初中数学中考模拟题及答案PDF.pdf

合集下载

河北省邯郸市馆陶县2023-2024学年九年级中考模拟数学试题(含详解)

河北省邯郸市馆陶县2023-2024学年九年级中考模拟数学试题(含详解)

2024 年河北省初中毕业生升学文化课模拟考试数 学试 卷注意事项:1.本试卷共8页,总分120分,考试时长120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡的相应位置.3.所有答案均在答题卡上作答,在本试卷或草稿纸上作答无效.答题前,请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.4.答选择题时,用2B 铅笔将答题卡上对应题目的答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区域内答题.5.考试结束时,请将本试卷和答题卡一并交回.一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中,是轴对称图形的是( )2.将算式 |14−13|可以变形为( )A.14−13B.13+14C.−14−13D.13−143.小李准备从A 处前往B 处游玩,根据图1所示,能够准确且唯一确定B 处位置的描述是( )A.点 B 在点 A 的南偏西 48°方向上B.点 B 在距点A4 km 处C.点 B 在点 A 的南偏西48°方向上4k m 处D.点 B 在点A 的北偏西48°方向上 4k m 处4.若 3ᵐ⁺²=9,则m=( )A.-1B.0C.1D.25.如图2,圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形).已知地面阴影(圆形)的直径为1.5米,桌面距地面1米.若灯泡距离桌面2米,则桌面的直径为( )A.0.25米B.0.5米C.0.75米D.1米6.实数 1200用科学记数法表示为n102.1⨯,则n2102.1⨯表示的原数为( )A.1 200 000 B.120 000C.14 400 000 D.1 440 0007.如图3,在正方形木框ABCD 中,AB=10cm,将其变形,使∠A=60°,则点 D,B 间的距离为( )A.102cmB.103cmC.10 cmD.20cm8.若m是关于x 的不等式-2x+3>7的一个解,则对于 m的值下列判断可能正确的是( )A.2<m<3B.-1<m<0C.-2≤m≤-1D.-6<m<-49.我国古代的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两……”意思是:“今有生丝30斤,干燥后损耗3斤 12 两(我国古代1斤等于 16 两)……”据此,若得到14斤干丝,需使用生丝x斤,则正确的是( )A.依题意,得3030−3+1216=x14B.依题意,得3030−3−1216=x14C.需使用生丝14037斤D.得到14斤干丝,需损耗生丝2021斤10.已知8−m12=2,则m=( )A.4B.2C.1D.1211.如图4,一根直的铁丝AB=20cm,欲将其弯折成一个三角形,在同一平面内操作如下:①量出AP=5cm;②在点 P 右侧取一点 Q,使点 Q 满足 PQ>5 cm;③将AP向右翻折,BQ向左翻折.若要使A,B 两点能在点M 处重合,则 PQ的长度可能是( )A.12 cmB.11 cmC.10 cmD.7 cm12.如图5-1,使用尺规经过直线l外的点 P 作已知直线l的平行线,作图痕迹如图5-2:下列关于图中的四条弧线①、②、③、④的半径长度的说法中,正确的是( )A.弧②、③的半径长度可以不相等B.弧①的半径长度不能大于 AP的长度C.弧④以 PA的长度为半径D.弧③的半径可以是任意长度13.对于分式M=m+2m+3,有下列结论:结论一:当m=-3时,M=0;结论二:当M=-1时,m=-2.5;结论三:若m>-3,则M>1.其中正确的结论是( )A.结论一B.结论二C.结论二、结论三D.结论一、结论二14.用相同尺寸的长方形纸板制作一个无盖的长方体纸盒.先在纸板上画出其表面展开图(需剪掉阴影部分),两种裁剪方案如图6-1和图6-2所示,图中A ,B ,C 均为正方形:下列说法正确的是( )A.方案 1中的 a=4B.方案2中的b=6C.方案1所得的长方体纸盒的容积小于方案 2所得的长方体纸盒的容积D.方案1所得的长方体纸盒的底面积与方案2所得的长方体纸盒的底面积相同15.有一段平直的公路AB ,A 与B 间的距离是50m.现要在该路段安装一个测速仪,当车辆经过A 和B 处时分别用光照射,并将这两次光照的时间差t(s)输入程序后,随即输出此车在AB 段的平均速度v(km/h),则v 与t 间的关系式为( ) A.v =50tB.v =180tC.v =1259tD.v =360t16.问题情境:如图7-1,在△ABC 中,AB=AC=8,BC=8 3,AD 是BC 边上的中线.如图7-2,将点C 沿EF 折叠后与点 D 重合,将顶点 B 沿GH 折叠,使得顶点 B 与点F 重合,GF 与DE 交于点K.若设△GHF 的面积为S ₁,四边形 GKEA 的面积为S ₂,则 S ₁和 S ₂ 的值分别为( )A.932,43 B.932,23 C.934,43 D.934,23二、填空题(本大题共3个小题,共10分.其中17,18小题各3分,19小题第 1个空2分,第2,3个空各1分)17.已知a,b 互为相反数,则. ab +a²的值为 .18.如图8,从家到公园有A ₁,A ₂ 两条路线可走,从公园到超市有 B ₁,B ₂ 两条路线可走,现让小明随机选择一条从家出发经过公园到达超市的行走路线,那么恰好选到经过路线 A ₁ 与 B ₂的概率是 .19.如图9,在正五边形 ABCDE中,.AB=2,点M是AB 的中点,连接DM,点 P 在边BC上(不与点 C 重合),将.△CDP沿PD 折叠得到△QDP.(1)∠DQP=(2)当点 Q落在 DM 上时,∠DPQ=___________;(3)AQ 的最小值为 .三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)若A+3x²−5x+3=−x²+3x−2.(1)求多项式 A;(2)判断多项式A的值是否是正数,并说明理由.21.(本小题满分9分)如图10,整数m,n,t在数轴上分别对应点M,N,T.(1)若m,n互为相反数,描出原点O的位置并求t 的值;(2)当点 T为原点,且:m−n+□=−3时,求“□”所表示的数.22.(本小题满分9分)某校为了解学生对“党史知识”的掌握情况,进行“学党史”知识竞赛(满分100分),并随机抽取5 0名学生的测试成绩作为样本进行研究,将成绩分组为A:50≤x<60,B:60≤x<70,C:70≤x<80,D:80≤x<90,E:90≤x≤100,进行整理,得到不完整的频数分布直方图,如图11所示,且C组成绩从小到大排列如下:70,71,72,72,74,77,78,78,,79,79,79.(1)通过计算,补全频数分布直方图;(2)在这个样本中,中位数是78.5分,设被“”盖住的成绩为a分,求a的值;(3)已知这个样本的平均数是78分,若又加入一名学生的成绩为78分,将这名学生的成绩计入样本后,判断新的样本平均数和方差与原样本相比是否发生改变.23.(本小题满分 10分)图 12 是小李同学设计的一个动画示意图,光点从点 P(2,1)发出,其经过的路径为抛物线G: y=a(x−ℎ)²+k的一部分,并落在水平台子上的点Q(4,1)处,其达到的最大高度为2,光点在点Q处被反弹后继续向前沿抛物线L:y=−2x²+bx+c的一部分运行,已知台子的长.AB=4,AQ=1,点 M 是AB 的中点.(1)求抛物线G的对称轴及函数表达式;(2)若光点被弹起后,落在台子上的BM之间(不含端点),求 b所有的整数值.李阿姨正在练习扇子舞,如图13-1,她握住扇子的端点 Q,将扇子绕点 Q在平面内逆时针旋转一周.佳佳认真观察扇子的运动,画出示意图(图 13-2),研究其中的数学问题.经测量可得 OQ=36cm,∠POQ=120°,扇形 QO'M 从O'M 与OP 重合的状态开始绕点Q 逆时针旋转,点 P 的对应点为点M.(1)当点O'落在弧 PQ 上时,求∠O'QO的度数,并判断点 O 是否在直线MO′上;(2)当O'Q 所在直线与扇形POQ第一次相切时,求点 O'经过的路径的长;(3)连接OM,当扇形 QO'M 转动一周时,求 OM 的取值范围.25.(本小题满分 12分)如图14,在平面直角坐标系中,点 N(n-1,n+3),M(2,0),A(-10,-1),B(4,6),连接AB,在线段AB上的整数点(横、纵坐标都为整数的点)处设置感应灯,当有点落在整点处,或从点 M发出光线(射线 MN)照射到线段AB上的整数点时,该处的感应灯会亮.(1)求线段 AB所在直线的函数解析式;(2)当点 N在线段AB 上时,请通过计算说明点 N(n-1,n+3)是否会使感应灯亮;(3)若线段上的感应灯被射线 MN分为两部分,并且两部分感应灯的个数相同(不包括边界上的点),求n的取值范围.如图15-1,在四边形ABCD中,AB‖CD,∠CBA=2∠A,点 P 从点 C 开始以每秒1个单位长度的速度在射线CD上运动,连接PB 并延长,将射线PB 绕点P 逆时针旋转,旋转角总与∠C相等,当旋转后的=k,DM=y,点 P 的运动时间为ts.射线与射线 DA 相交时,设交点为 M.令CBCD(1)当点 P 在线段CD 上(点 P 不与端点重合)时,求证:∠PBC=∠DPM.(2)如图15-2,当k=1,且点 P 在线段CD 上(点 P 不与端点重合)时,在线段CB上截取CG=CP,连接PG,求证:GP=DM.,且点 P 在 CD 的延长线上时,已知tan C=22,BC=3,①求出 y与t的函(3)如图15-3,当k=34数关系式;②若BP,AD交于点H,已知△HMPO△BPC,,直接写出t的值.数学模拟试题参考答案说明:1.在阅卷过程中,如考生还有其他正确解法,可参照评分标准按步骤酌情给分.2.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.3.解答右端所注分数,表示正确做到这一步应得的累加分数.只给整数分数.一、选择题(本大题共16 个小题,共38分.1~6小题各 3分,7~16小题各2分)题号12345678答案A D C B D A C D 题号910111213141516答案BBDcBCBA1.A解:由轴对称图形的概念知,选 A.2.D解:: 14<13,∴|14−13|==13−14.3.C解:准确且唯一确定位置的描述是点 B 在点 A 的南偏西48°方向上4k m 处,故选 C.4.B解:由: 3ᵐ⁺²=9,得 3ᵐ×3²=3²,∴3ⁿ=3²÷3²=3⁰,故m=0.5.D解:构造几何模型如图:依题意知BC=1.5米,AF=2米,AG=3米,由△DAE∽△BAC 得 DE BC =AF ΛG ,即 DE 1.5=23,得 DE=1 米,即桌面的直径为1 米.6.A解:: ∴1200=1.2×10³,∴n =3,∴1,2×10²ⁿ=1,2×10⁶=1200000.7.C解:如图,连接DB,∵AD=AB=10cm,∠A=60°,∴△ABD 为等边三角形,∴BD=AB=10cm.8.D解:-2x+3>7的解集为x<-2,只有-6<m<-4可能正确,故选D.9.B解:依题意,得 3030−3−1216=x14,解得x=16,16-14=2(斤),∴若得到14斤干丝,则需使用生丝16斤,损耗生丝2斤.10.B解: ∵m 12=8−2=2,∴m =2÷12=2.11.D解:设 PQ=x cm,则BQ=(15-x) cm,根据三角形三边关系可得 x−5<15−x,x +5>15−x,解得5<x<10.故选 D.12.C解:该作图过程中,弧①的半径长度为任意长;弧②、③的半径长度相等,且大于 12EF 的长;弧④以 PA 的长度为半径.只有 C 选项正确.13.B解: |M−1=m +2m +3−1=−1m +3.∵m >−3时, −1m +3<0,故M<1,结论三不正确;m=-3,分式无意义;M=-1时,m=-2.5,故选 B.14.C解:方案1:a=12÷4=3,所折成的无盖长方体的底面积为3×3=9.容积为5×9=45.方案2:b=4,所折成的无盖长方体的底面积为4×2=8.容积为6×8=48.故选 C.15.B解:∵速度=路程/时间, 1m/s =3.6km/ℎ,∴v =180t.16.A解:∵AB=AC=8,BC=8 3,AD 是BC 边上的中线,F 为 DC 的中点,∴FC =14 :BC =23,BD =43, :AD =AB 2−BD 2=4.∵BH =HF,∴2BH +23=83∴BH =33.易知 1BG;HωBAD,∴+BHBD =CHAD ,∴3343=GH4,GH =3,∴∴S 1=12HF ×GH =932.由折叠易知∠EDC=∠C,∠GFB=∠B.∵AB=AC,∴∠B=∠C,∴∠EDC=∠B,∠GFB=∠C,∴DE∥AB,GF∥AC,∴四边形GKEA 为平行四边形.易得 BD =CD =12BC =43,DF =CF =23,DE =AE =12AB =4,∴EF =42−(23)2=2.过点 F 作 FM⊥CE 于点M.∵S EFC =12FE ⋅FC =12CE ⋅FM, ∴CE ⋅FM =2×23=43. ∵S 2=AE ⋅FM,AE =CE,∴S 2=43.二、填空题(本大题共3个小题,共10分.其中17,18小题各3分,19小题第1个空 2分,第2,3个空各1分)17.0解: ab +a²=a (b +a )."a ,b 互为相反数,∴b+a=0,∴原式=0.18. 14解:从家到公园,再到超市的路线有 A ₁与B ₁,A ₁ 与 B ₂,A ₂与 B ₁,A ₂ 与 B ₂共四种,则恰好选到经过路线 A ₁ 与 B ₂ 的概率是 14.19.(1)108 (2)45 (3)5−1解:(1)∵五边形的内角和为( (5−2)×180°=540°,∴∠C=∠DQP=∠CDE=108°.(2)如图1,由图形的轴对称可知,∠CDM =∠EDM =12∠CDE =54∘,∠CDP =∠QDP =12∠CDM =27∘,∴∠DPQ=180°-∠DQP-∠QDP=180°-108°-27°=45°.(3)∵CD=QD,∴点Q 在以D 为圆心,2 为半径的圆上,如图2. 连接AD,交圆D 于点Q,此时AQ 最短,此时点 B,P 重合,∠CPD=∠DPQ=∠QBA=36°,∴∠DBA=∠BQA=72°,∴△ABQ∽△ADB, ∴ABDA =AQAB ,∴22+AQ =AQ 2,∴AQ =5−1.三、解答题(本大题共7个小题,共72分)20.解: (1)A =−x²+3x−2−(3x²−5x +3)=−4x²+8x−5.……………………………………………………………5分(2)多项式A 的值不会是正数,………………………………………………6分理由如下:A= =−4x²+8x−5=−4(x²−2x )−5=−4(x²−2x +1−1)−5=−4(x−1)²−-1. ∵−4(x−1)²≤0, ∴−4(x−1)²−1<0,∴多项式A 的值不会是正数.…………………………………………………………………9分21.解:(1)∵m,n 互为相反数,∴m+n=0,即点 M,N 到原点的距离相等,∴ 原点的位置如图所示:……………………………………4分则t=-1.…………………………………………………………………………………………5分(2)∵点 T 为原点,则m=-2,n=4.∵m-n+□=-3,∴--2-4+□=-3,∴□=3.……………………………………………………………………………………9分22.解:(1)∵50-7-9-12-6=16.补全统计图如下:…………………………………………3分(2)∵样本容量为50,7+9+12=28,∴中位数落在C组.将样本数据从小到大排列,则中位数是第25,26 个数的平均数,a+792=78.5.解得a=78.即a的值为78.……………………………………………………………………………………7分(3)平均数不变,方差改变………………………………………………9分23.解:(1)点 P(2,1),点 Q(4,1)是抛物线上的一对对称点,∴对称轴为直线x=3.…………………………………………………………………………2分∵抛物线G 达到的最大高度为2,所以y=a(x−3)²+2,将点 P(2,1)代入,得1=a×(2−3)²+2,解得a=-1,∴抛物线G的函数表达式为y=−(x−3)²+2.…………………………………5分(2)∵AB=4,AQ=1,∴BQ=3.又 Q(4,1),∴点B(7,1),点M(5,1),………………………………………………………………………7分∴当点 Q(4,1)与点 M(5,1)是抛物线上的一对对称点时,−b2×(−2)=4+52=92,∴b=18.…8分当点 Q(4,1)与点 B(7,1)是抛物线上的一对对称点时,−b2×(−2)=4+72=112,∴b=22,…9分∴18<b<22,∴b所有的整数值为19,20,21.………………………………………………10分24.解:(1)如图1,连接OO',∵OO′=QO′=QO,∴△OQO′为等边三角形,∴∠OQO′=∠OO′Q=60°.………………………………………3分∵∠POQ=∠MO′Q=120°,∴∠MO′O=∠MO′Q+∠OOQ=120°+60°=180°,∴点O在直线MO'上.…………………………………………………………………………5分(2)当扇形 QO'M 的半径(O′Q所在直线与扇形POQ 第一次相切时,如图2,则∠OQO′=90°,∴l(x)=18π(cm).………………………………………………………………………8分=90×36π180(3)根据题意可知旋转中心为点 Q,MQ 为定值,∴当扇形 QO'M 旋转一周时,点 M的轨迹是以点Q 为圆心,MQ 的长为半径的一个圆.如图3,向两侧延长QO,分别交大圆Q于点 A,B,∴OA,OB的长分别为 MQ 的最小值和最大值.连接PQ,如图4,过点 O 作OE⊥PQ 于点 D,交PQ 于点E,∴PD =12PQ,∠POE =12∠POQ =60∘,∴PD =OP sin60∘=36×32=183(cm ),∴PQ =2×183=363(cm ),∴OA =(363−36)cm,OB =(363+36)cm,∴OM 的取值范围为(363−36)cm ≤OM ≤(363+36)cm.…10分25.解:(1)设线段AB 所在直线的解析式为y=kx+b.∵经过点A(-10,-1),B(4,6), ∴−1=−10k +b,6=4k +b,解得 k =12,b =4,∴线段 AB 所在直线的函数解析式为 y =12x +4.……………………4分(2)当点 N(n-1,n+3)在直线 AB 上时,n +3=12(n−1)+4,解得n=1,∴点 N(0,4),∴点 N(0,4)为线段 AB 上的整数点,∴当点N 在线段AB 上时,点N(n-1,n+3)会使感应灯亮.…………………………………8分(3)直线AB 的函数表达式为y= 12x+4,A(-10,-1),B(4,6),∴线段AB 上的整数点有(-10,-1),(-8,0),(-6,1),(-4,2),(-2,3),(0,4),(2,5),(4,6)共8个,其中(-4,2),(-2,3)为中间两个整数点,为临界点.当射线MN 经过(-4,2),(2,0)时,直线MN 的函数表达式为 y =−13x +23,将点 N(n-1,n+3)代入得 n +3=−13(n−1)+23,解得 n =−32.同理可得,当射线MN 经过(-2,3),(2,0)时,直线 MN 的函数表达式为 y =−34x +32,将点 N(n-1,n+3)代入得 n +3=−34(n−1)+32,解得 n =−37,∴符合条件的n 的取值范围为 −32<n <−37. …12分26.(1)证明:∵∠DPB=∠C+∠PBC,∴∠DPM+∠BPM=∠C+∠PBC.∵∠BPM=∠C,∴∠PBC=∠DPM.………………………………………………2分(2)当k=1,且点 P 在线段CD 上时,CB=CD,CG=CP,∴∠CGP =12(180∘−∠C ),CB−CG =CD−CP,即GB=PD.∵AB∥CD,∴∠C+∠CBA =180°.∴∠CBA =2∠A,∴∠A =12(180∘−∠C ),∴∠CGP =∠A.∵AB∥CD,∴∠A+∠ADC =180°.∵∠CGP+∠BGP=180°,∴∠BGP=∠ADC.又∵∠PBC=∠DPM,∴△BGP≌△PDM,∴GP=DM.………………………………………8分(3)①如图,在射线CB 上截取( CG =CP,连接PG,过点 G 作( GE ⊥CP,,垂足为点 E.由(1)的推理可知 ∠PBC =∠KPM,∴∠GBP =∠DPM.由(2)的推理可知 ∠CGP =∠A.∵AB‖CD,∴∠PDM=∠A,∴∠CGP =∠PDM,∴△BGP △PDM,∴BG PD =PG DM .∵在 Rt△ECG 中, tan C =22,CG =CP =t,∴CE =13t,EG =223t,∴PE =23t,∴PG =233t.由题意得,BC=3,CD=4,DM=y,∴t−3t−4=233ty ,∴y =23t 2−83t3t−9. ………………………………………………11分circle223+3.…………………………………………………13分解:记 PG 与AB 相交于点 N.∵△HMP∽△BPC,∴∠CPB=∠PMD.∵△BGP∽△PDM,∴∠BPG=∠PMD,∴∠CPB=∠BPG.∵AB∥CD,∴∠CPB=∠PBA,∴∠BPG=∠PBA,∴PN=BN.易得∠BGN=∠BNG,∴BN=PN=BG=t-3.∵ABCD,∴BC CG =PN PG ,∴3t =t−323t 3,∴t =23+3.。

山西省晋城市泽州县多校2024届九年级下学期中考二模数学试卷(含答案)

山西省晋城市泽州县多校2024届九年级下学期中考二模数学试卷(含答案)

