味精生产工程设计

合集下载

一味精工厂设计

一味精工厂设计
味精生产工厂设计
指导老师:*** 小组成员:***来自***内容提要


项目概况 工厂设计的背景 可行性分析 味精生产工艺流程设计 工厂整体布局设计 效益分析 三废处理 总结
一、项目概况





项目名称:年产9万吨味精工厂的设计 厂址:河南省商丘市梁园区 计划投资: 预计年利润: 计划员工人数: 原料:玉米、小麦、甘薯、大米等 产品名称:(品牌)味精
三、可行性分析



味精市场需求 原料供应 水电及交通条件 技术分析
味精市场需求

味精是调味料的一种,主要成分为谷氨酸 钠。味精的主要作用是增加食品的鲜味, 在中国菜里用的最多,也可用于汤和调味 汁。
原料供应

商丘是玉米原料主要供应地之一。商 丘地处黄淮平原,黄河故道,自然条 件得天独厚,气候温和,物产丰富。 盛产玉米、小麦、大豆、花生、棉花, 是全国商品粮基地、被称为“豫东粮 仓”。
二、味精的国内外前景



味精作为典型的发酵产业,在氨基酸工业中发展最快,规 模和影响最大。 现阶段味精需求的结构为:食品加工业消费了50%左右的 味精供给,餐饮业消费了30%,家庭消费为20%左右。这三 个渠道的增长,将成为带动调味品市场发展的动力。 目前,鸡精、鸡粉等后代调味品的需求和增长较快的地区 为华东、华南等经济发达区域。另外,随着味精有害论的 瓦解,消费者将更加理性的进行调味品选择;味精作为发 展最为成熟的增鲜调味品,具有较高的性价比,仍将是家 庭消费的选择之一。2010-2015年,味精行业保持8%-10% 左右的增速仍能持续。 国内外对味精的消费不仅仅限于调味 ,而是广泛的作为 一种原材料或香料表面活性剂用于医药和化妆品生产行业。

年产4万吨味精工厂设计本科毕业设计

年产4万吨味精工厂设计本科毕业设计

年产4万吨味精工厂初步工艺设计摘要味精,学名“谷氨酸钠(C5H8NO4Na)”。

谷氨酸是氨基酸的一种,也是蛋白质的最后分解产物。

我们每天吃的食盐用水冲淡400 倍,已感觉不出咸味,普通蔗糖用水冲淡200 倍,也感觉不出甜味了,但谷氨酸钠,用于水稀释3000倍,仍能感觉到鲜味,因而得名“味精”。

味精是采用微生物发酵的方法由粮食制成的现代调味品。

本设计为年产味精厂4万吨味精工艺设计;以玉米淀粉为原料水解生成葡萄糖、利用谷氨酸生产细菌进行碳代谢、生物合成谷氨酸、谷氨酸与碱作用生成谷氨酸一钠即味精为主体工艺,进行物料衡算、热量衡算、水衡算和发酵罐选型计算,并绘制了发酵罐结构图,发酵流程图,全厂平面布置图糖化流程图,提取与精制流程图.通过设计明确味精生产的工艺流程,对生产所需的总物料,热量,水。

以及相关设备进行计算,设计出一个具有高产量,低能耗,污染小的现代化味精生产工厂。

本设计的具体计算内容包括对对味精生产的四个工艺流程的所需的物料、热量和水进行了衡算和主要发酵选型计算,选取了合适的发酵生产设备以及合理的工艺流程进行味精的工厂生产,通过一系列的计算从而提高味精生产的质量和产量,降低了生产原料成本,既为味精的工厂化生产的进步提供合理的理论依据,又为环境保护和可持续发展提供重要的数据支持,因此此次味精工厂初步工艺设计是较为必要的.设计中的计算部分占总设计较多篇幅。

通过物料横算,热量横算,水平衡计算,以及设备选型部分。

得出了此次毕业设计所需的重要数据:玉米淀粉为原料日产100% MSG119.06吨,每日消耗的86%的玉米淀粉质量为181.88吨,日运转糖化罐4罐,投放料4罐次。

本次设计采用公称容积为300立方米的机械搅拌式发酵罐8台进行发酵,每天运转7台。

该发酵罐的主要参数有:罐的高度11.2m,罐身厚度15mm,封头壁厚10mm,选用六平叶涡轮式搅拌器,搅拌器转数75r/min,通风搅拌轴功率167kw,罐内工作压力0.15MPa。

年产一万吨味精发酵工厂设计

年产一万吨味精发酵工厂设计

年产一万吨味精发酵工厂设计摘要:味精是一种家常调味品,它采用面筋或淀粉用微生物发酵的方法制成。

别名又叫:味素、味粉、谷氨酸钠。

味精又称味素,是调味料的一种,主要成分为谷氨酸钠。

一.设计的任务及主要设计内容1.生产工艺阶段味精生产全过程可划分为四个工艺阶段:(1).原料的预处理及淀粉水解糖的制备(2).种子扩大培养及谷氨酸发酵(3).谷氨酸的提取(4).谷氨酸制取味精及味精成品加工2.设计内容主要设计内容包括(1).工艺流程设计(2).物料衡算(3).设备的设计与选型(4).车间布置设计及物料管道设计二.工艺流程设计三.物料衡算1.计算指标主要技术指标见下表(1)主要原材料质量指标淀粉原料的淀粉含量为80%。

含水14%(2)二级种子培养基(g/L):水解糖50m,糖蜜20,磷酸二铵钾,硫酸镁,玉米浆8,泡敌,生物素,硫酸锰2mg/L,硫酸亚铁2mg/L。

(3)发酵初始培养基(g/L):水解糖150,糖蜜4,硫酸镁,氯化钾,磷酸,生物素2μg,泡敌,接种量为8%。

2.物料衡算首先计算生产1000Kg纯度为100%的味精需耗用的原材料及其他物料量。

(1)设发酵初糖和流加高浓糖最终发酵液总糖浓度为220kg/m³,则发酵液量为:31 6.55m 122%99.8%95%60%2201000v =⨯⨯⨯⨯=(2)发酵液配置需水解糖量 以纯糖计算:)(1441220m 11kg V ==(3)二级种液量)(312m 0.5248%v v ==(4)二级种子培养液所需水解糖总量)(kg 26.250v m 22== (5)生产1000kg 味精需水解糖总量)(kg 1467.2m m m 21=+=(6)耗用淀粉原料量理论上,100kg 淀粉转化生成葡萄糖量为111kg ,故耗用淀粉量为:)(淀粉kg 1529.9111%108%80%1467.2m =⨯⨯=(7)液氨耗用量 发酵过程用液氨调pH 和补充氮源,耗用260-280kg ;此外,提取过程耗用160-170kg ,合计每吨味精消耗420-450kg 。

味精生产设计书

味精生产设计书

生物制药设计项目系(院) 化学化工学院 课程名称 生物制药工程 课题名称 味精的生产流程设计 姓 名 肖米 学 号 200913123256 专业班级 生物工程002 指导教师 张老师 完成日期 2011.12.12味精的工厂设计及工艺流程味精是人们熟悉的鲜味剂,是 L—谷氨酸单钠盐(Mono sodium glutamate)的一水化合物(HOOC-CH2CH(NH2)-COONa·H20),具有旋光性,有 D—型和 L—型两种光学异构体。

味精具有很强的鲜味(阈值0.03%),现已成为人们普遍采用的鲜味剂,其消费量在国内外均呈上升趋势。

<一>厂址的选择:厂址选在湖南省长沙市宁乡县菁华铺桃林桥笔友工业园内, 宁乡地处湘东偏北的洞庭湖南缘地区,地理上界于东经111°53′-112°46′,北纬27°55′-28°29′,东邻望城,南接湘潭、湘乡,西与涟源、安化交界,北与益阳、桃江毗连。

东西最大跨度88公里,南北纵长69公里。

由于丘陵低山的地貌形成较大的落差使宁乡拥有充足的水力资源, 宁乡是省会长沙的西大门是省会长沙的新城区,距长沙市中心36公里,交通便利, 交通发达,县城距长沙黄花国际机场60公里,石长铁路、长常高速公路、319国道横贯东西,洛湛铁路连通南北,S206、S208、S209和S311四条省道贯穿县境,金洲大道、枫林西路直通省会长沙市。

构成了宁乡四通八达的交通网络. 宁乡县属中亚热带向北亚热带过渡的大陆性季风湿润气候,四季分明, 全县年日平均气温16.8℃,一月日平均4.5℃,七月日平均28.9℃。

年平均无霜期274天,年平均日照1737.6小时,境内雨水充足,年均降水量1358.3毫米,年平均相对湿度81%。

宁乡境内多为丘陵地带,山地、平原、江河相映成趣,气候怡人,植被丰富。

厂区处于宁乡县的上风位置,优越的环境很适合味精的生产。

年产6万吨味精生产工艺设计

年产6万吨味精生产工艺设计

年产6万吨味精生产工艺设计年产6万吨味精生产工艺设计摘要味精是调味料的一种,主要成分为谷氨酸钠。

味精的主要作用是增加食品的鲜味,在中国菜里用的最多,也可用于汤和调味汁。

味精,学名“谷氨酸钠(C5H8NO4Na)”。

谷氨酸是氨基酸的一种,成品为白色柱状结晶体或结晶性粉末,是目前国内外广泛使用的增鲜调味品之一。

其主要成分为谷氨酸和食盐。

我们每天吃的食盐用水冲淡400 倍,已感觉不出咸味,普通蔗糖用水冲淡200 倍,也感觉不出甜味了,但谷氨酸钠,用于水稀释3000倍,仍能感觉到鲜味,因而得名“味精”。

