同步发电机试验方法
2同步发电机有哪些试验
同步发电机有哪些试验,应该注意什么事项
同步发电机的实验主要包括但不限于以下几个方面:
1.机械检验:检查发电机内部的零部件是否存在松动、损坏等问题,保证发电机整体结构的稳定性和机械可靠性。
2.电气检验:对于主要的绕组和线路进行检查和测试,包括直流偏转分量、输出电压、欧姆定律以及对相间电压的检测等。
3.线圈检查:线圈绕组是否需要补绕或更换。
4.油润特性:检查润滑条件。
5.绕组直流工作时特性检验:试验绕组在不打扰的情况下,进行正常的电路工作,并对其进行输出电压、欧姆定律和交流频率的性能检验。
6. 磁场方向与极化的比较:对发电机磁场方向与极化为要求一致并进行静态检验。
发电机实验需要严格遵守相应的标准和实验规范要求,并在所有检测项目完成后将结果显示整理归类。
同步发电机参数的测量
同步发电机同步发电机参数第13章三相同步发电机的参数测定所属专题:同步发电机发布时间:2014/8/2 15:54:12第13章三相同步发电机的参数测定原理简述各种电抗是定量分析同步电机性能的有用参数。
同步电机的参数主要有;(1)同步电抗等。
本次实验介绍同步发电机中最基本和常用的几个参数的测量方法。
一、同步电抗的求取如前述实验,可通过空载、稳态短路实验求出。
而利用转差率实验可以同时测出凸极式同步电机的直轴、交轴同步电抗的不饱和值。
转差率实验的作法是:把被试同步电机的励磁绕组开路,即不加励磁;原动机拖动转子以接近同步速旋转,约有左右,以避免转子被拖入同步,但其相序须保证电枢旋转磁场的转向与转子转向一致。
此时定子旋转磁场便以转差率速度切割转子。
当定子磁场轴线与转子直轴重合时,电抗达最高值,电枢电流便有最小值。
当定子磁场轴线与转子的交轴重合时,电抗达最低值,而电枢电流便有最大值。
由于线路中电压降的影响,随着电枢电流的变化,定子绕组上测得的电压也有相应的、较小幅度的变动,显然电枢电流有最小值时电压为最大,电枢电流有最大值时电压为最小。
电枢电流和端电压波动的频率正比于转差率。
由于转差率很低,电流表和电压表的指针摆动位置可以被清楚地读取,即记录出各最大电流,电压和最小电流、电压值。
设读取的数据为每相值,则每相同步电抗为:二、负序电抗研究电机不对称运行最有效的方法是对称分量法。
即把不对称的三相电压或三相电流分解为正序、负序和零序分量。
然后对各个分量分别建立方程并求解,最后迭加起来得到最后结果。
对不同相序的电流来说,同步电机的电抗也就有不同数值。
若定子电流为一稳定的对称三相电流,这时定子电流仅有正序分量,所遇到的电抗就是前述的同步电抗,其电抗的测取方法前已介绍。
故正序电抗值等于同步电抗值。
定子三相电流若不对称时则存在负序电流,由于负序电流所产生的旋转磁场与转子转向相反,此反向旋转磁场以两倍同步速度切割转子绕组(包括励磁和阻尼绕组),在其中感应一个两倍频率的交变电势。
典型同步发电机进相试验方案
典型同步发电机进相试验方案文/ 木易试验目的目前,随着电力系统已进入大机组、大电网、特、超高压输电时代,220kV 及其500kV输电线路的大幅度增加,大机组的不断投运,系统容量的逐步扩大,带之而来的电网局部无功过剩、电压偏高问题日益严重。
特别是负荷低谷时期,大电源点附近的电压偏高问题较为严重,直接影响到发电厂、变电站和用户电气设备的安全稳定运行,影响着电能质量指标。
采用并联电抗器等其他调节手段,不仅耗资较大,增加占地,而且调节幅度有限,满足不了系统增容、发展的要求。
故而利用发电机组进相运行来吸收系统的过剩无功,使系统电压能够维持在规定范围之内是经济、有效并且确实可行的方法。
电力系统中调压手段很多,采用发电机组进相运行的手段调整系统电压不需要添加附加设备,充分利用发电机组本身的调压能力,只需通过理论计算和现场试验来确定发电机的进相深度。
当前我国大型发电机组设备的装备制造水平业已使发电机组本身具备了一定的进相能力,一般来讲机组应具备在功率因数超前0.95的工况下进相运行的能力。
因此,通过发电机组进相运行来调节系统电压无论从设备装备水平还是从电网运行的角度都是可行的。
本次试验的目的就在于为试验机组投运后机组的进相运行提供试验依据。
组织措施1、试验领导组总指挥:XXX成员:XXX2、试验组XX电厂:XXXXX电科院:XXXXX公司:XXX3、运行组负责人:当值值长XX电厂:XXX、当值运行人员主设备参数1、发电机型号:XXXX额定容量:额定功率:额定定子电压:额定定子电流:额定转子电压:额定转子电流:空载额定转子电流:短路额定转子电流:额定功率因数:额定频率:50Hz 2、主变压器额定容量:额定电压:额定电流:频率:50Hz连接方式:短路阻抗:分接头位置:3、高压厂用变压器额定容量:额定电压:额定电流:频率:50Hz连接方式:短路阻抗:分接头位置:4、高压公用(脱硫)变压器额定容量:额定电压:额定电流:频率:50Hz连接方式:短路阻抗:分接头位置:5、励磁系统励磁调节器:功率柜:灭磁开关:分流器:低励限制曲线:试验条件1、发电机组运行状态1)机组自带厂用电时能满负荷运行,可在正常运行范围内平稳调整有功功率。
典型同步发电机进相试验方案
典型同步发电机进相试验方案一、试验目的:同步发电机进相试验是为了验证同步发电机的相序和相间的相位角是否正确,以保证同步发电机在网络中以正确的相序和相位角运行。
