化工原理

合集下载

化工原理公式及其推导

化工原理公式及其推导

化工原理公式及其推导1.流体的连续性方程:∂ρ/∂t+∇(ρV)=0其中ρ为流体的密度,t为时间,V为流体的速度。

这个方程的推导基于质量守恒原理,即单位时间内通过其中一截面的质量流量等于单位时间内聚集在该截面的质量。

2.流体的动量守恒方程:∂(ρV)/∂t+∇(ρV^2)=-∇P+∇(τV)+ρg其中P为流体的压力,τ为流体的剪应力,g为重力加速度。

这个方程的推导基于牛顿第二定律,即单位时间内物体受到的外力等于物体动量的变化率。

3.流体的能量守恒方程:∂(ρh)/∂t+∇(ρhV)=∇(k∇T)+∇(qV)其中h为流体的比焓,T为流体的温度,k为流体的热传导系数,q 为流体的热源。

这个方程的推导基于能量守恒原理,即单位时间内物体所接收的热量等于物体内能的变化率。

1.热传导的傅立叶定律:q=-k∇T其中q为单位时间内通过单位面积的热流量,k为物质的导热系数,∇T为温度梯度。

这个定律的推导基于热传导现象,即热量沿温度梯度方向传导。

2.对流传热的牛顿冷却定律:q=hA(Ts-T∞)其中q为单位时间内通过单位面积的热流量,h为传热系数,A为传热面积,Ts为表面温度,T∞为环境温度。

这个定律的推导基于传热的对流现象,即物体表面与周围流体之间的热量交换。

1.弗里克定律:J=-D∇C其中J为单位时间内通过单位面积的物质传递通量,D为物质的扩散系数,C为物质的浓度。

这个定律的推导基于物质扩散的现象,即物质沿浓度梯度方向传递。

2.对流传质的量化表述:Jc=ρVDc其中Jc为单位时间内通过单位面积的物质传递通量,ρ为流体的密度,V为流体的速度,Dc为物质的扩散系数。

这个方程的推导基于对流传质的现象。

1.反应速率方程:r=kC^n其中r为反应速率,k为反应速率常数,C为反应物的浓度,n为反应级数。

这个方程的推导基于反应速率与反应物浓度之间的关系。

2.反应热平衡方程:ΔHr=Qv+Qp其中ΔHr为反应的热效应,Qv为体积效应的热量变化,Qp为反应物浓度效应的热量变化。

(完整版)化工原理知识点总结整理

(完整版)化工原理知识点总结整理

一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。

2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。

3.牛顿粘性定律:F=±τA=±μAdu/dy ,(F :剪应力;A :面积;μ:粘度;du/dy :速度梯度)。

4.两种流动形态:层流和湍流。

流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。

当流体层流时,其平均速度是最大流速的1/2。

5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C 。

6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d ,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re ,湍流时λ=F(Re ,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g ,(ξ:局部阻力系数,情况不同计算方法不同)7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。

孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。

其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。

转子流量计的特点——恒压差、变截面。

8.离心泵主要参数:流量、压头、效率(容积效率ηv :考虑流量泄漏所造成的能量损失;水力效率ηH :考虑流动阻力所造成的能量损失;机械效率ηm :考虑轴承、密封填料和轮盘的摩擦损失。

)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。

9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m31atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg(1)被测流体的压力 > 大气压 表压 = 绝压-大气压(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。

化工原理课程

化工原理课程

化工原理课程化工原理是化学工程专业的核心课程之一,它是化学工程学科的基础和核心,是学生学习化学工程专业的重要基础。

本课程主要介绍化工工艺的基本原理和基本方法,涉及化工原理的基本概念、基本理论和基本技术,是学生学习化学工程专业的基础课程之一。

首先,化工原理课程主要包括以下几个方面的内容。

首先是化工原理的基本概念和基本理论,包括化工原理的定义、基本概念、基本原理和基本方法等。

其次是化工原理的基本技术,包括化工原理的基本实验技术、基本分析技术和基本计算技术等。

最后是化工原理的应用技术,包括化工原理在工程实践中的应用和发展等。

其次,化工原理课程的学习方法和学习要点。

学习化工原理课程,首先要熟悉化工原理的基本概念和基本理论,理解化工原理的基本原理和基本方法。

其次要掌握化工原理的基本技术,包括化工原理的基本实验技术、基本分析技术和基本计算技术。

最后要了解化工原理的应用技术,包括化工原理在工程实践中的应用和发展。

在学习过程中,要注重理论联系实际,注重实践操作,注重创新思维,注重团队合作,注重综合应用。

再次,化工原理课程的教学目标和教学要求。

化工原理课程的教学目标是培养学生的化工原理分析能力和化工原理应用能力,培养学生的工程实践能力和工程创新能力,培养学生的团队合作能力和综合应用能力。

化工原理课程的教学要求是要注重培养学生的理论基础和实践技能,注重培养学生的创新意识和团队精神,注重培养学生的综合素质和综合能力,注重培养学生的工程素养和工程素质。

