图与网络分析 (Graph Theory work Analysis).ppt

合集下载

8图和网络分析.ppt

8图和网络分析.ppt

v4 v6
(v2 , v5 ) , (v3 , v5 ) , (v4 , v5 ) , (v5 , v4 ) , (v5 , v6 ) }
v3
v5
图2
4、一条边的两个端点是相同的,那么称为这条边是环。
5、如果两个端点之间有两条以上的边,那么称为它们 为多重边。
6、一个无环,无多重边的图称为简单图,一个无环, 有多重边的图称为多重图。
(二)、 图的矩阵表示
对于网络(赋权图)G=(V,E),其中边 (vi , v j )
有权
w
i
,构造矩阵
j
A,(ai其j)n中n :
aij 0wij
(vi ,vj)E (vi ,vj)E
称矩阵A为网络G的权矩阵。
设图G=(V,E)中顶点的个数为n,构造一个
矩阵 A(ai,j)n其n 中:
aij 01
其余的点称为中间点。对每一条弧
,(v对i ,v应j)一A个
数 ,称为弧w i 上j 的“权”。通常把这种赋权的图称为
网络。
10、由两两相邻的点及其相关联的边构成的点边序列称 为链。
如:v0 ,e1,v1,e2,v2,e3 , v3 ,…,vn-1 , en , vn, 记作( v0 , v1 , v2, v3 , …, vn-1 , vn ),
e1{v1,v2} e2{v1,v2}
v6
e3 {v2,v3} e4 {v3,v4}
e9
e5 {v1,v3} e6 {v3,v5}
e7 {v3,v5} e8 {v5,v6}
e9 {v6,v6} e10{v1,v6}
e1
e2
v2
e5 e3 e4 v4
e8
e6

运筹学-7、图与网络分析PPT课件

运筹学-7、图与网络分析PPT课件

THANKS
感谢观看
KEEP VIEW
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
https://
终止条件
所有节点都在同一连通分量中, 即生成树形成。
算法思想
从边开始,每次选择权值最小的 边加入,若形成回路则舍去,直 到生成树形成。
算法特点
适用于稀疏图,时间复杂度为 O(eloge),其中e为边数。
最小生成树问题的应用
通信网络设计
在构建通信网络时,需要在保证所有节点连通的前提下,使得建设 成本最低。最小生成树算法可以用于求解此类问题。
活动时间的估计
对每个活动进行时间估计,包括乐观时间(a)、最 可能时间(m)和悲观时间(b),并计算期望时间 (t=(a+4m+b)/6)。
项目工期的计算
根据活动的逻辑关系和网络结构,计算项目 的期望工期,并确定项目的关键路径。
网络计划技术的应用
项目进度管理
网络计划技术可用于制定详细 的项目进度计划,确保项目按
图与网络的应用背景
图与网络分析的方法
介绍图与网络分析中常用的最短路径 算法、最小生成树算法、最大流算法 等。
阐述图与网络在交通运输、电路设计、 社交网络等领域的应用。
学习目标与要求
学习目标
掌握图与网络分析的基本概念和 常用算法,能够运用所学知识解 决实际问题。
学习要求
熟悉图与网络分析的基本概念和 常用算法,了解相关应用领域, 具备一定的编程能力和数学基础。
算法步骤
初始化距离数组和访问标记数组;从起点开始,选择距离起点最近的未访问节点进行访问 ,并更新其邻居节点的距离;重复上述步骤,直到所有节点都被访问。