二、试验装置:1.电源系统:使用稳定可靠的电源系统,满足试验所需的电压和电流。
2.测量仪表:包括电压表、电流表、频率表、功率表等测量设备,确保对电压、电流、频率和功率的准确测量。
三、试验步骤:1.准备工作:a.检查发电机的接线,确保接线正确可靠。
b.确保电源系统的电压和频率稳定,符合试验要求。
c.根据试验要求,选择合适的负载并接入。
2.进行试验:a.启动发电机,并将电源输出接至发电机的端子,使其与电网连接。
b.分别使用电压表和电流表测量发电机的U相和I相的电压和电流值。
c.使用频率表测量发电机的频率值,确保其与电网的频率一致。
d.使用功率表测量发电机的有功功率、无功功率和视在功率的值,计算发电机的功率因数。
e.根据试验要求,调整发电机的励磁电流,观察电压和电流的变化,确保稳定在一定范围内。
f.观察发电机的运行情况,包括转速、温度、振动等参数,确保其在正常范围内工作。
四、试验注意事项:1.在进行试验之前,要对试验装置和测量仪表进行检查和校准,确保其正常工作,准确测量。
2.在试验过程中,要随时观察发电机的运行情况,如有异常要及时停机检修,以免造成事故。
3.在试验过程中,要根据试验要求进行操作,严禁随意调整发电机的参数。
4.在测量电压和电流时,要保持测量回路的准确接地,避免测量误差。
5.试验结束后,要将装置和仪表恢复到正常状态,对试验结果进行记录和分析。
五、试验结果评定:根据试验步骤中所得到的数据,对发电机的相序和相位角进行验证,判断其是否正确。
同步发电机的相序和相位角应与电网保持一致,且功率因数应在一定范围内,以保证发电机在网络中的正常运行。
六、试验记录和分析:根据试验过程中所得到的数据,对试验结果进行记录和分析,包括发电机的电压、电流、频率、功率等参数的变化情况,以及发电机的运行状态和性能表现。
同步发电机工作原理试验
同步发电机工作原理试验实验目的:了解同步发电机的工作原理,掌握其电磁感应原理。
实验仪器:同步发电机、励磁电源、电动机、电流表、电压表、转速计、示波器。
实验步骤:1.确保实验仪器已正确连接,同步发电机的励磁电源以及机械传动系统已稳定。
2.打开励磁电源,并逐渐增加其输出电流,观察同步发电机的电压和电流变化情况。
3.使用示波器观察同步发电机的电压和电流波形,记录不同励磁电流下的波形特点。
4.测量同步发电机的转速,并以一定速率调节电动机的转速,观察同步发电机的电压和电流变化情况。
5.断开励磁电源,记录并观察同步发电机的电压和电流变化情况。
实验原理:1.励磁电源:通过外部励磁电源的提供,将直流电流经过旋转定子绕组,形成磁场。
2.电机的同步关系:励磁电源产生的磁场与旋转定子绕组的磁场形成共同的旋转磁场。
同步发电机的转子以同步速度旋转,与旋转磁场保持同步。
3.感应电动势:在同步发电机的定子绕组中,由于转子的旋转产生的磁场的改变,导致定子绕组中产生感应电动势。
这个感应电动势驱动电流通过负载。
4.转子电流:由于负载的存在,导致同步发电机中存在转子电流。
转子电流与定子产生的磁场相互作用,形成力矩,维持同步发电机的稳定转动。
实验结果:在励磁电流逐渐增加的情况下,同步发电机的电压和电流逐渐增加,但维持在一个相对稳定的数值。
通过示波器观察同步发电机的电压和电流波形,可以发现它们是正弦曲线,在电流达到峰值时电压为零。
随着电动机转速的变化,同步发电机的电压和电流也发生了变化。
当转速改变时,同步发电机的电压和电流都会产生相应的波动。
当励磁电源断开时,同步发电机的电压和电流都会迅速降为零。
实验结论:同步发电机是一种基于电磁感应原理工作的发电机。
励磁电源产生的磁场与旋转定子绕组的磁场形成共同的旋转磁场,在同步发电机的电机同步情况下旋转。
因此,当负载存在时,同步发电机会产生感应电动势,并通过负载输出电能。
同步发电机的电压和电流都是随着励磁电流和转速的变化而变化的。
6同步发电机励磁系统动态试验
式):(1)起励过程测量录波;(2)他励100%Ugn励磁温度测试;(3)他
励100%Ugn灭磁开关压降测试; (4)他励100%Ugn功率柜参数记录;(5)他励 100%Ugn功率柜阻容检查记录;(6)他励25%和100%逆变、跳闸试验录波等
2.1、空载升压和短路升流试验
机组大修后,需要进行发电机空载升压(100%Ug)和短路升流(100% Ig)试验,励磁设备需要提供可以调节的转子电流,可以采用它励备用 励磁,也可以将机组励磁系统由自励改为它励,此时励磁调节器ECR模 式运行,励磁设备零起升流。 在发电机他励升流升压试验之前, 建议进行一次励磁大电流试验,即
(1)10%Ifn电流闭环起励试验;(2)±5%Ifn电流闭环阶跃响应试验;(3) 100%Ugn下电流闭环逆变试验;(5)100%Ugn自动起励试验;(6)
±10%Ugn电压阶跃响应试验;(7)100%Ugn额定机端电压逆变试验;(8)
通道切换试验;(9)自动和手动运行方式转换试验;(10)电压给定值整定 范围及变化速度测试等。
注意:上述试验是励磁试验,除了进行常规试验和录波外,要有进行下列试验:
(1)100%Ugn功率柜参数记录;(2)自励100%Ugn转子电压波形;(3) 自励100%Ugn阳极电压波形;(4)100%Ugn功率柜阻容电阻温度等。