最后,化工原理课程的学习意义和发展前景。

化工原理课程是化学工程专业的核心课程之一,它是学生学习化学工程专业的重要基础,对于学生的学习和发展具有重要意义。

化工原理课程的发展前景是非常广阔的,随着化学工程领域的不断发展和进步,化工原理课程将会更加重要和有价值。

综上所述,化工原理课程是化学工程专业的核心课程之一,它是学生学习化学工程专业的重要基础,对于学生的学习和发展具有重要意义。

化工原理

化工原理

dp gdz 0

dp
g dz 0

设流体不可压缩,即密度ρ 与压力无关,可将上式积 分得:
p


gz 常数
对于静止流体中任意两点1和2,如图1-7所示:
p1


gz1
p2

gz2
p2 p1 g ( z1 z2 ) p1 gh
(1)位能

在重力场中,液体高于某基准面所具有的能量称为 液体的位能。液体在距离基准面高度为z时的位能相
当于流体从基准面提升高度为z时重力对液体所作的 功。

单位质量流体所具有的位能gz
[ gz ] m m m Nm m=Kg 2 = =J/Kg 2 s s Kg Kg
(2)动能
避免混淆,p=0.5atm(表压
或真空度)。
PB,绝
1.2.4压强的测量

两类: 利用机械原理制成的;应用流体静力学原理
设计的。 (1)简单测压管
pa R A 1• ..
p1=pa+ρ gR
1点表压:p1-pa=ρ gR
装置简单,只适用于测高于大气压的液体,不 适合测气体,且p1很大,R很高,不方便。
欧拉平衡方程 左边表示单位质量流体所受的力

若将该微元流体移动dl距离,此距离对x,y,z轴的分量 为dx、dy、dz,将上列方程组分别乘以dx、dy、dz并
相加得:
1 p p p ( dx dy dz ) ( Xdx Ydy 2=(ρ 0-ρ )gR
(4)倒U形管压差计 A—空气 B—被测液 pa=p1-ρ Bg(R+m) pa, =p2-ρ Bgm-ρ 空gR 因 pa= pa, 故 p1-ρ Bg(R+m)=p2-ρ Bgm-ρ p1-p2=(ρ B-ρ 空)gR =ρ BgR

化工原理-所有章节

化工原理-所有章节
0
一、 化工生产过程
绪 论
1. 化工生产过程:对原料进行化学加工获得有用产 品的过程称为化工生产过程。
聚氯 乙烯 生产
CH2=CH2+Cl2 CH2Cl—CH2Cl CH2Cl—CH2Cl CHCl=CH2+HCl
2CH2=CH2+2HCl+O2
乙烯 氯 提纯 提纯 单体 合成 反应热 分 离
2CHCl-CH2+2H2O
1. 黏性
① 含义:当流体流动时,流体内部存在着内摩擦力, 这种内摩擦力会阻碍流体的流动,流体的这种特性称为 黏性。 ② 实验 (两平行平板间距很小)
面积A u F
y方向的速度 分布为线性
x 固定板
内摩擦力:运动着的流体内部相邻两流体层间的相 互作用力。
产生内摩擦力的根本原因:流体具有黏性。
2. 牛顿黏性定律
对分子运动作统计平均,以得到表征宏观现象的物理量
宏观上充分小 分子团的尺度<<所研究问题的特征尺寸
物理量都可看成是均匀分布的常量
V=10-5cm3 分子数目N=2.7×1014个
3. 连续性假定 ① 内容 流体由无数的彼此相连的流体质点组成,是一种连 续性介质,其物理性质和运动参数也相应连续分布。 ② 适用范围 绝大多数情况适用,但高真空下的气体不适用。
1.1.2 流体流动中的作用力
一、质量力 作用于所考察对象的每一个质点上的力,并与流 体的质量成正比
二、表面力 1. 表面力:作用于所考察对象表面上的力,与表面积 成正比。 2. 应力:单位面积上所受到的表面力。
3. 表面力的分解
切向力(剪力) 表面力 法向力
剪应力
拉力
压力
拉应力

化工原理

化工原理

第一章绪论1.单元操作:不同化工行业生产过程中所共有的基本的物理操作过程成为单元操作。

2.单元操作的特点:(1)单元操作都是纯物理操作过程,这些操作只改变物料的状态和物理性质,并不改变物料的化学性质。

(2)单元操作是所有化工生产过程所共有的操作。

(3)某单元操作作用于不同化工生产过程,其所遵循的原理是相同的,进行该操作所用的设备是相同、相似的。

3.单位制:基本单位制,导出单位制,辅助单位制,再加上有关规则,即可构成一种单位制。

4.过去常用单位制长度时间质量重量Cgs(物理单位制)cm s gMSK制m s kg重力制(工程制)m s kgf5.国际单位制的基本量与基本单位:长度m 时间s 质量kg 物质的量mol 电流A 热力学温度K发光强度cd(坎德拉)6.国际单位制的优越性(SI):(1)通用性:包括所有领域的计量单位。