2024年初中学业水平考试——模拟测评(二)数学注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分.全卷共8页,满分120分,考试时间120分钟.2.答卷前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.3.答案全部在答题卡上完成,答在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.的相反数是()A.3B.C.D.2.在中国,鼓是精神的象征,舞是力量的表现,先贤孔子曾说过“鼓之舞之”,可见“鼓舞”一则起之早,如图是集会时击鼓瞬间的情景及鼓的立体图形,该立体图形的左视图是()A.B.C.D.3.下列运算结果正确的是()A.B.C.D.4.山西省2024年政府工作报告中指出,山西省煤炭产量在连续两年每年增产1亿多吨的基础上.再增产万吨,达到亿吨数据“8亿吨”用科学记数法表示为()A.吨B.吨C.吨D.吨5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.小明在探究二次函数的性质时,先用配方法将表达式化为顶点式,得到函数图象的顶点坐标及对称轴,然后在对称轴两侧对称地取值、列表、描点、连线得到函数图象,再借助函数图象研究该函数的增减性、对称性、最值等性质.这种研究方法主要体现的数学思想是()A.数形结合思想B.类比思想C.分类讨论思想D.公理化思想7.如图,、分别表示两块互相平行的平面镜,一束光线照射到平面镜上,反射光线为,光线经平面镜反射后的反射光线为(反射角等于入射角).若,的度数为()A.B.C.D.8.如图,内接于,为的直径,直线与相切于点C,过点O作,交于点E.若,则的度数为()A.B.C.D.9.在物理活动课上,某小组探究电压一定时,电流与电阻之间的函数关系,通过实验得到如下表所示的数据:根据表中数据,下列描述正确的是()A.在一定范围内,随的增大而增大B.与之间的函数关系式为C.当时,D.当时,10.如图,在中,,,,以点C为圆心作半圆,其直径.将沿方向平移5个单位长度,得到,则图中阴影部分的面积为()A.B.C.D.第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分.请将答案直接写在答题卡相应的位置)11.计算:.12.烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等的原料,通常用碳原子的个数命名为甲烷、乙烷、丙烷、…癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷……).甲烷的化学式为,乙烷的化学式为,丙烷的化学式为,…,其结构式如图所示,依此规律,十一烷的化学式为.13.李明计划利用周末的时间从“山西博物院”“山西青铜博物馆”“晋商博物院”“山西地质博物馆”四个博物馆中随机地选择两个博物馆参观.他制作了四个博物馆的卡片(除内容外,其余完全相同),将这四张卡片背面朝上,洗匀放好,从中随机抽取一张,不放回.再从中随机抽取一张,则恰好抽到“山西青铜博物馆”和“山西地质博物馆”的概率为.14.如图,在平面直角坐标系中,点在轴正半轴上,点的坐标为.将绕点逆时针旋转.得到(点、的对应点分别为点、),与交于点.当时,,则此时点的坐标为.15.如图,菱形的边长为,对角线、相交于点,为边的中点,连接交于点.若,则的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(1)计算:;(2)化简:.17.解方程:.18.为推动全民阅读、建设书香社会、增强青少年的爱国情感.某校举办“阅读红色经典,讲好思政故事”主题演讲活动.本次活动共有30名学生进入决赛.七名评委从演讲内容、语言表达、形象风度、综合印象四项对参赛选手评分、去掉一个最高分和一个最低分后取平均分得到每项成绩.再将演讲内容.语言表达、形象风度、综合印象四项成绩按4:3:2:1的比例计算出每人的最终成绩.小蕊,小迪的四项成绩和最终成绩如下表,30名学生最终成绩绘制成的频数直方图(每组包含最小值,不包含最大值)如下图.小蕊、小迪的四项成绩和最终成绩统计表四项成绩/分选手最终成绩/分演讲内容语言表达形象风度综合印象小蕊9796909495小迪888385请根据上述信息,解答下列问题:(1)七名评委给小迪的演讲内容打分分别为87、85、91、94、91、88、93.去掉一个最高分和一个最低分,剩余数据的中位数是________分,众数是________分,平均数是________分.(2)请你计算小迪的最终成绩.(3)学校决定根据最终成绩从高到低设立一等奖、二等奖、三等奖、优秀奖,占比分别为,2、、4.请你判断小蕊和小迪分别获几等奖,并说明理由.19.沁州黄小米是山西省沁县特产,原名糙谷,清朝康熙帝御赐“沁州黄”,以皇家贡米而久负盛名,享有“天下米王”和“国米”的尊号.某商场购进,两种包装的沁州黄小米作为活动奖品发放给顾客.活动开始前、该商场购进种沁州黄小米袋和种沁州黄小米袋,共花费元;活动中因奖品不够.该商场又购进种沁州黄小米袋和种沁州黄小米袋.共花费元.(1)求、两种沁州黄小米的单价.(2)为筹备下次活动,该商场计划再次购进、两种沁州黄小米共袋,若预算不超过元.则该商场最多能购进种沁州黄小米多少袋?20.应县木塔位于山西省朔州市应县佛宫寺院内,建于公元年,是世界上现存最高大、最古老的纯木结构楼阁式建筑.与比萨斜塔、埃菲尔铁塔并称“世界三大奇塔”.某校综合与实践小组的同学借助无人机测量应县木塔的高度.如图、先将无人机垂直上升至距地面的点C处.测得木塔顶端点的俯角为,再将无人机沿水平向木塔方向飞行到达点处,测得木塔底端点的俯角为.已知知点、、、在同一竖直平面内,求应县木塔的高度.(结果精确到;参考数据:,,,)21.阅读下列材料并完成相应的任务.三角形的旁心三角形一个内角的平分域和其他两个内角的外角平分线的交点,称为该三角形的旁心,每个三角形有三个旁心.已知:如图1,在中,的外角与的平分线,相交于点I.作射线.求证:平分.证明:如图2,过点I分别作于点D,于点E,于点F.平分,,.,用理可得.……任务:(1)请按照上面的证明思路,写出该证明过程的剩余部分.(2)图1中各角之间存在特殊的数量关系:①;②;③.请你选择一个结论进行证明.(3)如图3,在中,,点D是的一个旁心,过点D作,交的延长线于点E,且,则的长为________.22.综合与实践问题情境:如图1,在中,,,,、分别为,边的中点,连接.然后将绕点顺时针旋转,旋转角为,连接、,所在的直线与所在的直线交于点.观察发现:(1)在图1中,________.数学思考:(2)如图2,在旋转的过程中.①的值是否会发生变化?请说明理由.②当时,试判断四边形的形状,并说明理由.深入探究:(3)在旋转的过程中,当、、三点共线时,请你直接写出的长.23.综合与探究如图,抛物线与轴交于,,与轴交于点.作直线,是抛物线上的一个动点.(1)求抛物线的函数表达式并直接写出直线的函数表达式.(2)当点P在直线下方时,连接,,.当时,求点P的坐标.(3)在抛物线的对称轴上是否存在点,使以,,,为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.参考答案与解析1.A2.D3.B4.C5.C6.A7.C8.B9.B10.A11.12.13.14.15.##16.(1);(2)解:(1)原式(2)原式17.或解:,配方,得,即,,即或,解得或.18.(1)91,91,90(2)(3)小蕊获一等奖,小迪获三等奖(1)解:从小到大排列为:85、87、、91、91、93、94,去掉一个最高分和一个最低分,剩余数据为87、、91、91、93中位数为,众数是分,平均数是(分)故答案为:91,91,90.(2)(3)小蕊获一等奖,小迪获三等奖.理由:获一等奖的学生有(名),由频数直方图可知,最终成绩不低于95 分且小于100分的学生有2名,小蕊最终成绩95分在这一组,因此小蕊获一等奖;获一、二等奖的学生共有(名),获三等奖的学生有(名),由频数直方图可知,最终成绩不低于90分的学生获一等奖或二等奖,最终成绩不低于85分且小于90分的学生有9名,均获三等奖.又因为小迪最终成绩为分,所以小迪获三等奖.19.(1)种沁州黄小米的单价为元,种沁州黄小米的单价为元(2)该商场最多能购进B种沁州黄小米5袋(1)解:设种沁州黄小米的单价为元,种沁州黄小米的单价为元.根据题意,得解得答:种沁州黄小米的单价为元,种沁州黄小米的单价为元.(2)解:设该商场购进种沁州黄小米袋,则购进种沁州黄小米袋.根据题意,得.解得.为正整数,的最大值为答:该商场最多能购进B种沁州黄小米5袋.20.应县木塔的高度为解:如图,延长交直线于,则根据题意,得:在中,,.在中,.().答:应县木塔的高度为.21.(1)见解析(2)见解析(3)(1)证明:如图2,过点I分别作于点D,于点E,于点F.平分,,.,用理可得.;在内部,平分(2)解:选择结论①、证明如下:平分、平分,,选择结论②、证明如下:平分,平分选择结论③、证明如下:平分、平分、(3)如图所示,连接,过点作,垂足分别为,∴,又,则∵∴四边形是矩形,∵在中,,点D是的一个旁心,∴是的角平分线,,,∵,∴是等腰直角三角形,∴,∴矩形是正方形,∴,在中,∴,∴,同理可得,则,设,,∴,在中,,∴,解得:,∴,在中,.22.(1);(2)(2)①的值不会变化,理由见解析;②四边形是矩形,证明见解析(3)AE 的长为或解:(1)∵在中,,,,、分别为,边的中点,∴,∴;故答案为:.(2)①的值不会变化,理由如解图1,设与交于点,图1中,分别为,的中点,由旋转的性质知,的值不会发生变化,②四边形是矩形,理由:由旋转的性质,知,,.由①,得.又、,,四边形是矩形,(3)的长为或分以下两种情况讨论:当在的右侧时,如解图:由①得,设,则图中,,分别为,边的中点,,.,..由②,得在中,,解得:或舍弃解得:当在边的左侧时,如解图,同理综上所述,的长为或23.(1);直线的函数表达式为,(2)(3)存在,点的坐标为(),(),(1)解:把,分别代入得解得抛物线的函数表达式为当时,,则设直线的解析式为,将点代入,得,解得:,直线的函数表达式为,(2)如图过点作轴于点,交于,过点作于点,则四边形为矩形设则,解得(舍弃),(3)存在,点的坐标为()或()或()由题知,抛物线抛物线的对称轴,把代入,的)设)分以下三种情况讨论:当为对角线时,, ,解得)当为对角线时,,,解得)当为对角线时,,,解得综上所述,点的坐标为(),(),.。

2023_2024学年福建省莆田市七年级上册数册中考模拟测试卷(附答案)

2023_2024学年福建省莆田市七年级上册数册中考模拟测试卷(附答案)

2023_2024学年福建省莆田市七年级上册数册中考模拟测试卷一.选择题(共10小题,每小题4分,共40分)1.-2023的相反数是( )A .B .C .D .202320231-2023-202312.下列方程是一元一次方程的是( )A .B .C .D .2x 2-1=012x =-1x y +=11x 2=+3.下列各组中,不是同类项的是( )A .与25B .与C .与D .与25ab -ba20.2a b 215a b -23a b 32a b-4.若,则x 等于( )5x =A .-5B .5C .±5D .0或55.已知等式,则下列等式中不一定成立的是( )a b =A .a-1=b-1B .C .D . a b c c=ac bc =220a b -=6.数轴上点B 表示的数是3,点C 到点B 的距离为2个单位长度,则点C 表示的数为( )A .1B .5C .1或5D .3或27.我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里就记载了利用算筹实施“正负术”的方法,图(1)表示的是计算的过程.按照这种方法,图(2)()34+-表示的过程应是在计算( )A .B .C .D .(5)(2)-+-(5)2-+5(2)+-52+8.按照如图所示的计算程序,若x =2,则输出的结果是( )A.-14B.-26C.﹣16D.269.如图,两个正方形的面积分别为36,25,两阴影部分的面积分别为a,b(a>b),则a-b等于( )A.11B.12C.9D.1010.如图,周长为6个单位长度的圆上的六等分点分别为A,B,C,D,E,F,点A落在2的位置,将圆在数轴上沿负方向滚动,那么落在数轴上-2025的点是( )A.点C B.点D C.点ED.点F二.填空题(共6小题,每小题4分,共24分)11.中国高铁领先世界,2023年5月10日中国高铁累计安全行驶9280000000公里,能够环绕地球约23.2万圈,数据9280000000用科学记数法表示为 .12.写出一个系数是2023,且只含x,y两个字母的三次单项式是 .13.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值等于 .14.若x+2y=1,则2x+4y-5的值是 .15.在初中数学文化节游园活动中,被称为“数学小王子”的王小明参加了“智取九宫格”游戏比赛,活动规则是:在九宫格中,除了已经填写的三个数之外的每一个方格中,填入一个数,使每一横行、每一竖列以及两条对角线上的3个数之和分别相等,且均为m.王小明抽取到m的题目如图所示,他运用所学知识,很快就完成了这个比赛,则.167416.我们知道,任意一个正整数x 都可以进行这样的分解:x =m ×n (m ,n 是正整数,且m ≤n ),在x 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m ×n 是x的最佳分解,并规定:.若一个两位正整数t (t =10a +b ,1≤a ≤b ≤9,a ,b 为正整()n mx f =数),交换其个位上的数字与十位上的数字,得到的新数减去原数所得的差为54,则的最大值为 .()f t 三.解答题(共9小题,共86分)17.(8分)计算:. ()222583313÷--⨯⎪⎭⎫ ⎝⎛-+-18.(8分)解方程:.8x3141x 2--=-19.(8分)先化简,再求值:,其中,()()222223324ab a b ab ab a b ab -+--+1a =-.2b =20.(8分)有理数a ,b ,c 在数轴上的位置如图所示,化简:|b -c|+|a +b|-|c -a|.21.已知a 、b 互为相反数,c 、d 互为倒数,m 是绝对值等于2的数,求:的值.2++-++a bm cda b c 22.我国首个空间实验室“天宫一号”顺利升空.全国人民信受鼓舞,某校开展了火箭模型制作比赛,如图为火箭模型的截面图,下面是梯形,中间是长方形,上面是三角形.(1)用a 、b 的代数式表示该截面的面积S ;(2)当a =2cm ,b =2.5cm 时,求这个截面的面积.23.(10分)已知多项,.231A x x =-+()2222B kx x x =-+-(1)当时,求A 的值;=1x -(2)小华认为无论取何值,的值都无法确定.小明认为可以找到适当的数,使代数式k A B -k 的值是常数.你认为谁的说法正确?请说明理由.A B -24.(12分)一般情况下,对于数和,(“≠”不等号),但是对于某些特殊a b 2424a b a b ++≠+的数和,.我们把这些特殊的数和,称为“理想数对”,记作.例a b 2424a b a b++=+a b ,a b如当,时,有,那么(1,4)就是“理想数对”.1a =4b =-()14142424+--+=+(1)(3,12),(-2,4)可以称为“理想数对”的是 .(2)如果(2,x )是“理想数对”,求x 的值;(3)若(m ,n )是“理想数对”,求的值.()12m 4m 67n 8m 4n 93--⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---25.(14分)【背景知识】数轴是初中数学的一个重要工具,如图,若数轴上点A 、点①B 表示的数分别为a ,b ,则线段的长(点到点的距离)可表示为.()b a >AB A B b a -【问题情境】数轴上三点表示的数分别为,其中A 在原点左侧,距原点A B C ,,a b c ,,个单位,是最大的负整数,在原点右侧,且,如图,动点从A 出发,以4b C 9AC =②M 每秒个单位长度的速度沿数轴向左匀速运动,与此同时,过点从点出发,以每秒个单N C 2位长度速度沿数轴向右匀速运动,一只电子狗从出发,以每秒个单位长度的速度沿数轴Q B 向右匀速运动,设移动时向为秒.(0)t >【问题探究】(1)___________,___________,___________;=a b =c =(2)在运动过程中,的值不随的变化而变化,请求出的值;4MN aMQ +a (3)如果在处竖立一块挡板,当电子狗到达时,被挡板弹回,以同样的速度向相反的方C Q C 向运动.问:当为何值时,电子狗到的距离相等?并求出此时电子狗的位置.Q M N ,Q答案与试题解析一.选择题1-5. D A D C B 6-10. C C B A D二.填空题11.9.28×10912.2023xy 2(答案不唯一)13.-114.-315.3916..74三.解答题17.解:()222583313÷--⨯⎪⎭⎫ ⎝⎛-+-=415819⨯-+-=528--=528-18.解:8x3141x 2--=-2(2x-1)= 8-(3-x )4x-2 =8-3+x 4x-x =5+23x =7x 37=19.,22210a b ab -解:原式22226226123ab a b ab ab a b ab-+-+-=,210a b ab =-将,代入得:原式.1a =-2b =()()221021122⨯--⨯-=⨯=20.-2b解:由数轴可得a <0,b >0,c >0,b-c <0,c-a >0,a+b <0,则| b -c |+|a +b |-|c -a |=-b+c-a-b-c+a =-2b .21.(1)∵m 是绝对值等于2的数,∴m=±2.又∵a 、b 互为相反数,c 、d 互为倒数∴a+b=0,cd=1∴=2++-++a b m cd a b c 20(2)10c+±-+=041+-=.22.(1),(2)18 cm 2.222S ab a =+解:(1)截面面积: S =;()2211222222ab a a a b ab a +++=+(2)当a =2cm .b =2.5cm 时,222S ab a =+2=22 2.522⨯⨯+⨯=18(cm 2);答:这个截面的面积为18cm 2.23.(1)5(2)小明说法对,理由见解析(1)解:把,代入得:1x =-231A x x =-+,()()223131115A x x =-+=⨯---+=故A 的值为5;(2)解:小明说法对;()2222312251A B x x kx x x k x -=-+-++-=--当,即时,,50k -=5k =1-=-A B 故小明说法对.24. (1)(3,-12) (2)(3) 8-12-解:(1)对于数对(3,-12),有()234212341223-=+-+=-+因此(3,-12)是“理想数对”对于数对(2,-4),,,04422=+-314242=++-310≠所以(-2,4)不是“理想数对”。

