互感器接线原理图
电压互感器常见接线图 (图文) 民熔

电压互感器接线图电压互感器(Potential Transformer 简称PT,Voltage Transformer简称VT)和变压器类似,是用来变换电压的仪器。
但变压器变换电压的目的是方便输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。
词条介绍了其基本结构、工作原理、主要类型、接线方式、注意事项、异常与处理、以及铁磁谐振等。
民熔电压互感器简介:JDZ-10高压电压互感器10kv半封闭式0.5级羊角型特点:体积小精度高纯铜线圈一体成型安全可靠环氧材质优质钢片电压互感器的电力系统通常有四种接线方式。
电压互感器的接地和相位必须严格连接,严禁电压互感器二次侧短路。
1、单相电压互感器接线方式一个单相电压互感器接线方式一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器。
二、两个单相电压互感器互V/V型的接线方式两台单相电压互感器的V/V接线方式可以测量线电压,但不能测量相电压。
广泛应用于20kV以下中性点不接地或经消弧图接地的电网。
3、三台单相电压互感器Y0/Y0接线方式三个单相电压互感器Y0/Y0型的接线方式可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。
四、三个单相三绕组电压互感器或一个三相五柱式三绕组电压互感器接成Y0/Y0/Δ型三台单相三绕组电压互感器或一台三相五柱三绕组电压互感器接Y0/Y0/Δ型,接Y0型二次线圈,向仪表、继电器和绝缘监测电压表供电。
辅助次级线圈连接成一个开放的三角形,为绝缘监测电压继电器供电。
三相系统正常工作时,三相电压平衡,开三角形两端电压为零。
当一相接地时,开三角形两端出现零序电压,使绝缘监测电压继电器动作并发出信号。
电流互感器接线图

电流互感器接线图我们从使用功能上将电流互感器分为测量用电流互感器和保护用电流互感器两类,各种电流互感器的原理类似,本文总结各种电流互感器接线图,供参考使用。
一测量用电流互感器接线方法测量用电流互感器的作用是指在正常电压范围内,向测量、计量装置提供电网电流信息。
1普通电流互感器接线图电流互感器的一次侧电流是从P1端子进入,从P2端子出来;即P1端子连接电源侧,P2端子连接负载侧。
电流互感器的二次侧电流从S1流出,进入电流表的正接线柱,电流表负接线柱出来后流入电流互感器二次端子S2,原则上要求S2端子接地。
注:某些电流互感器一次标称,L1、L2,二次侧标称K1、K2。
2穿心式电流互感器接线图穿心式电流互感器接线与普通电流互感器类似,一次侧从互感器的P1面穿过,P2面出来,二次侧接线与普通互感器相同。
二电流互感器接线图电流互感器接线总体分为四个接线方式:1.单台电流互感器接线图只能反映单相电流的情况,适用于需要测量一相电流的情况。
单台电流互感器接线图2.三相完全星形接线和三角形接线形式电流互感器接线图三相电流互感器能够及时准确了解三相负荷的变化情况。
(三相完全星形电流互感器接线图)3.两相不完全星形接线形式电流互感器接线图在实际工作中用得最多,但仅限于三相三线制系统。
它节省了一台电流互感器,根据三相矢量和为零的原理,用A、C相的电流算出B相电流。
两相不完全星形接线形式电流互感器接线图4.两相差电流接线形式电流互感器接线图也仅用于三相三线制电路中,这种接线的优点是不但节省一块电流互感器,而且也可以用一块继电器反映三相电路中的各种相间短路故障,亦即用最少的继电器完成三相过电流保护,节省投资。
两相差电流接线形式电流互感器接线图5.其它接线方式5.1 原边串联、副边串联电流互感器原边串联、副边串联接线图如下所示,串联后效果:互感器变比不变,二次额定负荷增大一倍。
电流互感器原边串联、副边串联接线图5.2 原边串联、副边并联电流互感器原边串联、副边并联接线图如下所示,串并联后效果:互感器变比减小一倍,二次额定负荷增大一倍。
电流互感器接线方式