1.3、励磁现场动态试验大纲(3)
1.7、V/Hz特性试验和V/Hz限制试验, V/Hz未动作记录发电机电压稳定性, V/Hz动作,记录限制正确性。 1.8、故障模拟试验,包括模拟起励失败、100%机端电压模拟PT1断线、 100%机端电压模拟PT2断线、模拟交流输入电源分别消失、模拟直流输 入电源分别消失、模拟功率柜风机分别电源消失或切换、模拟励磁内部和
同步发电机准同期并网实验
同步发电机准同期并网实验同步发电机准同期并网实验是电力系统中重要的实验项目之一。
其目的是检验同步发电机与电网是否能够进行准同期并网,并通过对实验结果的分析和处理,确定合适的并网方式和方案。
实验设备:同步发电机试验台、电力系统仿真综合实验平台实验流程:首先,将同步发电机接入电力系统仿真综合实验平台中,进行调试和参数设置。
然后,将同步发电机试验台与电力系统仿真综合实验平台连接,进行准同期并网实验。
实验步骤如下:1. 实验前,需检查实验设备的电气连接是否正确、断路开关是否关闭。
确认无误后,按照实验方案设置同步发电机的参数,包括发电机定子和转子参数、励磁电路参数等。
2. 针对电力系统仿真综合实验平台,需要进行适当的设置和调整,包括发电机和变电站的参数设置、电源和负载设置、变电站选择和配置等。
3. 开始实验。
启动同步发电机试验台,使其发电机定子输出电压为额定值,并加上一定的励磁电流,使同步发电机输出额定电流。
随后,启动电网仿真综合实验平台,将电源开关打开。
通常,在该实验中,电网仿真综合实验平台为测试电网。
4. 观察同步发电机试验台面板上的电压、电流、频率等参数,并通过电力系统仿真综合实验平台的监控系统,观察电网的电压和频率表现。
在进入并网状态后,需要持续观察和记录相关实验数据。
5. 对实验数据进行分析和处理。
在实验结束后,需要对实验数据进行详细的处理和分析,以确定同步发电机与电网的准同期并网是否正常、是否存在问题。
根据实验数据和分析结果,修改并网方案,并重新进行实验。
6. 实验后的总结与评估。
对实验结果进行总结与评估,分析并发现实验中出现的问题,并提出解决方案,最终确定并网方案。
总结:同步发电机准同期并网实验是检验发电机并网的性能、确定适当并网方案的一种重要手段,它可以帮助电力系统工程师在设计布局、故障排除等方面提供参考。
在实验中,需要仔细分析和处理数据,以确保实验结果的准确性和可靠性。
通过不断调整和改进,并网方案,可以实现电力系统的可靠运行和优化控制。
同步发电机励磁实验
同步发电机励磁控制实验一、实验目的1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;2.了解自并励励磁方式和它励励磁方式的特点;3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动;4.了解微机励磁调节器的基本控制方式;5.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响;6.了解几种常用励磁限制器的作用;7.掌握励磁调节器的基本使用方法。
二、原理与说明同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。
励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。
图1 励磁控制系统示意图实验用的励磁控制系统示意图如图 1 所示。
可供选择的励磁方式有两种:自并励和它励。
当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。
而当交流励磁电源取自 380V 市电时,构成它励励磁系统。
两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。
微机励磁调节器的控制方式有四种:恒UF(保持机端电压稳定)、恒IL(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。
其中,恒α方式是一种开环控制方式,只限于它励方式下使用。
同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。
当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。
发电机正常运行时,三相全控桥处于整流状态,控制角α小于 90°;当正常停机或事故停机时,调节器使控制角α大于 90°,实现逆变灭磁。
电力系统稳定器――PSS 是提高电力系统动态稳定性能的经济有效方法之一,已成为励磁调节器的基本配置;励磁系统的强励,有助于提高电力系统暂态稳定性;励磁限制器是保障励磁系统安全可靠运行的重要环节,常见的励磁限制器有过励限制器、欠励限制器等。
同步发电机励磁实验
同步发电机励磁实验同步发电机励磁控制实验一、实验目的1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;2.了解自并励励磁方式和它励励磁方式的特点;3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动;4.了解微机励磁调节器的基本控制方式;5.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响;6.了解几种常用励磁限制器的作用;7.掌握励磁调节器的基本使用方法。