(2)一贯性:是使用国际单位制导出单位时,不用引入比例系数,而且国际单位制中的任何一个物理量都只有一个单位。

7.目前我国使用《法定计量单位制》:国际单位制和我国制定的若干非国际单位制。

8.单位换算:(1)经验公式单位换算:若已知物理量的单位与经验公式的单位不相符,则换成经验公式中的指定单位。

(2)物理量单位换算:物理量由一种单位制换算成另一种单位制时,不仅单位改变,其数值也改变,即换算时需要引进换算因数。

9.重力单位制与其他单位制的本质区别:在重力单位制中,重力(重量)为基本单位,质量为导出单位;在其他单位制中,质量为基本单位,重力(重量)为导出单位。

1kgf=9.81N 在国际单位制中无重量这物理量.第二章流体流动1.流体:液体和气体统称流体。

2.流体的特点:(1)具有流动性,即抗剪和抗张的能力很小。

(2)无固定形状,随容器的形状而变化。

(3)在外力作用下发生相对运动。

3.流体的密度和粘度:(1)密度:密度是指单位体积流体所具有的质量.是物理性质之一。

其影响因素有物性、温度、压力。

化工原理的理论基础

化工原理的理论基础

化工原理的理论基础
化工原理的理论基础包括物质平衡、能量平衡、动量平衡和化工过程的基本原理等。

1. 物质平衡:物质平衡是指在化工过程中物质的输入和输出之间的平衡关系。

它基于质量守恒定律,要求在化工过程中所涉及的各种物质的输入和输出量必须保持平衡,以确保化工过程的效率和稳定性。

2. 能量平衡:能量平衡是指在化工过程中能量的输入和输出之间的平衡关系。

它基于能量守恒定律,要求在化工过程中所涉及的各种能量的输入和输出量必须保持平衡,以确保化工过程的热力学效率和能源利用率。

3. 动量平衡:动量平衡是指在化工过程中流体的流动和传递过程中动量的输入和输出之间的平衡关系。

它基于动量守恒定律,要求在化工过程中流体的输入和输出的动量必须保持平衡,以确保化工过程的流体力学效率和流体传递性能。

4. 化工过程基本原理:化工过程基本原理是指化工过程中涉及的各种化学反应、物理变化和物质传递等基本原理。

这些原理包括质量守恒定律、能量守恒定律、动量守恒定律、物质传递和反应动力学等。

通过理解和应用这些基本原理,可以设计和控制化工过程,实现所需的物质转化和产品制备。

总之,化工原理的理论基础涵盖了物质平衡、能量平衡、动量平衡和化工过程的
基本原理,这些基础理论对于化工过程的设计、控制和优化都起着重要的指导作用。

化工原理

化工原理

1. 吸收操作所用的液体称为吸收剂或溶剂;混合气中,被溶解的组分称为溶质或吸收质;不被溶解的组分称为惰性气体或载体;所得到的溶液称为吸收液,其成分是溶剂与溶质;排出的气体称为吸收尾气。

如果吸收剂的挥发度很小,则其主要成分为惰性气体以及残留的溶质。

2. 吸收的依据:溶质在溶剂中的溶解度。

3. 亨利定律:*A P Ex =。

在一定的气相平衡分压下,E 值小,液相中溶质的摩尔分数大,即溶质的溶解度打。

易溶气体的E 值小,难溶气体的E 值大。

对一定的物系,温度升高,E 值增大4. *A A C P H= H 值越大,则液相的平衡浓度越大,溶解度大。

H 值随温度升高而减小。

5. *y mx = 在一定的气相平衡摩尔分数下,m 值小,液相中溶质的摩尔分数大,即溶质溶解度大。

易溶气体的m 值小,难溶气体的m 值大。

m 值随温度升高而增大。

6. 用气相组成y 表示传质方向与推动力 由相平衡关系求出与液相组成x 相平衡的气相组成y*当y>y*时,溶质从气相向液相传递,为吸收过程。

其传质推动力为(y-y*)当y<y*时,溶质从液相向气相传递,为解析过程,其传质推动力为(y*-y )用液相组成x 表示传质方向与推动力 由相平衡关系求出与气象组成y 相平衡的液相组成x*当x*>x 时,溶质从气相向液相传递,为吸收过程,其传质推动力为(x*-x )当x*<x 时,溶质从液相向气相传递,为解析过程,其传质推动力为(x-x*)7. 气膜控制与液膜控制 当溶质的溶解度很大,即其相平衡常数m 很小时,液膜传质阻力x m k 比气膜传质阻力1yk 小很多,则相间传质总阻力=气膜阻力,传质阻力集中于气膜中,称为气膜阻力控制或气膜控制(Hcl 溶解于水或稀盐酸中,氨溶解于水或稀氨水中)。