2024年贵州省贵阳市白云区中考数学模拟试卷及答案解析

2024年贵州省贵阳市白云区中考数学模拟试卷及答案解析

2024年贵州省贵阳市白云区中考数学模拟试卷一、选择题(以下每题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每题3分,共36分)1.(3分)下列四个数中,属于负整数的是()A .﹣2.5B .﹣3C .0D .62.(3分)下列图案是轴对称图形的是()A .B .C .D .3.(3分)2024年贵州省政府工作报告重点民生事业取得突破.新增高等教育学位63500个,省属高校“一校一址”布局调整基本完成,民生福祉持续提升.数63500用科学记数法表示为()A .6.35×103B .6.35×104C .6.35×105D .0.635×1054.(3分)若一个几何体的表面展开图如图所示,则这个几何体是()A .三棱柱B .四棱柱C .三棱锥D .四棱锥5.(3分)若二次根式有意义,则实数x 的值可能是()A .﹣2B .0C .1D .36.(3分)下列图形中,∠2大于∠1的是()A .B .C .D .7.(3分)甲、乙、丙、丁四位男同学在中考体育前进行10次立定跳远测试,平均成绩都是2.3米,方差分别是S 甲2=0.65,S 乙2=0.55,S 丙2=0.50,S 丁2=0.45,则成绩最稳定的是()A .甲B .乙C .丙D .丁8.(3分)若一元二次方程x 2﹣2kx +k 2=0的一根为x =﹣1,则k 的值为()A.﹣1B.0C.1或﹣1D.2或09.(3分)如图,AB∥DE,AE与BD相交于点C,若AB=2,,则CE:AC等于()A.1:1B.1:2C.D.10.(3分)若分式的值为0,则a的值为()A.﹣3B.0C.2D.511.(3分)如图,尺规作∠HFG=∠ABC,作图痕迹中弧MN是()A.以点F为圆心,以BE长为半径的弧B.以点F为圆心,以DE长为半径的弧C.以点G为圆心,以BE长为半径的弧D.以点G为圆心,以DE长为半径的弧12.(3分)已知二次函数y=﹣x2﹣2x+3,当时,函数值y的最小值为1,则a的值为()A.B.C.或D.或二、填空题(每题4分,共16分)13.(4分)一次函数y=kx+3的图象经过点M(2,5),则k的值是.14.(4分)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a =6,弦c=10,则小正方形ABCD的面积是.15.(4分)某数学兴趣小组编制了一道游戏试题:将“知必言,言必尽”6个字写在六张完全相同的卡片上,卡片的背面完全相同,将卡片洗匀后,背面朝上,甲随机抽出一张(不放回),乙再随机抽出一张,若甲、乙两人抽出的字相同,便称为“好朋友”.则一次试验中,甲、乙被称为“好朋友”的概率是.16.(4分)如图,△ABC是边长为2的等边三角形,将△ABC沿直线AC翻折,得到△ACD,再将△ACD 在直线AC上平移,得到△A′C′D′.连接A′B,D′B,则△A′D′B的周长的最小值是.三、解答题(本大题共9题,共计98分.解答应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:tan45°+|﹣5+2|﹣(π﹣3)0;(2)化简:(a+1)2﹣a(a+2).18.(10分)为了解中学生的视力情况,某市卫健局决定随机抽取本市部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.【整理数据】初中学生视力情况统计表视力人数百分比0.6及以下84%0.7168%0.82814%0.93417%1.0m34%1.1及以上46n合计200100%【分析数据】(1)在初中学生视力情况统计表中,m=,n=;(2)根据表格信息,初中学生视力的中位数为,根据统计图信息,高中学生视力的众数为;【作出决策】(3)小红说:“初中学生的视力水平比高中学生的好.”请你选择统计知识说明理由;(4)保护眼睛,明天更美好,请对视力保护提出一条合理化建议.19.(10分)如图,在矩形纸片ABCD中,AB=3cm,BC=4cm,连接对角线AC,直线MN垂直平分AC,分别交AD,BC于点E,F,垂足为点G.(1)求证:△AGE≌△CGF;(2)求线段EF的长.实际平均每月的绿化面积是原计划的1.5倍,结果提前2个月完成任务,求原计划平均每月的绿化面积.乙同学所列的方程为=1.5×(1)甲同学所列方程中的x表示.乙同学所列方程中的y表示.(2)任选甲、乙两同学的其中一个方法解答这个题目.21.(10分)如图,为推进市中心城区污水系统综合治理项目,需要从A,B两地向C地新建AC,BC两条笔直的污水收集管道,现测得C地在A地北偏东45°方向上,在B地北偏西68°方向上,AB的距离为7km,求新建管道的总长度.(结果精确到0.1km,参考数据)22.(10分)如图,直线y=﹣2x+4与x轴、y轴分别相交于点A、点B,以线段AB为边在第一象限作正方形ABCD.反比例函数y=(k>0)在第一象限内的图象经过点D.(1)求反比例函数的解析式;(2)将正方形ABCD沿y轴向上平移几个单位能使点A落在(1)中所得的双曲线上?23.(12分)如图,△ABC内接于⊙O,过点B作⊙O的切线,交直径DA的延长线于点E.(1)若∠ACB=26°,则∠BAD=°;(2)求证:∠ABE=∠ACB;(3)若AE=2cm,BE=4cm,求⊙O的半径.24.(12分)“樱花红陌上,邂逅在咸安”,为迎接我区首届樱花文化旅游节,某工厂接到一批纪念品生产订单,要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(0<x≤15)每件产品的成本价是y元,y与x之间关系为:y=0.5x+7,任务完成后,统计发现工人小王第x天生产产品P(件)与x(天)之间的关系如图所示,设小王第x天创造的产品利润为W元.(1)直接写出P与x之间的函数关系;(2)求W与x之间的函数关系式,并求小王第几天创造的利润最大?最大利润是多少?(3)最后,统计还发现,平均每个工人每天创造的利润为288元,于是,工厂制定如下奖励方案:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金,请计算,在生产该批纪念过程中,小王能获得多少元的奖金?25.(12分)在Rt△ABC中,∠ACB=90°,AB=10,AC=8,将△ABC绕点B逆时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.【教材呈现】(1)如图①,将△ABC绕点B旋转180°得到△A′BC′,则线段CC'的长为;【问题解决】(2)如图②,在△ABC旋转过程中,连接CC′,交AB于点D,当CC′∥A′B时,求证:CD=AB;【拓展延伸】(3)如图③,连接AA′,延长CC′交AA′于点F,点E为AC边的中点,连接EF.在△ABC旋转过程中,EF是否存在最大值?若存在,求出EF的最大值;若不存在,请说明理由.2024年贵州省贵阳市白云区中考数学模拟试卷参考答案与试题解析一、选择题(以下每题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每题3分,共36分)1.【分析】根据负整数的定义进行判断即可.【解答】解:﹣2.5是负分数,﹣3是负整数,0既不是正数也不是负数,6是正整数,故选:B.【点评】本题考查有理数,熟练掌握相关定义是解题的关键.2.【分析】根据轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,据此作答.【解答】解:A.不是轴对称图形,故此选项不合题意;B.是轴对称图形,故此选项符合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意.故选:B.【点评】此题考查了利用轴对称图形的定义判断轴对称图形,要熟练掌握.3.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:63500=6.35×104.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:三个长方形和两个三角形折叠后可以围成三棱柱.故选:A.【点评】考查了几何体的展开图,熟记常见几何体的表面展开图特征,是解决此类问题的关键.5.【分析】根据二次根式的被开方数是非负数求出x的取值范围即可得出答案.【解答】解:∵x﹣2≥0,∴x≥2,∴x的取值可能是3.故选:D.【点评】本题考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.6.【分析】利用垂直的定义,对顶角的定义,等弧对等角,三角形的外角的性质对各选项进行分析即可.【解答】解:A、由垂直可知:∠1=∠2=90°,故A不符合题意;B、由∠1与∠2属于对顶角,则∠1=∠2,故B不符合题意;C、由等弧对等角可得∠1=∠2,故C不符合题意;D、由三角形的外角性质可得∠2>∠1,故D符合题意.故选:D.【点评】本题主要考查三角形的外角性质,解答的关键是明确三角形的外角等于与其不相邻的两个内角之和.7.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵平均成绩都是2.3米,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,∴S甲2>S乙2>S丙2>S丁2,∴射击成绩最稳定的是丁.故选:D.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.【分析】把x=﹣1代入方程计算即可求出k的值.【解答】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【点评】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.【分析】利用相似三角形的判定与性质解答即可.【解答】解:∵AB∥DE,∴∠A=∠E,∠B=∠D,∴△CDE∽△CBA,∴.∵AB=2,,∴CE:AC=:2.故选:C.【点评】本题主要考查了相似三角形的判定与性质,平行线的性质,熟练掌握适时进行的判定与性质定理是解题的关键.10.【分析】根据分母不为零且分子为零的条件进行解题即可.【解答】解:由题可知,a﹣2=0且a+3≠0,解答a=2.故选:C.【点评】本题考查分式的值为零的条件,熟练掌握分母不为零且分子为零的条件是解题的关键.11.【分析】根据作一个角等于已知角的作图方法判断即可.【解答】解:由作图可知,弧MN是以点G为圆心,以DE长为半径的弧.故选:D.【点评】本题考查作图﹣基本作图,尺规作图,熟知作一个角等于已知角的基本作图步骤是解答本题的关键.12.【分析】根据二次函数的解析式求出顶点坐标,再根据二次函数的性质求出a的值即可.【解答】解:∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴二次函数的顶点坐标为(﹣1,4),且二次函数的图象开口向下,∵当x=时,y=>1,∴a<﹣1,当y=1时,﹣a2﹣2a+3=1,解得a=﹣1﹣或﹣1(舍去),故选:A.【点评】本题主要考查二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.二、填空题(每题4分,共16分)13.【分析】根据一次函数图象上点的坐标特征解答即可.【解答】解:∵一次函数y=kx+3的图象经过点M(2,5),∴2k+3=5,解得k=1,故答案为:1.【点评】本题考查了一次函数图象上点的坐标特征,熟练掌握图象上点的坐标满足函数解析式是关键.14.【分析】应用勾股定理和正方形的面积公式可求解.【解答】解:∵勾a=6,弦c=10,∴股==8,∴小正方形的边长=8﹣6=2,∴小正方形的面积=22=4故答案为:4【点评】本题运用了勾股定理和正方形的面积公式,关键是运用了数形结合的数学思想.15.【分析】列表可得出所有等可能的结果数以及甲、乙两人抽出的字相同的结果数,再利用概率公式可得出答案.【解答】解:列表如下:知必言言必尽知(知,必)(知,言)(知,言)(知,必)(知,尽)必(必,知)(必,言)(必,言)(必,必)(必,尽)言(言,知)(言,必)(言,言)(言,必)(言,尽)言(言,知)(言,必)(言,言)(言,必)(言,尽)必(必,知)(必,必)(必,言)(必,言)(必,尽)尽(尽,知)(尽,必)(尽,言)(尽,言)(尽,必)共有30种等可能的结果,其中甲、乙两人抽出的字相同的结果有4种,∴甲、乙被称为“好朋友”的概率是=.故答案为:.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.16.【分析】连接CD'.证明四边形A'BCD'是平行四边形,推出CD'=BA′,推出A′D′B的周长=BA'+BD'+A'D'=CD'+BD'+2,可知CD'+BD'最小时,△A′D′B的周长最小,作点C关于直线DD'的对称点E,连接BE,CD'+BD'最小值为BE,求出BE的长即可解决问题.【解答】解:连接CD',由平移的性质,可知A'B=D'C,A'B∥D'C,∴四边形A'BCD'是平行四边形,∴A'B=D'C,∴△A′D′B的周长=BA'+BD'+A'D'=CD'+BD'+2,∴CD'+BD'最小时,△A′D′B的周长最小,作点C关于直线DD'的对称点E,CE交DD'于点P,D'E,BE,过点E作EF⊥BC交BC的延长线于点F,则∠A'CE=∠DPE=90°,∠ECF=180°﹣60°﹣90°=30°,∵CD'+BD'=ED'+BD'≥BE,∴CD'+BD'最小值为BE,∴△A′D′B的周长的最小值=BE+2,∵CE=2CP=2,∴CF=CE•cos30°=3,EF=CE=,∴BF=BC+CF=2+3=5,∴△A′D′B的周长的最小值为2+2,故答案为:2+2.【点评】本题主要考查等边三角形的性质,折叠性质,平移的性质,关键是求出CD'+BD'的最小值三、解答题(本大题共9题,共计98分.解答应写出必要的文字说明、证明过程或演算步骤)17.【分析】(1)先算特殊角的三角函数值,绝对值,零指数幂,再算加减即可;(2)先算完全平方,单项式乘多项式,再合并同类项即可.【解答】解:(1)tan45°+|﹣5+2|﹣(π﹣3)0=1+3﹣1=3;(2)(a+1)2﹣a(a+2)=a2+2a+1﹣a2﹣2a=1.【点评】本题主要考查完全平方公式,实数的运算,解答的关键是对相应的运算法则的掌握.18.【分析】(1)根据初中各视力的总人数=人数÷百分比求解可得m、n的值;(2)根据中位数和众数的定义解答即可;(3)选择合适的统计量,比较即可得出答案;(4)根据保护眼睛的方法提出即可.【解答】解:(1)m=200×34%=68,n=46÷200×100%=23%,故答案为:68,23%;(2)被调查的初中学生视力情况的样本容量为200,∵第100个和第101个数据为1.0和1.0,∴中位数为=1.0,∵被调查的高中学生视力情况中,0.9出现的次数最多,∴众数为0.9.故答案为:1.0,0.9;(3)初中学生的视力水平比高中学生的好,被调查的高中学生视力情况的样本容量为14+44+60+82+65+55=320,∵第160个和第161个数据为0.9和0.9,∴中位数为0.9,∵初中视力水平的中位数为1.0,高中视力水平的中位数为0.9,所以初中学生的视力水平比高中学生的好;(4)建议该区中学生坚持每天做眼保健操,养成良好的用眼习惯.【点评】本题考查频数(率)分布表、条形图统计图,从统计图表中得出解题所需数据是解答本题的关键.19.【分析】(1)利用AAS即可证得△AGE≌△CGF;(2)先根据勾股定理求出AC的长,继而求出AG的长,再证得△AGE∽△ADC,即可求出EG的长,再由(1)中的结论即可求出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEG=∠CFG,∵直线MN垂直平分AC,∴∠AGE=∠CGF=90°,AG=CG,在△AGE和△CGF中,,∴△AGE≌△CGF(AAS);(2)解:∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD=BC,∵AB=3cm,BC=4cm,∴由勾股定理得cm,∵直线MN垂直平分AC,∴∠AGE=90°,AG=CG cm,∴∠AGE=∠D,又∵∠GAE=∠DAC,∴△AGE∽△ADC,∴,∴,∴EG=,由(1)知△AGE≌△CGF,∴FG=EG=,∴EF=.【点评】本题考查了矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,熟练掌握这些知识点是解题的关键.20.【分析】(1)根据题意和题目中的式子,可知x和y表示的实际意义;(2)根据题意,选择甲同学的方法进行解答,注意分式方程要检验,也可选择乙同学的作法,注意乙中求得y的值后,还要继续计算,知道计算出原计划平均每月的绿化面积结束.【解答】解:(1)由题意可得,甲同学所列方程中的x表示原计划平均每月的绿化面积,乙同学所列方程中的y表示实际完成这项工程需要的月数,故答案为:原计划平均每月的绿化面积;实际完成这项工程需要的月数;(2)按甲同学的作法解答,﹣=2,方程两边同乘以1.5x,得90﹣60=3x,解得,x=10,经检验,x=10是原分式方程的解,答:原计划平均每月的绿化面积是10km2.【点评】本题考查由实际问题抽象出分式方程,解分式方程,解答本题的关键是明确题意,会解答分式方程,注意分式方程要检验.21.【分析】作CD⊥AB于点D,然后根据锐角三角函数,即可求得AC+BC的长,本题得以解决.【解答】解:作CD⊥AB于点D,由题意可得,∠CAD=45°,∠CBD=90°﹣68°=22°,设CD=x,则AD=CD=x,BD=AB﹣AD=7﹣x,∵,tan22°≈0.40,∴,解得x=2,∵,,∴,答:新建管道的总长度是8.2km.【点评】本题考查解直角三角形的应用﹣方向角问题,解答本题的关键是明确题意,利用数形结合的思想解答.22.【分析】(1)先由y=﹣2x+4得出A,B坐标,作DF⊥x轴证明Rt△ABO≌Rt△DAF,求出点D坐标即可求解.(2)把点A横坐标代入函数解析式求解.【解答】解:(1)作DF垂直x轴于点F,把x=0代入y=﹣2x+4得y=4,把y=0代入y=﹣2x+4得x=2,∴点B,A坐标分别为(0,4),(2,0),∴OB=4,OA=2.∵∠BAD=90°,∠AOB=90°,∴∠ABO+∠BAO=∠DAF+∠BAO=90°,∴∠ABO=∠DAF,在Rt△ABO和Rt△DAF中,,∴Rt△ABO≌Rt△DAF,∴AF=OB=4,DF=AO=2,∴OF=OA+AF=6,∴点D坐标为(6,2),∵反比例函数y=图象经过点D,∴k=6×2=12,∴y=.(2)把x=2代入y=得y=6,∴向上平移6个单位能使点A落在双曲线上.【点评】本题考查反比例函数的综合应用,解题关键是熟练掌握正方形的性质与一线三垂直的全等三角形模型.23.【分析】(1)连接BD,根据圆周角定理可得∠ADB=∠ACB=26°,∠ABD=90°,再利用直角三角形的性质即可解决问题;(2)连接OB,证明∠ABE=90°﹣∠OBA=90°﹣∠OAB=∠ADB,进而可以解决问题;(3)根据切线的性质和勾股定理即可解决问题.【解答】(1)解:如图,连接BD,∴∠ADB=∠ACB=26°,∵AD是⊙O的直径,∴∠ABD=90°,∴∠BAD=90°﹣26°=64°,故答案为:64;(2)证明:如图,连接OB,∴OA=OB,∴∠OAB=∠OBA,∵EB是⊙O的切线,∴∠OBE=90°,∴∠ABD=∠OBE=90°,∴∠ABE=90°﹣∠OBA=90°﹣∠OAB=∠ADB,∵∠ADB=∠ACB,∴∠ABE=∠ACB;(3)解:∵EB是⊙O的切线,∴∠OBE=90°,在Rt△OBE中,AE=2cm,BE=4cm,根据勾股定理得:OE2=OB2+BE2,∴(OA+2)2=OA2+42,∴OA=3,∴⊙O的半径为3cm.【点评】本题考查了切线的性质,圆周角定理,三角形外接圆与外心,解决本题的关键是掌握切线的性质.24.【分析】(1)结合图象,分段计算,当10≤x≤15时,P=40,当0<x≤10时,利用待定系数法即可求解;(2)根据题意有:W=P×(20﹣y),结合(1)的结果和y=0.5x+7,即可求解,再分别求出当0<x ≤10时和当10≤x≤15时,W的最大值,二者比较即可作答;(3)根据题意可知:当W>288时,即可获得奖励,当0<x≤10时,令W=288,即有﹣x2+16x+260=288,解得x=2或者x=14,可得当2<x≤10时可以获得奖励;当10≤x≤15时,W>288,即有:W=﹣20x+520>288,解得:10≤x<11.6,去除第10天重复计算的奖励,问题得解.【解答】解:(1)结合图象,分段计算,当10≤x≤15时,P=40,当0<x≤10时,设P与x之间的函数关系为:P=kx+b,∵(10,40),(0,20),∴,解得,即此时P=2x+20,综上:;(2)根据题意有:W=P×(20﹣y),∵,y=0.5x+7,∴,整理得:,当0<x≤10时,W=﹣x2+16x+260=﹣(x﹣8)2+324,即当x=8时,W有最大值,最大值为W=324,当10≤x≤15时,W=﹣20x+520,即W随着x的增大而减小,∴当x=10时,W有最大值,最大值为W=320,∵320<324,∴当x=8时,W有最大值,最大值为W=324,∴小王第8天创造的利润最大,最大利润是324元;(3)根据题意可知:当W>288时,即可获得奖励,当0<x≤10时,令W=288,即有﹣x2+16x+260=288,解得x=2或者x=14,∵0<x≤10,函数W=﹣x2+16x+260开口朝下,∴当W>288时,有2<x≤10,即此时可以获得奖励为:20×(10﹣2)=160(元),当10≤x≤15时,W>288,即有:W=﹣20x+520>288,解得:10≤x<11.6,即此时可以获得奖励为:20×2=40(元),∵第10天重复计算,∴总计获得的奖励为:160+40﹣20=180(元).【点评】本题考查了二次函数的应用,一次函数的应用,二次函数的图象与性质,利用待定系数法求解一次函数解析式等知识,明确题意,正确得出函数关系,是解答本题的关键.25.【分析】(1)先利用勾股定理求出BC=8,再利用旋转对称得到C′B=BC=6,进而可得CC'=12;(2)根据旋转的性质得出∠A′=∠A,∠A′C′B=∠ACB=90°,BC=BC′,则∠BCC′=∠BC′C,根据平行线的性质求出∠A′+∠BC′C=90°,则∠A+∠BCC′=90°,结合直角三角形的性质推出∠A=∠ACD,∠ABC=∠BCC′,根据等腰三角形的判定从而得解;(3)过A作AP∥A'C'交CC′的延长线于点P,连接A'C,证明△APF≌△A'C'F(AAS),由全等三角形的性质得出AF=A'F,由三角形中位线定理可得出EF=A'C.要使EF最大,只需A'C最大,此时C,B,A'三点共线,A′C的最大值为A′B+BC=AB+BC,进一步解答则可求出答案.【解答】(1)解:∵∠ACB=90°,AB=10,AC=8,∴BC===6,∵将△ABC绕点B逆时针旋转得到△A′BC′,∴C′B=BC=6,C′、B、C在一条直线上,∴CC′=BC+C′B=12,故答案为:12;(2)证明:∵将△ABC绕点B逆时针旋转得到△A′BC′,∴∠A′=∠A,∠A′C′B=∠ACB=90°,BC=BC′,∴∠BCC′=∠BC′C,∵CC′∥A′B,∴∠A′+∠A′C′C=∠A′+∠BC′C+∠A′C′B=180°,∴∠A′+∠BC′C=90°,∴∠A+∠BC′C=90°,∴∠A+∠BCC′=90°,∵∠ACB=∠BCC′+∠ACD=90°,∴∠A=∠ACD,∴AD=CD,∵∠ACB=90°,∴∠A+∠ABC=90°,∴∠ABC=∠BCC′,∴CD=BD,∵BD+AD=AB,∴CD=AB;(3)解:EF的最大值为8,理由如下:过A作AP∥A'C'交CC′的延长线于点P,连接A'C,如图:∵△ABC绕点B顺时针旋转得到△A′BC′,∴BC=BC',∠ACB=∠A'C'B=90°,AC=A'C',∴∠BCC'=∠BC'C,∠BC′C+∠A′C′P=90°,∴∠BCC′+∠A′C′P=90°,∵∠ACB=∠BCC′+∠ACP=90°,∴∠ACP=∠A′C′P,∵AP∥A'C',∴∠APC=∠A′C′P,∴∠APC=∠ACP,∴AP=AC,∴AP=A'C',在△APF和△A'C'F中,,∴△APF≌△A'C'F(AAS),∴AF=A'F,即F是AA'中点,∵点E为AC的中点,∴EF是△AA'C的中位线,∴EF=A'C.当A'C的值最大时,EF的值最大,∵A'C≤BC+BA'=6+10=16,∴当C,B,A'三点共线时,EF存在最大值.∴EF=8,即EF的最大值为8.【点评】本题考查直角三角形的旋转变换,涉及旋转的性质、勾股定理、等腰三角形判定、全等三角形判定与性质、三角形中位线的判定与性质等知识,综合性较强,解题的关键是作辅助线,构造全等三角形。

2024年山东省东营市东营区胜利第一初级中学中考模拟考试数学试卷(含解析)

2024年山东省东营市东营区胜利第一初级中学中考模拟考试数学试卷(含解析)

2024年山东省东营市东营区胜利一中中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列各组数中,互为相反数的是( )A. ―(―2)和2B. 1和―2 C. ―(+3)和+(―3) D. ―(―5)和―|+5|22.如图所示的几何体,若每个小正方体的棱长为2,则左视图的面积为( )A. 24B. 20C. 10D. 163.下列计算正确的是( )A. (x+2y)(x―2y)=x2―2y2B. (―x+y)(x―y)=x2―y2C. (2x―y)(x+2y)=2x2―2y2D. (―x―2y)(―x+2y)=x2―4y24.如图,已知直线a、b、c相交于A、B、C三点,则下列结论:①∠1与∠2是同位角;②内错角只有∠2与∠5;③若∠5=130°,则∠4=130°;④∠2<∠5;正确的个数是( )A. 1B. 2C. 3D. 45.75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是( )A. 6cmB. 7cmC. 8cmD. 9cm6.周日早晨,妈妈送张浩到离家1000m的少年宫,用时20分钟.妈妈到了少年宫后直接返回家里,还是用了20分钟.张浩在少年宫玩了20分钟的乒乓球,然后张浩跑步回家,用了15分钟.如图中,正确描述张浩离家时间和离家距离关系的是( )A. B.C. D.7.某列车提速前行驶400km与提速后行驶500km所用时间相同,若列车平均提速20km/ℎ,设提速后平均速度为x km/ℎ,所列方程正确的是( )A. 400x =500x+20B. 400x=500x―20C. 400x―20=500xD. 400x+20=500x8.如图,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( )A. 15B. 25C. 35D. 459.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D是AC的中点,连接BD交AC于点E,连接OE,且∠OEB=45°,若OB=10,则OE的长为( )A. 6B. 33C. 25D. 21010.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是( )A. 12B. 24C. 36D. 48第II卷(非选择题)二、填空题:本题共6小题,每小题3分,共18分。

2023年吉林省长春市新解放学校初中部中考数学模拟试卷及答案解析

2023年吉林省长春市新解放学校初中部中考数学模拟试卷及答案解析
18.(8 分)图①、图②、图③均是 5×5 的正方形网格,每个小正方形的边长均为 1,点 A、B 均在格点上,用无刻度的直尺在给定的网格中按要求画图.
(1)在图①中作△ABC,使 tan∠A=1.
(2)在图②中作△ABD,使

(3)在图⑧中作△ABE,使 tan∠A=2.
试卷第 3页,总 5 页
19.(8 分)如图,在矩形 ABCD 中,AB=3,BC=10,点 E 在 BC 边上,DF⊥AE,垂足为
请根据图象解答下列问题:
(1)轿车的速度是
千米/小时.
(2)求轿车出发后,轿车离甲地距离 y(千米)与时间 x
(小时)之间的函数关系式.
(3)在整个过程中(0≤x≤5),当轿车与货车之间的距
为 30 千米时,直接写出 x 的值.
试卷第 4页,总 5页
22.(8 分)在菱形 ABCD 中,
,∠ABC=60°,点 E 是对角线 BD 上的一动点,
连接 BD,若∠P=40°,则∠ADB 的度数是( )
A.65°
B.60°
C.55°
试卷第 1页,总 5 页
D.50°
7.(3 分)如图,在△ABC 中,AB<AC,将△ABC 以点 A 为中心逆时针旋转得到△ADE, 点 D 在 BC 边上,DE 交 AC 于点 F.下列结论:①△AFE∽△DFC;②DA 平分∠BDE; ③∠CDF=∠BAD,其中正确结论的个数是( )
C.x>3
D.x>7
5.(3 分)小华将一张纸对折后做成的纸飞机如图 1,纸飞机机尾的横截是一个轴对称图形,
其示意图如图 2,若 CD=CE=5,∠DCE=40°,则 DE 的长为( )
A.5sin20°
B.10sin20°

初中数学 人教版练习题 2024年陕西省中考数学模拟试卷(黑卷)

初中数学 人教版练习题 2024年陕西省中考数学模拟试卷(黑卷)