二、原理与说明同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。
励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。
图1 励磁控制系统示意图实验用的励磁控制系统示意图如图 1 所示。
可供选择的励磁方式有两种:自并励和它励。
当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。
而当交流励磁电源取自380V 市电时,构成它励励磁系统。
两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α 角限制。
微机励磁调节器的控制方式有四种:恒UF (保持机端电压稳定)、恒IL(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。
其中,恒α 方式是一种开环控制方式,只限于它励方式下使用。
同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。
当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。
发电机正常运行时,三相全控桥处于整流状态,控制角α小于90°;当正常停机或事故停机时,调节器使控制角α大于90°,实现逆变灭磁。
电力系统稳定器――PSS 是提高电力系统动态稳定性能的经济有效方法之一,已成为励磁调节器的基本配置;励磁系统的强励,有助于提高电力系统暂态稳定性;励磁限制器是保障励磁系统安全可靠运行的重要环节,常见的励磁限制器有过励限制器、欠励限制器等。
完整版同步发电机试验报告
完整版同步发电机试验报告1.引言同步发电机是电力系统中的重要设备,其稳定运行对于保证电网的安全和稳定具有重要意义。
本次试验旨在对同步发电机进行全面测试,评估其性能和运行状态。
本报告将详细描述试验的目的、试验设备、试验原理、试验步骤、试验结果和结论。
2.试验设备本次试验使用的同步发电机主要包括发电机组、励磁系统和监测设备。
发电机组由发电机和发动机组成,励磁系统用于调节发电机的电磁激励。
监测设备包括电气参数监测仪、转子温度计和振动传感器等。
3.试验原理同步发电机将机械能转化为电能,其运行稳定性和发电效率直接影响电力系统的负荷平衡和能源利用。
发电机的输出电压和频率受多种因素影响,包括励磁电流、转子温度和负荷变化等。
试验原理主要包括发电机的励磁特性测试、转速控制测试和负荷调整测试。
4.试验步骤4.1励磁特性测试:通过改变励磁电流,记录发电机的输出电压和励磁电流之间的关系。
4.2转速控制测试:通过调整发电机组的转速,记录发电机的输出频率和转速之间的关系。
4.3负荷调整测试:改变发电机组的负荷,在不同负荷下记录发电机的输出电压和频率,评估其负荷适应性和稳定性。
5.试验结果5.1励磁特性测试结果表明,在适当的励磁电流范围内,发电机的输出电压基本稳定,满足电网的要求。
5.2转速控制测试结果显示,发电机的输出频率与转速呈线性关系,在额定速度附近频率稳定。
5.3负荷调整测试结果表明,发电机组能够在不同负荷下自动调整输出电压和频率,保持稳定运行。
6.结论本次同步发电机试验结果显示,发电机具有较好的励磁特性、转速控制和负荷调整能力。
发电机的输出电压、频率和稳定性满足电力系统的要求。
但仍需要定期进行运行状态监测和维护,确保其可靠稳定地工作。
7.建议在今后的同步发电机试验中,可以进一步优化试验操作和数据记录流程,提高试验效率和准确性。
同时,对试验设备进行定期维护,确保其正常运行。
此外,可参考相关标准和规范,进一步完善试验流程和数据分析方法,提高试验的科学性和可靠性。
(整理)同步发电机准同期并网实验.
第1讲实践教学目标1.加深理解同步发电机准同期并列原理,掌握准同期并列条件;2.掌握微机准同期控制器及模拟式综合整步表的使用方法;3.熟悉同步发电机准同期并列过程;4.观察、分析有关波形。
实践教学内容同步发电机准同期并列实验[实践项目1] 手动准同期实验1.按准同期并列条件合闸将“同期方式”转换开关置“手动”位置。
在这种情况下,要满足并列条件,需要手动调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,手动操作合闸按钮进行合闸。
观察微机准同期控制器上显示的发电机频率和系统频率,相应操作微机调速器上的增速或减速按钮进行调速,直至“增速减速”灯熄灭。
此时表示压差、频差均满足条件,观察整步表上旋转灯位置,当旋转至0º位置前某一合适时刻时,即可合闸。
观察并记录合闸时的冲击电流。
2.偏离准同期并列条件合闸实验分别在单独一种并列条件不满足的情况下合闸,记录功率表冲击情况:(1)电压差相角差条件满足,频率差不满足,在fF>fX和fF<fX 时手动合闸,观察并记录实验台上有功功率表P和无功功率表Q指针偏转方向及偏转角度大小,分别填入表1;注意:频率差不要大于0.5HZ。