电流互感器在交流回路中使用,在交流回路中电流的方向随时间在改变。
电流互感器的极性指的是某一时刻一次侧极性与二次侧某一端极性相同,即同时为正、或同时为负,称此极性为同极性端或同名端,用符号"*"、"-"或"."表示。
(也可理解为一次电流与二次电流的方向关系)。
按照规定,电流互感器一次线圈首端标为L1,尾端标为L2;二次线圈的首端标为K1,尾端标为K2。
在接线中L1和K1称为同极性端,L2和K2也为同极性端。
其三种标注方法如图1所示。
电流互感器同极性端的判别与耦合线圈的极性判别相同。
较简单的方法例如用1.5V干电池接一次线圈,用一高内阻、大量程的直流电压表接二次线圈。
当开关闭合时,如果发现电压表指针正向偏转,可判定1和2是同极性端,当开关闭合时,如果发现电压表指针反向偏转,可判定1和2不是同极性端。
电流互感器的极性与常用电流保护以及易出错的二次接线1一相接线图1电流互感器的三种极性标注图2一相接线一相式电流保护的电流互感器主要用于测量对称三相负载或相负荷平衡度小的三相装置中的一相电流。
电流互感器的接线与极性的关系不大,但需注意的是二次侧要有保护接地,防止一次侧发生过电流现象时,电流互感器被击穿,烧坏二次侧仪表、继电设备。
但是严禁多点接地。
两点接地二次电流在继电器前形成分路,会造成继电器无动作。
因此在《继电保护技术规程》中规定对于有几组电流互感器连接在一起的保护装置,则应在保护屏上经端子排接地。
如变压器的差动保护,并且几组电流互感器组合后只有一个独立的接地点。
2两相式不完全星形接线两相式不完全星形接线用于相负荷平衡和不平衡的三相系统中。
如图3所示。
若有一相二次极性那么流过3KA的电流为IAIe,由向量差得其电流值为Ia的3倍,相位滞后Ia300角,如果三只继电器整定值是一样的,3KA会提前动作,造成保护误动。
图3二相式接线3两相电流差接线方式图4中流过继电器KA的电流为IAIe,其接线系数为3。
互感器原理

互感器原理1、电流互感器保护回路接线有几种?各是什么?(一)一台电流互感器的接线接线原理见到图(a),这种接线用以测量单相负荷电流或三相系统中均衡负荷的某一相线中的电流。
(二)两台电流互感器组成不完全星形接线接线原理见到图(b),这种接线在6~10kv中性点不接地系统中应用领域较广为。
从图中可以窥见,通过公共导线上仪表中的电流等同于u、w相线中电流的或非门和。
即:iu+iv+iw=0iv=-(iu+iw)采用不完全星形接线的继电保护装置,能对各种相问短路故障进行保护,但灵敏度是不相同的,与三相星形接线相比,灵敏度较差。
但可少用近1/3设备,节省了投资费用。
(三)三台电流互感器共同组成星形接线接线原理图(c),这种接线可以测量三相电力系统中平衡或不平衡负荷的三相电流。
这种三相星形接线方式组成的继电保护电路,能保证对各种故障(三相,两相短路及单相接地短路)具有相同的灵敏度,因此,可靠性较高。
(四)两台电流互感器共同组成两相电流高接线原理见图(d),这种接线方式常应用于继电保护线路中。
作为线路、电机的短路保护和并联电容器的横联差动保护等。
它能对各种相间短路故障进行保护,但灵敏度是不同的。
这种接线方式在正常工作时,通过仪表或继电器的电流是u、v相的相量差,其数值为电流互感器二次电流的√3倍。
2、在电力系统中仪用互感器主要用途就是什么?答:为了配合测量与继电保护的需要,将多种电压等级、不同大小的电流(容量不同,负载电流不同)变成统一电压、电流标准值。
使用统一标准值的继电器、电压表、电流表,与不同变化比例的互感器配套就可以监测和控制不同的电压等级及容量的电力系统。
大大减少了继电器、电压表、电流表的规格。
例如不论一次电流多大,二次侧额定值均为5a。
不论一次电压多高,二次侧额定值均为i00v。
当然由于绝缘强度的要求不同,在不同电压等级的电力系统中所使用的互感器其绝缘要求是不同的。
3、简答电流互感器运转中二次绕组开路的后果,现象及处置办法。
电流互感器结构原理-串并联