2024年陕西省中考数学模拟试卷(黑卷)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)A .-28B .28C .-D .1.(3分)-28的相反数是( )128128A .40°B .45°C .50°D .55°2.(3分)如图,AB ∥DE ,BC ∥EF ,AB 与EF 交于点G .若∠DEF =130°,则∠B 的度数为( )A .10x 2y 6B .-10x 2y 6C .10x 3y 5D .-10x 3y53.(3分)计算:5x 2y 2•(-2xy 3)=( )A .B .C .D .4.(3分)在同一平面直角坐标系中,函数y =-3x +b 和y =bx -3(b 为常数,且b ≠0)的图象( )A .仅甲、乙正确B .仅乙、丙正确C .仅甲、丙正确D .甲、乙、丙均正确5.(3分)如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,甲、乙、丙三位同学判定其为平行四边形的说法如下:甲:若OA =OC ,OB =OD ,则四边形ABCD 是平行四边形;乙:若∠1=∠2,∠3=∠4,则四边形ABCD 是平行四边形;丙:若AB =CD ,AB ∥CD ,则四边形ABCD 是平行四边形.关于甲、乙、丙三位同学的说法,下列正确的是( )二、填空题(共5小题,每小题3分,计15分)A .B .2C .2D .46.(3分)如图,AD 是Rt △ABC 斜边上的中线,点E 为边AD 上的中点,连接BE ,且AB =BD ,若BC =8,则BE的长为( )M 3M 3A .45°B .30°C .25°D .15°7.(3分)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,过点C 作⊙O 的切线,交DA 的延长线于点E .连接AC ,CD ,若∠ADC =45°,则∠ACE 的度数为( )A .0<m <1B .0<m <2C .m >1D .m >28.(3分)已知抛物线y =ax 2-2x +ax -2(a <0)经过点A (2,y 1),B (m ,y 2),且A ,B 均在y 轴右侧.若y 1<y 2,则m 的范围为( )9.(3分)分解因式:x 2y -2xy +y = .10.(3分)如图,正六边形ABCDEF 的边长为6,M ,N 分别为AB ,DE 边的中点,连接MN 并延长交CD 的延长线于点P ,则NP 的长为 .11.(3分)如图①,小明同学用四个全等的直角三角形拼接了一个“赵爽弦图”,经过裁剪得到如图②所示的风车图案(阴影部分).若图中大正方形的面积为25,小正方形的面积为1,则风车图案的周长为 .12.(3分)如图,在平面直角坐标系中,菱形AOBC 的顶点O 是坐标原点,顶点B 在反比例函数y =的图象上,顶点C 在例函数y =的图象上,若∠CAO =60°,则k 的值为 .4M 3xk x三、解答题(共13小题,计81分.解答应写出过程)13.(3分)如图,在边长为2的正方形ABCD 中,点E 为BC 边上一点,且∠BAE =15°,点F 为直线AE 上一点,连接B F ,DF ,若DF -BF =2,则点F 到点A 的距离为 .14.(5分)计算:(-+|3-|-.15)0M 6√2415.(5分)解不等式组:.{3(x -2)<2x -4-2x ≥-616.(5分)解方程+1=.3-9x 2x x -317.(5分)如图,在△ABC 中,点D 为AC 边上一点(AD >CD ),CD =6,请用尺规作图法,在AB 边上求作一点E ,使得AE =3.(保留作图痕迹,不写作法)18.(5分)如图,在△ABC 中,点D 是BC 边上一点,延长DB 至点E ,使得BE =CD ,AB =FD ,∠ABC =∠FDE .求证:∠A =∠F .19.(5分)猜灯谜又称打灯谜,是从古代就开始流传的元宵节特色活动.有位父亲在元宵节给儿子茂茂出了4个灯谜,分别灯谜①,灯谜②,灯谜③,灯谜④,其中有2道是猜成语,2道是猜汉字.将这四个灯谜写好装在四个一模一样的灯笼中.(1)若茂茂从中随机选取一道灯谜,则茂茂选取的灯谜是猜成语的概率是 ;(2)若茂茂从中随机选取两道灯谜,求茂茂选取的两道灯谜均是猜汉字的概率.20.(5分)如图,△ABC 顶点坐标分别为A (1,4),B (-2,1),C (3,2).将△ABC 关于x 轴对称△A ′B ′C ′.(1)请你画出△A ′B ′C ′,并写出点A ′,B ′,C ′的坐标;(2)连接B′C,C′C,求△CB′C′的面积.21.(6分)宝塔山是革命圣地延安的重要标志.在一次课外活动中,小泽和小方想利用一些测量所学的几何知识测量宝塔山上宝塔的塔高AB,由于观测点与宝塔底部间的距离不易测量,经过研究需要进行两次测量.如图所示,首先,在阳光下,小方在某一时刻测得站立在E处的小泽的影长E F=1.8m,在同一时刻宝塔顶端A的影子落在地面上的点C处,此时测得CE=1.5m,小泽在E处竖起一根标杆,测得标杆的高EG=1.5m,此时,宝塔的顶端A、标杆的顶端G及点F在同一条直线上.已知AB⊥BF,DE⊥BF,点B,C,E,F在同一水平线上,小泽的身高ED=1.6m,求宝塔的塔高AB.22.(7分)食糖是关系国计民生的重要农产品.立足国内生产,实现自给,是我国蔗糖产业发展的基本国策.某地的甘蔗出苗率y(单位:%)与播种后20天累计降雨量x(单位:毫米)的关系如图所示:(1)求y与x之间的函数表达式;(2)当甘蔗种子种植后20天累计降雨量达到180毫米时,甘蔗的出苗率是多少?23.(7分)我省某地文旅局为了更好地促进本地旅游业的发展,将A,B两家景点的相关资料放在网络平台上进行宣传,邀请曾在这两家景点均游览过的游客参与调研,从自然景观、人文历史、设施服务三个方面对这两家景点进行“满意度”评分(满分100分).现从这两家景点“满意度”评分中各随机抽取10个评分数据,并对所得数据进行整理、分析、描述:Ⅰ.A,B两家景点“满意度”评分折线统计图:Ⅱ.A,B两家景点“满意度”评分的平均数、中位数、众数如表:平均数中位数众数A景点a9595B景点95b97根据以上信息,解答下列问题:(1)表中a的值是,b的值是;(2)据统计,某季度在B景点游览的人数为30000,请估计该季度B景点评分在95分以上的人数;(3)新考法结论开放性根据“满意度”的评分情况,该文旅局打算将A ,B 两家景点中的一家置顶推荐,你认为该文旅局会将这景点中的哪家置顶推荐?请说明理由(至少从一个方面说明).24.(8分)如图,AB 是⊙O 的直径,C 为⊙O 上一点,连接CA 并延长至点D ,使得AD =AB ,连接BD 交⊙O 于点E ,连接AE ,CE ,BC .(1)求证:∠DAE =∠BCE ;(2)若BE =10,tan ∠BEC =,求AD 的长.24725.(8分)如图,抛物线:y =+bx -4与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,且OB =OC .(1)求抛物线L 1的函数表达式;(2)若抛物线L 2与抛物线L 1关于原点对称,抛物线L 2与y 轴交于点C ′,抛物线L 2上是否存在点D (不与点C ′重合),使S △ABD :S △AOC ′=5:1?若存在,求出点D 的坐标;若不存在,请说明理由.L 1x 226.(10分)(1)如图①,过点A 作一条直线将△ABC 的面积平分,交BC 于点D ,若BC =4,则CD =;(2)如图②,在矩形ABCD 中,AB =4,AD =8,E 为AB 的中点,F ,G 为AD 上两个动点(点F 在G 的左侧),且FG =2,求EF +的最小值;(3)如图③,四边形ABCD 为景观示意图,E ,F 在对角线AC 上,连接BE ,BF ,DE ,DF ,现规划在中间四边形BEDF 种植花卉余地区种植草坪,要种植的面积为草坪面积的一半,已知AB =60m ,BC =60m ,∠ABC =∠ACD =90°,CD =20m ,在B DF 边上装一组灯光彩带,已知彩带每米50元,求安装彩带的费用最小值以及CF 的长度.M 3M 3。

中考数学模拟考试试卷(带有答案)

中考数学模拟考试试卷(带有答案)

训练员工作责任
标题:训练员工作责任
引言概述:在现代企业中,训练员工是非常重要的工作,他们不仅需要传授技能,还需要承担起培养员工的责任。

本文将从训练员工的工作责任角度出发,分析训练员工应该具备的责任感和工作要求。

一、明确培训目标
1.1 确定培训的具体目的和目标
1.2 制定详细的培训计划和时间表
1.3 评估员工的现有技能和知识水平
二、提供专业知识和技能
2.1 熟悉所要培训的领域知识和技能
2.2 不断更新自己的知识,保持行业前沿
2.3 制定多样化的培训方法,满足员工不同学习需求
三、激发员工学习兴趣
3.1 制定激励机制,激励员工参预培训
3.2 利用实践案例和故事激发学习兴趣
3.3 提供实际操作机会,让员工亲身体验学习成果
四、建立有效的反馈机制
4.1 定期跟踪员工学习进度,及时调整培训计划
4.2 采集员工对培训课程的反馈意见,改进培训内容
4.3 鼓励员工互相交流学习经验,促进学习效果的提升
五、持续跟踪员工发展
5.1 建立员工培训档案,记录员工学习成绩和发展情况
5.2 提供个性化的职业发展建议,匡助员工规划职业发展路径
5.3 定期评估员工的学习效果和绩效表现,为员工提供进一步的培训和发展机会
结论:作为训练员工,承担起培养员工的责任是至关重要的。

惟独具备责任感和专业能力,才干有效地匡助员工提升技能水平,实现个人和企业的共同发展。

希翼通过本文的分析,训练员工能够更好地履行自己的工作责任,为企业的长期发展贡献力量。

初中数学 2024年广东省深圳市南山中考数学模拟试卷(6月份)

初中数学 2024年广东省深圳市南山中考数学模拟试卷(6月份)

2024年广东省深圳市南山外国语学校滨海中学中考数学模拟试卷(6月份)一、选择题(共10小题,每小题3分,共30分)A .收入18元B .收入6元C .支出6元D .支出12元1.(3分)手机移动支付给生活带来便捷.如表是小颖某天微信账单的收支明细(正数表示收入,负数表示支出,单位:元),小颖当天微信收支的最终结果是( )转账——来自天青色+18.00微信红包——发给高原红-12.00A .B .C .D .2.(3分)体育是一个锻炼身体,增强体质,培养道德和意志品质的教育过程,是培养全面发展的人的一个重要方面,下列体育图标是轴对称图形的是( )A .34×10-9B .34×10-8C .3.4×10-8D .3.4×10-73.(3分)石墨烯是目前世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.00000034毫米,将数000000034用科学记数法表示为( )A .a 2+a 2=a 4B .a 3•a 2=a 6C .a 6÷a 2=a 3D .(a 3)3=a 94.(3分)下列计算正确的是( )5.(3分)如图,南外大冲学校(X )、文华学校(Y )、科华学校(Z )坐落于有深圳硅谷之称的南山科技园核心位置.其中,XY =500m ,XZ =400m ,YZ =300m ,若计划在XY 中点M 处建一个5G 基站助力南外集团发展,其覆盖半径为260m ,则这三个学校中在该5G 基站覆盖范围内的是( )A .只有YB .只有Y ,ZC .只有X ,ZD .X ,Y ,ZA .∠BEAB .∠DEBC .∠ECAD .∠ADO6.(3分)如图是脊柱侧弯的检测示意图,在体检时为方便测出Cobb 角∠O 的大小,需将∠O 转化为与它相等的角,则图中与∠O 相等的角是( )A .24B .12C .8D .367.(3分)如图,在矩形ABCD 中,分别以点A ,C 为圆心,大于AC 的长为半径作弧,两弧相交于点M ,N 作直线MN ,交BC 于点E ,交AD 于点F ,若BE =3,AF =5,则矩形的周长为( )12A .6cmB .8cmC .(30-36)cmD .(30-48)cm8.(3分)千斤顶的工作原理是利用四边形的不稳定性,图中的菱形ABCD 是一种型号千斤顶的示意图.已知AB =30cm 时BD 的长为30cm ,如果使BD 的长达到36cm ,那么AC 的长需要缩短( )M 3M 3A .=B .=C .=D .=9.(3分)在《九章算术》“勾股”章中有这样一个问题:“今有邑方不知大小,各中开门,出北门二十步有木,出南门十回步,折而西行一千七百七十五步见木,问邑方几何.”大意是:如图,DEFG 是一座正方形小城,北门H 位于DG 的中点,南门K 位于EF 的中点,出北门20步到A 处有一树木,出南门14步到C ,向西行1775步到B 处正好看到A 处的树木(即点D 在直线AB 上),小城的边长为多少步,若设小城的边长为x 步,则可列方程为( )20x +14x 17752020+x +14x 12177520x +14x 1217752020+x +14x 1775二、填空题(共5小题,每小题3分,共15分)A.B .C .D .10.(3分)如图,在四边形ABCD 中,AD ∥BC ,∠BAD =90°,AB =3,BC =4,AD =5,动点P 从点A 出发按A →B →C 的方向在AB ,BC 边上移动,记PA =x (x >0),点D 到直线PA 的距离为y ,则y 关于x 的函数图象大致是 ( )11.(3分)若x =2y (y ≠0),则= .x y 12.(3分)已知m 是方程x 2-x -2=0的一个根,则m 2-m +2022的值为 .13.(3分)如图是某路口的部分通行路线示意图,一辆车从入口A 驶入,行至每个岔路口选择前方两条线路的可能性相同,则该车从F 口驶出的概率是 .14.(3分)如图,在平面直角坐标系xOy 中,点A (0,3),B (4,0),将△AOB 向右平移到△CDE 位置,点A ,O 分别与点C ,D 对应,函数y =(k >0)的图象经过点C 和CE 的中点F ,则k 的值为 .k x 15.(3分)如图,在Rt △ABC 中,∠B =90°,BD =2AD ,∠CDA =3∠A ,则tanA 的值为 .三、解答题(共7小题,第16题5分,第17题7分,第18题8分,第19题8分,第20题8分,第21题10分,第22题9分,共5分)16.(5分)计算:|-3|+2cos 30°-(-.13)-1√1217.(7分)先化简÷(1+),再从-3,0,3,-中选择一个适当的数作为a 的值代入求值.a-9a 23a -37218.(8分)“十二年学习在南外,十二年成长在深圳湾”的南外集团教育历程和“葆有外语特色,做强数理实力”的南外教育内涵获得了全社会的广泛认可.为了不断提升学生对南外集团的归属感,集团举办了一次南外校史知识竞赛,并随机抽取部分学生,将竞赛成绩按以下五组进行整理(得分用x 表示):A :50≤x <60,B :60≤x <70,C :70≤x <80,D :80≤x <90,E :90≤x ≤100,并绘制出如图的统计图1和图2.请根据相关信息,解答下列问题:(1)图1中A 组所在扇形的圆心角度数为°,并将条形统计图补充完整.(2)若“90≤x ≤100”这一组的数据为:90,96,92,95,93,96,96,95,97,100.则这组数据的众数是,中位数是 .(3)经过初赛,进入决赛的同学有1名女生(记为A )和2名男生(记为B ,C ),现从这三位同学中决出冠亚军,请用列表或画树状图法求冠亚军的两人恰好是一男一女的概率.19.(8分)已知:如图,在⏥ABCD 中,过点D 作DE ⊥AB 于E ,点F 在边CD 上,DF =BE ,连接AF和BF .(1)求证:四边形BFDE 是矩形;(2)如果AF 平分∠DAB ,BF =4,sinC =,求DC 的长.4520.(8分)六月是离别的季节,三年的初中时光就将告一段落,为了给大家的青春留下纪念,各班家委决定为同学们采购南外特色钢笔和笔记本两种商品,具体信息如表:根据以上信息解答下列问题:班级购买数量(件)购买总费用(元)钢笔笔记本九(1)班40201100九(2)班20601300(1)求钢笔和笔记本的单价;(2)若九(3)班购买这两种商品共60件,且钢笔的数量不少于笔记本数量的2倍,请设计出最省钱的购买方案,并说明理由.21.(10分)根据以下情境信息,探索完成任务.公路涵洞改造方案的设计与解决情境1图1是某公路涵洞,图2是其截面示意图,它由圆心在点O 的劣弧AED 和矩形ABCD 构成.测得公路宽BC =12m ,涵洞直壁高AB =2m ,涵洞顶端E 高出道路(BC )6m (即EG =6m ).情境2现需对公路进行拓宽,改造成双向隔离车道,并同步拓宽涵洞,中间设置宽为a (m )的隔离带,两边为机动车道.如图3,改造后的公路宽BC =20m ,涵洞直壁高AB 和涵洞顶端E 到BC 的距离保持不变.改造方案方案一如图4,将涵洞上半部分劣弧AED 改造成顶点为E 的抛物线一部分的形式.方案二如图5,将涵洞上半部分劣弧AED 改造成仍为劣弧的形式问题解决任务1按方案一改造以点G 为坐标原点,BC 所在直线为x 轴建立平面直角坐标系,求抛物线的函数表达式.任务2按方案二改造求涵洞上半部分劣弧AED 所在圆的半径.任务3隔离带最大宽度a 的确定要使高5.5m ,宽2.3m 的货运车能通过此公路涵洞,分别求出两种改造方案下a 的最大值(≈1.41,≈7.55,结果精确到0.1m ).√2M 5722.(9分)在Rt △ABC 中,AB =AC ,点D 为CB 延长线上任一点,连接AD .(1)如图1,若AD =,BD =2,求线段BC 的长;(2)如图2,将线段AD 绕着点A 逆时针旋转90°得到线段AE ,连接BE ,CE .点F 为BE 的中点,连接AF .求证:DC =2AF ;(3)在(2)的条件下,设点K 为直线CE 上的点,AE 交BC 于点P .点D 在CB 延长线上运动的过程中,当AB ⊥BE 时,将△ABE 沿直线AE 翻折到△ABE 所在平面内得到△ANE ,同时将△PCK 沿直线PK 翻折到△PCK 所在平面内得到△PKM .在MN 取得最大值时,请直接写出的值.M 34MN BN。

2024年江苏省宿迁市部分中学中考数学一模试题(解析版)

2024年江苏省宿迁市部分中学中考数学一模试题(解析版)