(2)频率差相角差条件满足,电压差不满足,VF>VX和VF<VX时手动合闸,观察并记录实验台上有功功率表P和无功功率表Q指针偏转方向及偏转角度大小,分别填入表1;注意:电压差不要大于额定电压的10%。
(3)频率差电压差条件满足,相角差不满足,顺时针旋转和逆时针旋转时手动合闸,观察并记录实验台上有功功率表P和无功功率表Q指针偏转方向及偏转角度大小,分别填入表1-1。
注意:相角差不要大于30度。
表1-1[实践项目2] 半自动准同期将“同期方式”转换开关置“半自动”位置,微机正常灯闪烁。
准同期控制器将给出相应操作指示信息,运行人员可以按这个指示进行相应操作。
调速调压方法同手动准同期。
当压差、频差条件满足时,整步表上旋转灯光旋转至接近0º位置时,整步表圆盘中心灯亮,表示全部条件满足,手动按下发电机开关,并网。
同步发电机并网解列试验
同步发电机并网解列实验
• 手动准同期并列,应在正弦整步电压的最低点 (同相点)时合闸,考虑到断路器和继电器固有 的合闸时间,实际发出合闸命令的时刻应提前一 个相应的时间或角度。自动准同期并列,通常采 用恒定越前时间原理工作,这个越前时间可按断 路器的合闸时间整定。准同期控制器根据给定的 允许压差和允许频差,不断地检查准同期条件是 否满足,在不满足要求时闭锁合闸并且发出均压 均频控制脉冲。当所有条件均满足时,在整定的 越前时刻送出合闸脉冲。 • 三) 机组启动和建压
G
T1
1TA
1QF
•
•
1TV
2TV
同步发电机并网解列实验
• 实验分别在满足一种并列条件不的情况下合闸,记录功率表冲击情况: • (1) 电压差、相角差条件满足,频率差不满足,分别在和时手动合闸, 观察并记录机组控制屏上有功功率表P和无功功率表Q指针偏转方向 及偏转角度大小,填入表1。注意:频率差不要大于± 0.2Hz。 • (2) 频率差、相角差条件满足,电压差不满足,分别在和时手动合闸, 观察并记录机组控制屏上有功功率表P和无功功率表Q指针偏转方向 及偏转角度大小,填入表1。注意:频率差不要大于额定电压的± 5%。 • (3) 频率差、电压差条件满足,相角差不满足,调节调速装置的增减 速控制相角差指针,使指针分别在顺时针旋转和逆时针旋转时手动合 闸,观察机组控制屏上有功功率表P和无功功率表Q指针偏转方向及 偏转角度大小,从励磁装置显示屏上读取有功和无功数值填入表1。 • 注意:相角差不要大于±15度。 表1
同步发电机并网解列实验
• 5) 将机组控制屏上的调速装置“方式选择”开关选择为“自动”方式, “远方/就地”选择为“就地”(选择为“远方”时,就地控制失效)。 “启动/停止”开关选择为“启动”,此时,调速装置开始输出控制信 号。 • 通过“增速”按钮逐渐升高电动机转速,当按住“增速”按钮不动时, 转速将快速升高。接近额定转速时,松开“增速”按钮(防止超过额 定转速),然后采用点动的方式操作按钮,直到达到需要的转速。 • 6) 确认机组转速在额定转速附近,将机组控制屏上的励磁调节装置 “方式选择”开关选择为“恒α ”方式,“远方/就地”选择为“就地” (选择为“远方”时,就地控制失效),“启动/停止”开关选择为 “启动”,此时,励磁调节装置开始输出控制信号。 • 通过“增磁”按钮逐渐升高发电机电压,当按住“减磁”按钮不动时, 发电机电压将快速升高。接近额定电压时,松开“减磁”按钮(防止 超过额定电压),然后采用点动的方式操作按钮,直到达到需要的电 压。
三相同步发电机的运行特性实验报告
三相同步发电机的运行特性实验报告一、实验目的1. 掌握三相同步发电机的空载、短路及零功率因数负载特性的实验求取法。
2.学会用实验方法求取三相同步发电机对称运行时的稳太参数。
二、实验内容:1.空载实验:在n=nN,I=0的条件下,测取同步发电机的空载特性曲线Uo=f(If)。
2.三相短路实验:在n=n N,U=0的条件下,测取同步发电机的三相短路特性曲线I k=f(I f).3..求取零功率因数负载特性曲线上的一点,在n=nN;U=UN;cosØ≈0的条件下,测取当I=IN 时的If值。
三、实验仪器及其接线1.实验仪器如下图所示:2.实验室实际接线图如下图所示:图1 实验室实际接线图四、实验线路及操作步骤:1. 空载实验实验接线图如图2所示图2 实验接线图实验时启动原动机(直流电动机),将发电机拖到额定转速,电枢绕组开路,调节励磁电流使电枢空载电压达到120%U N值左右,读取三相线电压和励磁电流,作为空载特性的第一点。
然后单方向逐渐减小励磁电流,较均匀地测取8到9组数据,最后读取励磁电流为零时的剩磁电压,将测量数据记录于表1中。
表1 空载实验数据记录 n=no=1500转/分 I=0(1)表1中U 0=3AC BC AB U U U ++ U 0*=NU U 0 I f =I ´f +ΔI f0 I I fofI f =* I f0为U 0= U N 时的I f 值,在本实验室中取U N =400V,I N =3.6A 。
(2)若空载特性剩磁较高,则空载特性应予以修正,即将特曲线的的直线部分延长与横轴相交,交点的横坐标绝对植ΔI f0即为修正量,在所有试验测得的励磁电流数据上加上ΔI f0,即得通过坐标原点之空载校正曲线。
