量;(xmax - xmin)为测 量输入的最大变化量,即控制器的输入量程;(ymax –ymin)为输出的最 大变化量,即控制器的输出量程。
被控变量 给定值xr
P
y
3.1.2 基本调节作用(续1)
比例控制的特点:
控制及时、适当。只要有偏差,输出立刻成比例地变化,偏差越
大,输出的控制作用越强。
控制结存在静差。因为,如果被调量偏差为零,调节器的输出也 y = KP e 即调节作用是以偏差存在为前提条件,不可能做到无静差调节。
就为零
3.1.2 基本调节作用(续2)
xr
xmax
x
3.1.2
基本比例控制(续5)
2.比例积分控制(PI) 当要求控制结果无余差时,就需要在比例控制的基础上,加积分控制 作用。 (1) 积分控制(I) 输出变化量y与输入偏差e的积分成正比
1 y TI
t
t
0
edt
e
TI —积分时间
E y t
当e是幅值为E的阶跃时
1 y TI
E 0 edt TI t
若将比例与积分组合起来,既能控制及时,又能消除余差 。
(2)比例积分控制(PI)
e
1 1 y (e P TI
edt )
0
y
t
E t
若偏差是幅值为E的阶跃干扰 E 1 y (1 )t P TI
Y( s) 1 1 W ( s) (1 ) E ( s) P TI s
t
3.1.2 基本比例控制(续8)
3.1.2 基本调节作用(续3)
比例度:
P(
x max
e y / ) 100% x min y max y min
如果控制器输入、输出量程相等,则:
y
ymax
e 1 P 100% 100% y KC
比例度除了表示控制 器输入和输出之间的增益外, 还表明比例作用的有效区间。
ymin xmin xr xmax x
3.1.2
基本比例控制(续12) e
PID控制作用中,比例作用 是基础控制;微分作用是用于加 快系统控制速度;积分作用是用 于消除静差。
t y
t
3.1.3 PID运算电路
由 PI 和 PD 两个运算电路串联而成,由于输入电路中已采取电 平移动措施,故这里各信号电压都是以VB=10V为基准起算的。
3.比例微分控制(PD) 对于惯性较大的对象,常常希望能加快控制速度,此时可增加微分 作用。
(1) 微dt
E
t y
式中:TD — 微分时间
de dt
— 偏差变化速度
t
3.1.2 基本比例控制(续9)
微分控制的特点 e E
微分作用能超前控制。在偏差出现
第 3章
调节器及其调节规律
任课教师:何王勇
简介
控制仪表又称控制器或调节器。其作用是把被控变量的测量值和给
定值进行比较,得出偏差后,按一定的调节规律(PID)进行运算,输出
控制信号,以推动执行器动作,对生产过程进行自动调节。 控制仪表按工作能源分类有:
1.电动仪表
以220VAC或24VDC作为工作能源,其输入输出信号均采用0~10mA 或4~20mA的标准信号。