2024年宿迁市初中学业水平模拟考试(一)数学试题一、选择题:本题共10小题,每小题3分,共30分,在每小题给出的选项中,选出符合题目要求的一项.1.的相反数是( )A.B. -C.D. -【答案】D 【解析】【分析】根据只有符号不同的两个数互为相反数进行求解即可.【详解】解:因为= 而−与只有符号不同,所以 的相反数是-,故选D .【点睛】本题考查了求一个数的绝对值,相反数,熟练掌握相反数的概念以及求解方法是解题的关键.2. 下列计算正确的是( )A. B. C. D. 【答案】D 【解析】【分析】本题主要考查了整式的有关运算,根据同底数幂的乘除法则、幂的乘方法则和积的乘方法则计算即可判断.【详解】解:A 、∵,∴此选项的计算错误,故此选项不符合题意;B 、∵,∴此选项的计算错误,故此选项不符合题意;C 、∵,∴此选项的计算错误,故此选项不符合题意;5||9-959559595||9-5959595-959236m m m ⋅=()2236m m =623m m m ÷=()248m m =235m m m ⋅=()2239m m =624m m m ÷=D、∵,∴此选项的计算正确,故此选项符合题意;故选:D.3.有意义,那么a应满足的条件是()A. B. C. D.【答案】B【解析】的式子叫二次根式,根据二次根式中的被开方数是非负数列式求解即可.【详解】解:由题意,得,∴.故选B.4. 据年月日《天津日报》报道,今年前两个月,被称为“新三样”的锂离子蓄电池、电动汽车、光伏产品合计出口元,将数据用科学记数法表示应为()A. B. C. D.【答案】B【解析】【分析】本题考查了科学记数法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值大于与小数点移动的位数相同.【详解】解:,故选:B.5. 世乒赛颁奖台如图所示,它的左视图是()A. B.C. D.()248m a=4a>-4a≥-4a≠-4a=-)0a≥40a+≥4a≥-202432235900000003590000000100.35910⨯93.5910⨯835.910⨯735910⨯10na⨯110a≤<n n a n193590000000 3.5910=⨯【答案】C 【解析】【分析】本题考查了三视图,根据左视图是从左边看到的图形,据此即可作答.【详解】解:∵世乒赛颁奖台如图所示,∴它的左视图是故选:C6. 如果两个相似三角形的面积比为,那么它们的对应角平分线的比为( )A. B. C. D. 【答案】D 【解析】【分析】本题主要考查的是相似三角形的性质,根据相似三角形面积的比等于相似比的平方,即可得到两个三角形的相似比,而相似三角形的对应角平分线的比等于相似比,由此得解.【详解】解:∵两个相似三角形的面积比为,∴两个相似三角形的相似比为∴它们的对应角平分线的比为故选:D .7. 不等式组的解集在数轴上可表示为( )A.B.C. D.【答案】C 【解析】【分析】本题考查了解不等式组,在数轴上表示不等式组的解集,先求出不等式组的解集,再把解集在数轴上表示出来即可求解,正确求出不等式组的解集是解题的关键.1:21:41:21:161:212213x x +>⎧⎨-≤⎩【详解】解:,由得,,由得,,∴不等式组的解集为,∴不等式组的解集在数轴上表示为,故选:.8. 已知点在y 轴上,则点在第( )象限.A 四B. 三C. 二D. 一【答案】A 【解析】【分析】直接利用y 轴上点的坐标特点(横坐标为0)得出n 的值,进而得出答案.【详解】解:∵点在y 轴上,∴,∴,∴点即,在第四象限.故选:A .【点睛】此题主要考查了点的坐标.记住y 轴上点的坐标特点、各象限内点的坐标的符号是解决的关键.y 轴上点的坐标特点是:横坐标为0;四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.9. 如图,在等腰中,,,以为直径的交于点D ,连接、,则图中阴影部分的面积为( )A. B. C. D..12213x x +>⎧⎨-≤⎩①②①1x >②2x ≤12x <≤12213x x +>⎧⎨-≤⎩C ()5A n ,()12B n n +,-(),5A n 0n =110,220n n =>-=-<+()12B n n +,-()1,2-()++,()-+,()--,()+-,ABC 8AB AC ==90BAC ∠=︒AB O BC OD AD 1632π-816π-48π-44π-【答案】C 【解析】【分析】根据,,以为直径的交于点D ,得到,,,继而得到,结合得到, 利用扇形面积与的面积差表示阴影即可.本题考查了圆的性质,等腰三角形的性质,扇形面积公式,熟练掌握圆的性质,扇形面积公式是解题的关键.【详解】∵,,以为直径的交于点D ,∴,,,∴,∵,∴,∴阴影面积为:.故选C .10. 如果一个等腰三角形的顶角为,我们把这样的等腰三角形称为黄金三角形.如图,在中,,,看作第一个黄金三角形;作的平分线,交于点D ,看作第二个黄金三角形;作的平分线,交于点E ,看作第三个黄金三角形……以此类推,第2024个黄金三角形的腰长是( )A. B. C. D. 【答案】A 【解析】【分析】本题考查了黄金三角形,规律型等知识;8AB AC ==90BAC ∠=︒AB O BC BD DC=90ADB ∠=︒142OD OA OB AB ====ODAC ∥90BAC ∠=︒90AOD ∠=︒AOD △8AB AC ==90BAC ∠=︒AB O BC BD DC =90ADB ∠=︒142OD OA OB AB ====OD AC ∥90BAC ∠=︒90AOD ∠=︒2904144483602ππ︒⨯⨯-⨯⨯=-︒36︒ABC 1AB AC ==36A ∠=︒ABC ABC ∠BD AC BCD △BCD ∠CE BD CDE 2023202420232024由黄金三角形的定义得,同理求出,,可得第1个黄金三角形的腰长为,第2第3个黄金三角形的腰长是,第4个黄金三角形的腰长是,得出规律第n 个黄金三角形的腰长是,即可得出答案.【详解】解:∵是第1个黄金三角形,第1个黄金三角形的腰长为,∴,,∵是第2个黄金三角形,∴,第2,,∵是第3个黄金三角形,∴第3个黄金三角形的腰长是,,∴第4个黄金三角形的腰长是,…第n 个黄金三角形的腰长是,第2024个黄金三角形的腰长是,故选:A .二、填空题:本题共8小题,每小题3分,共24分.BC AB ==2CD=3DE=1AB AC ==231n -ABC 1AB AC ==BC AB =BC AB ∴==BCD △CD BC =2CD BC ∴==CDE DE CD =23DE ∴==3∴1n -∴202412023-=11. 过边形的一个顶点有条对角线,则这个多边形的内角和为____.【答案】##度【解析】【分析】本题考查了多边形的对角线和多边形的内角和公式,根据边形从一个顶点出发可引出条对角线,可得,求出的值,最后根据多边形内角和公式可得结论.【详解】解:由题意得:,解得,则该边形的内角和是:,故答案为:.12. 如果三角形的两边分别是,,那么第三边的取值范围是_____.【答案】【解析】【分析】本题主要考查三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.根据三角形的三边关系判定可求解.【详解】解:由题意得,解得.即第三边的取值范围是.故答案为:.13. 已知a ,b 是关于x 的一元二次方程的两实数根,则式子的值是_____.【答案】2【解析】【分析】本题考查了一元二次方程的根与系数的关系,由根与系数的关系得,将分式变形,然后代入求解,即可求解;掌握根与系数的关系:“、是一元二次方程的两个根,则有”是解题的关键.【详解】解:由题意得,n 51080︒1080n ()3n -35n -=n 35n -=8n =n ()821801080-⨯︒=︒1080︒6cm a =9cm b =c 315c <<9696c -<<+315c <<c 315c <<315c <<2210x x +-=11a b+21a b ab +=-⎧⎨=-⎩1x 2x 20ax bx c ++=1212b x x a c x x a ⎧+=-⎪⎪⎨⎪=⎪⎩21a b ab +=-⎧⎨=-⎩.故答案为:.14. 在中,,,,则___________.【解析】【分析】根据正切的定义得,则可设,利用勾股定理计算出,可求出t,即可.【详解】解:如图,∵,∴设,∴,∵,解得:,即.【点睛】本题主要考查了解直角三角形,在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.15. 如图,在外力的作用下,一个滑块沿坡度为的斜坡向上移动了10米,此时滑块上升的高度是______米.∴11ab+a bab+=21-=-2=2ABC90C∠=︒15AB=1tan3A=BC=1tan3BCAAC==,3BC t AC t==AB=1tan3BCAAC==,3BC t AC t==AB==15AB=15=t=BC=1:3i=【解析】【分析】本题考查了坡比的计算,根据,得到,利用勾股定理计算即可.【详解】.∵,∴,∴,,.解得(负值舍去),故答案.16. 已知关于x 的分式方程的解为非正数,则k 的取值范围是______.【答案】且【解析】【分析】先将分式方程化成整式方程,求出方程的解为,再根据方程的解为非正数确定k 的取值范围,要注意分式分母不为零的情况.【详解】解:去分母得:,整理得:,解得:,由分式方程的解为非正数,得到,且,解得:且.故答案为:且【点睛】本题考查了分式方程的解的情况求解参数的取值范围,解题的关键是用含k 的代数式将方程的解表示出来,注意分式方程有意义的条件.为1:3i =13h l =1:3i =13h l =3l h =10=10=h =111x k kx x +-=+-12k ≥1k ≠12x k =-()()()()()1111x k x k x x x +--+=+-221x x kx k kx k x -+---=-12x k =-120k -≤121k -≠±12k ≥1k ≠12k ≥1k ≠17. 如图,在平面直角坐标系中,O 为坐标原点,的顶点B 在反比例函数的图象上,顶点A 在反比例函数的图象上,顶点D 在x 轴的负半轴上.若的面积是6,则k 的值是__________.【答案】4【解析】【分析】本题主要考查反比例图像上点的性质,涉及两点之间距离、平行四边形的性质和平行四边形面积公式.设点A 即可得到点B 的坐标,利用平行四边形的性质可列出方程,求解即可.【详解】解:设,∵四边形是平行四边形,∴,∴,∴,∵平行四边形的面积是6,∴,解得.故答案为:4.18. 如图,在中,,点D ,E 分别是边的中点,连接.将绕点D 按顺时针方向旋转,点A ,E 的对应点分别为点G ,F ,与交于点P .当直线与的一边平行时,的长为____.ABOD (0)ky x x=>2(0)y x x=-<ABOD 2,A a a ⎛⎫-⎪⎝⎭OBAD AB DO ∥2,2ak B a ⎛⎫-- ⎪⎝⎭2ak AB a ⎛⎫=-+⎪⎝⎭OBAD 262ak a a ⎛⎫⎛⎫-+⨯-= ⎪ ⎪⎝⎭⎝⎭4k =Rt ABC △9034ACB BC AC ∠=︒==,,AB AC ,DE ADE V (090)αα︒≤≤︒GF AC GF ABC CP【答案】或【解析】【分析】本题考查求旋转性质、全等三角形性质、勾股定理、等腰三角形的判定与性质.根据题意,由旋转性质,结合直线与的一边平行,分两类:当时;当时;两种情况讨论求解即可得到答案,【详解】解:根据题意,将绕点D 按顺时针方向旋转得到,即,在中,,∴.∵点D ,E 分别是边的中点,∴是的中位线,∴当时,如图所示:∴,∵,∴,∴和均为等腰三角形,且,∴,1232GF ABC GF AB ∥GF BC ∥ADE V (090)αα︒≤≤︒GDF GDF ADE ≌ Rt ABC 9034ACB BC AC ∠=︒==,,5AB ===AB AC .DE ABC 151132,222,2,2AD AB AE AC DE BC ======GF AB ∥ADG DGP A GPA ∠=∠∠=∠,GDF ADE ≌ A DGP ∠=∠MDA V MPG V MD MA MP MG ==.AP AM MP MD MG DG =+=+=由得到,则,当时,如图所示:∵,∴,∵,∴,∴,∴四边形是平行四边形,∵,∴是正方形,∴,∵,∴,解得,综上所述,的长为或.故答案为:或.三、解答题:本题共10小题,共96分.解答应写出文字说明,证明过程或演算步骤.19. 计算:【答案】13【解析】GDF ADE ≌ 52DG AD ==53422CP AC AP =-=-=GF BC ∥DE BC ∥GF DE ∥90C ∠=︒90EPF ∠=︒EP DF ∥DFPE 90DE DF DFP =∠=︒,DFPE 32EP DF DE ===122==EC AC 31222PC EC EP =-=-=12PC =CP 12321232()202024116 3.143π-⎛⎫-+---+- ⎪⎝⎭【分析】本题考查了有理数的混合运算,零指数幂和负整数幂的意义,先根据乘方、绝对值、零指数幂和负整数幂的意义化简,再算加减即可.【详解】解:.20. 先化简,再求值: ,其中满足.【答案】,.【解析】【分析】本题考查了分式的化简求值,先对分式进行化简,再根据可得,即可得到分式化简后的值,掌握分式的性质和运算法则是解题的关键.【详解】解:原式,,,,∵,∴,∴原式.21. 桌面上有4张正面分别标有数字2、4、6、7的不透明卡片,它们除数字不同外其余均相同,现将它们背面朝上,洗匀后平铺开.(1)小红随机翻开一张卡片,正面数字是偶数的概率是___________;(2)小红先随机翻开一张卡片并记录上面的数字,再从余下的3张卡片中随机翻开一张卡片并记录上面的数字.请用列表或画树状图的方法,求翻到的两张卡片上的数字之和为奇数的概率,【答案】(1)(2)()202024116 3.141619133π-⎛⎫-+---+-=-+-+= ⎪⎝⎭232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭x 220240x x +-=2x x +2024220240x x +-=22024x x +=()()2113112x x x x x x x ⎡⎤++=-⨯⎢⎥++-⎣⎦()221212x x x x x +-=⨯+-()()22112x x x x x -+=´+-()1x x =+2x x =+220240x x +-=22024x x +=2024=3412【解析】【分析】本题主要考查了简单的概率计算,树状图法或列表法求解概率,正确列出表格是解题的关键.(1)根据概率计算公式求解即可;(2)先列表得到所有等可能性的结果数,再找到符合题意的结果数,最后根据概率计算公式求解即可.【小问1详解】解:∵一共有4张卡片,其中正面数字是偶数的卡片有3张,每张卡片被翻开的概率相同,∴随机翻开一张卡片,正面数字是偶数的概率是,故答案为:;【小问2详解】解:用列表格法表示为:第一张结果第二张24672(4,2)(6,2)(7,2)4(2,4)(6,4)(7,4)6(2,6)(4,6)(7,6)7(2,7)(4,7)(6,7)共有12种等可能的结果,其中翻到的两张卡片上的数字之和为奇数的结果有6种,∴ 翻到的两张卡片上的数字之和为奇数的概率为.22. 为激发学生对中华诗词的学习兴趣,某初中学校组织了“诗词好少年”比赛,现随机抽取了部分学生的成绩,根据统计的结果,绘制出如下统计图①和图②.343461122请根据相关信息,解答下列问题:(1)本次抽取的学生人数为__________,图①中的值为__________;(2)求统计的这组学生成绩数据的平均数、众数和中位数.【答案】(1)50,28(2)80,90,80【解析】【分析】本题考查了从条形统计图与房形统计图获取信息、求平均数、众数和中位数等知识点,掌握从条形统计图与扇形统计图获取信息方法是解题的关键.(1)把得60分、70分、80分、90分、100分的人数加起来可得抽取的学生人数,再用得90分的人数除以总人数即可求得m 的值;(2)根据平均数、中位数、众数的定义即可解答.【小问1详解】解:本次接受调查的学生人数为人;由,即.故答案为:50,28.【小问2详解】解:这个班竞赛成绩数据的平均数为;∵得90分的有14人,最多,∴众数为90;∵位于第25位和第26位均是80,m 7121114650++++=14%=100%=28%50m ⨯28m =()176012701180149061008050⨯⨯+⨯+⨯+⨯+⨯=∴中位数为.23. 随着科技的发展,无人机广泛应用于生产生活.小琪利用无人机从点竖直上升到点,测得点到点的距离为,此时点的俯角为;后无人机到达点,此时测得点的俯角为.求无人机从点到点的平均速度.(结果精确到)【答案】无人机从点到点的平均速度.【解析】【分析】本题考查了解直角三角形的应用-仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.根据题意可得:结合平行线性质,从而可得,,然后在中,利用含30度角的直角三角形的性质可求出和的长,再在中,利用锐角三角函数的定义求出的长,从而求出的长,最后进行计算即可解答.【详解】解:在中,,,.在中,,,,,无人机从点到点的平均速度.24. 如图,在中,,垂直平分,分别交线段于点D 、E ,连接,若,.8080802+=OA A C 800m C 30︒64sBC 45︒A B 0.1m /s 1.73≈A B 4.6m /s 30ACO ∠=︒45OBC BCO∠=∠=︒Rt AOC AO OC Rt BOCBO AB Rt AOC 30ACO ∠=︒11800400m 22AO AC ∴==⨯=cos30OC AC AC =︒⋅==Rt BOC 90,45BOC BCO ∠=︒∠=︒45BCO OBC ∴∠=∠=︒OB OC ∴==()400m AB OB OA ∴=-=-∴A B ()4.6m /s =≈Rt ABC △90BAC ∠=︒ED BC BC AC 、,AD BE 12AE EC =3AE =(1)求线段的长度;(2)延长线段使得,连接,求四边形面积.【答案】(1)(2)【解析】【分析】(1)根据线段垂直平分线的性质求出,根据勾股定理求出最后根据直角三角形斜边上的中线等于斜边的一半求解即可;(2)先证明四边形为平行四边形,然后根据求解即可.【小问1详解】垂直平分,,又,,,,在中,,由勾股定理得:在中,,又D 为中点,,【小问2详解】垂直平分,,的AD ED ED DF =,BF CF BFCE 6BE CE BD CD ===,AB =BFCE BFCE S BC AB =⋅ ED BC BE EC ∴=12AE EC = 3AE =26BE AE CE ∴===9AC = Rt ABE △90BAC ∠=︒∴AB == Rt ABC △90BAC ∠=︒BC ∴=== BC 90BAC ∠=︒12AD BC ∴== ED BC BD DC ∴=∵,四边形为平行四边形,.【点睛】此题考查了勾股定理,平行四边形的判定与性质,线段垂直平分线的性质, 直角三角形斜边上的中线等知识,熟练运用勾股定理、平行四边形的判定与性质是解题的关键.25. 如图,为的直径,点C 在上,的平分线交于点D ,过点D 作,交的延长线于点E .(1)求证:是的切线;(2)若,,求的长.【答案】(1)证明见详解;(2);【解析】【分析】本题考查切线证明,等腰直角三角形性质,圆的性质,勾股定理:(1)连接,根据为的直径得到,根据是的平分线得到,即可得到,结合得到,即可得到证明;(2)根据,得到,从而得到,在中根据勾股定理求出,再求出即可得到答案.【小问1详解】证明:连接,∵为的直径,∴,∵是平分线,∴,的ED DF =∴BFCE 6BFCE S CE AB ∴=⋅=⨯= AB O O ACB ∠O DE AB ∥CB ED O AC =BC =CD 12OD AB O 90ACB ∠=︒CD ACB ∠45ACD BCD ∠=∠=︒290AOD ACD ∠=∠=︒DE AB ∥90EDO AOD ∠=∠=︒AC =BC =AB ==12OB OD AB ===BD CBE △CE BE =DE OD AB O 90ACB ∠=︒CD ACB ∠45ACD BCD ∠=∠=︒∴,∵,∴,,∴是的切线;【小问2详解】解:过B 作,∵,,∴,∴,∴,,∵,,∴,∴,∴,∴.26. 食堂午餐高峰期间,同学们往往需要排队等候购餐.经调查发现,每天开餐时,约有400人排队.接下来不断有新的同学进入食堂排队,队列中的同学买到饭后会离开队列,食堂目前开放了4个售餐窗口.(规定每人购餐1份),每分钟每个窗口能出售午餐15份,前a 分钟每分钟有40人进入食堂排队够餐,每一天食堂排队等候购餐的人数y (人)与开餐时间x (分钟)的关系如图所示.290AOD ACD ∠=∠=︒DE AB ∥90EDO AOD ∠=∠=︒ED O BE CD⊥AC=BC=AB ==12OB OD AB ===BD ==BE CD ⊥45BCD ∠=︒45BCE CBE ∠=∠=︒3CE BE ===9DE ===3912CD CE DE =+=+=(1)求a 的值.(2)求开餐到第7分钟时食堂排队购餐等候的人数.(3)若要在开始售餐7分钟内让所有的排队的学生都能买到,以便后来到同学随到随购,至少需要同时开放几个窗口?【答案】(1)4(2)160人(3)6【解析】【分析】(1)根据题意,得a 进入人数为,此时排队总人数为;每分钟一个窗口售出15份,a 分钟售出,4个窗口共售出,余下人数为,建立等式解答即可.(2)设线段的解析式为,根据题意,得,解方程组,得到解析式,后计算当时的函数值即可.(3)设需要开放x 个窗口,根据题意,每分钟一个窗口售出15份,7分钟售出,x 个窗口共售出,此时排队总人数为;故,解答即可.本题考查了图象信息,待定系数法,不等式的应用,熟练掌握待定系数法,不等式的应用是解题的关键.【小问1详解】根据题意,得a 进入人数为,此时排队总人数为;每分钟一个窗口售出15份,a 分钟售出,4个窗口共售出,余下人数为,根据图象信息,得,解得,故a 的值为4.【小问2详解】设线段的解析式为,40a ()40400a +15a 15460a a ⨯=()4040060a a +-BC y kx b =+4320100k b k b +=⎧⎨+=⎩7x =157⨯157105x x ⨯⨯=4715160⨯⨯+1054715160x ⨯⨯+≥40a ()40400a +15a 15460a a ⨯=()4040060a a +-()4040060320a a +-=4a =BC y kx b =+根据题意,得,解得,故线段的解析式为,当时,,故开餐到第7分钟时食堂排队购餐等候的人数为160.【小问3详解】设需要开放x 个窗口,根据题意,每分钟一个窗口售出15份,7分钟售出,x 个窗口共售出,此时排队总人数为;故,解得,由x 必需是正整数,故至少开放6个窗口.27. 如图1,在和中,,且,则可证明得到.【初步探究】(1)如图2,为等边三角形,过A 点作的垂线l ,点P 为l 上一动点(不与点A 重合),连接,把线段绕点C 逆时针方向旋转得到,连.请写出与的数量关系并说明理由;4320100k b k b +=⎧⎨+=⎩160316003k b ⎧=-⎪⎪⎨⎪=⎪⎩BC 160160033y x =-+7x =1601600716033y =-⨯+=157⨯157105x x ⨯⨯=4715160⨯⨯+1054715160x ⨯⨯+≥11521x ≥ABE ACD AE AB AD AC =,=BAE CAD ∠=∠AEC ABD ≌ABC AC CP CP 60︒CQ QB AP BQ【思维提升】(2)如图3,在中,以为边向外作等边,连接,,求长.【拓展应用】(3)如图4,在中,,作交于点D ,过点B 作直线,点H 是直线l 上的一个动点,线段绕点A 按顺时针方向旋转得到线段,则的最小值为_______.【答案】(1),理由见解析;(2)5;(3)【解析】【分析】(1)证明 ,从而得出结论;(2)作等边三角形,连接,可得,同(1)可证,从而得出;(3)将绕点A 按顺时针方向旋转得到线段,可证,从而得出,所以点在与定线段成的直线m 上运动,作点A 关于直线m 的对称点F ,交m 于点G ,连接,交直线m 于点,此时的最小,最小值是的长,进一步得出结果.【详解】解:(1),理由如下:等边中,,由旋转可得,,∴,,即,,;(2)如图,在ABC AB ABE EC 3043ACB AC BC а=,=,=EC ABC 604ABC AB ∠=︒=,AD BC ⊥BC l BC ⊥AH 30︒AH 'AH BH ¢¢+AP BQ =CAP CBQ ≌ACD BD 5BD ==AEC ABD ≌4CE BD ==AB 30︒AE ABH AEH ¢ ≌30AEB ABH ∠=∠=︒H 'AE 30︒AF BF H 'AH BH '+'BF AP BQ =ABC 60AC BC ACB ==︒,∠60CP CQ PCQ =,=аACB PCQ ∠=∠ACB PCB PCQ PCB \ÐÐÐÐ-=-ACP BCQ ∠=∠ACP BCQ ∴ ≌AP =BQ ∴作等边三角形,连接,,,,,,∴,同(1)可证,;(3)如图,,,,,将绕点A 按顺时针方向旋转得到线段,,∵线段绕点A 按顺时针方向旋转得到线段,,,ACD BD 4AC = 604ACD CD AC \а=,==30ACB ∠=︒ 90BCD ∴∠=︒3BC =5BD ==AEC ABD ≌5EC BD \==l BC ^ 90HBD \Ð=°60ABD ∠=︒ 30ABH ∴∠=︒AB 30︒AE 30BAE AE AB \Ð=°=,AH 30︒AH '30HAH AH AH ¢¢\Ð=°=,BAE HAH ¢\Ð=Ð,,,∴点在与定线段成的直线m 上运动,作点A 关于直线m 的对称点F ,交m 于点G ,连接,交直线m 于点,此时的最小,最小值是的长,,,,,,,即的最小值为:【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,勾股定理的应用,化为最简二次根式,轴对称的性质,旋转的性质等知识,解决问题的关注是作辅助线,构造全等三角形.28. 如图,已知抛物线(a ,b ,c 是常数)与x 轴分别交于A 、B 两点,与y 轴交于点,顶点为点,直线轴于点E ,点为抛物线上的一动点.(1)求该抛物线的解析式;(2)当点P 在第一象限内时,①求的面积的最大值;②当时,求点P 的坐标;(3)在y 轴上存在一点Q ,使得以P 、Q 、C 、E 为顶点的四边形为平行四边形,直接写出所有符合条件EAH BAH ¢\Ð=ÐABH AEH ¢\ ≌30AEB ABH \Ð=Ð=°H 'AE 30︒AF BF H 'AH BH '+'BF 9060FAE AEH ¢Ð=°-Ð=° 30BAE ∠=︒Q 90BAF FAE BAE \Ð=Ð+Ð=°122AG AE == 24AF AG \==4AB = BF \AH BH '+'2y ax bx c =++()04C ,()26D ,DE x ⊥()P m n ,PCE CE PE ⊥的点Q 的坐标.【答案】(1) (2)①的面积的最大值为;② (3)或或.【解析】【分析】(1)根据与y 轴交于点,顶点为点求解析式即可;(2)①过P 作轴于点M ,交于,根据求最大面积即可;②当时,,代入计算即可;(3)设,利用平行四边形对角线互相平分求解即可.【小问1详解】∵抛物线顶点为点,∴设把代入得,解得,∴抛物线的解析式;【小问2详解】①过P 作轴于点M ,交于,∵直线轴于点E ,∴,21242y x x =-++PCE 8352P ⎛⎫ ⎪⎝⎭,()02Q -,()010,()06-,()04C ,()26D ,PM x ⊥CE N 12PCE PCN PEN S S S OE PN =-=⋅ CE PE ⊥OCE MEP ()0,Q t 2y ax bx c =++()26D ,()226y a x =-+()04C ,()24026a =-+12a =-()2211262422y x x x =--+=-++PM x ⊥CE N DE x ⊥()20E ,∴解析式为,∵点为抛物线上的一动点.∴,∵轴于点M ,交于,∴,,,∴∴∴当时,的面积的最大,最大值为;②当时,,∴,∴,∴,解得:,∵点P 在第一象限内,∴∴;CE 24y x =-+()P m n ,21242n m m =-++PM x ⊥CE N PM n =OM m =(),24N m m -+()22112424422PN m m m m m =-++--+=-+PCE PCN PENS S S =- 1122OM PN EM PN =⋅-⋅12OE PN =⋅2112422m m ⎛⎫=⨯⨯-+ ⎪⎝⎭()21482m =--+4m =PCE 8CE PE ⊥90OCE MEP OEC ∠=∠=︒-∠OCE MEP OC OE EM PM=21242422m m m --++=125,2m m ==-5m =352P ⎛⎫ ⎪⎝⎭,【小问3详解】,,,设,当以为对角线时,则与互相平分,∵中点坐标为,中点坐标为,∴,解得,此时,同理,当以为边,与为对角线时,;当以为边,与为对角线时,;综上所述,当以P 、Q 、C 、E 为顶点的四边形为平行四边形时或或.【点睛】此题是二次函数综合题,主要考查了待定系数法,坐标系中三角形面积的求法,直角处理,平行四边形存在性问题,用方程或方程组的思想解决问题是解本题的关键.()04C ,()20E ,21242P m m m ⎛⎫-++ ⎪⎝⎭,()0,Q t CE CE PQ CE ()1,2PQ 21242,22m m t m ⎛⎫-+++ ⎪ ⎪ ⎪⎝⎭212124222m m m t ⎧=⎪⎪⎨-+++⎪=⎪⎩22m t =⎧⎨=-⎩()02Q -,CE PC EQ ()010Q ,CE QC EP ()06Q -,()02Q -,()010,()06-,。