电流互感器结构原理1普通电流互感器结构原理电流互感器的结构较为简单,由相互绝缘的一次绕组、二次绕组、铁心以及构架、壳体、接线端子等组成。
其工作原理与变压器基本相同,一次绕组的匝数(N1)较少,直接串联于电源线路中,一次负荷电流(人)通过一次绕组时,产生的交变磁通感应产生按比例减小的二次电流(右);二次绕组的匝数(N0较多,与仪表、继电器、变送器等电流线圈的二次负荷(Z)串联形成闭合回路,见图5-1。
图5 - 1 普通电流互感器结构原理图由于一次绕组与二次绕组有相等的安培匝数,l1N1=l2N2,电流互感器额定电流比:瓦二丽。
电流互感器实际运行中负荷阻抗很小,二次绕组接近于短路状态,相当于一个短路运行的变压器2穿心式电流互感器结构原理穿心式电流互感器其本身结构不设一次绕组,载流(负荷电流)导线由L1至L2穿过由硅钢片擀卷制成的圆形(或其他形状)铁心起一次绕组作用。
二次绕组直接均匀地缠绕在圆形铁心上,与仪表、继电器、变送器等电流线圈的二次负荷串联形成闭合回路,见图5- 2。
图5 - 2穿心式电流互感器结构原理图由于穿心式电流互感器不设一次绕组,其变比根据一次绕组穿过互感器铁心中的匝数确定,穿心匝数越多,变比越小;反之,穿心匝数越少,变比越大,额定电流比:n。
式中11 ――穿心一匝时一次额定电流;n ――穿心匝数。
3特殊型号电流互感器3.1多抽头电流互感器。
这种型号的电流互感器,一次绕组不变,在绕制二次绕组时,增加几个抽头,以获得多个不同变比。
它具有一个铁心和一个匝数固定的一次绕组,其二次绕组用绝缘铜线绕在套装于铁心上的绝缘筒上,将不同变比的二次绕组抽头引出,接在接线端子座上,每个抽头设置各自的接线端子,这样就形成了多个变比,见图 5 - 3。
二反绕纽Ki K-i 心Kd图5 - 3多抽头电流互感器原理图例如二次绕组增加两个抽头, K1、K2为100/5 , K1、K3为75/5 , K1、K4为50/5等。
互感器的讲解

Company Logo
三、电流互感器:
电流互感器二次测开路时磁通和电势的波形
Company Logo
三、电流互感器:
3、结构 互感器为全密封结构,有油箱、瓷套、器身、储油柜和膨 胀器等部分组成。一次线圈呈“U”型,有两个半圆铝管构成, 采用油纸电容式结构。二次线圈的导线绕在环行的铁芯上,整 个固定后套装在一次线圈的下部而置于油箱中,依次电流的改 变是通过改变瓷套上部连接板的接线方式而实现的。其外型见 下图。
Company Logo
二、电压互感器:
电压互感器的接线方式 (a)一台单相电压互感器接线 (b)V-V接线 (c)Y-Y0接线 (d)三相五柱式电压互感器接线 (e)三台单相三绕组电压互感器接线
Company Logo
二、电压互感器:
6、运行 (1)使用注意事项 1)接地端必须可靠接地;当不用载波设备时,电容分压器低压端必 须可靠接地; 2)互感器运行时严禁将二次侧短路; 3)严禁从互感器二次侧进行励磁试验; 4)当两台互感器并接于同一相上时,其二次电路也必须并联使用; 5)如果互感器二次侧接有辅助变压器,那么辅助变压器的额定磁通 密度必须小于0.6T; 6)当互感器须进行大于1.5UN(中性点非有效接地)的耐压试验时, 其端子箱内的阻尼器连接片必须脱开,试验结束后阻尼连接片复 位并紧固; 7)严禁松开电磁单元、电容分压器上的密封用紧固螺栓,以免产生 漏油现象及破坏真空度。
二、电压互感器:
7、异常运行及事故处理 (1)互感器二次回路断线或短路 1)现象: a.警铃响,“电压回路断线”光字牌亮; b.电压、周波、有功功率、无功功率等表计指示异常。 2)原因 a.互感器二次熔断器或隔离开关辅助触点接触不良; b.回路中接头松动或脱落; c.电压切换开关接触不良。 3)处理 a.将互感器所带的保护及自动装置退出运行,以防误动作,如高闭距离、 母差、距离、低电压、备自投等; b.根据电流表及其他表计的指示,对设备进行监视; c.分析原因,尽快查找、处理; d.故障消除后,尽快投入已退出的保护及自动装置。
三相五柱式原理图及接线说明