当溶解度很小,即m 很大时,气膜阻力1ymk 比液膜阻力1x k 小很多,则相间传质总阻力=液膜阻力,传质阻力集中于液膜中,称为液膜阻力控制或液膜控制(用水吸收氧或氢)。

化工原理绪论

化工原理绪论

绪论一、《化工原理》课程的研究对象与性质1. 研究对象《化工原理》课程是研究化工生产过程中共有的物理操作过程的基本原理、所用典型设备的结构和设备工艺尺寸的计算与设备选型。

通常将这些物理操作过程称为单元操作。

2. 单元操作(Unit Operations)使物质发生状态、组成、能量上变化的操作称为单元操作。

单元操作的研究包括“过程”和“设备”两个方面的内容,故单元操作又称为化工过程和设备。

化工原理是研究诸单元操作共性的课程。

一切化工生产过程不论其生产规模大小,除化学反应外,其它均可分解为一系列的物理加工过程。

这些物理加工过程称为“单元操作”。

流体输送、过滤、沉降、搅拌、颗粒流态化、气力输送、加热冷却、蒸发、蒸馏、吸收、吸附、萃取、干燥、结晶等。

3. 《化工原理》课程的内容➢通过什么样的工程方法和设备来实现其工艺过程?反应物如何供给、产物又如何分离?➢如何提供反应所需的热量及使用反应放出的热量?➢怎样才能从工业规模生产中获得最佳的经济效益?4. 《化工原理》在化工领域中的地位本课程不是教学生如何合成得到新的物质?如何提取新的物质?如何表征新的物质?这是化学家的事情。

化学工程研究的是如何把化学家们的小试研究成果开发放大为中试,再开发为生产规模。

是在科学实验与化工之间架桥的工作,是直接为人类服务的创造价值的劳动。

5. 共同的研究对象——传递过程. 物理性操作,即只改变物料的状态或物性,并不改变化学性质;. 它们都是化工生产过程中共有的操作,但不同的化工过程中所包含的单元操作数目、名称与排列顺序各异;. 对同样的工程目的,可采用不同的单元操作来实现;. 某单元操作用于不同的化工过程,其基本原理并无不同,进行该操作的设备也往往是通用的。

具体应用时也要结合各化工过程的特点来考虑,如原材料与产品的理化性质,生产规模等。

实际问题的复杂性—过程、体系、设备、工程性强、计算量大6. 单元操作按操作的目的分类如下:. 物料的加压、减压和输送、物料的混合、非均相混合物的分离--动量传递过程. 物料的加热或冷却――热量传递过程. 均相混合物的分离――质量传递过程以上三种传递过程简称“三传”。

化工原理

化工原理

化工原理绪论部分1. 单元操作:根据化工生产的操作原理,可将其归纳为应用较广的数个基本操作过程,如流体输送、搅拌、沉降、过滤、热交换、蒸发、结晶、吸收、蒸馏、萃取、吸附及干燥等,这些基本操作过程称为单元操作。

任何一种化工产品的生产过程都是由若干单元操作及化学反应过程组合而成的。

2.单元操作与“三传”过程:①动量传递过程。

③质量传递过程。

②热量传递过程。

3.单元操作计算:(1)物料衡算:它是以质量守恒定律为基础的计算:用来确定进、出单元设备(过程)的物料量和组成间的相互数量关系,了解过程中物料的分布与损耗情况,是进行单元设备的其它计算的依据。

(2)能量衡算:它是以热力学第一定律即能量守恒定律为基础的计算,用来确定进、出单元设备(过程)的各项能量间的相互数量关系,包括各种机械能形式的相互转化关系,为完成指定任务需要加入或移走的功量和热量、设备的热量损失、各项物流的焓值等。

第一章 流体流动1.流体:是由许多离散的彼此间有一定间隙的、作随机热运动的单个分子构成的。

通常是气体和液体的统称2.密度:单位体积流体所具有的质量称为流体的密度,单位为kg ,其表示式为 ρ=V/m 比容:单位质量流体所具有的体积,其单位为m 3/kg ,在数值上等于密度的倒数。

v=1/ρ 压强:垂直作用于单位面积上且方向指向此面积的力,称为压强,其表示式为 P=F/A3.等压面:在静止的、连续的同一液体内,处于同一水平面上的各点,因其深度相同,其压力亦相等。

4.流量与流速:(一)流量<1>.体积流量:单位时间内流经通道某一截面的流体体积,用V s ,表示,其单位为m 3/s(或 m 3/h)。

<2>.质量流量:单位时间内流经通道某一截面的流体质量,用W s 表示,其单位为kg/s(或 kg/h)。

当流体密度为ρ时,体积流量y ,与质量流量W s 的关系为: Ws =V s ρ(二) 流速:单位时间内流体微团在流动方向上流过的距离,其单位为m/s 。

化工原理知识点

化工原理知识点

绪论1.单元操作的分类:流体动力学过程、传热过程、传质过程、热质传递过程。

2.化工原理:是研究化工单元操作的基本原理、典型设备的结构和工艺尺寸计算的一门技术基础课,化工原理的学习必须以高等数学,物理学,和物理化学等课程为基础。

第一章流体流动1.粘度:流体具有粘性,表征流体粘性的物理性质称为粘滞系数,简称粘度,符号μ表示。

2.压力的单位换算1标准大气压(atm)=1.013×105Pa=1.033kgf/cm2=10.33mH2O=760mmHg3.U形压差计(计算) P1-P2 = R(ρ0-ρ)g4.P16 公式1-33、1-34、1-355.流体的流动类型:层流、湍流。