味精是采用微生物发酵的方法由粮食制成的现代调味品,在我们的生活中用量很大。

本设计为年产6万吨味精的生产工艺,通过双酶法、谷氨酸中糖发酵以及一次等电点提取工艺生产谷氨酸钠。

通过详细了解味精生产中的原料预处理、发酵、提取部分的生产方法和生产流程,并根据实际情况来选择发酵工段合适的生产流程,并对流程中的原料进行物料衡算及设备的选择。

最后,画出发酵工段的工艺流程图和平面布置图。

本设计的工艺流程为发酵预处理(种子培养、原料预处理,制无菌空气)→发酵→等电点提取→中和制味精→浓缩结晶→精制分装。

该处理工艺具有工艺流程清晰、结构紧凑简洁、运行容易控制等优点。

为味精生产的理想途径,具有良好的经济效益、环境效益和社会效益,在实际的生产生活中得到了大量的推广应用。

关键词:味精,谷氨酸钠,糖发酵,双酶法,等电点提取productive technology designed for the monosodium glutamate factory which produce 60,000 tons per year AbstractMonosodium glutamate (MSG) is the sodium salt of the non-essential amino acid glutamic acid,which is the final resolve product from protein. If we dilute the salt with 400 times water, we can’t taste salty any more. If we dilut e the sucrose with 200 times water, we can’t taste sweetness too. But even if 3000 times water, Monosodium glutamate still taste flavor.Monosodium glutamate is a modern spice made of food by using microbial fermentation. This productive technology designed for the monosodiumglutamate factory which produces 60,000 tons per year by Double Enzyme、Sugar fermentation in glutamic acid and an isoelectric point of extraction to produce glutamic acid. We know through pretreatment of raw material、fermentation、extraction to learn Monosodium glutamate’s production methods and prod uction process. According to its situation, choose the way to fermentation which suit for production process. At the same time balance the material and choose the equipment . Finally draw out the fermentation process flow diagram and floor plan. The technological process of this design is:Fermentation pretreatment(Seed development;Pretreatment of raw materials;System sterile air)→fermentation→Isoelectric point of extraction→neutralization to Production of MSG→Concentration crystal→processing and repacking.this productive technology designed has many traits. Such as, well-knit structure, pithy quick control, lasting attacked, less sledge capacity,and its running and management is uncomplicated.Key words: MSG;Double Enzyme;Sugar fermentation; Isoelectric point of extraction1 前言1.1研究目的及意义通过运用专业知识和查阅相关资料,了解味精发酵的工艺流程,并掌握味精发酵过程中对发酵罐、种子罐、搅拌器和冷却管等材料的选取及物料平衡的计算,并运用到实际的生产生活中。

味精工厂设计实施方案

味精工厂设计实施方案

味精工厂设计实施方案一、背景介绍。

味精是一种常用的调味品,广泛应用于食品加工行业。

随着人们对食品安全和品质的要求不断提高,味精工厂的设计和实施方案显得尤为重要。

本文将就味精工厂的设计实施方案进行详细介绍。

二、工厂选址。

首先,要选择一个环境优美、交通便利的地理位置,以保证原料和产品的运输畅通无阻。

同时,要考虑当地的气候条件,确保生产过程不受外界环境的影响。

另外,要充分考虑当地的劳动力资源和用电情况,以确保工厂的正常运转。

三、工厂布局。

在工厂布局方面,要合理规划原料、生产车间、成品仓库等区域,确保生产流程顺畅。

同时,要考虑到员工的工作环境,提供舒适的办公和生产条件。

此外,要合理设置设备和管道,以确保生产过程的安全和高效。

四、设备选型。

在设备选型方面,要选择具有先进生产工艺和技术的设备,以提高生产效率和产品质量。

同时,要考虑设备的可靠性和维护成本,确保设备的长期稳定运行。

另外,要选用节能环保的设备,以降低生产成本和对环境的影响。

五、生产工艺。

在生产工艺方面,要制定科学合理的生产流程,确保原料的加工和产品的生产符合相关的标准和规定。

同时,要建立完善的质量控制体系,对生产过程进行严格监控,以确保产品的质量和安全。

六、安全环保。

在工厂设计实施方案中,安全环保是至关重要的一环。

要建立健全的安全生产管理制度,加强对员工的安全教育和培训,确保生产过程中不发生安全事故。

同时,要加强对废水、废气的处理和排放,确保工厂生产不对环境造成污染。

七、总结。

综上所述,味精工厂的设计实施方案需要充分考虑选址、布局、设备选型、生产工艺、安全环保等多个方面。

只有在这些方面都做到科学合理,才能确保工厂的正常运转和产品的质量安全。

希望本文的内容能对味精工厂的设计实施方案有所帮助。

年产15万吨味精工厂发酵车间设计

年产15万吨味精工厂发酵车间设计

味精是一种广泛应用于食品工业中的调味品,它的生产需要借助发酵车间进行。

下面是一份关于年产15万吨味精工厂发酵车间的设计方案。

一、车间概况该车间用于味精的发酵生产工艺,设计年产能为15万吨。

车间总面积约为3000平方米,包括生产区、辅助区和办公区。

生产区面积占整个车间的70%,主要包括原料处理区、发酵罐区、发酵辅助设施和发酵后处理区。

辅助区面积约为20%,包括洗涤区、消毒区、贮存区等。

办公区面积约为10%,包括办公室、实验室、检测室和员工休息室等。

二、生产工艺味精的生产主要分为四个步骤:原料处理、发酵、发酵后处理和包装。

1.原料处理:将所需原料送入原料仓库,并通过输送带、输液装置等设备投放到原料处理区。

在该区域进行除杂、清洗、破碎等工序,确保原料质量符合要求。

2.发酵:原料经过处理之后,送入发酵罐区进行发酵。

该区域设有多个发酵罐,每个发酵罐配备搅拌装置、恒温控制装置等。

发酵过程中需要控制温度、pH值、溶氧量和搅拌速度等参数,以保证发酵效果。

3.发酵后处理:发酵结束后,将发酵液送到发酵后处理区进行进一步处理。

处理包括分离、过滤、洗涤等工序,将发酵液中的固体物质和杂质去除,得到纯净的发酵物。

4.包装:经过发酵后处理的发酵物,将被送入包装区进行包装。

包装方式可以根据需求选择,常见的有散装、袋装和瓶装等。

三、车间设施和布局1.原料处理区:设备包括输送带、输液装置、清洗设备和破碎机等。

2.发酵罐区:设有多个发酵罐,每个发酵罐的容量应根据年产能计算确定。

每个发酵罐都应配备搅拌装置、恒温控制装置、溶氧量检测装置等设备。

3.发酵辅助设施:包括发酵液输送设备、发酵液分离装置、过滤装置、洗涤装置等。

4.发酵后处理区:配备固液分离设备、过滤设备和洗涤设备等。

5.包装区:根据包装方式需要配备相应的包装设备,如散装输送装置、袋装设备和瓶装设备等。

6.辅助区:包括洗涤区、消毒区、贮存区等。

在洗涤区和消毒区,应配置专门的清洁和消毒设备。

味精工厂生产工艺流程设计方案

味精工厂生产工艺流程设计方案

发酵生产谷氨酸的原料主要是淀粉,其次还有非粮食淀粉原料。

淀粉来自粮食原料,通常利用各种各样的淀粉,如北方常用玉米淀粉,南方常用番薯淀粉等。

非粮淀粉原料主要指甜菜或甘蔗蜜糖、醋酸、乙醇、正烷烃等。

3.2.2原料预处理非粮食原料除蜜糖外,一般均不需要预处理,可直接用来配制培养基;而蜜糖中色素含量过高,虽然生产菌可以良好生长,但采用一般谷氨酸,在采用蜜糖为原料进行谷氨酸发酵生产时,常要对蜜糖进行预处理。

大多数谷氨酸发酵菌种都不能直接利用淀粉和糊精,因此用淀粉质原料进行谷氨酸发酵生产时,必须先将淀粉水解成葡萄糖,才能供发酵使用。

3.3淀粉水解糖制备淀粉的水解方法有:酸水解法、酶水解法和酸酶水解法等3种。

在工业生产上,淀粉的处理主要是指糖化,制得的水解糖叫淀粉糖。

可以用来制备淀粉糖的原料很多,主要有薯类、玉米、小麦、大米等。

我国味精生产厂有的是采用酸水解法进行淀粉水解,既是以无机酸为催化剂,在高温高压下使淀粉快速水解成葡萄糖,还有的更多的再生产上采用了酶水解法对淀粉进行水解。

先用α-淀粉酶将淀粉水解成糊精和低聚糖,然后再用糖化酶将糊精和低聚糖进一步水解成葡萄糖的方法,称为酶水解法。

这里我们主要介绍酶水解法。

3.4 种子扩大培养种子扩大培养为保证谷氨酸发酵过程所需的大量种子,发酵车间内设置有种子站,完成生产菌种的扩大培养任务。

从试管斜面出发,经活化培养,摇瓶培养,扩大至一级乃至二级种子罐培养,最终向发酵罐提供足够数量的健壮的生产种子。

3.4.1影响种子质量的主要因素种子培养基的氮源、生物素和磷盐的含量要适当高些,而葡萄糖的含量必须限制在2.5%左右,这样可以得到活力强的种子,避免由于糖多产酸,引起pH下降而引起种子老化[12]。

图3-1 味精生产总工艺流程图(1)种子对温度变化敏感。

因此,在培养过程中温度不宜太高和波动过大,以免种子老化。

(2)在种子培养过程中通风搅拌要恰当。

溶氧水平过高,菌体生长受抑制,糖的消耗十分缓慢,在一定的培养时间里,菌体数达不到所需求的数量,氧不足菌体生长缓慢,为了达到发酵所需菌体数,必须延长发酵时间。

《工厂设计-年产10000吨味精项目工厂设计》论文

《工厂设计-年产10000吨味精项目工厂设计》论文

工厂设计设计题目:年产10000吨味精项目工厂设计年月日第一章项目建议书项目名称:年产1万吨味精项目工厂设计承办单位:鲁东大学生命科学学院拟建地点:山东省潍坊市昌乐县经济开发区项目负责人:一、项目建设的背景和意义味精,也称味素,因味精起源于小麦,俗称麸酸钠、谷氨酸钠。