运筹学 图与网络分析PPT学习教案

运筹学 图与网络分析PPT学习教案

ij
min{ V1到Vj中间最多经过t-2个点 P1j(t-1)=
P1j(t-2)
+wij}
终止原则:
1)当P1j(k)= P1j(k+1)可停止,最短路P1j*= P1j(k) 2)当P1j(t-1)= P1j(t-2)时,第1再9页多/共迭59页代一次P1j(t) ,若P1j(t) =
P1j(t-1) ,则原问题无解,存在负回路。
图与网络模型Graph Theory
最短路问题
v1,u1 =(M,W,G,H); v2,u2 =(M,W,G);
v3,u3 =(M,W,H);
v4,u4 =(M,G,H);
v5,u5 =(M,G)。
此游戏转化为在下面的二部图中求从 v1 到 u1 的最短路问题。
v1
v2
v3
v4
v5
u5
u4
例: 求下图所示有向图中从v1到各点 的最短路。
2 v1
v2
4
5 -2 v3 6
-3 4
v4
7
v6 -3 2
v5
3
4
v8
-1
v7
第20页/共59页
wij
d(t)(v1,vj)
v1 v2 v3 v4 v5 v6 v7 v8 t=1 t=2 t=3 t=4 t=5 t=6
v1 0 2 5 -3
0 0 0 00 0
参加的游客众多,游客甚至不惜多花机票钱暂转取道它地也愿参加
此游。旅行社只好紧急电传他在全国各地的办事处要求协助解决此
问题。很快,各办事处将其已订购机票的情况传到了总社。根据此
资料,总社要作出计划,最多能将多少游客从成都送往北京以及如
何取道转机。下面是各办事处已订购机票的详细情况表:

第6章 图与网络分析――基础知识PPT课件

第6章  图与网络分析――基础知识PPT课件

D
E
F






















将研究对象用点表示。对象与对象之间用边表示。依题意,找出不相邻的顺序。
B
C
ACBFED
A
D
36
F
E
类型2. 求最小部分树。避圈法和破圈法
基本定理:图中任一个点i,若j是与i相邻点 中距离最短的,则边[i,j]一定含在该图的 最小部分树内。
推论:把图的所有点分成集合V和它的补集两 个集合,则两集合之间连线的最短边一定 包含在最小部分树内。
A
7
2 2
S
5
B
5
D
5
T
1
1
4
3
7
C
E
4
39
[例2]如图6-2,SABCDET代表村镇,它们中间 连线表明各村镇间现有道路交通情况,连线旁 数字代表道路的长度。现要求沿图中道路架设 电线,使上述村镇全部通上电,应如何架设使 总的长度为最短。
A
7
2 2
S
5
B
5
D
5
T
1
1
4
3
7
C
E
4
40
[例2]如图6-2,SABCDET代表村镇,它们中间 连线表明各村镇间现有道路交通情况,连线旁 数字代表道路的长度。现要求沿图中道路架设 电线,使上述村镇全部通上电,应如何架设使 总的长度为最短。
点边交替序列,点边均不重 复。
点边交替序列,起点和终点 不重复。 点边交替序列,起点和终点 重复。

第6章图与网络分析PPT课件

第6章图与网络分析PPT课件
有向图:图是由点和弧所构成的,
记 作 D={V ,A}(V 是 点 的 集 合 , A 是 弧 的 集 合 ) ,
一条方向从vi指向vj的弧,记作(vi,vj)。
网络图:给图中的点和边赋予具体的含义和权数,如距离, 费用,容量等,记作N.
第8页
图的相关概念
若边eij=[vi,vj]∈E,称vi,vj是eij的端点,也称vi,vj是 相邻的。称eij是点vi(及点vj)的关联边。
若两条边有一个公共的端点,则称这两条边相邻。
点与点
相邻
vi
e
vj
vi,vj相邻
e 与vi,vj关联
边与边相邻
vi e1 vk e2
v
j
点与边关联
第9页
图的相关概念
若某条边两个端点相同,称这条边为环。 若两点之间有多于一条的边,称这些边为多重边。
v1
v5 v4
e1 e2
e4
v2
e3 v3
e5
无环、无多重边的 图称为简单图。
无环、但允许有多 重边的图称为多重 图。
注:无特别声明我们今后讨论的图都是简单图
第10页
图的相关概念
图G中以点v为端点的边的数目,称为v在G中
的次(度), 记为d(v)。
v1
v5 v4
e1 e2
e4
d(v1)=2 d(v2)=3 d(v3)=4 d(v4)=1
v2
e3 v3
e5
次为1 的点为悬挂点,悬挂点的关联边称为悬
第7章 图与网络分析
• 图的基本概念与模型 • 树图和图的最小部分树 • 最短路问题 • 网络最大流问题
第1页
概述
1
点击输入简要文字内容,文字内容需概括精炼,不用多余 的文字修饰,言简意赅的说明分项内容……