2024山东省济南市中考一模押题预测卷数学试卷及答案

2024山东省济南市中考一模押题预测卷数学试卷及答案

2024年中考第一次模拟考试(山东济南卷)数学(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.图1所示的正五棱柱,其俯视图是()A .B .C .D .2.2023年10月18日,第三届“一带一路”国际合作高峰论坛在北京举行.国家主席习近平在主旨演讲中声明:“本届高峰论坛期间举行的企业家大会达成了972亿美元的项目合作协议.”将972亿美元用科学记数法表示成元,正确的是()A .29.7210⨯B .99.7210⨯C .109.7210⨯D .119.7210⨯3.如图,直线m n ∥,点A 在直线n 上,点B 在直线m 上,连接AB ,过点A 作AC AB ⊥,交直线m 于点C .若150∠=︒,则2∠的度数为().B .C .D ..三张图片除画面不同外无其他差别,将它们从中间剪断得到三张上部图片和三张下部图片,把三张上部图片放入一个布袋,把三张下部图片放入另一个布袋,再分别从两个布袋中各随机摸取一张,则这两张小图片恰好合成一张完整图片的概率是(16B .C 19D 15.若点()(()1232,1,1,A y B y C y --、、都在反比例函数21k y x+=(k 为常数)的图象上,则23y y 、、的大小关系为()123y y y <<B .31y y <<C 213y y y <<D 312y y y <<中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(21)(32)++-=-的计算过程,则图2.(13)(23)10-++=B .(31)(32)1-++=.(13)(23)36+++=D .(13)(23)10++-=-C.3+(a,b是常数,且abx.下列结论:第Ⅱ卷二、填空题(本大题共6个小题,每小题4分,共24分)三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤)()2213032-⎛⎫︒--+- ⎪⎝⎭.)10521x x -+><-在数轴上表示出它的解集,并求出它的正整数解.ABCD 中,BCD ∠的平分线交AD ,3EF =,求BC 的长.如图2,求遮阳棚前端B 到墙面AD 的距离;如图3,某一时刻,太阳光线与地面夹角60CFG ∠=︒,求遮阳棚在地面上的遮挡宽度的长(结果精确到1cm ).(参考数据:sin 720.951,cos 720.309,tan 72 3.078,3 1.732︒≈︒≈︒≈≈)分)近年来,网约车给人们的出行带来了便利,林林和数学兴趣小组的同学对“美团网约车司机收入频数分布表:月收入4千元5千元9千元10千元人数(个)3421根据以上信息,分析数据如表:思考问题:1,a a ⎫⎪⎭,1,R b b⎛⎫⎪⎝⎭,求直线OM 的函数解析式(用含a ,b 的代数式表示),并说明OM 上;证明:13MOB AOB ∠=∠.求c 的值及顶点M 的坐标,如图2,将矩形ABCD 沿x 轴正方向平移t 个单位()03t <<得到对应的矩形A B C ''知边C D '',A B ''分别与函数24y x x c =-+的图象交于点P ,Q ,连接PQ ,过点P 作PG 于点G .①当2t =时,求QG 的长;PGQ △1,调整菱形ABCD ,使90A ∠=︒,当点M 在菱形ABCD 外时,在射线BP 上取一点BN DM =,连接CN ,则BMC ∠=,MCMN=操作探究二2024年中考第一次模拟考试(山东济南卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.图1所示的正五棱柱,其俯视图是()A .B .C .D .【答案】A【分析】找到从上面看所得到的图形即可,注意看见的棱用实线表示.【详解】解:从上面看,是一个矩形,矩形的中间有一条纵向的实线,两条纵向的虚线.故选:A .【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.2.2023年10月18日,第三届“一带一路”国际合作高峰论坛在北京举行.国家主席习近平在主旨演讲中声明:“本届高峰论坛期间举行的企业家大会达成了972亿美元的项目合作协议.”将972亿美元用科学记数法表示成元,正确的是()A .29.7210⨯B .99.7210⨯C .109.7210⨯D .119.7210⨯【答案】C【分析】本题考查了科学记数法:把一个绝对值大于等于10的数表示成10n a ⨯的形式(a 大于或等于1且小于10,n 是正整数);n 的值为小数点向左移动的位数.根据科学记数法的定义,即可求解.【详解】解:972亿10972000000009.7210⨯=,故选:C .3.如图,直线m n ∥,点A 在直线n 上,点B 在直线m 上,连接AB ,过点A 作AC AB ⊥,交直线m 于点C .若150∠=︒,则2∠的度数为().B.C..【答案】B【分析】本题考查了轴对称图形和中心对称图形的识别.根据轴对称图形和中心对称图形的定义判断即可.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】解:A、是轴对称图形,不是中心对称图形,本选项不符合题意;、是轴对称图形,也是中心对称图形,本选项符合题意;、不是轴对称图形,是中心对称图形,本选项不符合题意;、不是轴对称图形,是中心对称图形,本选项不符合题意;.三张图片除画面不同外无其他差别,将它们从中间剪断得到三张上部图片和三张下部图片,把三张下部图片放入另一个布袋,再分别从两个布袋中各随机摸第Ⅱ卷二、填空题(本大题共6个小题,每小题4分,共24分)【答案】2或3/3或2【分析】过点M 作MF ⊥直线l ,交y 轴于点F ,交x 轴于点E ,与直线l 相交于点A ,则点E 、F 为点M 在坐标轴上的对称点,过点M 作MD x ⊥轴于点D ,设直线l 的解析式为y x b =-+,由直线l 与直线y x =-平行可得45OPA ∠=︒,即可证明MDE 与OEF 均为等腰直角三角形,进而可求出点E 、F 的坐标,根据中点坐标公式可求出MF 和ME 的中点坐标,代入y x b =-+可求出b 值,即可得点P 坐标,即可求解.【详解】如图,过点M 作MF ⊥直线l ,交y 轴于点F ,交x 轴于点E ,与直线l 相交于点A ,则点E 、F 为点M 在坐标轴上的对称点.直线l 与直线y x =-平行,∴设直线l 解析式为y x b =-+,过点M 作MD x ⊥轴于点D ,则3OD =,2MD =,直线l 的解析式为y x b =-+,45OPD ∴∠=︒,45OFE OEF ∴∠=∠=︒,MDE ∴ 与OEF 均为等腰直角三角形,2DE MD ∴==,1OE OF ==,三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤),“滴滴”网约车司机收入频数分布表:月收入4千元5千元9千元人数(个)342根据以上信息,分析数据如表:,当点G 在点Q 的下方时,(22224QG t t t t =-+--+52(在03t <<的范围内).或52.【点睛】本题考查了二次函数图象上点的坐标特点、矩形的性质以及三角形的面积等知识,掌握二次函数的图象与性质、灵活应用数形结合思想是解题的关键.2024年中考第一次模拟考试(山东济南卷)数学·参考答案第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)12345678910A C C CB BC A C B第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分)三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤),,当点G 在点Q 的下方时,(22224QG t t t t =-+--+52(在03t <<的范围内).或52.(12分)【详解】(1)解: 四边形ABCD 是正方形,CD ,90BCD ∠=︒,。

2024年广东省中考数学模拟卷及答案

2024年广东省中考数学模拟卷及答案

2024年广东省初中数学中考模拟卷(满分为120分,考试时间为90分钟)一.选择题(本大题共10小题,每小题3分,共30分)1.单项式-35ab³d²的系数是()A.-3 B.-5C.- 35D.352.已知点A(2,b)与点B(a,4)关于原点对称,则a﹣b=( )A.﹣2 B.2 C.-4 D.63.下列运算正确的是()A.2﹣=√3B.(a2)3=a5C.2a2•a=a3D.(a+1)2=a2+a+1 4.若点A(-1,a),B(1,b),C(2,c)在反比例函数y=-2xx的图象上,则a,b,c的大小关系是( ) A. a<b<c B. b<a<c C. b<c<a D. a<c<b5.若关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则实数m的值为()A.﹣9 B.94C.D.-946.如图所示,水平放置的几何体的俯视图是()A. B. C. D.7.一个圆锥的底面半径r=6,高h=8,则这个圆锥的侧面积是()A.60 B.60πC.120 D.120π8.不透明的袋子中装有红、绿、黄小球各一个,除颜色外三个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么摸到一个红球一个黄球的概率是()A.29B.C.79D.599.如图,△ABC中,点D、E分别是AB、AC的中点,若S△ADE=3,则S△ABC=.A.12 B.6 C.9 D.1010.如图,在菱形ABCD中,AB =4,BD=7.若M、N分别是边ADBC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为()A .3B .√10C .9√15D .√152二.填空题(本大题共5小题,每小题3分, 共15分)11.分解因式:2xy 2﹣2x = .12.如图,OA ,OB 是⊙O 的两条半径,点C 在⊙O 上,若∠C =30°,则的∠AOB 度数为 .13.2023年第四季度,某中小企业实现营业收入1.48百万元,将“1.48百万”用科学计数法表示为 .14.如图,直线//,130,240a b °°∠=∠=,且AD AC =,则3∠的度数是 .15.如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB ∥x 轴,交y 轴于点P .将△OAP 绕点O 顺时针旋转,每次旋转90°,则第2024次旋转结束时,点A 的坐标为 .三、解答题(本大题共9小题,满分75分.)16.(4分)计算:-|√3-5|+2sin60°-(π-6)0-417.(5分)解不等式组�2(3xx −1)≤−2xx +7 ①3xx+52≥53+2xx ②18. (8分)先化简,再求值:(1+)÷,其中a=+1.19.(8分)2021年3月29日,卫建委发布了《新冠疫苗接种指南》,某中学为了解九年级学生对新冠疫苗知识的了解情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类--非常了解:B类--比较了解;C类--一般了解;D类--不了解,现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;补全条形统计图;(2)D类所对应扇形的圆心角的大小为 ;若该校九年级学生共有1000名,根据以上抽样结果估计该校九年级学生对新冠疫苗知识非常了解的约有名.(3)已知调查的该班第一组学生中有2名男生1名女生,老师随机从该组中选取2名学生进一步了解其家庭成员接种情况,请用树状图或列表求所选2名学生恰为一男生一女生的概率。

2024年山东省中考数学模拟押题预测卷及答案

2024年山东省中考数学模拟押题预测卷及答案

2024年初中学生学业水平考试数学押题预测试卷注意事项:1.本试题分为第1卷和第Ⅱ卷两部分。

第1卷为选择题,30分;第Ⅱ卷为非选择题,90分;共120分。

考试时间为120分钟。

2.答卷前务必将试题密封线内及答题卡上面的项目填涂清楚。

所有答案都必须涂、写在答题卡相应位置,答在本试卷上一律无效。

第Ⅰ卷(选择题 30分)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.计算82024×(−0.125)2023的结果为( )A. −8B. 8C. −2D. −0.1252.剪纸是中国优秀的传统文化.如图剪纸图案中,是中心对称图形的是( )A. B. C. D.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4600000000人,这个数用科学记数法表示为( )A. 46×108B. 4.6×108C. 4.6×109D. 4.6×10104.如图是一个玻璃烧杯,图2是玻璃烧杯抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )A. B. C. D.5.下列计算正确的是( )A. aa2+aa4=aa6B. (−aa3)2=aa6C. 2aa+3bb=5aabbD. aa6÷aa3=aa26.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=30°,则∠2的度数是( )A. 45°B. 55°C. 65°D. 75°7.乘坐高铁现在是人们非常方便快捷的一种出行方式,甲、乙两城市之间的铁路距离约2800kkkk,乘坐高铁列车比普通快车能提前8ℎ到达,已知高铁列车的平均行驶速度是普通快车的2倍.设普通快车的平均行驶速度为xx kkkk/ℎ,根据题意所列出的方程为( )A. 2800xx=2800×2xx+8B. 2800×2xx=2800xx+8C. 28002xx−2800xx=8D. 2800xx−28002xx=88.如图,点AA,BB分别在反比例函数yy=12xx和yy=kk xx的图象上,分别过AA,BB两点向xx轴,yy轴作垂线,形成的阴影部分的面积为7,则kk的值为( )A. 6B. 7C. 5D. 89.某品牌20寸的行李箱拉杆拉开后放置如图所示,经测量该行李箱从轮子底部到箱子上沿的高度AABB与从轮子底部到拉杆顶部的高度CCCC之比是黄金比.已知CCCC=80cckk,则AABB的长度是( )A. (20√ 5−20)cckkB. (80−40√ 5)cckkC. (40√ 5−40)cckkD. (120−40√ 5)cckk10.如图,在平面直角坐标系xxxxyy中,四边形xxAABBCC的顶点xx在原点上,xxAA边在xx轴的正半轴上,AABB⊥xx轴,AABB=CCBB=2,xxAA=xxCC,∠AAxxCC=60°,将四边形xxAABBCC绕点xx逆时针旋转,每次旋转90°,则第2024次旋转结束时,点CC的坐标为( )A. (√ 3,3)B. (3,−√ 3)C. (−√ 3,1)D. (1,−√ 3)第Ⅱ卷(非选择题 90分)二、填空题:本题共6小题,每小题3分,共18分。

河南省开封市2024届九年级下学期中考一模数学试卷(含解析)

河南省开封市2024届九年级下学期中考一模数学试卷(含解析)

2024年中招第一次模拟考试数学试题注意事项:1.本试题卷共6页,三个大题,满分120分,考试时间100分钟.2.试题卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试题卷上的答案无效,3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面指定的位置.一、选择题(每小题3分,共30分,下列各题均有四个答案,其中只有一个是正确的.)1. 的相反数是()A. 正有理数B. 负有理数C. 正无理数D. 负无理数答案:B解析:解:的相反数是,是负的有理数,故选:B .2. 如图所示几何体,其主视图是()A. B. C. D.答案:A解析:解:根据题意可得,该几何体是一个长方体挖去半个圆柱体,∴其主视图是“”,故选:A.3. 年我国经济回升向好,国内生产总值超过万亿元,增长,增速居世界主要经济体前列.数据万亿用科学记数法可以表示为的形式,则n的值为()A. B. C. D.答案:B解析:解:万亿,故选:B .4. 提高全民安全意识,倡导安全文明风尚.下列安全提示标志既是轴对称图形又是中心对称图形的是()A. 紧急出口B. 避险处C. 小心地滑D. 急救药箱答案:D解析:解:A、不是轴对称图形,也不是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,符合题意;故选:D .5. 传统文化如同一颗璀璨的明珠,熠熠生辉.为增强学生体质,同时让学生感受中国传统文化,某校将国家非物质文化遗产“抖空竹”引入阳光特色大课间.如图①是某同学“抖空竹”时的一个瞬间,小红同学把它抽象成数学问题:如图②,已知,,,则的度数为()A. B. C. D.答案:C解析:解:如图所示,过点作,∵,∴,∴,∴,∴,故选:C .6. 下列计算正确的是()A. B.C. D.答案:D解析:解:A、,原式计算错误,不符合题意;B、,原式计算错误,不符合题意;C、,原式计算错误,不符合题意;D、,原式计算正确,符合题意;故选;D.7. 如图,把两个边长为的小正方形沿对角线剪开,用得到的个直角三角形拼成一个大正方形,则大正方形的边长最接近的整数为()A. B. C. D.答案:A解析:解:根据题意,小正方形的对角线为,∵,∴,∴,∴大正方形的边长最接近的整数是3, 故选:A .8. 已知二次函数(是常数,),当时,,若此一元二次方程有两个不相等的实数根,则该二次函数的图象可能是()A. B. C. D.答案:C 解析:解:当时,有两个不相等的实根,∴,即二次函数图象与轴有两个交点,∴根据图示可得,A 、与轴无交点,不符合题意;B 、与轴有一个交代,不符合题意;C 、与轴有两个交点,符合题意;D 、与轴有一个交代,不符合题意; 故选:C .9. “准、绳、规、矩”是古代使用的测量工具, 一个简单结构的“矩”(如图①),由于使用时安放的位置不同,能测定物体的高低远近及大小,把矩放置在如图②所示的位置,令(单位:),(单位:),若,则关于的函数解析式为( )A. B. C. D.答案:A解析:解:根据题意,,∴,∵四边形是矩形,∴,,,,∴,∴,故选:A .10. 如图,在平面直角坐标系中,的顶点A,B,O的坐标分别为、、.点,,,…中的相邻两点关于的其中一个顶点对称.如:点,关于点A对称;点,关于点B对称;点,关于点O对称;点,关于点A对称;点,关于点B对称;点,关于点O对称,…,对称中心分别是A,B,O,…,且这些对称中心依次循环,若的坐标是,则点的坐标是()A. B. C. D.答案:B解析:解:∵的坐标是,A的坐标为,∴的坐标是同理可得:的坐标是,的坐标是,的坐标是,的坐标是,的坐标是,由此可知:与的坐标相同∵∴与的坐标相同故选:B二、填空题(每小题3分,共15分)11. 实数在数轴上的位置如图所示,请把按从小到大的顺序用“”号连接为______________.答案:解析:解:如图所示,∴,故答案为:.12. 用配方法解方程时,配方后得到的方程为________________.答案:解析:解:,移项得,,等式两边同时加上1得,,∴,故答案:.13. 在某市初中升学体育终结性评价考试的素质类项目中,小明从“1分钟跳绳”、“立定跳远”、“双手正面掷实心球”、“50米跑”四个项目中随机选择两项,则他选择“立定跳远”与“50 米跑”两个项目的概率是_________________.答案:解析:解:将“1分钟跳绳”,“立定跳远”,“双手正面掷实心球”,“50米跑”表示为A,B,C,D,列表把所有等可能结果表示出来,如表所示,A B C DA----B----C----D----共有种等可能结果,出现“立定跳远”,“50米跑”的结果为,共种,∴选择“立定跳远”与“50 米跑”两个项目的概率是,故答案为:.14. 如图①是清明上河园中供人们游玩的古代的马车.如图②是马车的侧面示意图,车轮的直径为,车架经过圆心,地面水平线与车轮相切于点,连接,.小明测出车轮的直径米,米,则的长为__________米答案:解析:解:如图所示,连接,延长,作延长线于点,∵与切与点,∴,且,∴,∴,∴,∵是直径,∴,则,,∴,在中,,在中,,∴,∴在中,,∴的长为,故答案为:.15. 如图1,点P从矩形的顶点A出发,沿A→D→B以的速度匀速运动到点B,图2是点P 运动时,的面积y()随时间x(s)变化的关系图象,则a的值为_____.答案:4解析:解:∵矩形中,,∴当点P在边上运动时,y的值不变,由图像可知,当时,点与点重合,,∴,即矩形的长是,∴,即.当点P在上运动时,y逐渐减小,由图像可知:点从点运动到点共用了,∴,在中,,∴,解得.故选:C.三、解答题(本大题共8个小题,共75分)16. (1)计算:(2)化简:答案:(1),(2)解析:(1)解:;(2)17. 今年春节期间,开封跻身全国热门文旅目的地前五名,人们常常穿着汉服进入各大景区,汉服的销售成为热门,某汉服商店计划购进A ,B 两款汉服,为调研顾客对两款汉服的满意度,调整进货方案,设计了下面的调查表.序号维度分值A 款得分B 款得分满意度打分标准1舒适性202性价比203时尚性20不满意基本满意满意非常满意商店随机抽取了20名顾客试穿两款汉服,并对其进行评分,收回全部问卷,并将调查结果绘制成如下统计图和统计表.A 、B 两款汉服性价比满意度人数分布统计图A 、B 两款汉服各项得分平均数统计表舒适性得分平均数性价比得分平均数时尚性得分平均数综评平均数A B注:将舒适性、性价比和时尚性三个方面得分的平均数按的权重计算,可得出综评平均数.(表中数据精确到)B 款汉服性价比满意度得分在范围的数据是:11 12131313 14 1414请根据以上信息,回答下列问题:(1)此次调研中A 款汉服性价比满意度达到“非常满意”的人数为;(2)补全条形统计图,根据图、表中信息可得出:B 款汉服性价比得分的中位数为分;(3)根据统计图、表中数据,请计算 B 款汉服综评平均数,并参照调查问卷中的满意度打分标准,分析并写出顾客对B 款汉服的满意度情况;(4)综合以上信息,请你给该汉服商店进货方面提一条建议,并说明理由.答案:(1)6(2)补全条形图见解析:,(3)顾客对B 款的满意情况良好,尤其是对B 款的时尚性方面满意度良好(4)汉服商店在进货时,可考虑A 款汉服在数量比B 款汉服的数量多一些(答案不唯一)小问1解析:解:根据题意,非常满意的百分比为,∴(人),故答案为:6;小问2解析:解:共有人,∴基本满意的人数为:(人),补全条形统计图如下,B款汉服性价比得分的中位数是第10,11位顾客分数的平均值,∴,故答案为:;小问3解析:解:B款基本满意的占,满意的占,非常满意的占,在舒适性和性价比方面,B款的平均分小于A款的平均分;在时尚性方面,B款的平均分高于A款的平均分;∴顾客对B款的满意情况良好,尤其是对B款的时尚性方面满意度良好;小问4解析:解:根据题意,A款基本满意的占,满意的占,非常满意的占,∴汉服商店在进货时,可考虑A款汉服在数量比B款汉服的数量多一些(答案不唯一).18. 如图所示是小华完成的尺规作图题,已知:矩形.作法:①分别以点为圆心,以大于长为半径,在两侧作弧,分别交于点;②作直线;③以点为圆心,以长为半径作弧,交直线于点,连接.根据小华的尺规作图步骤,解决下列问题.(1)填空:.(2)过点作,交直线于点.①求证:四边形是平行四边形;②请直接写出平行四边形的面积和矩形的面积的数量关系.答案:(1)(2)①证明过程见解析:;②小问1解析:解:根据作图可得,是线段的垂直平分线,,∴,∴,即是等边三角形,∴,∴,故答案为:;小问2解析:解:∵四边形是矩形,∴,,∴,①∵是的垂直平分线,∴,∴,即,∵,∴四边形是平行四边形;②如图所示,设与交于点,∴,∴平行四边形的面积为,矩形的面积为,∴.19. “黄河风”雕塑位于开封市金明广场,寓意着开封像一艘巨轮,开足马力,永往直前. 某数学小组开展综合与实践数学活动,以“测量黄河风雕塑高度”为课题,制定了测量方 案.为了减小测量误差,该小组在测量仰角以及两点间的距离时,都分别测量了两次并取它 们的平均值作为测量结果,测量数据如下表:课题测量黄河风雕塑的高度实物图成员组长:×××组员:×××,×××,×××测量工具卷尺、测角仪 …测量示意图说明:表示黄河风雕塑的高度,测角仪的高度,点C ,F 与点B 在同一直线上,点C ,F 之间的距离可直接测得,且点A ,B ,C ,D ,E ,F 在同一平面内测量项目第一次第二次平均值的度数的度数测量数据C,F之间的距离参考数据(1)请帮助该小组的同学根据上表中的测量数据,求黄河风雕塑的高度.(结果精确到)(2)为测量结果更加准确,你认为在本次方案的实行过程中,该小组成员应该注意的事项有哪些.(写出一条即可)答案:(1)黄河风雕塑的高度约为(2)测角仪测量时要与地面垂直(答案不唯一,合理即可)小问1解析:解:设,交于G,如图,由题意知,,,在中,,,在中,,,,,解得,,即黄河风雕塑的高度约为.小问2解析:解:该小组成员应该注意的事项有:测角仪测量时要与地面垂直;测量时卷尺要拉直(答案不唯一,合理即可).20. 某数学活动小组研究一款如图①简易电子体重秤,当人踏上体重秤的踏板后,读数器可以显示人的质量(单位:).图②是该秤的电路图,已知串联电路中,电流(单位:)与定值电阻.可变电阻(单位:)之间关系为,电电压恒为,定值电阻的阻值为.根据与之间的关系得出一组数据如下:…123q6…4p2(1)填空:,;(2)该小组把上述问题抽象为数学模型,请根据表中数据在图③中描出实数对的对应点,画出函数的图象,并写出一条此函数图象关于增减性的性质.(3)若电流表量程是,可变电阻与踏板上人的质量之间函数关系如图④所示,为保护电流表,求电子体重秤可称的最大质量为多少千克?答案:(1),(2)作图见解析:,电流随可变电阻的增大而减小(3)电子体重秤可称的最大质量为千克小问1解析:解:已知电流(单位:)与定值电阻.可变电阻(单位:)之间关系为,电电压恒为,定值电阻的阻值为,∴当时,,即;当时,,解得,,即;故答案为:,;小问2解析:解:根据题意,…12346…432根据表格数据在平面直角坐标系中描点如下,∴根据图示,电流随可变电阻的增大而减小;小问3解析:解:根据题意,设可变电阻与人的质量的函数关系为,且该直线过,,∴,解得,,∴可变电阻与人的质量的函数关系为:,∴可变电阻随人质量增大而减小,当时,,∴;当时,,∴;∵,∴不能超过;当时,,解得,,∴,解得,,∴电子体重秤可称的最大质量为千克.21. 近年来,市民交通安全意识逐步增强,头盔需求量增大.某生产厂家销售的甲、乙两种头盔,已知甲种头盔比乙种头盔的单价多元,购进甲种头盔个,乙种头盔个,共需元.(1)求甲、乙两种头盔的单价;(2)某商店欲购进两种头盔共个,正好赶上厂家进行促销活动,其方式如下:甲种头盔按单价的八折出售,乙种头盔每个降价元出售.如果此次购买甲种头盔的数量不低于乙种头盔的数量,那么应购买多少个甲种头盔可以使此次购买头盔的总费用最少?最少费用是多少元?答案:(1)甲种头盔的单价是元,乙种头盔的单价是元(2)应购买个甲种头盔可以使此次购买头盔的总费用最少,最少费用是元小问1解析:解:设购买乙种头盔的单价为元,则甲种头盔的单价为元,根据题意,得,解得:,,答:甲种头盔的单价是元,乙种头盔的单价是元;小问2解析:解:设购只甲种头盔,则购只乙种头盔,设总费用为元,则,解得:,,∵,∴随的增大而增大,∴时,取最小值,最小值,答:应购买个甲种头盔可以使此次购买头盔的总费用最少,最少费用是元.22. 开封黑岗口引黄调蓄水库上的东京大桥,又名“彩虹桥”.夜晚在桥上彩灯的映衬下好似彩虹般绚丽.主景观由三个抛物线型钢拱组成(如图①所示),其中最高的钢拱近似看成二次函数的图象抛物线,钢拱最高处C点与路面的距离为50米,若以点O为原点,所在的直线为y轴,建立如图②所示的平面直角坐标系,抛物线与x轴相交于A、B两点,且两点间的距离为80米.(1)求这条抛物线的解析式;(2)钢拱最高处C点与水面的距离为72米,请求出此时这条钢拱之间水面的宽度;(3)当时,求y的取值范围.答案:(1)(2)(3)小问1解析:解:∵,,∴,,设抛物线解析式为,把代入得:,解得:,∴抛物线解析式为.小问2解析:解:∵,∴,∴,把代入得:,解得:,∴此时这条钢拱之间水面的宽度为;小问3解析:解:∵,∴抛物线的定做坐标为,∴当时,y取最大值50,∵,∴抛物线开口向下,则离对称轴越远,函数值越小,∵,∴当时,y取最小值,,∴当时,.23. 问题情境:在数学课上,张老师带领学生以“图形的平移”为主题进行教学活动.在菱形纸片中,,对角线,将菱形沿对角线剪开,得到和.将沿射线方向平移一定的距离,得到.观察发现:(1)如图①,菱形中,;如图②,连接,四边形的形状是;操作探究:(2)将沿直线翻折,得,如图③,然后沿射线方向进行平移,连接,若添加一个条件,能否使得四边形是一个特殊的四边形?若能,请写出添加的条件和这个特殊的四边形,并写出证明过程,若不能,说明理由.拓展应用:(3)在(2)的条件下,设和相交于点,当是的三等分点时,直接写出的面积.答案:(1),平行四边形;(2)添加点为中点,可得四边形是矩形,证明见解析:;(3)的面积为或解析:解:如图所示,连接与交于点,∵四边形是菱形,∴,,,且,在直角中,,∴,如图所示,连接,∵四边形是菱形,图形平移,∴,,∴,∴四边形是平行四边形,故答案为:,平行四边形;(2)如图所示,连接,根据题意,,添加点为中点,可得四边形是矩形,证明如下,∵四边形菱形,∴,,∴,,且,∴,∴,,,∴四边形是矩形;(3)当是的三等分点,第一种情况,如图所示,过点作于点,过点作于点,,根据题意,,∴,,∴,∴,∴,根据(1)的证明可得,,∴,∴,则,∴的面积为;第二种情况,如图所示,,∴由上述证明可得,,∴,则,∴的面积为;综上所,的面积为或.。