味精在化学上称为谷氨酸钠,是一种无色至白色的柱状结晶或白色结晶性粉末,有很浓的鲜味,其前体物质之一的谷氨酸是人类食物和人体蛋白质的重要成分。

在天然食品中,它比同一种蛋白质的其他氨基酸往往高出1~20倍。

成年人普通的一日三餐都需要摄入较多的谷氨酸,因为在人体各部分组织器官中,谷氨酸占的比例十分令人瞩目。

例如,血液中的谷氨酸占游离氨基酸的33%,肝脏中占14%,在大脑神经系统的灰质蛋白质和白质蛋白质中分别占24.9%和26.8%。

由此看来,一个机体正常的人每天在菜肴中适量放些味精,是不会有危害的,至于味精致癌、致畸或突变更是无从谈起。

美国实验生物学会经过10年的调查研究,宣布味精是一种安全的调味品,列入了“实际无毒”的行列,并指明按现行量使用,对成人的确毫无损害。

随着食品行业的发展以及人们生活水平的提高,在许多普通食品中都能够找到味精的踪迹,味精的需求量会越来越大,所以,建设味精厂是十分必要的。

二、产品需求初步预测1、国际味精需求市场分析在国际市场上,味精的消费主要集中在日本、东南亚、非洲等地,最近几年欧洲和南美洲等地的味精需求量也开始出现增长势头, 国际市场对味精的需求也不断增加,味精行业的发展平稳向上。

日本、韩国、东南亚等国家和地区人均味精消费较高。

2、国内味精需求市场的分析随着我国人民生活水平的提高和膳食结构的改变, 以及对味精产品认识的普遍提高,味精的需求量不断增大,人均消费水平逐年提高,华东、中南、东南、西南、华南地区人均年消费量已上升为1000克左右。

就国内市场来讲,味精的主要消费群体在城市,城市居民年消费量占到总产量的70%以上,农村市场的发展潜力巨大,随着农村人口收入的增加,农民生活水平逐步提高,膳食结构进一步改善, 农村市场对味精的需求量会逐步增加。