6.雷诺数Re≤2000时,流动类型为层流;2000<Re<4000时,流动类型不稳定,为过渡区;Re≥4000,流动类型为湍流。

7.湍流摩擦系数:λ= f(Re,ε/d) 即与雷诺数、相对粗糙度有关。

8.P33 例1-10(计算)9.流速测量的工具:测速管(皮托管)、孔板流量计、文氏流量计、转子流量计。

第二章流体输送机械1.气体与液体不同,气体具有可压缩性。

用于输送液体的机械称为泵,用于输送气体的机械称为风机及压缩机。

2.气缚:如果离心泵在启动前未充满被输送液体,则泵壳内存在空气。

由于空气密度很小,所产生的离心力也很小。

此时,在吸入口处所形成的真空不足以将液体吸入泵内。

这样,虽然启动了离心泵,但不能输送液体。

此现象称为“气缚”。

汽蚀:离心泵安装高度提高时,将导致泵内压力降低,泵内压力最低点通常位于叶轮叶片进口稍后的一点附近。

当此处压力降至被输送液体的饱和蒸汽压时,将发生沸腾,所生成的蒸汽泡在随液体从入口向外周流动中,又因压力迅速增大而急剧冷凝。

会使液体以很大的速度从周围冲向气泡中心,产生频率很高、瞬时压力很大的冲击,这种现象称为汽蚀现象。

本质原因:入口压力小于流体输送温度下的饱和蒸汽压。

3.离心泵的主要性能参数工作原理基本部件:叶轮(6~12片后弯叶片);泵壳(蜗壳)(集液和能量转换装置);轴封装置(填料函、机械端面密封)。

化工原理-第一章

化工原理-第一章

29
返回
(3) 倒U形压差计
指示剂密度小于被测流体密度,如空 气作为指示剂
p1 p2 Rg( 0 ) Rg
(4) 倾斜式压差计 适用于压差较小的情况。
30
返回
例1-1 如附图所示,水在水平管道内流动。为测量流
体在某截面处的压力,直接在该处连接一U形压差计,
指示液为水银,读数
18
返回
表 压 = 绝对压力 - 大气压力 真空度 = 大气压力 - 绝对压力
p1
表压
大气压
真空度 绝对压力
p2
绝对压力 绝对真空
19
返回
1.1.3 流体静力学平衡方程
一、静力学基本方程 设流体不可压缩, (1)上端面所受总压力
P1 p1 A
Const.
p1 G p2
p0
重力场中对液柱进行受力分析:
5
返回
1.0.0 流体的特征
液体和气体统称为流体。
• 具有流动性;
• 无固定形状,随容器形状而变化; • 受外力作用时内部产生相对运动。 不可压缩流体:流体的体积不随压力变化而变化,
如液体;
可压缩性流体:流体的体积随压力发生变化,
如气体。
6
返回
1.0.1 研究流体流动的目的
1、流体输送:选择适宜流速、确定管路直径、 选用输送设备; 2、压强、流速和流量的测量:便于了解和控制 生产; 3、为强化设备提供适宜流动条件:如传热、传 质设备的强化。
9
返回
1.0.3 流体流动中的作用力
1、体积力: 体积力作用于流体的每一个质点上,并与流体的 质量成正比,也称为质量力,如重力、离心力。 2、表面力:包括压力与剪力 压力:垂直于表面的力 剪力:平行于表面的力,又称粘性力,与流体运动 有关。 返回