图与网络分析 胡运权 第四版 运筹学PPT课件

图与网络分析 胡运权 第四版 运筹学PPT课件
4
3.关联与相邻
❖关联(边与点的关系):若e是v1、v2两点间
的边,记e=[v1,v2 ],称v1、v2 与e关联。
v1
e
v2
❖相邻(有公共边,称点v1与v2相邻;
边e1与e2 有公共点,称边e1与e2相邻。
e1
V2
V1
e2
V3
5
4. 链、圈与连通图
■链:由图G中的某些点与边相间构成的序列 {V1,e1,V2,e2, ……,Vk,ek},若满足 ei=[Vi, Vi ],则称此
(4)A={v1,v2,v4}
[0,v1]
[2,v1]
2
6
v1
v2
v3
1 [1,v1]10
5
9
3
v4
7
v5
6
5
2
3
4
v6
v7
4
[3,v1]
v8 8
考虑边(v1,v6),(v2,v3),(v2,v5),(v4,v7)
计算min { 0+3, 2+6, 2+5, 1+2}=min {3,8,7,3}=3
70
费用、容量等),则称这样 1
4
的图为网络图。
20
45
3
4.2 最小支撑树问题
C1 根
C2
C3
C4

❖树:无圈的连通图,记为T。
8
❖树的性质
■ 树中任意两个节点间有 且只有一条链。
2
3
1
5
4
■ 在树中任意去掉一条边, 1
则不连通。
2
3
5
4
■如果树T有m个结点,则 边的个数为m-1。

图与网络分析 (Graph Theory and Network Analysis)

图与网络分析 (Graph Theory and Network Analysis)

(5,6)
t (10,7) v4
附程序
min
( i,j ) A
bij f ij

jV ( j,i ) A
MODEL: s.t f ij sets: jV nodes/s,1,2,3,4,t/:d; ( i,j ) A arcs(nodes,nodes)/ s,1 s,2 1,2 1,3 2,4 3,2 3,t 4,3 4,t/:b,c,f; 0 f ij endsets data: d=14 0 0 0 0 -14; 其中 di b=2 8 5 2 3 1 6 4 7 ; c= 8 7 5 9 9 2 5 6 10; enddata min=@sum(arcs:b*f); @for(nodes(i)|i #ne# 1 #and# i #ne#@size(nodes): @sum(arcs(i,j):f(i,j))-@sum(arcs(j,i):f(j,i))=d(i)); @sum(arcs(i,j)|i #eq# 1:f(i,j)) = d(1); @for(arcs:@bnd(0,f,c)); END
规定了费用的网络称作带费用的网络,
A 记作 D {V , A, c, b, v s , v t } ,其中 V 是顶点集合,
是弧集合,
v c 是容量集合, b 是费用函数, s 为发
点, v t 为收点。
3、可行流 f 的费用 设 f 是 D上的可行流,称 b( f ) b(a ) f (a ) 为可 a A 行流 f 的费用。 4、流量为v 的最小费用流 把D上所有流量等于v 的可行流中费用最小的可行 流称作流量为v 的最小费用流。
假设1月初的库存量为零,要求6月底的库存量也为 零,不允许缺货。试做出6个月的订货计划,使成 本最低。

运筹学06图与网络分析PPT演示文稿

运筹学06图与网络分析PPT演示文稿

v4
v1 v2 v3 v4 v5 v1 0 1 1 0 0
起 v2 1 0 0 1 1
点 v3 1 0 0 0 1
v5
v4 0 1 0 0 1
v5 0 1 1 1 0
19
❖ 赋权无向图的邻接矩阵表示
▪ 两顶点之间有边相连的,写上其权数,无 边相连的记为∞,对角线上的数字为0。赋 权无向图对应的矩阵也是对称的。
1 图的基本概念
❖ 案例导引 ❖ 图论中的图 ❖ 图的矩阵描述
2
案例导引
❖ 图论是运筹学的一个重要分支,对其最早的 研究可以追溯到著名的哥尼斯堡七桥问题 (Konigsberg Bridges Problem)。18世纪,欧洲 的哥尼斯堡城有一条流经全城的普雷戈尔河, 河的两岸与河中两个小岛及两岛之间有七座 桥彼此相通(如左图)。
22
树及其性质
❖ 树在现实中随处可见,如电话线架设、比赛 程序、组织结构等。
❖ 树:连通的无圈的无向图称为树。
23
❖ 树的性质 ❖ 图G=(V,E),p个点、q条边,下列说法是等价
的 ▪ (1)G是一个树 ▪ (2)G连通,且恰有p-1条边 ▪ (3)G无圈,且恰有p-1条边 ▪ (4)G连通,但每舍去一边就不连通 ▪ (5)G无圈,但每增加一边即得唯一一个圈 ▪ (6)G中任意两点之间恰有一条链(简单链)
30
❖在根树中,若每个顶点的出次小于或等 于M,称这棵树为M叉树。
❖若每个顶点的出次恰好等于M或者零, 则称这棵树为完全M叉树。
❖当M=2时,称为二叉树、完全二叉树。
31
❖ 如图所示的树是根树。其 中根、分枝点、叶;各点 层次都标注在树上。
❖ 这是一棵三叉树
三叉树