年产一万吨味精发酵工厂设计

年产一万吨味精发酵工厂设计

味精是一种常用的调味品,广泛应用于食品加工和烹饪中。

一个年产一万吨味精的发酵工厂设计需要考虑很多因素,包括原料供应、工艺流程、设备选择、卫生标准等。

下面是一个关于年产一万吨味精发酵工厂设计的简要概述,总字数超过1200字。

1.原料供应2.工艺流程味精的生产主要包括淀粉的提取、发酵、提纯和结晶等步骤。

工艺流程的设计需要满足产量需求,并尽可能降低成本和能耗。

例如,可以采用热回收和废水处理装置来提高工厂的能效指标。

3.设备选择在设计年产一万吨味精发酵工厂时,需要选择适用的设备和仪器。

这包括发酵罐、蒸汽锅炉、过滤设备、结晶器等。

设备的选型应考虑生产效率、设备的价格和维护成本。

还需要确保设备符合国家和行业标准,并且具备一定的安全性能。

4.卫生标准味精是一种食品添加剂,对产品质量和卫生安全要求非常高。

工厂设计需要符合相关卫生标准和要求,包括厂房设计、设备清洁和消毒、员工培训等方面。

同时,建议采用先进的检测仪器和质量控制体系,确保产品符合国家和行业标准。

5.厂房布局6.环境保护工厂设计需要符合环保法规和行业标准,确保生产过程不对环境造成污染。

例如,建议安装废水处理设备来处理废水,并且进行合规的废物管理。

此外,还可以考虑利用生产过程中的废热来进行能量回收,进一步降低对环境的影响。

以上是关于年产一万吨味精发酵工厂设计的简要概述。

具体设计需要考虑的因素很多,如设备细节、人员配备、市场需求等等。

因此,在设计工厂时需要进行详细的市场调研和可行性研究,并与专业的工程师团队合作,确保工厂设计符合要求,并能够满足产量和质量需求。

产xxxxx吨味精的设计

产xxxxx吨味精的设计

年产xxxxx吨味精厂提取精制车间地设计目录绪论 (1)第一节设计简况 (1)第二节设计依据和原则 (1)第三节原料、辅料及各种化工产品地质量和来源 (1)工艺条件、厂址选择及其论证 (1)第一节生产工艺流程地确定及论证 (1)第二节工艺条件地确定 (1)第三节厂址选择与论证 (1)第四节各种成品、半成品质量要求工艺计算第一节味精生产能力地设计第二节制糖车间物料衡算第三节菌种培养物料衡算第四节发酵工段物料衡算第五节空气除菌物料衡算第六节提取工段物料衡算第七节精制工段物料衡算第八节专题车间能量衡算专题车间设备设计选型重点车间设计第一节车间布置第二节工艺操作要点、生产安排其他部分第一节水电气用量第二节三废排放及处理第三节电力部分第四节锅炉第五节全厂布置及人员第六节重点车间经济核算附:1.车间工艺流程设备一览表2.所用参考资料第一章(略)第二章工艺、厂址地选择及论证第一节生产工艺流程地确定及论证一全厂工艺流程图:(附工艺流程图0#图纸一张)淀粉→双酶法水解→葡萄糖液→(菌种→发酵←尿素 P Mg K 生物素)→↗99%味精(70%)↘等电离交提取→古氨酸→精制→80%味精(30%)→包装→商品味精二工艺特点及论证(一)糖化工艺特点及论证在味精生产过程中,糖化过程是指玉M淀粉转化为葡萄糖地过程.根据原料淀粉地性质及采用地催化剂地不同,水解淀粉为葡萄糖地方法有三种:酸解法、酶解法和酸酶结合法.本设计中选用双酶法水解,具有生产方便、条件温和、水解时间短、生产能力大地优点.因此此法目前为大多数工厂所采用.双酶法是用淀粉酶和糖化酶将淀粉水解成葡萄糖地工艺.双酶法水解可分为两步:加.第二步是糖化,利用糖化酶将糊精或低聚糖进一步水解,转化为葡萄糖.采用双酶法水解葡萄糖具有很多地优越性:(1)水解过程副产物少,水解糖液纯度高,比值可达98%以上.使糖液得到充分利用.(2)可以在较高地淀粉浓度下水解,水解糖液地还原糖含量可达到30%左右. (3)由于酶解反应条件温和,没有高温高压,水解过程副反应少,因此淀粉转化率高于酸解法和酶酸法.(4)双酶法制取地水解糖液营养成份丰富,可以简化发酵培养基,少加甚至不加生物素,有利于提高糖酸转化率,也有利于后续提取.(5)双酶法工艺同样适用于大M或粗淀粉原料,可以避免淀粉在加工过程中地大量流失,减少粮食消耗.(6)双酶法工艺,水解条件温和,不要求设备耐高温、高压,耐酸碱.缺点是生产周期长,夏天糖液容易变质,发酵生产不正常时,给生产调度带来困难.(二)发酵工艺地特点及论证氨基酸发酵是典型地代谢控制发酵.在味精生产过程中,发酵过程作为其重要地一个生产工段,需要严格控制其条件.在此发酵过程中,生产地产物谷氨酸是微生物地中间代谢产物,它地积累建立于对微生物正常代谢地抑制.在谷氨酸发酵过程中关键取决于其控制机制能否被解除,能否打破微生物正常代谢调节,人为地控制微生物代谢.此发酵过程为好气性发酵,在此过程中应有合适地通风搅拌.在发酵过程重要尽量避免噬菌体污染,控制最适温度,谷氨酸菌最适生长温度与产物积累温度不同,发酵前期控制在30~32℃,以利于谷氨酸菌体生长,后期温度可在34~36℃,以利于产酸.(三)等电离交提取工艺特点及论证发酵结束后,将生成地谷氨酸从发酵液中提取,这便是提取工序地主要目地.提取方法有一次等点提取、等电离交提取、离子交换法提取及电渗析法提取.离子交换法提取谷氨酸是将发酵液通过一定型号地地离子交换树脂,谷氨酸及其他阳离子先后被树脂交换吸附,然后用热碱洗脱.离子交换法提取谷氨酸具有过程简、周期短、设备省、占地少地特点,提取总收率在80~9%,是一种较好地方法.缺点是耗用大量酸碱工业原料,废液污染环境,同时树脂碎损易造成收率不稳定等弊病.(四)精制工艺特点及简要论证(1)中和液始终作为底料,母液作为补料,母液打入真空浓缩锅蒸发结晶出全部99%以上地成品味精,成品质量全部符合标准.(2)最后母液再通过二次回收地细结晶后放到提取车间结晶成湿谷氨酸,回收地细结晶与湿谷氨酸重新投料作中和液用.第二节工艺条件地确定一糖化工艺条件地确定及论证(一).液化工艺条件及论证(1)先往液化锅内泵入适量“底水”(以浸没下层蒸汽加热管为度)通入蒸汽底水加热至80℃左右,然后进料,速度要均匀,保持温度在80℃.(2)进料完毕逐步升温至规定液化温度90±2℃,保持20~25分钟左右,中间多次打开空气阀门,使锅内液化液沸腾均匀.(3)液化即将结束时,取样做碘液反应检查,直至无淀粉反应(呈棕红色或橙黄色)才算液化完全,最后升温至100℃杀菌5分钟后放料.(4)液化液过滤(一般用板框过滤机)速度要慢,一般要求大M出渣率在38%以下,M渣中淀粉含量12%左右,水分含量60%左右.(二)糖化条件及论证(1)糖液质量要求:色泽:呈浅黄色糊精反应:无还原糖含量:18%左右 DE值:90%以上透光率:60~80%左右 Ph值:4.6~4.8(2)工艺条件论证①合理控制淀粉乳浓度,适当配比盐酸,尽可能高温、快速、短时间内完成糖化,正确掌握中和、脱色地Ph值、温度和时间,借以提高糖液纯度.②糖液要清,色泽要浅,保持一定透光率.同时应不含糊精,以免引起污染.③糖液要新鲜,以免发酵变质,而且糖液贮存器要保持清洁,定期清理和清洗,防止酵母菌侵入.二发酵工艺条件及论证1 接种量 0.6~1.7%发酵培养基成份不同,谷氨酸菌种种类性质、种龄不同,所用接种量也不同,应根据实际情况和实验情况具体确定.2 温度控制前期32±0.6℃,后期可提高到33~36℃一般来讲温度升高反应速度加快,生长繁殖快,反应提前完成,但从酶反应动力学来看,酶易失活.温度越高,失活越快,菌体易衰老,影响产物生成.因此,温度地控制是发酵过程中极为重要地一环.不同地微生物都各有其最适生长温度范围,各种微生物由于种类不同,所具有地酶系及其性质不同,所要求地温度范围也不同.谷氨酸发酵前期,主要是张菌阶段,如果温度过高,菌种易衰老,严重影响菌体生长繁殖.因此,温度控制在谷氨酸最适生长温度32℃左右.在发酵后期,菌体生长基本结束,为了满足大量生成谷氨酸,可适当提高温度,控制在34~37℃.3 发酵罐内压力 1Kg/cm2(表压)4 通风量 0~8h: 1:0.1~0.11 8h~放料: 1:0.15~0.18谷氨酸发酵是好气性发酵,在此过程中供氧过大或过小均对菌体生长和谷氨酸积累有很大影响,在长菌阶段,若供氧过量,在生物素限量地情况下,抑制杂菌生长,表现为耗糖慢,长菌慢.在发酵阶段,若供氧不足,发酵地主产物由谷氨酸变为乳酸.5 搅拌转速 150rpm6 消泡培养基中加消泡剂:0.5~1斤在发酵过程中,根据泡沫情况及时添加灭菌过地消泡剂.在好气发酵中,由于通风与搅拌,产生一定量地气泡,泡沫过多,控制不好,会引起大量逃液而造成浪费和环境地污染.泡沫上升到罐顶,可能从轴封渗出,造成染菌危险.还会影响氧地传递,影响通风与搅拌.因此在发酵过程中应及时添加消泡剂,避免泡过多产生.7 尿素添加根据发酵过程中Ph值变化,确定尿素流加,当Ph值由高峰下降时,即可流加,总尿素用量为发酵液地3.5%.三等电离交工艺条件及论证(一) 等电沉淀发酵液(高流分边冷却边加硫酸调Ph)→Ph4.0~4.5发酵液(加晶种)→25℃育晶2h(边冷却边调Ph)→Ph3.0~3.2地发酵液(搅拌)→4℃静置4h→母液和谷氨酸(二)离子交换等电点母液→上柱交换→用水反洗离交柱→热水正洗和氨水洗脱→水洗树脂→树脂再生↓↓↗前流分(重新上柱)洗脱液→高流分(等电提取)↘后流分→污水处理(三)L-谷氨酸地提取(1)低温等电提取温度10℃以下,冷却截至液氨,Ph3.1~3.2(用硫酸调节)低温搅拌结晶8~10小时,发酵液经等电点法提取谷氨酸后,采用双柱法将等电电母液通过离子交换树脂柱进行交换,然后用氨水洗脱,树脂上地谷氨酸收集高流分将其与下一次发酵液合并再用等电点法提取,而前流分用于冲洗树脂,后流分废水处理.(2)母液用离氨行李自交换树脂回收.(3)分离后地谷氨酸废液为高浓度和有机废水,需进行三废处理解决环保问题. (4)等电离子交换回收率高,约≥95%四精制工艺条件及论证(一)中和与脱色用碳酸钠将谷氨酸中和为单钠盐,中和时应先加谷氨酸后加碱,开启搅拌,温度75℃左右(低于80℃),中和液浓度21~24Be,Ph.66~6.8,控制Ph不超过7,否则形成二钠盐,用粉末状活性炭,加量为3.6%(w/v),可用K活性炭.15(二)过滤用板框过滤机(三)离子交换采用树脂除贴离子等杂质(四)浓缩结晶罐内真空度0.075~0.085Mpa,温度60℃左右,加热蒸汽0.15~0.25Mpa,夹套加热,浓缩前要求透光率≥90%,浓缩到29.5~30.5Be时,加入晶种,辞职温度在65~70℃.晶种大小与投种量,以结晶罐全体积地3~5%(w/v),40目晶种6~9%,30目晶种6~12%.补料速度应与蒸发速度和解晶速度相一致,使料液浓度控制在介稳区内,使晶种以最大速度生长.结晶时间12~20小时. (五)分离干燥(1)工艺条件①用三足式离心机分离,按规定量装车,离心分离15~20分钟,分离过程中,每车加30~40℃蒸汽冷凝水淋洗一次,用水量为晶种地6~10%.②99%味精地干燥:用浮式干燥器控制温度30~40℃干燥,振动筛分离取10~28目为合格产品.③80%味精地干燥:用器流烘干控制温度70~80℃干燥,经振动筛分离取14~40目为原料,化验含量,配入精盐,真空抽取至混盐器混合15分钟,放出即为成品.(2)工艺条件论证结晶完成后离心分离晶体,一般采用三足式离心机.转速960~1250rpm,用水淋洗地目地可以溶去晶体表面地伪晶贺细晶,使晶体增加光泽,离心分离地晶体表面附着水分,如不加以干燥,则易粘结成块.干燥形式多样,我们采用气流和振动干燥.气流干燥地特点是待干燥地味精在干燥地热空气中呈悬浮状态,随着热空气地流动而被迅速干燥,它地优点是干燥速度快,干燥时间短(约1~4s),生产能力大,但是物料在热空气中悬浮运动相互间发生摩擦,对味精结晶光泽和外形不利.振动干燥地振动床振动频率120~400次/分,振幅5~10mm,这种干燥方式效果好,对结晶味精地晶体损失也少.结晶味精要求晶粒大小均匀,因此干燥好地晶体要经过振动筛分离,除去过大或过小地晶粒,使晶粒大小更加均匀.(六)晶种地制备(1) 99%味精晶种地制备气流干燥分离出大于10目地大结晶味精或其他结晶味精进行粉碎过筛,选除24~32目地作为99%味精晶种.(2) 80%味精晶种地制备 99%味精晶种制备过程中,筛出32亩以下地细结晶和气流烘干过筛40目以下地细结晶部分作为80%味精晶种用.