三相五柱式电压互感器弄了好久才明白:三相五柱变压器,就是变压器的铁芯有五个柱子,四个窗口。
其中中间三个柱子上安装了线圈,边上两个柱子作为磁路。
电压互感器是将电力系统的一次电压按一定变比缩小为要求的二次电压,向测量表计和继电器供电,其工作原理与变压器根本一样。
电压互感器通常有单相、三相三柱式、三相五柱式电压互感器等几种,由于使用方法不同,各有优、缺点。
三相五柱式电压互感器,是磁系统具有五个磁柱的三相三绕组电压互感器,广泛采用于大中型企业,具有低电压、过电压保护、低电压启动等各种保护功能;备自投等所有电压继电器电压值均来自电压互感器二次。
1 三相五柱式电压互感器的接地方式电压互感器二次绕组接地方式与保护、测量表计及同步电压回路有关,有b相接地和中性点接地两种方式,其接线方式见图1、2。
来源:.tede.图1 电压互感器二次通过b相及接地原理图图2 电压互感器二次不接地原理图1.1 电压互感器二次绕组两种接地方式的比较信息:输配电设备网1.1.1 在同步回路中在b相接地系统中,对中性点非直接接地系统,单相接地时,中性点位移,不能用相电压同步,必须用线电压同步。
如同步点两侧均为b相接地,其中一相公用,同步开关档数减少(如采用综保,那么接线更为简单),同步接线简单。
对中性点直接接地系统,可用辅助二次绕组的相电压同步。
1.1.2 在保护回路中信息来源:.tede.在b相接地系统中,①在零线上串接的隔离开关辅助触点G,如不可靠而断开时,会使10kV以上电压距离保护断线闭锁装置失去作用,这时假设再发生一相或两相断线,将导致保护误动作。
②因为辅助信息请登陆:输配电设备网绕组的一端与b相接地点相连,由于根本二次侧绕组上有负荷电流流过,在电缆芯出上产生电压降,使正常开口三角形有电压3U0,对零序方向元件不利。
假设单独从接地点引接零序方向继电器回路,那么接线较为复杂。
在中性点接地系统中,由于中性点无任何断开触点,可靠性高。
电流互感器接线图

电流互感器接线图我们从使用功能上将电流互感器分为测量用电流互感器和保护用电流互感器两类,各种电流互感器的原理类似,本文总结各种电流互感器接线图,供参考使用。
测量用电流互感器接线方法测量用电流互感器的作用是指在正常电压范围内,向测量、计量装置提供电网电流信息。
普通电流互感器接线图电流互感器的一次侧电流是从P1端子进入,从P2端子出来;即P1端子连接电源侧,P2端子连接负载侧。
电流互感器的二次侧电流从S1流出,进入电流表的正接线柱,电流表负接线柱出来后流入电流互感器二次端子S2,原则上要求S2端子接地。
注:某些电流互感器一次标称,L1、L2,二次侧标称K1、K2。
2穿心式电流互感器接线图穿心式电流互感器接线与普通电流互感器类似,一次侧从互感器的P1面穿过,P2面出来,二次侧接线与普通互感器相同。
二电流互感器接线图电流互感器接线总体分为四个接线方式:1.单台电流互感器接线图只能反映单相电流的情况,适用于需要测量一相电流的情况。
单台电流互感器接线图2.三相完全星形接线和三角形接线形式电流互感器接线图三相电流互感器能够及时准确了解三相负荷的变化情况。
(三相完全星形电流互感器接线图)3.两相不完全星形接线形式电流互感器接线图在实际工作中用得最多,但仅限于三相三线制系统。
它节省了一台电流互感器,根据三相矢量和为零的原理,用A、C相的电流算出B相电流。
两相不完全星形接线形式电流互感器接线图4.两相差电流接线形式电流互感器接线图也仅用于三相三线制电路中,这种接线的优点是不但节省一块电流互感器,而且也可以用一块继电器反映三相电路中的各种相间短路故障,亦即用最少的继电器完成三相过电流保护,节省投资。
两相差电流接线形式电流互感器接线图5.其它接线方式原边串联、副边串联电流互感器原边串联、副边串联接线图如下所示,串联后效果:互感器变比不变,二次额定负荷增大一倍。
电流互感器原边串联、副边串联接线图原边串联、副边并联电流互感器原边串联、副边并联接线图如下所示,串并联后效果:互感器变比减小一倍,二次额定负荷增大一倍。
变电所二次 电压互感器柜二次接线原理图