山东省菏泽市2024届九年级下学期中考模拟数学试卷(含解析)

山东省菏泽市2024届九年级下学期中考模拟数学试卷(含解析)

菏泽市二0二四年初中学业水平考试(模拟)数学试题本试卷共4页,共24个题。

满分120分,时间120分钟。

注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、考生号和座号填写在答题卡和试卷规定的位置上。

考试结束后,将试卷和答题卡一并交回。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案写在试卷上无效。

3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第I 卷选择题部分(共24分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号涂在答题卡的相应位置.1.下面四个数中,最小的是()A .(1)--B .2(0.2)-C .|3|--D .13-2.2020年12月3日.中共中央政治局常务委员会召开会议,听取脱贫攻坚总结评估汇报.中共中央总书记习近平主持会议并发表重要讲话.指出经过8年持续奋斗,我们如期完成了新时代脱贫攻坚目标任务,现行标准下农村贫困人口全部脱贫,贫困县全部摘帽,消除了绝对贫困和区域性整体贫困,近1亿贫困人口实现脱贫,取得了令全世界刮目相看的重大胜利.将100000000用科学记数法表示为()A .80.110⨯B .7110⨯C .8110⨯D .81010⨯3.如图几何体中,主视图是三角形的是()A .B .C .D .4.如图,将矩形纸片ABCD 沿AC 折叠,使点B 落到点B '处,2∠等于()第4题图A .1∠B .21∠C .901︒-∠D .9021︒-∠5.如图是护士统计一位病人的体温变化图,这位病人在16时的体温约是()第5题图A .37.8C ︒B .38C ︒C .38.7C ︒D .39.4C︒6.如图,AB 是半圆O 的直径,,2,30,AC AD OC CAB E ==∠=︒为线段CD 上一个动点,连接OE ,则OE 的最小值为()第6题图A B .1C D .27.二次函数2y ax bx c =++的图象如图所示,则一次函数y ax b =+和反比例函数c y x=在同一平面直角坐标系中的图象可能是()第7题图A .B .C .D .8.正ABC △的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A B C →→的方向运动,到达点C 时停止,设运动时间为x (秒),2y PC =,则y 关于x 的函数的图像大致为()第8题图A .B .C .D .第II 卷非选择题部分(共96分)二、填空题:本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内.9.已知3m n +=,则226m n n -+=______.10.若代数式12x-有意义,则实数x 的取值范围是______.11.如图,是一张撕掉一个角的四边形纸片,根据图中所标示的数据,可得被撕掉的A ∠大小为______.第11题图12.如图,两半圆的圆心点1O 、2O 分别在直角ABC △的两直角边AB 、AC 上,直径分别为AB 、CD ,如果两半圆相外切,且10AB AC ==,那么图中阴影部分的面积为______.第12题图13.设实数,,a b c 满足:2223,4a b c a b c ++=++=,则222222222a b b c c a c a b +++++=---______.14.直角坐标系中,函数y =和3y x =-的图象分别为直线12,l l ,过2l 上的点131,3A ⎛⎫- ⎪ ⎪⎝⎭作x 轴的垂线交1l 于点2A ,过点2A 作y 轴的垂线交2l 于点3A ,过点3A 作x 轴的垂线交1l 于点4,A ⋯依次进行下去,则点2020A 的横坐标为______.第14题图三、解答题:本题共78分,把解答和证明过程写在答题卡的相应区域内.15.(6分)(1)解分式方程:214124x x -=--;(2)计算:10181tan 603-⎛⎫-++-︒ ⎪⎝⎭16.(5分)解不等式组53(1)92151132x x x x --<⎧⎪-+⎨-≤⎪⎩,并在数轴上表示出其解集.。

2024年山东省菏泽市单县八校联考中考二模数学试题(含解析)

2024年山东省菏泽市单县八校联考中考二模数学试题(含解析)