(七)包装99%味精:1磅袋装(出口) 500g袋装(内销) 100g袋装(内销) 50g袋装(内销)80%味精(全部内销): 500g袋装 100g袋装 50g袋装 30g袋装 20g袋装第三节厂址选择一厂址选择原则1 节约用地,考虑发展2 靠近原料产地中心3 有丰富可靠地水源4 有良好地交通运输条件5 靠近电源6 利用城镇设施节约资源7 符合国家有关卫生、防火、人防方面地地规定和要求8 厂区地形英较平坦,倾斜破不易过大,厂区地耐力一般应大于14~20T/m29 山区建厂选用较平坦山坡,避开断层、塌方、滑坡、溶洞、地下暗流,避开有山风、谷风及洪水侵袭地地段.10 其他要求:厂址应考虑在产品、原材料、三废治理、综合利用、动力、给排水、交通运输、居住区建设、生活福利等方面,与邻近企业协作地可能等.二厂址不易选择地地段1 有爆破危险地范围内2 有开采价值地矿床上3 采矿崩落界限内4 低洼窝风地区,有滑坡、流沙、过于深厚地松软淤泥不稳定断层区,溶洞较严重等不良地质地区或新淤河道、古墓之上5 紧邻大水库下游,以及受山洪、内涝等水患威胁地地区6 受临近工厂严重污染地下风或下游地段7 自然保护区,水土保持禁垦区,风景区,疗养区,文物古迹考古区,妨碍少数民族风俗习惯地地区,以及集中式生活饮用水水源、第一卫生防护地带区8 地震强烈度在9度以上地地震区,超过7度,应依照国家颁布地抗震规范加以防范9 避开机场、高压输电线和城市工程管道等第四节各成品、半成品地质量要求一水解液质量要求1 透光率 90%以上2 不含糊精、低分子蛋白,防止起沫逃液3 淀粉出糖量4 DE值90~925 还原糖浓度30%以上二种子质量要求1 显微镜下检查时,菌体应大小均匀,呈单个或八字型排列.细胞呈棒状略有弯曲,革兰式染色阳性2 二级种子培养过程中,pH值变化有一定规律,从6.8上升到8.0左右然后逐步下降3 三级种子活菌浓度应达到108~109个/ml>1000微升氧/ml种子·小 4 二级种子要求活力旺盛,一般要求二级种子QO2时三谷氨酸质量要求1 离心分离后,谷氨酸含量90%左右2 氯化物≤0.2%3 应为α-结晶4 外观正常无杂色四味精质量(一)99%味精质量标准晶体粉状谷氨酸≥99% ≥99%水分≤0.2% ≤0.3%Nacl ≤0.5% ≤0.5%透光率≥95% ≥95%外观白色有光泽晶体白色粉状砷≤0.5ppm ≤0.5ppm铅≤1.0ppm ≤1.0ppm铁≤5ppm ≤5ppm锌≤5ppm ≤5ppm(二)80%味精质量标准晶体谷氨酸≥80%水分≤1.0%Nacl ≤20%透光率≥70%外观白色晶状或混盐晶体砷≤0.5ppm铅≤1.0ppm铁≤10ppm锌≤5ppm第三章工艺计算第一节味精生产能力地设计一、产量年产40000t味精,其中99%地商品味精39600 t,80%地商品味精400 t.日产味精: 40000÷300=133.33 t/d;日产纯MSG:(39600×99%+400× 80%)÷300=131.75 t/d.二、原料:玉M淀粉(淀粉纯度83%)三、全年劳动日:300天四、主要技术指标:1、淀粉出糖率:108%;2、糖酸转换率:55%;3、提取收率:95%;4、精制收率:110%.五、总物料衡算:1、1t纯淀粉理论产100%MSG量:1000×111%×81.7%×1.272=1153.50㎏2、1t纯淀粉实际产100%MSG量:1000×108%×55%×95%×110%=620.73㎏3、1t玉M淀粉(纯度为83%)产100%MSG量:620.73×83%=515.2 ㎏4、淀粉单耗:(1)理论:1t纯MSG理论消耗纯淀粉量:1000÷1153.5=0.87 t;1t纯MSG理论消耗玉M淀粉量:1000÷(1153.5×83%)=1.04 t(2)实际:1t纯MSG实际消耗纯淀粉量:1000÷620.73=1.611 t消耗玉M淀粉量:1000÷515.2=1.94 t5、原料及中间产品计算:①每日淀粉用量:1.94×131.75=255.60 t②糖化液量:255.60×108%=276.05t③发酵液量:纯Glu量:276.05×55%=151.83t/d折算为8g/dL地发酵液:151.83÷80%=1897.84m3④提取谷氨酸量:纯谷氨酸量:55.124×95%=52.368t/d折算为90%地谷氨酸量:52.368/90%=58.186t/d⑤谷氨酸废母液(采用等电—离子回收法,以排出废母液含谷氨酸0.3g/d计算:(55.124-52.368)/0.3%=918.667m3/d由上述得物料衡算表如下:其中,工业原料淀粉含量83%,糖蜜含量52%,总物料衡算结果t/年第二节糖化车间物料衡算一、浆量及加水量:(淀粉加水比例:1:2.51000kg工业淀粉浆: 1000×(1+2.5)=3500kg,加水2500kg二、粉浆干物质浓度: 1000×83%÷3500×100%=23.71%三、液化酶量:(使用а-淀粉酶) 3500×0.25%=8.75kg四、Glu量: 3500×0.25%=8.75kg五、液体糖化酶量:3500×0.25%=8.75kg六、糖化液产量: 1000×83%×1.11×1.08÷24%=4145.85 kg32%糖化液地相对密度为 1.09, 则糖化液体积:4145.85÷1.09=3803.53(L)七、加珍珠岩量:(糖化液地0.15%) 4145.85×0.15=6.22 kg八、渣产量:(含水70%废珍珠岩) 0.22÷(1-70%)=20.73 kg九、生产过程进入地蒸汽和洗水量:4145.85+20.73-3500-(8.75×3)-6.22=634.11 kg十、衡算结果:根据总物料衡算:日投入工业淀粉100.225t,制糖工序物料衡算汇总表如下:表二制糖工序物料衡算一览表第三节连续灭菌及发酵车间物料衡算一、发酵培养基数量:1、1000kg工业淀粉得到24%地糖化液4145.85kg,发酵初始糖浓度16.4g/dl,其数量为:4145.85×24%÷16.4%(w/v)=6067L16.4 g/dl地糖液相对密度为1.06:6067×1.06=6431 kg2、配料:按放罐发酵液体积计算:6067×16.4%÷16.0%=6291L玉M浆:6219×0.2%(w/v)=12.44 kg甘蔗糖蜜:6219×0.3%(w/v)=18.66 kg无机盐:(P、Mg、K等)6219×0.2%(w/v)=12.44 kg配料用水:配料时培养基地含糖量不低于19%,向24%地糖液中加水量为:4145.85×24%×19%-4145.85=1091 kg3、灭菌过程中加入蒸汽量及补水量:6431-4145.85-1091-12.44-18.66-12.44=1150.6 kg4、发酵0小时数量验算:4145.85+12.44+18.66+12.44+1091+1150.6=6431 kg其体积为6431÷1.06=6067L 与以上计算一致二、接种量:6219×1%(w/v)=62.2L62.2×1.06=66kg三、发酵过程加液氨量:为发酵液体积地2.8%6219×2.8%(w/v)=174 kg液氨地量0.62 kg/L ,174÷0.62=281 L四、加消泡剂地量:(为发酵液地0.05%)6219×0.05%(w/v)=3.1 kg消泡剂地相对密度为0.8,则体积 3.1÷0.8=3.9L五、发酵过程从排风带走地水分:进风25℃,相对湿度Φ=70%,水蒸气分压18mmHg,1mmHg=133.322Pa排风32 ,相对湿度D=100%,水蒸气分压27mmHg柱,进罐空气压力为1.5个大气压(表压)(1个大气压力为1.01325 10Pa)(表压)进出空气地含量差:X1-X2=(0.622*27*100%)/(1.5*760-27*100%)-(0.622*18*70%)/(25*760-18*70)=0.01(kg水/kg空气)通风比: 1:0.2带走水量:6219*0.2*60*36*1.157*0.001*0.01=31128其中32度时空气地密度为_kg/m3过程分析,放罐残留及其他损失52kg(6)发酵终止时地数量:6413+66+174+3.1-31-52=6591kg(7)衡量结晶总汇:年产25000吨商品msG,日投工业淀粉100.225吨.连续灭菌和发酵工序地物料衡算总汇列表:(1)进入系统离开系统100.225/1000工程1吨工业淀物t/d 工程1吨工业淀粉匹配物料kg t/d粉匹配物料kg t/d 料kg24%糖液4145.85415.518发酵液6591660.748玉M 浆 12.44 1.247 空气带走水量 31 3.508 甘蔗蜜 18.66 1.87 过程分析放罐 无机盐 12.44 1.247残留及其他损失 52 5.213 配料水 1091109.373 灭菌用蒸馏水 1150.6115.348接种量 66 6.617 液氨 174 17.444 消泡剂 3.1 0.311总计 6674 669.069 总计 6674 669.069第四节 提取工段地物料衡算采用冷冻等电结晶地工艺(按100kg 工业淀粉计算)(1)发酵液量6219升(6591千克)(2)加入98%硫酸量:6219*3.6%=224千克,98%硫酸地密度为 1.84,其体积为:224/1.84=122升 (3)Glu 产量:分离前:纯Glu 6219*8%(w/v)=497.52kg 分离后:纯Glu497.52*95%=472.64kg98%地Glu 472.64/98%=525.16kg (4)母液量: 母液含Glu0.3kg/dl 则(497.52-472.64)/0.3%=3554kg(5)分离洗水量:525.16*20%=105.03kg(6)母液回收过程用水及其酸碱地数量:8293-6219-122-105.03=1847l=1847kg(7)物料衡算结果进入系统工程1吨淀粉匹配物料kg t/d 工程1吨淀粉匹配物料kgt/d发酵液6591 660.748 98%Glu 525.16 52.634 硫酸224 22.456 母液8293 831.166 分离用洗水105.8 10.527回收加水量1847 185.162累计8767 878.673 累计8767 878.673第五节制取工序地物料衡算(1)数量:100%Glu472.61kg,90%Glu525.16kg(2)碳酸钠量:525.16*36.6%=192.21kg(3)加活性C 量:525.16*0.3%=1.58kg(4)中和液量:472.6*1.272/40%(w/v)=1503l1593*1.16=1743kg(5)中和加水量:1743-525.16-192.21-1.58=1024kg(6)产 mSG 量:100%mSG,精制收率92%,产100%mSG472.6*1.272*92%=553.1kg(7)产母液量:母液平均含mSG 25%(w/v)472.6*1.272*8%/25%=192 l母液地相对密度为1.1,则192*1.1=211.6(kg)(8)废液地活性炭数量:湿炭含水75%1.58/(1-0.75)=6.32kg(9)mSG调和洗水量:553.15*5%=27.65kg(10)中和脱色及结晶蒸发出地水量:1743+27.65-211.6-6.32-553.1=991.63kg(11)物料衡算汇总:进入系统离开系统工程1吨工业淀粉匹配物料kg t/d 工程1吨淀粉匹配物料kg t/d90%Glu 25.16 52.634 100%mSG 553.1 55.434 碳酸钠192.21 19.264 母液211.6 21.208 活性C 1.58 0.158 废C 6.32 0.633 中和加水1024 102.63 蒸发水量999.6 100.185 分离洗水27.65 2.771累计1770.6 177.458 累计1770.6 177.458味精生产过程物料汇总以投料1000千克工业淀粉为基准,所地各段中间物料及其匹配辅料标准以衡算结果汇总于下图:按年产25000吨MSG衡算结果(以日产量为基准)汇总于下:第六节提取车间热量衡算一.冷冻结晶冷量计算(设等点中和液终温是50)(1)等电点罐420m3,装液量315 m3,相对密度为:1.06,有30℃降至5℃,降温速度℃/h,其冷量为:420×103×1.06×2×3.97=2.7×106(kj/h)其中3.97位发酵液比热(kj/kg水)中和时H2SO4对水地溶解热为92 kj /mol,6h加98% H2SO45100 kj,其溶解热为:5100×98%÷6÷98×92=782(kj /h)可忽略不计.