如图3所示。
图3 空载特性曲线校正2.短路实验实验线路图如图2所示。
在直流电动机不停机状态下,并且,发电机励磁电流等于零的情况下,这时合上短路开关K 2,将电枢三相绕组短路,将机组转速调到额定值并保持不变,逐步增加发电机的励磁电流I f ,使电枢电流达到(1.1-1.2)倍额定值,同时量取电枢电流和励磁电流,然后逐步减小励磁电流直到降为0为止。
同步发电机进相试验导则
a)由调度安排试验所需的运行工况。 b)同厂陪试机组AVC应退出。 c)涉网安全稳定措施已按调度批复方案执行。 5.5 试验仪器 a) 试验仪器应能实时显示发电机组运行状态。 b) 试验仪器应能完整记录低励限制动作波形,记录的波形可以进行后台分析。 c) 试验仪器应满足GB/T 22264对计量精度的相关要求。 6 进相试验内容 6.1 进行发电机不同有功功率下的进相能力测试,要求发电机功角、机端电压、端部铁芯和 金属结构件温度、 高/低压厂用电源母线电压、 主变高压侧母线电压在 DL/T 5153、 DL/T 5164 及运行规程规定的范围内。 6.2 在实测的进相能力范围内,整定低励限制曲线。 6.3 检验低励限制环节的静态限制特性,验证低励限制定值。 6.4 检验低励限制环节的动态限制特性。 7 进相试验方法及注意事项 7.1 机组的进相过程可以通过逐渐提高系统电压使被试机组自然进相实现。 7.2 当采用 7.1 所述方法无法测定进相能力时, 可采用人为减磁使被试机组进相的方法实现。 7.3 试验机组选择的有功工况应包括机组正常运行功率的最大值和最小值, 中间点可根据机 组稳定运行情况选定。 通常汽轮发电机组进相试验工况为50%、75%、100% 额定有功功率;水轮发电机组进相 试验工况为0%、50%、75%、100% 额定有功功率。 7.4 每一种工况下的试验应包括滞(迟)相、零无功、进相三种状态(进相工况应达到进相 限制条件) ,在三种状态下分别选择停留点记录发电机状态量。 7.5 温度记录应待温度稳定后进行。 7.6 试验过程中至少应记录如下发电机变压器组状态量: 发电机有功功率、 无功功率、 功角、 机端电压、机端电流、励磁电压、励磁电流、端部铁芯和金属结构件(如阶梯齿、压指、压 圈等)温度、进出水温度、冷热风温度,高、低压厂用电源最低母线电压,主变高压侧母线 电压,同厂陪试机组出线潮流。另外,试验过程中同厂陪试机组的无功功率总和应尽可能保
同步发电机及调相机试验方法
发电机及调相机试验方法第一部分:发电机及调相机的静态试验方法一.测量定子绕组的绝缘电阻及吸收比※各项绕组绝缘电阻的不平衡系数≤2※吸收比:对沥青浸胶及烘卷云母绝缘≥1.3;对环氧粉云母绝缘≥1.6;1.工具选择2500V兆欧表2.步骤⑴断开发电机出口电源开关;⑵用放电棒分别对U1、V1、W1接地充分放电,如图1所示;⑶解开中性点接线;⑷分别摇测出线侧U1、V1、W1对地绝缘电阻:记录R15和R60的数据。
⑸分别摇测出线侧U1对V1W1、V1对U1W1、W1对U1V1的地绝缘电阻:记录R15和R60的数据。
⑹用放电棒分别对U1、V1、W1接地充分放电。
二.测量转子绕组和励磁回路的绝缘电阻1.转子绕组※测量前将发电机大轴处的接地电刷提起(电刷离开大轴);※转子绕组、励磁回路的绝缘电阻一般≥0.5MΩ;※水内冷转子绕组选择500V的兆欧表或其它仪器,绝缘电阻≥0.5MΩ;※当发电机定子绕组绝缘电阻已符合启动要求,而转子绕组的绝缘电阻≥0.2MΩ时,可以投运;※转子绕组额定电压>200V时,选择2500V兆欧表;≤200V时,选择1000V兆欧表。
2.励磁回路※将回路中的电子元件拔出或将其两端短路。
三.测量轴承座的绝缘电阻※选择500V的兆欧表,测量值≥0.5 MΩ;※分别测量轴承座与薄铁板、薄铁板与基础台板、轴承座与基础台板之间的绝缘电阻。
四.测量定子绕组、转子绕组和灭磁电阻的直流电阻※测量定子绕组、转子绕组的直流电阻,应在冷态下进行,绕组表面温度与周围温度之差在±3℃内;※测量定子绕组、转子绕组的直流电阻,测量数值与产品出厂数值换算至同温度下的数值比较,其差值≤2%。
※测量灭磁电阻数值与铭牌数值比较,其差值≤10%。
1.电流、电压表法※ mV表的连线不应超过该表规定的电阻值,且应接于靠近触头侧2.平衡电桥法(电桥用法见《进网作业电工培训教材》P320※测量时,电压引线尽量靠近触头侧;电流引线在电压线外侧,宜分开不宜重叠※直流双臂电桥法:1~10-5Ω及以下※单臂电桥法:1~106Ω五.定子绕组的直流耐压和泄漏电流试验※定子直流耐压的试验电压为电机额定电压的3倍;※试验电压按0.5倍的额定电压分阶段升压试验,每段停留1min;※在试验电压下,各相泄漏电流的差别≤最小值的50%,当最大泄漏电流在20μA以下时,各相间差值与出厂值比较不应有明显差别;※水内冷电机,宜采用低压屏蔽法;※氢冷电机必须在充氢前或排氢后且含量在3%以下时进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同步发电机试验方法 The Standardization Office was revised on the afternoon of December 13, 2020同步发电机试验方法1 基本概念同步发电机指发电机发出的电压频率f 与发电机的转速n 与发电机的磁极对数有着如下固定的关系:pf60n(转/分) () 同步发电机按其磁极的结构又可分为隐极式和凸极式。