《图与网络分析》课件

《图与网络分析》课件

广度优先搜索
2
历图中的节点。
通过按逐层扩展的方式,搜索和遍历图 中的节点。
最短路径算法
1
Dijkstra算法
寻找两个节点之间最短路径的一种算法,适用于无负权重边的情况。
2
Floyd算法
寻找所有节点之间最短路径的一种算法,适用于有向图和无向图。
最小生成树算法
1
Prim算法
找出连接所有节点的最小成本树的算法。
Kruskal算法
2
找出连接所有节点的最小成本树的另一 种算法。
应用案例
1 社交网络分析
通过图与网络分析方法, 揭示社交网络中的关键人 物和社群结构。
2 物流网络优化
使用图与网络分析技术来 优化物流网络的路径和资 源分配。
3 路网分析
通过图与网络分析,提高 交通规划和城市布局的效 率。
网络分析的思路
顶点
网络中的数据节点或实体。

连接顶点的关系或连接。
权重
边的属性或度量,用于表示连接的强度或重要性。
图的分类与存储结构
有向图
边具有方向性,表ห้องสมุดไป่ตู้顶点之间 的单向关系。
无向图
边没有方向性,表示无序关系。
加权图
边具有权重,表示连接的强度 或重要性。
图搜索算法
1
深度优先搜索
通过探索尽可能深入的路径,搜索和遍
网络分析的思路是通过对网络结构和属性的分析,揭示出潜在的模式、关系和洞察力,帮助我们洞悉复杂系统 的运作。
《图与网络分析》PPT课 件
欢迎来到《图与网络分析》PPT课件!本课程将帮助您深入了解图网络分析的 概念和应用。准备好探索各种令人兴奋的网络分析方法和工具了吗?让我们 开始吧!

第5章图与网络分析163页PPT

第5章图与网络分析163页PPT

bi j 0wi j
(vi ,vj)E (vi ,vj)E
例6.4 下图所表示的图可以构造权矩阵B如下:
v1 4
v2
36
72
v6 4
3
3
v3
5
2
v5
v4
v1 0 4 0 6 4 3
v
2

4
0
2
7
0
0

B

v3
0
2
0
5
0
3
v4 6 7 5 0 2 0
v
5
4
17
v4
树与图的最小树
v1 23 v6
20
v2
1
4
v7
9
15 v3
28 25
16 3
v5
17
v4
v1
v2
23 v6
1
4
v7
9
15 v3
28
25
16 3
v5
17
v4
v1
v2
23 v6
1
4
v7 9
15 v3
28
25
16 3
v5
17
v4
v1
v2
23
1
4
v7
v6
9
v3
28
25
16 3
v5
17
v4
v1