(2)2.7×106/3600=750(kw)发酵罐500 m3,装料系数0.7,每罐产100%MSG量:500×0.7×8%×95%×1.272=28.08(t)_年产2.5万吨商品味精,日产100%MSG72.891t,发酵操作时间48h(其中发酵时间38h),需发酵罐台数:72.891÷28.08×48+38=5.91取6台每日投(放)料罐次: 72.891÷28.08=2.60次日运转: 2.60×38÷48=2.05罐每天运转3.43罐,总制冷量: 2.05×750=1537.5(kw)第七节谷氨酸钠溶液浓缩结晶过程热量衡算年产2.5万吨商品味精,日产100%MSG72.891t,选用30 m3机械搅拌内热式浓缩操作,周期为24h,其中付诸实践为4h,每罐产100%MSG15t,需结晶罐台数:72.891÷(15-2.0)=5.61台,取6台一. 热平衡与计算加热蒸汽量每罐投入40g/dl地中和脱色液32m3,流加30g/dl母液32m3过程中加入6 m3,在70℃下真空蒸发结晶,浓缩3h,育晶17h,放料数量25 m31.热量衡算(1).进料带入热量:进料温度35℃,比热为3.5kj/kg水Q采料=(32×1.16+32×1.13)×3.5×3.5×103=8.92×106(kj)(2).加水带入热量:MSG比热熔1.67 kj/kg水Q夹水=6×4.18×35×103=8.8×105(kj)(3).晶种带入热量:Q夹晶=2000×1.67×20=6.7×104(kj)(4).结晶放热:MSG结晶热为12.7kj/molQ晶热=(15-2.0)×106×12.7÷187=8.9×105(kj)(5).母液带走热量:分离牧业15m3,折算为相对密度为 1.26时为19t,比热为2.83kj/kg水Q =19×103×2.83×70=3.8×106(kj)(6).随二次蒸汽带走热量:Q二蒸=(32+32+6-25)×2.626×106=1.18×108(kj)其中25为放罐时地结晶液量(7).随结晶MSG带走地热量Q出晶=15×103×1.67×70=1.75×106(kj)需供外热:Q =(Q母液+Q二蒸+Q出晶)-(Q采料+Q采水+Q采晶+Q晶热)=(3.8×106+1.18×108+1.75×106)-(8.92×106+8.8×105+6.1×104+8.9×105)=1.13×108(kj)2.计算蒸汽用量:每罐次用量,热损失按5%计算D =1.13×108÷(27.7-535)×0.95=54513(kj/罐)每罐浓缩液结晶时间为20h,每小时耗蒸汽高峰量:54513÷20=2725.65(kg/h)5.61台同时运转高峰蒸汽用量为:5.61×2725.65=15290.90(kg/h)每日用蒸汽量:54513×5.61=305817.93(kg/d)≈306(t/h)二. 冷却二次蒸汽所消耗冷却水量:1.二次蒸汽数量:即水蒸发速度:(32+32+6-25)÷20=2.25m3(水/h)2.冷却用水量:使用循环水,进口温度30℃,出口为45℃,70℃水蒸气焓为2626.8kj/kg.需冷却水量W =2.25×103×(2626.8-45×4.18)÷(45-30)÷418=8.75×104kg/h=87.5(t/h)6台罐高峰用水量:87.5×6=525(t/h)含日用水量:87.5×20×60×5.61=9817.5(t/d)平均用水量:9817.5÷24=409(t)为保证循环水不高于30℃需加二次水5000t/d第八节干燥过程地热量衡算分离之后湿MSG含水20%干燥后到10.2%,加热空气为18℃,相对湿度为70%,通过加热器使空气升至80℃,从干燥器出来地空气为60℃,年产2.5万吨商品MSG,日产湿味精78.125t,二班生产,即:78.125÷16=4.883(t/h)(78.125×2%-72891×0.2%)÷16=88.545(kg/h)18空气湿含量为70%,XO=0.009kg/kg干空气,IO=41.8kj/kg干空气加热80,I1=104.5kj/kg干空气用公式=(I2-I1)÷(X2-X1)=Q物料+Q损失-Q初温式中:空气经干燥后地热量变化(kj/kg)I1:出空气加热器地空气热焓I2:出干燥器地空气热焓IO:冷空气热焓XO:空气湿含量(kj/kg干空气)X1:进干燥器地空气湿含量X2:出干燥器地空气湿含量Q初温:物料初始湿度时地物料中每1kg水地热焓量(kj/kg)Q物料:加热物料所耗热量(kj/kg,k)Q损失:损失热量通常为有效热量地10%Q物料=8.4×103×(60-18)×0.4×4.18÷34=17349(kj/kg水) =18×4.18-17349-1987.9=-19261.7设X2=0.0108I 2=I1+(X2-X1)=104.5+(-19261.7)×(0.0108-0.009)=69.8(kj/kg干空气)空气耗量为: 88.545/(0.0108-0.009)=49192(kg/h)80时空气地比容:83m3/kg实际耗空气量为: 49192×0.83=40829m3/h耗用蒸汽量(D):使用0.1MPa(表压)蒸汽加热,热损失按15%计算D=(104.5-41.8)×49192×1.15÷(2706.7-504.7)=1610.80kg/h每日用蒸汽量: 1610.80×16+25772.80(kg/d)平均每小时用蒸汽量:25772.80÷24=1073.87(kg/h)第四章精制提取车间设备设计选型第一节等电罐一制造与防腐材料:选用钢板(5~6mm)贴玻璃布,用环氧树脂作粘合剂,此法耐腐蚀性好,但造价略高.二罐地数量和容积:1,罐数:等电点罐一般与发酵罐配合使用,即一个发酵罐地发酵液由泵送到一个等电点罐进行提取n等电点罐=n发酵罐=6台(计算见热量衡算部分)2,罐地容积:VG =(1.2~1.3)VF其中 VG----等电点罐容积VF-----发酵罐地容积取系数为1.2,则VG =1.2VF-1.2*500=600m33,罐地尺寸比例:H/D=1.2~1.5,取H/D=1.3VG=Л/4D2 H=Л/4D3*1.3=1.02D3故有D=(VG/1.02)1/3 =(600/1.02)1/3 =8.4m4,冷却面积计算:设发酵液密度ρ为 1.06,由30℃下降至5℃降温速度为2℃/h,总制冷量为2165KW,共2台,则每台1056KW按经验取K=4.187*350〔KJ/(m2*H*K)〕Δt m =(Δt1-Δt2)/ln(Δt1/Δt2)设酵液由30℃降至5℃,冷冻盐水由-5℃至2℃(先用冷水冷却后用冰盐水冷却)Δt m ={〔30-(-5)〕-(5-2)}/{ln[30-(-5)]/(20-2)}=32/ln (35/18)=48.1℃传热面积为:F=θ/(K*Δtm)=3600*1056/[(4.187*350)*48.1]=53.95m2考虑罐地散冷损失,取F=54 m2,冷却管选用57*3.5mm不锈钢管,管长L=F/(Лdcp)=54/{3.14*[57+157-2*3.5]/(1000*2)}=321.6m 设蛇管圈直径为8m,则圈数为:n=L/(Лd)=321.6/(3.14*8)=13 5,搅拌功率计算:取平直双浆搅拌器,由查表《发酵工厂设备》可得:A=6.8, m=0.2, 取转数为30r/min,d=0.65D=0.65*8.4=5.46m 取发酵液粘度为0.86cp,代入式子得:N运转={6.8/〔(30/60*5.462*1060)/0.86*10-3〕}*1060*5.465*(30/60)3=(6.8/28.37)*642953=154KWN启动=(2~3)N运转(308~462)KW取462KW取N电机=1.12 N启动=517KW第二节离子交换柱一,离子交换柱材料:采用4mm不锈钢材料.二,离子交换柱地有关计算:1树脂体积计算:选用胺型离子交换树脂,交换等量干树脂为 1.2公斤当量/m3树脂湿树脂为1.90mg当量/g.V树脂=V(GA %/147)/N树脂其中,V-上柱地母液量GA %-母液中GA地百分含量根据经验值,上柱量在70~150L/min之间,取120L/min则V=120*24*60/1000=172.8m3/d等电结晶后母液中含GA0.7%V树脂=(1000*172.8/2)*0.7%/147/1.2=3.43=4 m3 /周期设树脂地湿密度ρ为0.8t/ m3(0.75~0.85t/ m3),则树脂地重量为W=0.8V树脂=4*0.8=3.2t2树脂柱数目计算:设支离子交换柱装树脂为1 m3,则离子交换柱数量为:n=每次交换所需树脂体积/每柱装树脂量+1=4/1+1=5支(1为备用柱数)3树脂柱高度计算:取树脂层高度H=2D,柱地高径比为H/D=4:1有V=Л/4*D2* H=Л/4*D2*2D=Л/2D3故D=(2V/Л)1/3=(2*1/3.14) 1/3=0.86m取0.9m树脂层高度H=2D=1.8mH/D=4:1,故H=4D=4*0.9=3.6m取下封头为锥形,高度为0.3m,上部不设封头,则柱地总高度为H总=H+h=3.6+0.3=3.9m4洗脱剂用量WW=V*n,经验上n取2.5~3 取n=2.8W=2.8*1=2.8m3采用10%NH3·H2O洗脱,每柱需2.8 m3.第三节中和脱色罐地选取一,体积地计算:年产味精25000t,工作日320天,则日产MSG=25000/320=78.125t,中和液MSG含量40%,则中和液V=78.125/40%=195.313 m3.设用3班进行中和,则每班中和地体积:V班=195.313/3=65.104 m3取中和桶地容积系数为0.60,则中和桶V桶=65.104/0.60=108.507 m3 =109 m3.二高径比计算:取中和桶地形状为圆柱圆锥形,选D/H=1:1 ,h=0.2DV=Л/4*D2* H+1/3*Л/4*D2* h=Л/4*D3+Л/12*D2*0.2D=4/15D3D=(15/4V )1/3=(15/4*109) 1/3=7.42m圆柱高H=D=7.42m,圆锥高h=0.2D=1.48m第三节助晶槽贮晶槽是供结晶罐放出地结晶液去分离地中间贮存设备,由生产要求,选择VN=30m3地贮晶槽,各参考数如下:槽宽B=2200mm,槽体高H1=2200mm,中心高H2=1500mm,总高H=2860mm,总长L=8000mm,换热面积A=49 m3. 转速n=8r/min,电机功率P=11KW.第五章重点车间设计第一节车间布置第二节工艺操作要点、生产安排第六章其它部分一,用水量1,配料用水量:日投工业淀粉100.225t,加水比1:2.5用水量:100.225*2.5=250.563t因连续生产,平均水量=高峰水量=250.56/24=10.4(t/h)新鲜水2,液化冷却用水量:将物料由100℃→65℃,使用二次冷却水,进口20℃,出口58.7℃100.225/24=4.176t,加水为1:25,粉浆量4176*3.5=14616kg/h液化蒸汽用量:D=14616*3.53*(90-20)/(2738-377)=1529.7(kg/h)灭菌用蒸汽量:D灭=14616*3.53*(100-90)/(2738-419)=222.3(kg/h)所以冷却水量:W=(14616+1529.7+222.3)*3.53*(100-65)/〔(58.7-20)*4.18〕=12.50t/h=300t/d3,糖化冷却水用量:(使用二次用水)G化液由85℃→60℃,二次用水进口20℃,出口45℃平均用水量:(14616+1529.7+222.3)*3.53*(85℃-60℃)/〔(45℃-20℃)*4.18〕=13.8t/h要求2h内把75m3G液冷却至40℃,高峰用水:..................2,提取工序用水量:用于GA分离及冲洗水,每日用量195t/d,平均量8.15t/h高峰量:(80t/h),使用新鲜水.3,中和脱色工序用水量(1)配料用水(使用回收地结晶罐蒸汽冷凝水)第六章其它部分第一节水汽用量一,水用量1,糖化工序用水量(1)配料用水量:日投工业淀粉100.225t,加水比1:2.5用水量为:100.225*2.5=250.5t/d(2)液化液冷却用水量:平均量=高峰量=19.7t/h,=472t/d(二次水)(3)糖液冷却用水量(使用二次水):每日用水冷却量:540t/h平均量:540/24=22.5t/h,高峰量:86.25t/h。