电压互感器、电流互感器、电能表的接线和原理图

电压互感器、电流互感器、电能表的接线和原理图1、电压互感器,V/V接法电压互感器,V/V接法原理图
电压互感器,V/V接法3D图
2、电压互感器,Y/Y接法
电压互感器,Y/Y接法原理图
电压互感器,Y/Y接法3D图3、电流互感器,不完全星型接法
电流互感器,不完全星型接法原理图
电流互感器,不完全星型接法3D图4、电流互感器,星型接法
电流互感器,星型接法原理图
电流互感器,星型接法3D图(S2需要接地)
5、电能表接线示意图
三相三线电能表组合接线示意图(3*100V电能表+3*100V专变采集终端)
三相四线电能表组合接线示意图(3*57.7V电能表+3*100V专变采集终端)
三相四线电能表组合接线示意图(3*220V电能表+3*220V专变采集终端)6、单变比计量箱原理图
两元件计量,输出6端钮
两元件计量,输出7端钮
三元件计量,输出10端钮7、双变比计量箱原理图
两元件计量,输出6端钮
两元件计量,输出7端钮
两元件计量,输出9端钮8、端钮与接线盒之间的接线图
6端钮接线示意图
7端钮接线示意图
9端钮接线示意图
10端钮接线示意图。
电压互感器接线方法 图文 民熔

1、电压互感器V/V接法
V/V接法原理图
V/V接法3D示意图
2、电压互感器Y/Y接法Y/Y接法3D示意图
3、电流互感器不完全星型接法
电流互感器不完全星型接法原理图
电流互感器不完全星型接法3D示意图
4、电流互感器星型接法
星型接法原理图(适用10kV以上)
星型接法原理图(适用400V)
星型接法3D示意图(400V)5、电能表接线示意图
三相三线电能表组合接线示意图
(3*100V电能表+3*100V专变采集终端)
三相四线电能表组合接线示意图
(3*57.7V电能表+3*100V专变采集终端)
三相四线电能表组合接线示意图
(3*220V电能表+3*220V专变采集终端)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(l)一只电流互感器,如图4所示,主要用于测量负荷平衡的三根电力装置中的一相电流。
(2)星形接线,如图5所示,主要用于测量负荷不平衡的三相电力装置三相四线装置的三相电流。
(3)不完全星形接线,如图6所示,主要用于测显三相三线电力装置中的三相电流。
(4)两相电流差接线,如图7所示,要用于6一10千伏中性点不接地系统中,保护容量较小的高压电机等。
电压互感器在三相电路中常用的接线方式
电压互感器在三相电路中常用的接线方式有四种,如图所示。
1.一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器,如图(a)。
2.两个单相电压互感器的V/V形接线,可测量相间线电压,但不能测相电压,如图(b)。
3.三个单相电压互感器接成Y0/Y0形,如图(c)。
可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。
4.一台三相五芯柱电压互感器接成Y0/Y0/Δ(开口三角形),如图(d)所示。
接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。
辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。
当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。
当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。