15
9
7 ④ 14


10
19
20
6 ⑥

25
图的矩阵描述: 邻接矩阵、关联矩阵、权矩阵等。
1. 邻接矩阵 对于图G=(V,E),| V |=n, | E |=m,有nn阶方矩阵

图与网络分析 共200页PPT资料

图与网络分析 共200页PPT资料

v5
17
v4
v1
v2
23
1
4
v7
v6
9
v3
28 3
v5
17
v4
v1
v2
23
1
4
v7
v6
9
v3
3
v5
17
v4
总线长=1+4+9+3+17+23=57
2、避圈法: 将连通图所有边按权数从小到大排序,每次从 未选的边中选一条权数最小的边(如果有几条都是最小权 数的边,则可从中任选一条),并使之与已选取的边不能构 成圈,直到得到最小生成树.
17
v4
v1
v2 20
23
1
4
v7
v6
36
9
15 v3
28
25
16 3
v5
17
v4
v1
v2 20
23
1
4
v7
v6
36
9
15 v3
28
25
16 3
v5
17
v4
v1
v2 20
23
1
4
v7
v6
36
9
15 v3
28
25
16 3
v5
17
v4
总线长=1+4+9+3+17+23=57
第三节 最短路问题
在实践中常遇到的一类网络问题是最短路问题.给定一 个连通赋权图G=(V,E), 图中各边(vi ,vj)相应有权 ij 0(,) 指定G中的vs为发点,vt为终点.最短路问题就是要在所有vs 到vt 的路中,求出一条总权数最小的路.这里权数可以是距 离,也可以是时间, 或者是费用等等.

《图与网络分析》课件

《图与网络分析》课件

网络的定义与分类
总结词
网络的定义与分类是理解图与网络分析的关键。
详细描述
网络是由节点和边构成的集合,用于描述系统中各个组成部分之间的关系。根据 不同的分类标准,网络可以分为多种类型,如无向网络和有向网络、单层网络和 多层网络等。
图与网络的应用领域
总结词
图与网络的应用领域广泛,包括计算机科学、交通运输、生物信息学等。
从任意一个顶点开始,每次选择一条与已选顶点集合相连的边中权 重最小的边,将其加入最小生成树中。
最短路径算法
Dijkstra算法
01
用于求解图中从一个顶点到其他所有顶点的最短路径。
Bellman-Ford算法
02
用于求解图中所有顶点之间的最短路径。
Floyd-Warshall算法
03
用于求解图中所有顶点之间的最短路径,时间复杂度较低。
网络流算法
01
Ford-Fulkerson算法
用于求解最大网络流问题,通过不断寻找增广路径来增加网络的流量。
02
Dinic算法
基于层次搜索和增广路径的算法,用于求解最大网络流问题。
03
Edmonds-Karp算法
基于广度优先搜索的算法,用于求解最大网络流问题。
03
网络分析与应用
网络中心性分析
节点中心性
社区结构特征
包括社区大小、社区密度、社区连通性等。
社区结构分析的应用
在社交网络中识别用户群体,在组织结构中划分部门和团队等。
网络动态分析
网络动态模型
常见的网络动态模型有随机游走、马尔科夫链和自组 织映射等。
网络动态特征
包括节点的活跃度、网络的演化规律和网络的鲁棒性 等。
网络动态分析的应用

图与网络分析-(共34张PPT)

图与网络分析-(共34张PPT)
4、环:某一条孤起点=终点,称为环。 5、基础图:给定一个有向图D=(V,A) ,从D中去掉所有
弧上的箭头,所得到的无向图。记之为G(D)。
第九页,共34页。
6、链:设(vi1,ai1,vi2,ai2,…,vik-1,aik-1,vik)是D中的
一个点弧交错序列,如果这个序列在基础图G(D)中
所对应的点边序列是一条链,则称这个点弧交错序列
v(f) fij–fji= 0
–v(f)
i=s is,t
i=t
且使v(f)达到最大。
第二十三页,共34页。
3、增广链 给定可行流f={fij},使fij=cij的弧称为饱和弧,使
fij<cij的弧称为非饱和弧,把fij=0的弧称为零流弧, fij>0
的弧称为非零流弧。
若是网络中连接发点vs和收点vt的一条链,定义链
22
21
44
(0,Vvs)1
89
62
31
32 63
45
24
47
(44,V1) v4
37 27
(78,V3)
v6
32
v3 (31, V1) 34
第十九页,共34页。
v5 (62,V1)
第三节 最大流问题
如下是一运输网络,弧上的数字表示每条弧上 的容量,问:该网络的最大流量是多少?
4 vs
3
v1
3
1 2
2
v2
v3 3
2
vt
4 v4
第二十页,共34页。
一、基本概念和基本定理
1、网络与流
定义1:给定一个有向图D=(V,A),在V中有一个发点 vs和一收点vt,其余的点为中间点。对于每一条弧 (vi,vj),对应有一个c(vi,vj)0,(cij)称为弧的容量。这 样的有向图称为网络。记为D=(V,A,C)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档