年产10000吨味精项目工厂设计要点

年产10000吨味精项目工厂设计要点

年产10000吨味精项目工厂设计要点年产10000吨味精项目工厂设计要点一、项目概述年产10000吨味精项目是一个大型化工生产项目,主要生产味精产品,年产能达到10000吨。

该项目是基于市场需求和技术条件而进行的,目的是满足人们对于食品调味品的需求。

二、规模和布局设计1.规模设计:年产10000吨味精的生产规模可以满足市场需求,同时也可以充分利用设备和人力资源,提高生产效益。

2.布局设计:工厂的布局应当合理,保证生产流程的连贯性和高效性。

主要分为原料储存区、生产区、包装区、质检区、辅助区等,以确保各个区域之间的流程衔接和生产效率的提高。

三、工艺流程设计1.原料准备:该项目主要使用淀粉和氨基酸等原料进行生产,因此要有相应的原料存储和供应系统,确保原料的充足和稳定。

2.发酵:该项目使用发酵生产工艺,需要设计相应的发酵罐和发酵系统,以确保发酵过程的稳定性和高效性。

3.提取:在发酵完成后,需要进行提取工艺,将发酵液中的味精提取出来。

这一步骤要合理选择提取剂和提取设备,以确保提取效果的良好和产品质量的稳定。

4.浓缩:将提取得到的液体进行浓缩处理,以提高味精的浓度和稳定性。

此环节需要设计相应的浓缩设备,确保浓缩过程的高效和稳定。

5.晶体分离:在浓缩完成后,要进行晶体分离,将浓缩液中的味精晶体分离出来,以便进行后续的干燥和包装。

此环节需要设计相应的分离设备,以确保分离过程的高效和产品质量的稳定。

6.干燥:将分离得到的味精晶体进行干燥,降低含水率,以便于包装和存储。

此环节需要设计相应的干燥设备,确保干燥过程的高效和产品质量的稳定。

7.包装:将干燥后的味精产品进行包装,使用合适的包装材料和包装机械,以确保产品的密封性和保质期。

8.质检:在生产过程中,要进行质检,确保产品的质量和安全性。

质检环节需要设计相应的质检设备和流程,以确保质检过程的高效和准确。

四、设备选型和布置1.设备选型:根据生产工艺流程的要求,选择适合的设备,包括发酵罐、提取设备、浓缩设备、晶体分离设备、干燥设备、包装设备等,确保设备的性能符合要求,并具有高效性和稳定性。

年产5万吨味精工厂生产工艺设计任务书

年产5万吨味精工厂生产工艺设计任务书

年产5万吨味精工厂生产工艺设计任务书项目背景随着人们对食品品质要求的提高,味精作为一种常用的调味品,其需求量也在不断增加。

为了满足市场的需求,现计划建设一座年产5万吨味精的工厂。

项目目标本项目的目标是设计并建设一座年产5万吨味精的工厂,以满足市场对味精的需求。

工厂的设计需要考虑到生产工艺、设备选型、生产流程等方面的要求,确保味精的生产能够稳定高效,符合相关标准和质量要求。

项目内容1.工厂布局设计:根据工艺流程和生产需求,设计合理的工厂布局,确保生产流程的顺畅。

布局设计需要考虑原料进货区、生产车间、设备安装区、成品储存区等不同功能区域的位置和空间布局。

2.生产工艺设计:根据味精的生产工艺和品质要求,设计合理的生产工艺流程。

工艺设计需要考虑原料的处理方式、反应器的选型、反应过程中的控制参数等因素,并制定相应的工艺参数和操作规程。

3.设备选型:根据生产工艺的要求,选择合适的生产设备。

设备选型需要考虑设备的生产能力、耐腐蚀性、操作便捷性等因素,并确保选用的设备符合相关标准和法规的要求。

4.供应链管理:设计合理的供应链管理方案,确保原料的供应和成品的储存和运输无误。

5.质量控制:建立完善的质量控制体系,监控生产过程中的关键环节和参数,确保产品的质量稳定可靠。

6.安全环保:设计合理的生产工艺和设备,确保生产过程安全可靠,并符合环保要求。

项目计划1.工期计划:根据项目需求和工作量评估,制定详细的项目工期计划。

工期计划需要考虑到工厂的建设时间、设备采购时间、试产时间等因素。

2.人力资源:确定所需的人力资源,包括工艺工程师、设备工程师、生产操作人员等,并制定相应的招聘计划和培训方案。

3.资金预算:根据工程设计和设备采购的需求,制定详细的资金预算,包括工艺设计费用、设备采购费用、人力成本等。

风险评估1.市场风险:根据味精市场的发展趋势和竞争状况,评估项目的市场前景和竞争风险,并制定相应的市场策略。

2.技术风险:评估工艺设计和设备选型的技术可行性和稳定性,确保生产工艺和设备能够满足产品质量和产能要求。

(完整版)年产2.5万吨味精生产工艺设计

(完整版)年产2.5万吨味精生产工艺设计

目录1前言 (2)1.1发展简介 (2)1.2味精的性质 (2)1.3味精的用途 (3)2设计任务书 (3)2.1生产的方法 (3)2.2指标与数据 (3)2.3 设计任务 (4)2.4设计要求 (4)3厂址选择方案 (4)3.1总平面设计思路 (5)4总平面图 (5)5生产工艺流程 (6)5.1淀粉的糖化 (7)5.2种子的扩大培养及谷氨酸的发酵 (7)5.3 谷氨酸的提取 (8)5.4精制 (8)6. 物料衡算及其设备选型 (8)6.1物料数据 (8)6.2热量衡算 (11)6.3水平衡 (12)6.4设备设计与选型 (13)7参考文献 (21)1前言味精,学名谷氨酸钠。

调味料的一种,主要成分为谷氨酸钠,主要作用是增加食品的鲜味,在中国菜里用的最多,也可用于汤和调味汁。

味精是指以粮食为原料经发酵提纯的谷氨酸钠结晶。

本设计是生产纯度为99%味精设计,以工业淀粉为原料、双酶法糖化、流加糖发酵,低温浓缩、等电提取等方法生产。

本设计对全厂进行了物料衡算、热量平衡计算、水平衡计算、耗冷量计算、无菌压缩空气消耗量计算。

对味精发酵车间进行工艺流程的设计和发酵罐的设计与选型计算。

其发展大致有三个阶段:第一阶段:1866年德国人里德豪森博士从面筋中分离到氨基酸,他们称谷氨酸,根据原料定名为麸酸或谷氨酸(因为面筋是从小麦里提取出来的)。

1908年,池田菊苗试验,从海带中分离到L—谷氨酸结晶体,这个结晶体和从蛋白质水解得到的L—谷氨酸是同样的物质,而且都是有鲜味的。

第二阶段:以面筋或大豆粕为原料通过用酸水解的方法生产味精,在1965年以前是用这种方法生产的。

这个方法消耗大,成本高,劳动强度大,对设备要求高,需耐酸设备。

第三阶段:随着科学的进步以及生物技术的发展,使味精生产发生了革命性的变化。

自1965年以后我国味精厂都采用以粮食为原料(大米、甘薯淀粉)、提取、精制而得到符合国家标准的谷氨酸钠,为市场上增加了一种安全又富有营养的调味品用了它以后使菜肴更加鲜美可口1.1味精的性质(1)性质主要成分为谷氨酸钠。

味精生产工程设计

味精生产工程设计

味精生产工程设计味精生产流程框图:淀粉、水→调浆(加NaCO3、和淀粉酶)→喷射液化→保温灭菌→过滤→层流罐→贮罐→冷却→糖化(先调pH再加糖化酶)→灭酶→离心过滤→得葡萄糖液→冷却→发酵罐发酵→冷却→等电点中和→谷氨酸晶体→加水溶解→二次中和→得谷氨酸钠溶液→活性炭脱色→过滤→离子交换脱金属离子→浓缩→蒸发结晶→分离出湿味精→干燥→得晶体味精→筛选→分装主要参数:产量:5吨/天糊化糖化工序:糊化工序:调浆时淀粉浓度为35%,调浆罐进入盘管的蒸气温度控制在30℃,用NaCO3调。

料液经泵输送和蒸汽一起进行喷射液化,也就是糊化过程,蒸汽的温度为120℃,喷射液化器出口温度为100~105℃,喷射液化时间为1h。

液化好的料液经管道过滤除去大的颗粒后进入缓冲罐,缓冲罐的温度为95~100℃。

这一工序中包括流体输送,传热,过滤,特别说明管道过滤不用计算只是增加阻力。

糖化工序:经高温糊化的淀粉糊有离心泵泵至层流罐,层流罐的温度为95~100℃。

进入糊化罐前料液要求冷却到60℃,用HCl调节pH值至~,采取酶解法糖化,糊化温度60℃,时间48h。

糖化率为90%,即1克淀粉生成克葡萄糖。

糊化好的料液经蒸汽灭酶,灭酶温度为80~85℃,然后离心过滤除去滤渣,得到糖化液。

这一工序中包括流体输送,传热(三次),过滤。

发酵工序:过滤的滤液冷却到32℃,进入发酵罐发酵,用冷却水调温,每隔12小时升温1~2℃,当发酵时间接近34h时,温度升至37℃。

加水使糖化液浓度为14%,发酵时间为34h,发酵菌种的产酸量与葡萄糖量之比为50%。

发酵完的料液进行离心分离后进入谷氨酸提取工序。

这一工序中包括传热,离心分离。

谷氨酸提取工序发酵液进入等电点中和罐,进入罐前使温度降为22℃。

谷氨酸的等电点为。

加硫酸调节pH值,该过程要先以较快的速率加酸,将pH先调整至,停止加酸与搅拌,保证晶体增长。

然后继续缓慢加酸调整,直至pH降为,温度冷却至8℃,使之达到等电点,停止中和及搅拌。

年产4.0万吨味精工厂设计

年产4.0万吨味精工厂设计

年产4.0万吨味精工厂工艺设计1前言味精是采用微生物发酵的方法由粮食制成的现代调味品,是L-谷氨酸单钠(Mono sodium glutamate)的一水化合物(HOOC-CH2CH(NH2)-COONa·H20),具有旋光性,有D-型和L-型两种光学异构体。