化工原理名词解释

化工原理名词解释

化工原理名词解释化工原理名词解释化工原理1名词解释流体黏性:流体所具有的这种阻碍两层流体相对运动速度的性质称为流体的黏性。

不可压缩流体:液体的密度几乎不随压强而变化,随温度略有改变,可视为不可压缩流体。

稳态流动:截面上流动参数(流速、压力等)仅随空间位置的改变而变化,而不随时间变化。

气缚:泵启动前泵壳内和管路中未充满液体,由于气体密度小于液体密度,叶轮旋转所产生的离心力不足以造成吸入液体所需真空度,从而导致无法吸液的现象。

气蚀:由于安装高度过高或者损失过大使得气泡存在,导致叶轮损坏的现象。

泵的扬程:又称为泵的压头,是指泵对单位重量液体提供的有效能量,用H表示,其单位为m。

重力沉降:在流体中,颗粒因受力不同而沉降速度不同,颗粒因地球引力作用而发生的沉降。

自由沉降:单个颗粒在流体中沉降,或者颗粒群在流体中足够分散、颗粒之间互不接触和互不碰撞条件下的沉降。

干扰沉降:当非均相物系的颗粒较多,颗粒之间相距很近时,颗粒沉降时会受到周围其它颗粒的影响,互相干扰,这种沉降称为干扰沉降。

干扰沉降的速度比自由沉降时小。

离心沉降:由于存在密度差,惯性力将使颗粒在径向上与流体发生相对运动而飞离中心,最终附着于容器表面而去除。

真密度:ρs,粒子体积不包括颗粒间的空隙堆积密度:ρb,也称表观密度,粒子体积包括颗粒间的空隙;设计颗粒贮存设备、计算颗粒床体积时用堆积密度。

--固或液--固分离时用真密度。

频率分布曲线:某一粒度或粒度范围的颗粒的质量分数与粒径关系。

累积分布曲线:等于和小于某一粒度的颗粒所占的质量分率。

床层壁效应:当流体流过床层时,流体逐渐趋近容器壁而使整个床层流动分布不均匀的现象分离因数:同一颗粒在同种流体中的离心沉降速度与重力沉降速度的比值。

临界直径:理论上在旋风分离器中能完全分离下来的最小颗粒直径。

是判断分离效率的重要依据。

过滤:在外力作用下,使悬浮液中的液体通过多孔介质的孔道,而固体颗粒被截留在介质介质表面或介质微孔内,从而实现分离的操作。

《化工原理》电子档

《化工原理》电子档

目录第一章流体流动与输送设备 (3)第一节流体静力学 (3)第二节流体动力学 (5)第三节管内流体流动现象 (7)第四节流体流动阻力 (8)第五节管路计算 (11)第六节流速与流量的测量 (11)第七节流体输送设备 (13)第二章非均相物系分离 (21)第一节概述 (21)第二节颗粒沉降 (22)第三节过滤 (25)第四节过程强化与展望 (27)第三章传热 (28)第一节概述 (28)第二节热传导 (28)第三节对流传热 (30)第四节传热计算 (30)第五节对流传热系数关联式 (31)第六节辐射传热 (34)第七节换热器 (35)第四章蒸发 (37)第一节概述 (37)第二节单效蒸发与真空蒸发 (37)第三节多效蒸发 (40)第四节蒸发设备 (41)第五章气体吸收 (42)第一节概述 (42)第二节气液相平衡关系 (45)第三节单相传质 (46)第四节相际对流传质及总传质速率方程 (49)第五节吸收塔的计算 (51)第六节填料塔 (58)第六章蒸馏 (60)第一节概述 (60)第二节双组分物系的气液相平衡 (60)第三节简单蒸馏和平衡蒸馏 (62)第四节精馏 (63)第五节双组分连续精馏的计算 (63)第六节间歇精馏 (67)第七节恒沸精馏与萃取精馏 (67)第八节板式塔 (67)第九节过程的强化与展望 (69)第七章干燥 (71)第一节概述 (71)第二节湿空气的性质及湿度图 (71)第三节干燥过程的物料衡算与热量衡算 (73)第四节干燥速率和干燥时间 (75)第五节干燥器 (76)第六节过程强化与展望 (78)第一章 流体流动与输送设备第一节 流体静力学流体静力学主要研究流体处于静止时各种物理量的变化规律。

1-1-1 密度单位体积流体的质量,称为流体的密度。

),(T p f =ρ液体密度 一般液体可视为不可压缩性流体,其密度基本上不随压力变化,但随温度变化,变化关系可从手册中查得。

液体混合物的密度由下式计算:n n m a a a ρρρρ+++= 22111式中,i a 为液体混合物中i 组分的质量分数;气体密度 气体为可压缩性流体,当压力不太高、温度不太低时,可按理想气体状态方程计算RT pM =ρ一般在手册中查得的气体密度都是在一定压力与温度下的数值,若条件不同,则此值需进行换算。