二○二四年初中学业水平考试(中考)模拟数学试题(二)注意事项:1.本试题共24个题,满分120分,考试时间120分钟.2.请把答案写在答题卡上,选择题用2B 铅笔填涂,非选择题用0.5毫米黑色签字笔书写在答题卡的指定区域内,写在其他区域不得分.一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.1)A .2B .±2C .4D .±42.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4600000000人,这个数用科学记数法表示为( ).A .B .C .D .3.下列计算正确的是( )A .B .C .D .4.如图,某水库堤坝横断面迎水坡的坡角为α, ,堤坝高,则迎水坡面的长度为( )A .B .C .D .5.用小立方块搭成的几何体;从正面看到的图形和从上面看到的图形如图,问搭成这样的几何体最多需要______个小立方块,最少需要______个小立方块.( )84610⨯84.610⨯94.610⨯104.610⨯3425m m m m +=+4312m m m ⋅=44m m m ÷=()248m m =3sin 5α=15m BC =AB 20m 25m 30m 35mA .8,6B .7,6C .8,7D .7.56.不等式组的解集,在数轴上表示正确的是( )A .B .C .D .7.若点,,都在反比例函数的图象上,则,,的大小关系是( )A .B .C .D . 8.4月23日是世界读书日,学校举行“快乐阅读,健康成长”读书活动.小明随机调查了本校七年级30名同学近4个月内每人阅读课外书的数量,数据如下表所示:人数67107课外书数量(本)67912则阅读课外书数量的中位数和众数分别是( )A .8,9B .10,9C .7,12D .9,99.如图,点为等边的内心,连接并延长交的外接圆于点,已知外接圆的半径为,则线段的长为( )A .B .C .D .10.对于分式,我们把分式叫做的伴随分式.若分式,分式是的伴随分式,分式是的伴随分式,分式是的伴随分式,以此类推…,则分式等于( )32242x x x x -+<⎧⎪⎨+≤-⎪⎩()11,A y -()21,B y ()35,C y 10y x =1y 2y 3y 123y y y <<132y y y <<231y y y <<213y y y <<I ABC A I ABC D 2DB 234x P y =11y P x -'=+P 11a P a-=2P 1P 3P 2P 4P 3P 2024PA.B .C .D .二、填空题:本题共6小题,每小题3分,共18分.11.因式分解:=.12.计算 .13.代数式的值比代数式的值大,则 .14.已知关于x 的不等式组无解,则a 的取值范围是 .15.定义: 若x , y 满足 ,且(t 为常数),则称点为“和谐点”.若是“和谐点”,则16.如图,在中,,,,点为线段上的动点,以每秒个单位长度的速度从点向点移动,到达点时停止.过点作于点,作于点,连结,线段的长度与点的运动时间(秒)的函数关系如图所示,则函数图象最低点的坐标为 .三、解答题:本题共8小题,共72分.解答应写出文字说明,证明过程或演算步骤.17.计算或化简(1)(2)18.某校运动会需购买A ,B 两种奖品,若购买A 种奖品3件和B 种奖品2件,共需60元;若购买A 种奖品5件和B 种奖品3件,共需95元.(1)求A 、B 两种奖品的单价各是多少元?(2)学校计划购买A ,B 两种奖品共100件,购买费用不超过1150元,且A 种奖品的数量不1aa -1a a -12aa --12a a--325-m m ()()202320240.1258-⨯-=23x x -232x-4x =5310x a x -≥-⎧⎨-<⎩24x y t =+24y x t =+x y ≠(,)M x y (3,)P m m =ABC 10AB =6BC =8AC =P AB 1A B B P PM AC ⊥M PN BC ⊥N MN MN y P t E ()2012cos45320243π-⎛⎫--+- ⎪⎭⎝2121111x x x x -⎛⎫-÷ ⎪+-+⎝⎭大于B 种奖品数量的3倍,设购买A 种奖品m 件,购买费用为W 元,写出W (元)与m (件)之间的函数关系式.求当m 为何值时,总费用最少,并确定最少费用W 的值.19.“勤能补拙,俭以养德”. 我校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有 名;(2)把条形统计图补充完整;(3)在扇形统计图中,“剩大量”对应的扇形的圆心角是 度;(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供人用一餐. 据此估算,我校名学生一餐浪费的食物可供多少人食用一餐.20.如图,直线与反比例函数在第一象限的图象交于点和点B ,直线与x 轴交于点M .(1)求点B 的坐标;(2)在x 轴上取一点N ,当的面积为6时,求点N 的坐标.21.如图,一种手机支架可抽象成如图2的几何图形,伸缩臂长度可调节200300015y x =-+()20m y m x=≠()2,3A 1y AMN AB,并且可绕点A 上下转动,转动角α变动范围是,手机支撑片可绕点B 上下转动,,转动角β变动范围是.小明使用该支架进行线上学习,当,且点C 离底座的高度不小于时,他才感觉舒适.(1)如图2,当时,求托片底部点C 离底座的高度,并判断是否符合小明使用的舒适要求(参考数据:).(2)如图3,当的情况下,要伸缩到多少厘米时才能满足点C 离底座的最低高度舒适要求.(精确到)22.如图,是的直径,点是的中点,,且与交于点.(1)求证:是的切线;(2)延长,交于点,若,求的半径.23.如图,二次函数的图象与直线交于、两点.()10cm 15cm AB ≤≤090α︒<≤︒EC 10cm BC =090β︒<≤︒30β≥︒7cm 90,37,12cm AB αβ︒︒===sin 370.6,cos370.8,tan 370.75︒≈︒≈︒≈60,90αβ=︒=︒AB 1cm 1.73≈AB O D BC PAC ADC ∠=∠CD AD BCE PA O CD ABF OB BF =O ()240y ax bx a =++≠:AM y kx b =+()A 4,0-311,24C ⎛⎫- ⎪⎝⎭(1)请直接写出关于x 的不等式的解集:______;(2)求二次函数表达式;(3)点E 是线段(包含A ,B )上的动点,过点E 作x 轴的垂线,交二次函数图象于点P ,交直线于点N 、若以点P ,N ,A 为顶点的三角形与相似,若存在,请求出点P 的坐标;若不存在,请说明理由.24.(1)【问题发现】如图1,和均为等边三角形,点B ,D ,E 在同一直线上.填空:①线段,之间的数量关系为 ;② .(2)【类比探究】如图2,和均为等腰直角三角形,,,,点B ,D ,E 在同一直线上.请判断线段,之间的数量关系及的度数,并给出证明.(3)【解决问题】如图3,在中,,,,点在边上,于点,将绕点旋转,当点,,三点在同一直线上时,求点到直线的距离.24ax bx kx b ++>+AB AM AOM ABC ADE V BD CE BEC ∠=︒ABC ADE V 90ACB AED ∠=∠=︒AC BC =AE DE =BD CE BEC ∠ABC 90ACB ∠=︒60A ∠=︒AB =D AB DE AC ⊥E AE =ADE ∆A B D E C DE参考答案与解析1.A,再求出算术平方根即可.,可知4的算术平方根是2.故选:A .【点睛】本题主要考查了求一个数的算术平方根,理解算术平方根的定义是解题的关键.2.C【分析】绝对值大于1的数可以用科学记数法表示,一般形式为,为正整数,据此可以解答.【详解】解:.故选:C【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为,其中,是正整数,正确确定的值和的值是解题的关键.3.D【分析】本题主要考查了同底数幂的乘法和除法法则,幂的乘方,同类项,对于A ,根据同类项判断;再根据同底数幂相乘,底数不变,指数相加计算判断B ;然后根据同底数幂相除,底数不变,指数相减计算判断C ;最后根据幂的乘方,底数不变指数相乘计算判断D .【详解】因为和不能合并,所以A 不正确;因为,所以B 不正确;因为当时,,所以C 不正确;因为,所以D 正确.故选:D .4.B【分析】此题主要考查了解直角三角形的应用,正确掌握锐角三角函数关系是解题关键.直接利用坡角的定义结合锐角三角函数关系得出答案.【详解】解:根据题意得:,4=4=10n a ⨯n 94600000000 4.610=⨯10n a ⨯1||10a ≤<n a n 3m 4m 43437m m m m+⋅==0m ≠444401m m m m -÷===42428()m m m ⨯==390,sin 5ACB α∠=︒=,∵,∴,即迎水坡面的长度为.故选:B .5.C【分析】在从上面看到的图形的对应位置上标注,需要几何体最少和最多时该位置所摆放的正方体的个数即可解答.【详解】解:在从上面看到的图形的对应位置上标注,需要几何体最少和最多时该位置所摆放的正方体的个数,如图所示:∴最少需要7个,最多需要8个,故选:C .【点睛】此题主要考查了从不同方向看几何体,能正确确定出正方体的个数是解题的关键.6.B【分析】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:,解不等式①得:,解不等式②得:,不等式组的解集为:,在数轴上表示如图所示:35BC AB ∴=15m BC =()551525m 33BC AB ⨯===AB 25m 32242x x x x -+<⎧⎪⎨+≤-⎪⎩①②1x >2x ≤∴12x <≤,故选:B .7.B【分析】本题考查了反比例函数的图象和性质,根据,可得反比例函数图象和增减性,即可进行比较.【详解】解:∵,∴反比例函数经过第一、三象限,且在每一象限内,y 随着x 增大而减小,根据A ,B ,C 点横坐标,可知点B ,C 在第一象限,A 在第三象限,∴,∴.故选:B .8.D【分析】利用中位数,众数的定义即可解决问题.中位数:把一组数据按从小到大的顺序排列,在中间的一个数字(或者两个数字的平均值)叫做这组数据的中位数.众数:在一组数据中出现次数最多的数.【详解】解:中位数为第15个和第16个的平均数为:,众数为9.故选:D .【点睛】本题考查了中位数和众数,解题的关键是掌握平均数、中位数和众数的概念.9.A【分析】本题考查等边三角形的性质,等边三角形的内心、外心,连接,证明是等边三角形,即可求解,牢记“等边三角形的内心与外接圆的圆心重合”是解题的关键.【详解】解:如图,连接,是等边三角形,,0k >100k =>10y <230y y >>132y y y <<9992+=IB IBD IB ABC ∴60BAC ABC ∠=∠=︒点为等边的内心,,,等边三角形的内心与外接圆的圆心重合,点为的外接圆的圆心,,是等边三角形,,故选A .10.D【分析】本题考查了分式的定义,规律问题.根据伴随分式的定义依次求出每个分式的伴随分式,然后发现每4个为一循环,再让,根据结果即可确定.【详解】解:,,,,,,,,个一循环,,,故选:D .11.【分析】此题主要考查了提取公因式法以及公式法分解因式,正确运用平方差公式分解因式是解题关键.直接提取公因式m ,再利用平方差公式分解因式即可.【详解】解: I ABC ∴160302IAB IBA ∠=∠=⨯︒=︒∴60BID IAB IBA ∠=∠+∠=︒ ∴I ABC ∴2IB ID ==∴IBD ∴2BD =20244÷11a P a-= ∴21111a a P a a --==+-∴311112a a P a a --==++-∴41(2)1112a a P a a ---==+--∴51(2)11(1)a a P a a---==+-51P P ∴=62PP =......4∴20244506÷= ∴2024412a P P a-==-()()55m m m +-325-m m.故答案为:.12.【分析】根据积的乘方的运算法则,即可求解,本题考查了,积的乘方,解题的关键是:熟练掌握相关运算法则.【详解】解:,故答案为:.13.2【分析】根据题意可得:,然后按照解分式方程的步骤,进行计算即可解答.【详解】解:由题意得:,去分母得:,解得:,检验:当时,,是原方程的根,故答案为:.【点睛】本题考查了解分式方程,一定要注意解分式方程必须检验.14.a≥2【分析】先把a 当作已知条件求出各不等式的解集,再根据不等式组无解求出a 的取值范围即可.()225m m =-()()55m m m =+-()()55m m m +-8-()()202320240.1258-⨯-()202320238188⎛⎫=-⨯ ⎝⎭⨯⎪20231888⎛⎫-⨯ ⎪⎝⎭⨯=8=-8-242332x x x-=--242332x x x -=--()2423x x +=-2x =2x =230x -≠2x ∴=2【详解】解:,由①得:x≤2,由②得:x >a ,∵不等式组无解,∴a≥2,故答案为a≥2.【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找.15.【分析】此题考查了二次函数的图象和性质等知识, 读懂题意,熟练掌握二次函数的性质是解题的关键.根据“和谐点”的定义得到,,整理得到,解得,(不合题意,舍去),即可得到答案【详解】若是“和谐点”,则,则,,∴,即,解得,(不合题意,舍去),∴,故答案为:.16.【分析】本题考查了直角三角形的判定与性质,勾股定理的逆定理,相似三角形的判定与性质,矩形的判定与性质,函数的图象,函数的最小值,连接,利用勾股定理的逆定理判定为直角三角形,利用矩形的判定定理得到四边形为矩形,利用矩形的对角线相等得到,再利用垂线段最短的性质得到当时,取得最小值,最后利用相似三角形的判定与性质解答即可求解,熟练掌握动点问题的函数的图象的特征是解题的关键.【详解】解:连接,如图,5310x a x -≥-⎧⎨-<⎩①②7-234m t =+243m t =⨯+24210m m +-=17m =-23m =(3,)P m 224,433m t m t =+=⨯+234m t -=212m t -=223124m m --=24210m m +-=17m =-23m =7m =-7-3224,55⎛⎫ ⎪⎝⎭CP ABC MPNC MN CP =CP AB ⊥MN CP∵, ,,∴,,∵ ,∴,∵,,∴,∴四边形为矩形,∴,∵点为线段上的动点,由于垂线段最短,∴当时,取得最小值,即取最小值,过点作于点,∵,,∴,又∵,∴,∴,∴,∴,,∴当时,取最小值为,∴函数图象最低点的坐标为,10AB =6BC =8AC =223664100BC AC +=+=2100AB =222BC AC AB +=90ACB ∠=︒PM AC ⊥PN BC ⊥90PMC PNC MCN ∠=∠=∠=︒MPNC MN CP =P AB CP AB ⊥CP y MN =C CP AB ⊥P 90ACB ∠=︒CP AB ⊥90APC ACB ∠=∠=︒A A ∠=∠ACP ABC △∽△AC CP AP AB BC AC ==81068CP AP ==245CP =325AP =325t =y 245E 3224,55⎛⎫ ⎪⎝⎭故答案为:.17.(1)(2)【分析】本题考查的是含特殊角的三角函数值的混合运算,分式的混合运算,掌握运算法则与运算顺序是解本题的关键;(1)先代入特殊角的三角函数值,化简绝对值,计算负整数指数幂,零次幂,再合并即可;(2)先计算括号内的分式的减法,再计算除法运算即可.【详解】(1)解:;(2).18.(1)A 奖品的单价是10元,B 奖品的单价是15元(2),当,才能使总费用最少为1125元【分析】(1)设A 奖品的单价是x 元,B 奖品的单价是y 元,根据题意列出方程组求解即可;(2)根据购买费用=A ,B 两种奖品的费用之和即可得出W 与m 之间的函数关系式;根据题意可得关于m 的不等式组,进而可求出m 的范围,再根据一次函数的性质求最值即可.【详解】(1)设A 奖品的单价是x 元,B 奖品的单价是y 元,由题意,得,解得:,答:A 奖品的单价是10元,B 奖品的单价是15元;3224,55⎛⎫ ⎪⎝⎭5-11x -()2012cos45320243π-⎛⎫--+- ⎪⎭⎝2391=+391=+=5-2121111x x x x -⎛⎫-÷ ⎪+-+⎝⎭()()()()()1211111x x x x x x x ⎡⎤--=-⋅+⎢⎥+-+-⎣⎦()()()1111x x x =⋅++-11x =-51500W m =-+75m =32605395x y x y +=⎧⎨+=⎩1015x y =⎧⎨=⎩(2)由题意,得,则,解得:,∵m 是整数,∴70,71,72,73,74,75.∵,∴,∴W 随m 的增大而减小,∴时,.∴应买A 种奖品75件,B 种奖品25件,才能使总费用最少为1125元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用和一次函数的性质,正确理解题意、得出相等关系和不等关系是解题的关键.19.(1);(2)补图见解析;(3);(4)人.【分析】()用“没有剩 ”的人数除以其百分比即可求解;()求出“剩少量 ”的人数,即可补全条形统计图;()用乘以“剩大量”的占比即可求解;()用乘以即可求解;本题考查了条形统计图和扇形统计图,样本估计总体,弄清条形统计图和扇形统计图之间的数据关系是解题的关键.【详解】(1)解:这次被调查的学生数:名,故答案为:;(2)解:“剩少量 ”的人数:名,补图如图所示:101510051500W m m m =+-=-+()()5150011503100m m m -+≤⎧⎨≤-⎩7075m ≤≤m =51500W m =-+50k =-<75m =1125W =最小100054600123360︒43000200100040040%1000÷=10001000400250150200---=(3)解:“剩大量 ”对应的扇形的圆心角是:,故答案为:;(4)解:,答:我校名学生一餐浪费的食物可供 人食用一餐.20.(1)(2)或【分析】本题主要考查了一次函数与反比例函数综合,一次函数与几何综合:(1)先把点A 坐标代入反比例函数解析式中求出反比例函数解析式,再联立两函数解析式求出点B 的坐标即可;(2)先求出点M 的坐标,设,则,再根据的面积为6建立方程求解即可.【详解】(1)把代入中,,反比例函数解析式为,联立,解得或,点的坐标为;(2)在中,当时,,150360541000⨯=︒︒5420030006001000⨯=3000600()3,2()9,0()1,0(),0N a 5MN a =-AMN ()2,3A ()2m y m 0x=≠236m =⨯=∴26y x=2165y x y x ⎧=⎪⎨⎪=-+⎩23x y =⎧⎨=⎩32x y =⎧⎨=⎩∴B ()3,215y x =-+150y x =-+=5x =,设,则,的面积为6,,或1.或.21.(1)托片底部点C 离底座的高度为,不符合小明使用的舒适要求;(2)要伸缩到厘米时才能满足点C 离底座的最低高度舒适要求.【分析】本题考查了解直角三角形的应用,灵活运用三角函数是解题关键.(1)过点作于点,于点,利用余弦值,求出,进而得到,即可得到答案;(2)过点作于点,过点作于点,于点,由题意可知,利用三角函数分别求出,,即可得到答案.【详解】(1)解:如图,过点作于点,于点,四边形是矩形,,在中,,,,,,,,即托片底部点C 离底座的高度为,,不符合小明使用的舒适要求;()5,0M ∴(),0N a 5MN a =-AMN △15362AMN S a ∴=-⋅=△54a ∴-=9a ∴=()9,0N ∴()1,04cm AB 14C CM AD ⊥M CN AB ⊥N 8cm BN =4cm AN =B BQ AD ⊥Q C CP D ⊥P CO BQ ⊥O 7cm OQ CP ==5cm =OB AB =C CM AD ⊥M CN AB ⊥N ∴AMCN CM AN ∴=Rt BNC △37β=︒10cm BC =cos BN BCβ∴=cos37100.88cm BN BC ∴=⋅︒≈⨯=12cm AB = 4cm AN AB BN ∴=-=4cm CM ∴=4cm 4cm 7cm < ∴(2)解:如图,过点作于点,过点作于点,于点,四边形是矩形,,点C 离底座的高度不小于时,才感觉舒适,点C 离底座的最低高度舒适要求为,,,,,,在中,,,,,在中,,,,即要伸缩到厘米时才能满足点C 离底座的最低高度舒适要求.22.(1)见解析【分析】本题考查了圆周角定理、证明直线是圆的切线、相似三角形的判定与性质,熟练掌握以上知识点并灵活运用是解此题的关键.B BQ AD ⊥QC CPD ⊥P CO BQ ⊥O ∴PQOC OQ CP ∴= 7cm ∴7cm 7cm OQ CP ∴==60α=︒ 30ABQ ∴∠=︒90β︒=Q 60CBO ∴∠=︒Rt BOC △10cm BC =60CBO ∠=︒1cos60105cm 2OB BC ∴=⋅︒=⨯=5712cm BQ OB OQ ∴=+=+=Rt AQB 60α=︒12cm BQ =14cm sin 60BQ AB ∴==≈︒AB 14(1)由圆周角定理得出,由结合得出,即可得证;(2)连接、,延长、交于点,证明得出,再利用相似三角形的性质计算即可得出.【详解】(1)证明:∵为直径,点在圆上,∴,∴,∵,∴,又,∴,∴,即,又点在上,∴是的切线;(2)解:连接、,延长、交于点,∵点是的中点,∴,又∵,∴,又∵,∴,90P PAC ∠+∠=︒ AC AC =PAC ADC ∠=∠90P ABC ∠+∠=︒OD BD AB CD F DOF CAF ∽DF =FDB FOD ∽OD =AB C 90ACB ∠=︒90P PAC ∠+∠=︒ AC AC =ADC ABC ∠=∠PAC ADC ∠=∠90P ABC ∠+∠=︒90PAB ∠=︒PA AB ⊥A O PA O OD BD AB CD F D BCCD 2DOB DAB CAB ∠=∠=∠CD BD ==DFO CFA ∠=∠DOF CAF ∽OB BF OA ==23DF FO FC FA ==∴,而∴,∵,∴,∴,又,∴,∴,∴,又∵,∴,,,∴23.(1)(2)(3)存在,点的坐标为或【分析】(1)根据图象求解即可;(2)利用待定系数法求解析式即可;(3)由,求出直线解析式为,过作轴的垂线,交二次函数于点,交直线于点;当点E与点B重合时,即点P与点B重合,可证明此时;当点E与点B不重合时,令,则,,由,得,故,因而21DF OFCD AO==CDDF=CD BD=DCB DBC∠=∠2BDF DCB∠=∠BD BD=DCB DAB∠=∠22DOB DAB DCB∠=∠=∠BDF DOB∠=∠DFB DFO∠=∠FDB FOD∽OD DFDB BF∴==OD OB BF==OD=O342x-<<234y x x=--+P()1,0()1,6-2OM=AM122y x=--E xP NAPN AOM∽(),0E m()2,4P m m mx--+1,22N m m⎛⎫--⎪⎝⎭PAN AOM∽APE OAM∠=∠tan tanAPE OAM∠=∠有,即,求出的值即可.【详解】(1)∵二次函数的图象与直线交于、两点∴当时,抛物线在直线上方,∴关于x 的不等式的解集为;(2)将、两点代入得,,解得∴二次函数表达式为;(3)解:∵,∴,设直线解析式为,∴,解得,∴直线解析式为,如图,过作轴的垂线,交二次函数于点,交直线于点,∵,∴,当点E 与点B 重合时,此时点P 与点B 重合,且此时,AE OM PE OA =2421442m m mx +==--+m ()240y ax bx a =++≠:AM y kx b =+()A 4,0-311,24C ⎛⎫- ⎪⎝⎭342x -<<24ax bx kx b ++>+342x -<<()A 4,0-311,24C ⎛⎫- ⎪⎝⎭()240y ax bx a =++≠1644093114424a b a b -+=⎧⎪⎨++=-⎪⎩13a b =-⎧⎨=-⎩234y x x =--+2OM =()0,2M -AM 11y k x b =+111402k b b -+=⎧⎨=-⎩11122k b ⎧=-⎪⎨⎪=-⎩AM 122y x =--E x P AM N PE OM ∥90ANP AMO ∠=∠≠︒OM PN ∥∴此时,符合题意,∴此时点P 的坐标为;当点E 不与点B 重合时,设,则,,由题意可知,不可能垂直,即,∴当时,,∴,∴,∴,即,解得或,经检验时方程的解,∴.综上所述,点P 的坐标为或.【点睛】本题考查了二次函数的性质,相似三角形的判定和性质,解直角三角形和求一次函数解析式,灵活运用知识点是解题的关键.24.(1),60(2),,证明见详解(3)到直线【分析】(1)首先根据和均为等边三角形,可得,,,,据此判断出,然后根据全等三角形的判定方法,判断出,即可判断出,,进而判断出的度数为即可;(2)首先根据和均为等腰直角三角形,可得,,,进而利用相似三角形的判定和性质解答即可;(3)分两种情形:,,共线,,,共线,分别求解即可解决问题.【详解】(1)①和均为等边三角形,,,,,,即,APN AOM ∽()10,(),0E m ()2,34P m m m --+1,22N m m ⎛⎫-- ⎪⎝⎭AP PN 90APN ∠≠︒90PAN ∠=︒PAN AOM ∽APE OAM ∠=∠tan tan APE OAM ∠=∠AE OM PE OA =24213442m m m +==--+1m =-4m =-1m =-()1,6P -()10,()1,6-BD CE =BD =45BEC ∠=︒C DE ABC ADE V AB AC =AD AE =60BAC DAE ∠=∠=︒60ADE AED ∠=∠=︒BAD CAE ∠=∠ABD ACE ≌△△BD CE ==BDA CEA ∠∠BEC ∠60︒ABC ADE V AC BC =DE AE =90ACB AED ∠=∠=︒B D E B E D ABC ADE V AB AC ∴=AD AE =60BAC DAE ∠=∠=︒60ADE AED ∠=∠=︒BAC DAC DAE DAC ∴∠-∠=∠-∠BAD CAE ∠=∠在和中,,,,,点,,在同一直线上,,,,综上,可得的度数为;线段与之间的数量关系是:.②;故答案为:;60;(2),.证明如下:和均为等腰直角三角形,,,,,,即,,,,;(3)分两种情况:情况一:如图1,由题意可知在直角和直角 中,,ABD △CAE V AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩(SAS)ABD ACE ∴ ≌BD CE ∴==BDA CEA ∠∠ B D E 18060120ADB ∴∠=-=︒AEC 120∴∠=︒1206060BEC AEC AED ∴∠=∠-∠=-=︒AEB ∠60︒BD CE BD CE =1206060BEC AEC AED ∠=∠-∠=-=︒BD CE=BD =45BEC ∠=︒ACB AED △AC BC ∴=AE DE =90ACB AED ∠=∠=︒45DAE BAC ∠=∠=︒BAC DAC DAE DAC ∴∠-∠=∠-∠BAD CAE ∠=∠AE AC AD AB =BAD CAE ∴ ∽18045135AEC ADB ∴∠=∠=︒-︒=︒1359045BEC ∴∠=︒-︒=︒∴BD AD CE AE==BD ∴ABC ADE V 60BAC DAE ∠=∠=︒,,,,共线,为直角三角形,由勾股定理得:,,由(1)(2)得:,,,;,,, 四点共圆,作垂足为,,在直角三角形中,,,,即点到直线情况二:如图2,,,共线时,同理可得到直线的距离为综上可得:到直线AB =tan 30AE DE ︒==3DE ∴=B D E ABE ∴ 5BE ==532BD BE DE ∴=-=-=ABD ACE ∽2.1BD AB CE AC ==ABD ACE ∠=∠1CE ∴=A B C E CM BE ⊥M 60MEC BAC ∴∠=∠=︒MEC 1CE =60MEC ∠=︒∴CM =C DE B E D CM =C DE C DE【点睛】本题考查几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

2024年广东省中考数学模拟试卷(一)-普通用卷

2024年广东省中考数学模拟试卷(一)-普通用卷

2024年广东省中考数学模拟试卷(一)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.2024的倒数是()A.2024B.C.D.2.如图是一个正方体的展开图,则与“承”字相对的是()A.华B.文C.中D.化3.下列函数中,其图象一定不经过第二象限的是()A. B.C. D.4.如图,在平面直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点A、B的坐标分别为、,则点D的坐标为()A.B.C.D.5.在比小的数中,最大的整数是()A. B.0 C.1 D.26.下列运算错误的是()A. B.C. D.7.如图,矩形ABCD中以CD为直径的半圆O与AB相切于点E,连接BD,则阴影部分的面积为()A.B.C.D.8.如图,四边形ABCD内接于,连接若,,则的度数是()A.B.C.D.9.如图,万达广场主楼楼顶立有广告牌DE,小辉准备利用所学的三角函数知识估测该主楼的高度.由于场地有限,不便测量,所以小辉沿坡度:的斜坡从看台前的B处步行50米到达C处,测得广告牌底部D的仰角为,广告牌顶部E的仰角为小辉的身高忽略不计,已知广告牌米,则该主楼AD的高度约为结果精确到整数,参考数据:,,A.80mB.85mC.89mD.90m10.一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知两车相遇时轿车比货车多行驶了90千米,设行驶的时间为小时,两车之间的距离为千米,图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系,根据图象提供的信息,以下选项中正确的个数是()①甲乙两地的距离为450千米;②轿车的速度为70千米/小时;③货车的速度为45千米/小时;④点C的实际意义是轿车出发5小时后到达乙地,此时两车间的距离为300千米.A.1B.2C.3D.4二、填空题:本题共5小题,每小题3分,共15分。

11.农业生产保持稳中有进,粮食产量连续9年保持在万亿斤以上,将数据“万亿”用科学记数法表示为______.12.若分式的值为0,则______.13.方程的根为______.14.现有4张完全相同的卡片分别写着数字,1,3,将卡片的背面朝上并洗匀,从中任意抽取一张,将卡片上的数字记作再从余下的卡片中任意抽取一张,将卡片上的数字记作c,则抛物线与x轴有交点的概率为______.15.如图,抛物线的对称轴是直线,下列结论:①;②;③;④,正确的是______.三、解答题:本题共8小题,共75分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10.一组数据:3,5,9,12,6 的极差是

11.计算: 3 2 =

米.
12.不等式组
2x
x

3
−4 0
的解集是

13.如图,在矩形空地上铺 4 块扇形草地.若扇形的半径均为 r 米,
圆心角均为 90 ,则铺上的草地共有
平方米.
14.若 O 的半径为 5 厘米,圆心 O 到弦 AB 的距离为 3 厘米,则
23.已知:如图,△ABC 中, AB = AC ,以 AB 为直径的 O 交 BC 于点 P ,PD ⊥ AC 于点 D .
3
书山有路 (1)求证: PD 是 O 的切线; (2)若 CAB =120 ,AB = 2,求 BC 的值.
C P
D
A
B O
(第 23 题)
24.已知:抛物线 y = x2 + (b −1)x + c 经过点 P(−1,− 2b) . (1)求 b + c 的值; (2)若 b = 3 ,求这条抛物线的顶点坐标; (3)若 b 3 ,过点 P 作直线 PA ⊥ y 轴,交 y 轴于点 A ,交抛物线于另一点 B ,且
GB = 3cm ,将△ADG 绕点 D 旋转180 得到△BDE ,则 DE =
面积 =
cm2.
三、解答题(每题 8 分,共 16 分)
17.已知 a =
1 ,b = 3 −1
1 ,求 3 +1
ab
a+ b
b a
的值。
cm,△ABC 的
18.先化简,再求值
x x2 −1
x2 + x x2
,其中 x = 2 .
2
书山有路
20.
如图,为了测量电线杆的高度 AB ,在离电线杆 25 米的 D 处,用高 1.20 米的测角仪 CD 测
得电线杆顶端 A 的仰角 = 22 ,求电线杆 AB 的高.(精确到 0.1 米)
参考数据: sin 22 = 0.3746, cos 22 = 0.9272 , tan 22 = 0.4040 , cot 22 = 2.4751.
22.(本题满分 10 分)
已知一次函数与反比例函数的图象交于点 P(−2,1) 和 Q(1,m) .
(1)求反比例函数的关系式;
(2)求 Q 点的坐标; (3)在同一直角坐标系中画出这两个函数图象的示意图,并观察图象回答:当 x 为何值时,
一次函数的值大于反比例函数的值?
六、解答题(每题 10 分,共 20 分)
O
B
A. y = x − 2
B. y = 1 x−2
C. y = 2x −1
D. y = 1 2x −1
7.在平行四边形 ABCD 中, B = 60 ,那么下列各式中,不.能.成立的是( )
A. D = 60 B. A =120 C. C + D =180 D. C + A =180
8.在四川抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前
B. x = −2
C. x1 = 2,x2 = −2
D. x = 4
5、如图(3),已知 AB 是半圆 O 的直径,∠BAC=32º,D 是弧 AC 的中点,那么∠DAC
的度数是( )
A、25º
B、29º
C、30º D、32°
D
C
6.下列函数中,自变量 x 的取值范围是 x 2 的函数是( ) A
四、解答题(每题 10 分,共 20 分)
19.四张大小、质地均相同的卡片上分别标有 1,2,3,4.现将标有数字的一面朝下扣在 桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的 3 张中随机取第二张. (1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况; (2)求取得的两张卡片上的数字之积为奇数的概率.
BP = 2PA,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)

七、解答题(本题 12 分)
25 已知:如图所示的一张矩形纸片 ABCD ( AD AB ),将纸片折叠一次,使点 A 与 C 重合,再展开,折痕 EF 交 AD 边于 E ,交 BC 边于 F ,分别连结 AF 和 CE . (1)求证:四边形 AFCE 是菱形;
(第 14 题)
弦长 AB 为
厘米.
15.如图,在四边形 ABCD 中, P 是对角线 BD 的中点, E,F 分别是 AB,CD 的中点,
AD = BC,PEF =18 ,则 PFE 的度数是

C
FC D
P B
G
B
D
A
E
(第 16 题)
A
E
(第 17 题)
16.如图,点 G 是 △ABC 的重心, CG 的延长线交 AB 于 D , GA = 5cm , GC = 4cm ,
(2)若 AE =10cm , △ABF 的面积为 24cm2 ,求 △ABF 的周长;
(3)在线段 AC 上是否存在一点 P ,使得 2AE2 = AC AP?
跑到 400 米以外的安全区域.已知导火线的燃烧速度是 1.2 厘米/秒,操作人员跑步的速度是
5 米/秒.为了保证操作人员的安全,导火线的长度要超过( )
A.66 厘米
B.76 厘米
C.86 厘米
D.96 厘米
1
书山有路
二、填空题(每小题 3 分,共 24 分)
9.2008 年北京奥运圣火在厦门的传递路线长是 17400 米,用科学记数法表示为
书山有路
中考数学模拟题
一、选择题(本大题有 7 题,每小题 3 分,共 21 分.每小题有四个选 项,其中有且只有
一个选项正确)
1.下面几个数中,属于正数的是( )
A.3
B. − 1 2
Hale Waihona Puke C. − 2D. 0
2.由四个相同的小正方体堆成的物体如图所示,它的俯视图是( )
A.
B.
C.
D.
正面 (第 2 题)
3.某鞋店试销一种新款女鞋,销售情况如下表所示:
型号
22
22.5
23
23.5
24
24.5
25
数量(双) 3
5
10
15
8
3
2
鞋店经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是( )
A.平均数
B.众数 C.中位数
D.方差
4.已知方程| x | = 2 ,那么方程的解是( )
A. x = 2
A
五、解答题(每题 10 分,共 20 分)
C
E
D
B
(第 20 题)
21.某商店购进一种商品,单价 30 元.试销中发现这种商品每天的销售量 p (件)与每件
的销售价 x(元)满足关系:p =100 − 2x .若商店每天销售这种商品要获得 200 元的利润,
那么每件商品的售价应定为多少元?每天要售出这种商品多少件?
相关文档
最新文档