谷氨酸是氨基酸的一种,也是蛋白质的最后分解产物。

我们每天吃的食盐用水冲淡400 倍,已感觉不出咸味,普通蔗糖用水冲淡200 倍,也感觉不出甜味了,但谷氨酸钠,用于水稀释3000倍,仍能感觉到鲜味,现在是广泛使用的鲜味剂。

1987年3月,联合国粮农组织和世界卫生组织食品添加剂专家联合委员会第十九次会议,宣布取消对味精的食用限量,再次确认为一种安全可靠的食品添加剂[1]。

关于味精的生产有着两种方式,发酵法和水解蛋白质法,用发酵法生产味精最想起源于日本,当时日本一家私人公司发明了这个方法,从那以后发酵法便广泛流传开来,截止到目前为止世界上所有国家仍然是以这种方法生产味精的。

但是在很久以前我们是用水解蛋白质的方法来生产味精的。

味精可以参与体内的各种代谢活动,比如糖代谢,蛋白质代谢,这些代谢活动对我们的中枢神经系统的正常运行时非常重要的,此外,味精在治疗神经运动性发作和癫痫病发作方面还是有一定作用的。

长期食用谷氨酸对于我们智力的提高还是有一定效果的。

但是味精确实有时候会存在一定的危害,但这种危害是因为对味精特性不够了解,食用方法不当造成的,如果烹饪时温度超过了120℃的话,谷氨酸钠就会发生裂解变成焦谷氨酸钠,这种物质不但会减退鲜味,而且具有一定的毒性,但是我们只要注意味精的加入时间就不会出现这样的问题。

此外,我们还需要注意味精不能与碱性物质一起使用,在碱性环境中味精会发生化学反应生成谷氨酸二钠的化合物,所以存放味精时注意不要和苏打放在一起。

谷氨酸发酵是通气发酵,也是我国目前通气发酵产业中,生产厂家最多、产品产量最大的产业[2]。

味精是一种弱酸强碱盐,当它遇到水以后可以完全解离成钠离子和谷氨酸离子。

味精厂设计 (自动保存的)

味精厂设计 (自动保存的)

目录第一章总论第一节设计依据和范围第二节设计原则第三节建设规模和产品方案第四节项目进度建议第五节厂址概述第二章总平面布置及运输第一节总平面布置第二节工厂运输第三章劳动定员第四章车间工艺第一节工艺流程及相关工艺参数第二节物料衡算第三节车间设备选型第五章经济技术指标参考文献第一章总论1.1 设计依据和范围1.1.1 设计依据根据陕西科技大学生命科学与工程学院2012届毕业任务书的要求,结合我国味精行业发展状况和市场行情,在老师的悉心指导下,本着理论联系实际的思想,认真参考了《氨基酸工艺学》《生物工程设备》《发酵工厂设计》《味精工业手册》等文献,提出了年产10万吨味精厂发酵车间的设计。

1.1.2设计范围1.味精的生产工艺设计2.物料衡算3.设备选型4.生产车间设计及布置5.全厂人员编制及经济效益分析1.2 设计原则(a)生产规模要在盈亏平衡点之上;(b)产品方案符合国家产业政策,产品质量符合国家标准(c)各项技术指标达到国内中上水平;(d)工厂三废综合利用,并适当留有发展余地。

1.3建厂规模和产品方案1.3.1 建厂规模本设计为10万吨味精厂发酵车间设计,以淀粉乳为原料,采用三班倒制,每班八小时,年工作日为330天。

本设计全年11个月生产:每年的7月份进行机器检修;日产量为100000/330=303吨;班产量303/3=101吨;1.3.2 生产方案味精生产全过程可划分为四个工艺阶段:(1)原料的预处理及淀粉水解糖的制备;(2)种子扩大培养及谷氨酸发酵;(3)谷氨酸的提取;(4)谷氨酸制取味精及味精成品加工。

与这四个工艺阶段相对应味精生产厂家一般都设置了糖化车间、发酵车间、提取车间和精制车间作为主要生产车间。

另外,为保障生产过程中对蒸汽的需求,同时还设置了动力车间,利用锅炉燃烧产生蒸汽,并通过供气管路输送到各个生产需求部位。

为保障全厂生产用水,还要设置供水站。

所供的水经消毒、过滤系统处理,通过供水管路输送到各个生产需求部位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

味精生产工程设计集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]
味精生产工程设计
味精生产流程框图:
、和淀粉酶)→喷射液化→保温灭菌→淀粉、水→调浆(加NaCO
3
过滤→层流罐→贮罐→冷却→糖化(先调pH再加糖化酶)→灭酶→离心过滤→得葡萄糖液→冷却→发酵罐发酵→冷却→等电点中和→谷氨酸晶体→加水溶解→二次中和→得谷氨酸钠溶液→活性炭脱色→过滤→离子交换脱金属离子→浓缩→蒸发结晶→分离出湿味精→干燥→得晶体味精→筛选→分装
主要参数:
产量:5吨/天
糊化糖化工序:
糊化工序:
调浆时淀粉浓度为35%,调浆罐进入盘管的蒸气温度控制在30℃,用NaCO
3调。

料液经泵输送和蒸汽一起进行喷射液化,也就是糊化过程,蒸汽的温度为120℃,喷射液化器出口温度为100~105℃,喷射液化时间为1h。

液化好的料液经管道过滤除去大的颗粒后进入缓冲罐,缓冲罐的温度为95~100℃。

这一工序中包括流体输送,传热,过滤,特别说明管道过滤不用计算只是增加阻力。

糖化工序:
经高温糊化的淀粉糊有离心泵泵至层流罐,层流罐的温度为95~100℃。

进入糊化罐前料液要求冷却到60℃,用HCl调节pH值至~,采取酶解法糖化,糊化温度60℃,时间48h。

糖化率为90%,即1克淀粉生成克葡萄糖。

糊化好的料液经蒸汽灭酶,灭酶温度为80~85℃,然后离心过滤除去滤渣,得到糖化液。

这一工序中包括流体输送,传热(三次),过滤。

发酵工序:
过滤的滤液冷却到32℃,进入发酵罐发酵,用冷却水调温,每隔12小时升温1~2℃,当发酵时间接近34h时,温度升至37℃。

加水使糖化液浓度为14%,发酵时间为34h,发酵菌种的产酸量与葡萄糖量之比为50%。

发酵完的料液进行离心分离后进入谷氨酸提取工序。

这一工序中包括传热,离心分离。

谷氨酸提取工序
发酵液进入等电点中和罐,进入罐前使温度降为22℃。

谷氨酸的等电点为。

加硫酸调节pH值,该过程要先以较快的速率加酸,将pH先调整至,停止加酸与搅拌,保证晶体增长。

然后继续缓慢加酸调整,直至pH降为,温度冷却至8℃,使之达到等电点,停止中和及搅拌。

谷氨酸沉淀后用离心泵送到离心分离机进行分离,得到谷氨酸的凝称物。

然后进入二次中和罐加水加纯碱中和成谷氨酸钠,加水溶解温度为40~60℃,碳酸钠调,中和温度控制在70℃以内。

得到谷氨酸钠的溶液再进入精制工序。

这一工序中包括流体输送,传热,离心分离等。

谷氨酸钠精制工序
提取工序后得到的谷氨酸钠盐溶液进入活性炭脱色器脱色,分离,再进入离子交换柱除去Ca2+、Fe2+、Mg2+等金属离子。

脱色液进入结晶罐进行浓缩结晶,当波美度达到时加入晶种,蒸发结晶到80%时放入助晶槽。

结晶槽内真空度为~,温度为70℃,最终浓缩液浓度波美度为33~36,结晶时间10~14h。

流化床

板框过滤机
过滤 晶体经过板框过滤机分离,得到湿晶体。

这一工序中包括流体输送,非均相物系得分离,蒸发等。

干燥工序
湿晶体经过流化床干燥器干燥,细小粉尘经旋风分离回收。

得到的大小不一的晶体进行筛分分级,小颗粒克做为晶种添加,大颗粒进行分装,得成品。

这一工序中包括流体输送,板框过滤,旋风分离等。

特别注意:
整个过程中的蒸汽供应温度为120℃,冷水的温度为20℃ 味精生产工艺流程图
筛分
分装
尾气
成品
空气
换热器
离心过滤
蒸汽灭酶
冷却
离心过滤


设计要求:
1.自行选择含3个以上单元操作的工序,最好是连续的,必须包括流体力学
2.含流体力学的,要求阻力计算、离心泵和管的选型
3.含非均相物系的分离的,要求根据计算选择设备类型及型号等
4.含传热的,要求计算换热面积、传热量,选择换热器的型号等
5.含蒸发的,要求计算蒸汽消耗量,根据物料特性及产量要求选择合适的蒸发设备6.含干燥的,要求计算空气消耗量、加热蒸汽的消耗量、干燥时间,根据计算选择换热器的型号等
提交方式:包括电子版和打印版
1.设计说明书
2.工程设计图
相关仪器设备选型可参考以下网站:。

相关文档
最新文档