什么是化工原理

什么是化工原理

什么是化工原理
化工原理是研究化学工程中的基本原理和规律的学科。

其主要内容包括物质的组成、结构和性质,物质转化的热力学、动力学和传质过程,以及化工工艺的设计与优化等。

通过对化学反应和物质运动、传递的研究,化工原理可以指导工业生产中的化工过程的设计和操作,并解决化工工业中常见的问题,如反应速率、产物选择、产率、能量消耗等。

化工原理的研究内容与其他学科密切相关,如化学、材料科学、机械工程、热力学等,因此化工原理是化学工程领域的基础学科,对于化学工程师的培养具有重要意义。

化工原理基本概念和原理

化工原理基本概念和原理

化工原理基本概念和原理化工原理基本概念和原理蒸馏––––基本概念和基本原理利用各组分挥发度不同将液体混合物部分汽化而使混合物得到分离的单元操作称为蒸馏。

这种分离操作是通过液相和气相之间的质量传递过程来实现的。

对于均相物系,必须造成一个两相物系才能将均相混合物分离。

蒸馏操作采用改变状态参数的办法(如加热和冷却)使混合物系内部产生出第二个物相(气相);吸收操作中则采用从外界引入另一相物质(吸收剂)的办法形成两相系统。

一、两组分溶液的气液平衡1.拉乌尔定律理想溶液的气液平衡关系遵循拉乌尔定律:p A=p A0x A p B=p B0x B=p B0(1—x A)根据道尔顿分压定律:p A=Py A而P=p A+p B则两组分理想物系的气液相平衡关系:x A=(P—p B0)/(p A0—p B0)———泡点方程y A=p A0x A/P———露点方程对于任一理想溶液,利用一定温度下纯组分饱和蒸汽压数据可求得平衡的气液相组成;反之,已知一相组成,可求得与之平衡的另一相组成和温度(试差法)。

2.用相对挥发度表示气液平衡关系溶液中各组分的挥发度v可用它在蒸汽中的分压和与之平衡的液相中的摩尔分率来表示,即v A=p A/x A v B=p B/x B溶液中易挥发组分的挥发度对难挥发组分的挥发度之比为相对挥发度。

其表达式有:α=v A/v B=(p A/x A)/(p B/x B)=y A x B/y B x A对于理想溶液:α=p A0/p B0气液平衡方程:y=αx/[1+(α—1)x]Α值的大小可用来判断蒸馏分离的难易程度。

α愈大,挥发度差异愈大,分离愈易;α=1时不能用普通精馏方法分离。

3.气液平衡相图(1)温度—组成(t-x-y)图该图由饱和蒸汽线(露点线)、饱和液体线(泡点线)组成,饱和液体线以下区域为液相区,饱和蒸汽线上方区域为过热蒸汽区,两曲线之间区域为气液共存区。

气液两相呈平衡状态时,气液两相温度相同,但气相组成大于液相组成;若气液两相组成相同,则气相露点温度大于液相泡点温度。

化工原理化工计算所有公式总结

化工原理化工计算所有公式总结

化工原理化工计算所有公式总结化工原理是化工专业的基础课程,主要涉及到化学反应工程、质量平衡、热力学等方面的内容。

在学习化工原理过程中,需要掌握一些常用的化工计算公式。

下面就对一些常见的化工计算公式进行总结。

1.化学反应速率计算公式:化学反应速率计算公式通常用来计算反应速率和反应动力学参数。

常见的化学反应速率计算公式有:(1)反应速率的一般表达式:v=k[A]^a[B]^b(2)反应级数与速率常数的关系:k=v/[A]^a[B]^b2.质量平衡计算公式:质量平衡计算公式是用来计算化工过程中物质的质量平衡。

常见的质量平衡计算公式有:(1) 总质量平衡:F = F_in - F_out + R(2) 组件质量平衡:F*A = F_in*A_in - F_out*A_out + R*A3.热平衡计算公式:热平衡计算公式通常用来计算化工过程中的热平衡。

常见的热平衡计算公式有:(1)热量传递公式:Q=U*A*ΔT(2)能量平衡公式:Q=Cp*ΔT+ΔH_r4.流体力学计算公式:流体力学计算公式主要用于计算流体在管道或设备中的流动状态。

常见的流体力学计算公式有:(1)泊肃叶定理:A1V1=A2V2(2) 阿基米德原理:F_buoyancy = ρ_fluid*V_submerged*g(3) 流体阻力公式:F_resistance = 1/2*C_d*ρ_fluid*A*V^25.过程控制计算公式:过程控制计算公式主要用于协助调控化工过程中的各种物理和化学参数。

常见的过程控制计算公式有:(1)控制阀流量公式:Q=Cv*√(ΔP/ρ)(2) 温度控制回路:T = T_sp + K_p*(e + K_i∫e dt + K_d(de/dt))(3) 浓度控制回路:C = C_sp + K_p*(e + K_i∫e dt + K_d(de/dt))总结:以上只是化工原理中一部分常用的计算公式,不同的化工过程和实际问题会有不同的计算公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

百科名片化工原理化学工程学及其进展化学工程学,以化学、物理和数学原理为基础,研究物料在工业规模条件下,它所发生物理或化学点击此处添加图片说明状态变化的工业过程及这类工业过程所用装置的设计和操作的一门技术学科。