此外,还可按其冷却方式进行分类, 常见的有全空冷、双水内冷、半水内冷、水氢氢(定子水内冷、转子氢内冷、铁心氢冷)等。
2 发电机的绝缘定子绝缘对于用户来说,主要关心其主绝缘即对地及相间绝缘。
发电机的主绝缘又大致可分为槽绝缘、端部绝缘及引线绝缘。
我国高压电机的主绝缘目前主要是环氧粉云母绝缘,按其含胶量又可分为多胶体系和少胶体系。
定子线圈导线与定子铁芯以及槽绝缘在结构上类似一个电容器,在电气试验中完全可以把它当作一个电容器对待。
为了防止定子线棒表面电位过高在槽中产生放电,环氧粉云母绝缘的定子线棒表面涂有一层低电阻的防晕漆,或在外层包一层半导体防晕带。
端部绝缘表面从槽口开始依次涂有低阻、中阻、高阻绝缘漆,防止端部电位变化梯度过大而产生电晕。
转子绝缘转子绝缘包括对地绝缘和绕组的匝间绝缘。
3 发电机的绝缘试验项目 发电机常规试验项目(电气部分)1)定子绕组的绝缘电阻、吸收比或极化指数测量 2)定子绕组的直流电阻测量3)定子绕组泄漏电流测量和直流耐压试验 4)定子绕组交流耐压试验 5)转子绕组绝缘电阻测量 6)转子绕组直流电阻测量 7)转子绕组交流耐压试验8)发电机和励磁机的励磁回路所连接的设备(不包括发电机转子和励磁机电枢)的绝缘电阻测量 9)发电机和励磁机的励磁回路所连接的设备(不包括发电机转子和励磁机电枢)的交流耐压试验 10)发电机组和励磁机轴承的绝缘电阻 11)灭磁电阻器(或自同期电阻器)的直流电阻12)转子绕组的交流阻抗和功率损耗测量发电机特殊试验项目(电气部分)1)定子铁心试验2)定子槽电位测量3)定子绕组端部手包绝缘施加直流电压测量4)轴电压测量5)定子绕组绝缘老化鉴定6)空载特性试验7)三相稳定短路特性试验8)检查相序9)温升试验4 绝缘电阻测量试验目的检查发电机绝缘是否存在受潮、脏污、机械损伤等问题。
定子绝缘电阻测量测量接线如图,电机额定电压在1000V以上者采用2500V兆欧表,测量15 s和60s的绝缘电阻,并计算吸收比,如果绝缘电阻或吸收比偏小,可以增加测量10分钟的绝缘电阻,计算极化指数,对于环氧粉云母绝缘,吸收比不应小于,极化指数不应小于2。
图定子绝缘电阻测量吸收比 = 1分钟绝缘电阻/15秒绝缘电阻极化指数 = 10分钟绝缘电阻/1分钟绝缘电阻注意事项1)为了克服电容充电电流的影响,兆欧表的短路电流应足够大,表是选择兆欧表的参考数据。
如果吸收比的测量结果比较大,往往是由于兆欧表的短路电流太小造成的。
表对兆欧表短路电流的要求(参考值)试品电容/μF 1 2 3 5测量吸收比I D/mA≥ 1 2 4 5 10测量极化指数I D/mA≥ 12)测量前后应将被测量的绕组三相短路对地放电5分钟以上。
如果由于意外的原因造成测量中断,应该重新充分放电后再进行测量。
如果放电不充分,对同一相重复测量的结果是绝缘电阻值偏大,而换相时,由于残余极化电势与兆欧表的电势方向一致,会出现一个极化电荷先释放再极化的过程,造成后面测量的两相绝缘电阻偏小的假像,如图所示。
图绕组相间电容对绝缘电阻测量的影响3)当测量结果不合格时,应首先排除穿墙套管、支柱瓷瓶的影响,如用干净的布进行擦拭,或在套管上用软铜线绕一个屏蔽电极,接于兆欧表的屏蔽端子上。
如图所示。
图对套管泄漏电流进行屏蔽的接线4)如果绝缘电阻和吸收比都很小,说明绝缘有受潮的可能,应对绕组进行烘干处理。
对大型电机可采用三相稳定短路的方式升流烘干或采用直流电流进行升温烘干,水内冷机组可通热水烘干,中小型电机可用电热元件、大功率白炽灯或机组自带的加热元件进行烘干。
转子绝缘电阻测量1)使用1000V兆欧表进行测量,转子水内冷的电机用500V兆欧表测量。
2)测量绕组(滑环)对转子本体(大轴)的绝缘电阻。
3)不测量吸收比。
轴承座绝缘电阻测量测量目的:由于发电机磁通不对称会在大轴上产生轴电压,为了防止轴电压与轴承间的环流烧坏轴瓦,通常将励磁机侧的轴承与地绝缘。
典型的汽轮发电机轴承绝缘结构如图所示,检查轴承绝缘时用1000V兆欧表测量金属垫片对地的绝缘电阻。
有些汽轮发电机采用轴瓦绝缘的方式,每块轴瓦引出一个测点,应检查每个轴瓦的绝缘电阻,有些汽轮发电机没有引出轴瓦的测量点,只能在安装过程进行检查。
水轮发电机的的推力轴承、导轴承在每块推力瓦下垫有绝缘垫,应在安装过程检查每块轴瓦的绝缘电阻,在轴承充油前每块轴瓦的绝缘电阻不应低于100MΩ。
当轴承绝缘不合格时,除了检查绝缘垫,还应注意检查与轴承相连接的部件如温度、振动传感器、油管等的绝缘是否正常。
图汽轮发电机典型的轴承绝缘结构励磁机的励磁回路所连接的设备(不包括发电机转子和励磁机电枢)的绝缘电阻测量1)小修时用1000V兆欧表,大修时用2500V兆欧表。
2)如果励磁回路中有半导体电子元件时,测量前应退出这些元件或将这些元件短路,避免这些元件在测量中击穿。
5 直流电阻测量测量目的:检查绕组导体是否存在断股、断裂、开焊或虚焊等问题。
测量发电机定子或转子绕组的直流电阻、灭磁电阻(不包括非线性灭磁电阻)等可以采用双臂电桥、电压电流法(直流)、直流电阻测试仪等。
目前多数是采用直流电阻测试仪进行测量。
测量要点:1)测量前应在定子绕组或转子绕组不同部位放置三支以上的温度计,取平均值作为绕组的温度。
2)如果仪器的电流端子和电压端子分开时,应将电压端子夹在电流端子的内侧,避免电流端子的接触压降影响测量的准确度,如图所示。
图 直流电阻测量接线图3)测量结果换算到75℃时的数值,并与历年试验数据进行比较。
铜导体换算公式如下: tR R t++=2357523575 式中,R 75:换算至75℃时的电阻;R t :温度为t ℃时测量的电阻值;t :测量时的温度。
6 直流耐压试验及泄漏电流测量 直流耐压试验的特点1)对检出绕组端部绝缘缺陷有较高灵敏度在交流电压下和直流电压下电机端部绝缘的电压分布如图所示。
在交流电压下电压的分布与电容有关,由于电机绝缘的介电系数比空气大,而且端部绕组距离铁心远,所以绝缘层的电容C i 比绝缘表面到铁心的电容C g 大得多,绝缘层的容抗比绝缘表面对地的容抗小得多,所以绕组端部绝缘层中的交流电压降U Ci 要比绝缘层表面对地的电压降U Cg 小得多,不容易检查出端部绝缘的缺陷。
而直流电压的分布与绝缘电阻成正比,端部表面的绝缘在制造时从槽口向外依次喷涂低阻、中阻、高阻绝缘漆,所以端部绝缘层的绝缘电阻R i 比绝缘表面电阻R g 大得多,绝缘层上的电压降U Ri 很大,表面电位U Rg 较低,对检出端部绝缘层的缺陷有较高的灵敏度。
由于交流耐压时绕组端部绝缘表面电压较高,所以交流耐压时端部电晕较大,而直流耐压时端部绝缘表面电压较低,一般不容易看到电晕。
图在交流电压和直流电压下绕组端部绝缘的电压分布2)对绝缘的破坏性较小直流耐压试验设备输出的功率一般都很小,对试品的破坏性也很小,而且不会象交流耐压试验那样对绝缘的破坏存在累积效应。
在进行耐压试验时首先进行直流耐压试验,还可以通过监测直流泄漏电流的大小和变化了解绝缘是否存在局部缺陷或受潮等可以处理的问题,减少在交流耐压时绝缘击穿的可能性。
直流耐压试验电压的确定发电机绝缘在进行直流耐压和交流耐压试验时,它们的击穿电压值是不一样的。
如果以U DB代表直流击穿电压,以U AB代表交流击穿电压,它们的比值K通常称为巩固系数,即:K = U DB/U AB大量的试验统计数据说明,对新绝缘来说K值在~的范围内,平均值为左右,绝缘无损伤时K值最大,随着绝缘损伤深度的增加K值成比例地减小;随着绝缘的运行小时增加,K值也会随着减小。
也就是说,在大多数情况下要击穿同一个绝缘缺陷,所施加的直流电压要比交流电压高得多。
根据我国的实际经验,K的取值为~,并据此制定出交流耐压与直流耐压的标准。
以额定电压为6kV~24kV的电机为例,按我国现行的交接和预防性试验标准,在进行定子绕组直流耐压和交流耐压试验时,K值在~之间。
如果交流耐压值为(U N为发电机额定电压),直流耐压值应为:×~ U N =( ~ U N平均值约为 U N,现发现有些电厂在进行的交流耐压前随意将直流耐压的数值降为,显然对后续的交流耐压是比较危险的,是不可取的做法。
试验方法一般电机可以使用直流发生器进行试验,试验接线见图图发电机直流耐压试验接线1)在正式试验前应进行一次空升试验,即甩开被试验绕组按每级分阶段升一次电压,记录各阶段的泄漏电流,一方面可以检查试验设备和接线是否正常,另一方面可以测量试验设备本身的泄漏电流,以便于在正式试验时将所测量的泄漏电流减去空升时的泄漏电流。
2)正式试验。
试验电压按每级分阶段升高,每阶段停留1分钟,记录1分钟时的泄漏电流。
3)试验前应将绕组短路接地放电,试验后应首先将被试绕组通过放电棒放电,待电压降到一定数值后(比如1000V以下)才能将被试绕组直接接地放电。
4)在试验中应注意观察泄漏电流的变化,如果发现泄漏电流摆动或急剧增加,应停止试验,待查明原因后方可继续试验。
5)对于电压较高的电机,在试验中应采取必要的措施防止电晕过大造成泄漏电流不正常。
一般的措施有增加高压端与地端的距离,如果距离不够可增加绝缘隔板,避免接线中存在尖端放电等等。
6)对于氢冷发电机禁止在氢气置换过程中进行试验。
7)高压试验应遵守相关的安全工作规定。
7 交流耐压试验常规试验方法由于发电机试验时电容电流通常都比较大,限流电阻和保护电阻的选择应根据实际情况选择,应保证被试品击穿时过流保护能可靠动作并有足够大的功率,通常是水电阻,可添加食盐调节水的电阻。
图 常规交流耐压试验接线限流电阻:由于电流较大,阻值越大,压降越大,损耗也越大,阻值应小于试品的容抗,而且要有足够大的热容量,通常采用水电阻;铜球保护电阻:为了保证铜球击穿后过流保护装置能够动作,应满足U T / 阻值≥动作电流。
CXC ω=1(Ω) T CTCU X U I ω==(A ) 式中,C :绕组对地及相间电容(F );Xc :容抗(Ω);ω:角频率,ω = 2πf ,对于工频,f = 50 Hz ,ω = 314 串联谐振交流耐压试验 7.2.1 试验接线图 变频式串联谐振法交流耐压试验接线7.2.2 谐振条件I L =I C =I X L =X C U L =-U C 式中:X L =ωL由于谐振的条件是X L =X C ,即:ωL=1/ωC ,整理后可得谐振条件为:LCf π=21从上式可知,通过调整电感L 或电容C 或调整频率f ,都可以使试验回路达到谐振的状态。