化学工程学的进展:三阶段:单元操作:20世纪初期。

单元操作的物理化学原理及定量计算方法,奠定了化学工程做为一门独立工程学科的基础。

“三传一反”概念:20世纪60年代多分支:20世纪60年代末。

形成了单元操作、传递过程、反应工程、化工热力学、化工系统工程、过程动态学及控制等完整体系。

目录英文名称0.1 化学工程学科的进展单元操作图书信息内容简介图书目录绪论第1章流体流动原理及应用第2章传热及传热设备第3章传质原理及应用第4章固体颗粒流体力学基础与机械分离第5章固体干燥第6章其他单元附录化工原理(第三版上册)化工原理(第三版)(下册)内容简介目录一、上册二、下册英文名称0.1 化学工程学科的进展单元操作图书信息图书目录绪论第1章流体流动原理及应用第2章传热及传热设备第3章传质原理及应用第4章固体颗粒流体力学基础与机械分离第5章固体干燥第6章其他单元附录化工原理(第三版上册)化工原理(第三版)(下册)内容简介目录一、上册二、下册展开编辑本段英文名称Chemical Engineering Principles编辑本段0.1 化学工程学科的进展单元操作化工生产是以化学变化或化学处理为主要特征的工业生产过程。

在化学工业中,对原料进行大规模的加工处理,使其不仅在状态与物理性质上发生变化,而且在化学性质生也发生变化,成为合乎要求的产品,这个过程即叫化工生产过程。

以氯碱生产为例说明化工生产过程的基本步骤。

可见,虽然电解反应为核心过程,但大量的物理操作占有很大比重。

另外象传热过程,不仅在制碱中,在制糖、制药、化肥中都需要,在传热过程物料的化学性质不变,遵循热量传递规律,通过热量交换的方式实现,所用设备均为换热器,作用都是提高或降低物料温度,为一普遍采用的操作方式。

因此我们将整个化工生产中(包括冶金、轻工、制药等)那些普遍采用的、遵循共同的操作原理,所用设备相近,具有相同作用的一些基本的物理性操作,称为“化工单元操作”。

编辑本段图书信息书名: 化工原理作者:王晓红出版社:化学工业出版社出版时间:2009-6-1ISBN: 9787122052339开本:16开定价: 38.00元编辑本段内容简介本书以流体流动、传热及传质分离为重点,论述了化工、石油、轻工、食品、冶金工业等的典型过程原理及应用。

内容包括流体流动原理及应用(流体流动及输送机械)、传热原理及应用(传热理论及设备)、传质原理及应用(蒸馏、吸收、萃取及相应设备)、固体颗粒流体力学基础与机械分离、固体干燥、其他单元(蒸发、结晶、吸附、混合、膜分离),每章均配有工程案例分析及习题、思考题。

本书在关注学科最新发展动态、结合科研的基础上,对单元操作基本概念及原理进行深入浅出的论述,同时着力突出培养学生的工程能力。

可作为大专院校化工及相关专业的教材使用,也可供有关部门从事科研、设计和生产的技术人员参考。

编辑本段图书目录绪论0.1化工原理课程基本内容及特点0.2化工原理的研究基础与方法0.3单位制与单位换算第1章流体流动原理及应用1.1流体基本概念1.1.1流体特征1.1.2流体力学基本概念1.1.3流体密度1.2流体静力学1.2.1压强1.2.2流体静力学基本方程1.2.3流体静力学基本方程应用1.3流体流动的基本概念1.3.1流量与流速1.3.2稳态流动及非稳态流动1.3.3牛顿黏性定律1.3.4流动型态1.4流体流动的质量与能量衡算1.4.1质量衡算——连续性方程1.4.2总能量衡算1.4.3流体流动的机械能衡算式——柏努利方程式1.5流体流动阻力计算1.5.1直管阻力计算1.5.2摩擦系数λ的确定1.5.3局部阻力计算1.6管路计算1.6.1管路组成1.6.2简单管路计算1.6.3复杂管路计算1.7流体输送机械1.7.1离心式输送机械1.7.2往复式输送机械1.7.3其他类型输送机械1.8流速与流量测量工程案例分析习题思考题符号说明第2章传热及传热设备2.1传热基本概念2.1.1传热基本方式2.1.2传热速率2.2热传导2.2.1热传导基本概念2.2.2傅里叶定律2.2.3固体平壁稳态热传导2.2.4固体圆筒壁稳态热传导2.3对流传热2.3.1牛顿冷却定律2.3.2无相变对流传热系数计算2.3.3有相变对流传热系数计算2.4热辐射2.4.1辐射传热基本概念2.4.2物体的辐射能力2.4.3物体间的辐射传热2.4.4对流与辐射联合传热2.5间壁式换热器传热计算2.5.1间壁式换热简介2.5.2热量衡算2.5.3总传热速率方程2.5.4总传热系数的确定[1] 2.5.5平均传热温度差的计算2.5.6换热器的传热计算2.6换热设备2.6.1换热器类型2.6.2强化传热途径2.6.3管壳式换热器设计工程案例分析习题思考题符号说明第3章传质原理及应用第4章固体颗粒流体力学基础与机械分离第5章固体干燥第6章其他单元附录参考文献-------编辑本段化工原理(第三版上册)作者:谭天恩,窦梅,周明华等编著出版社:化学工业出版社出版时间:2006-8-1版次: 3页数:283I S B N :9787502585419包装:平装所属分类:图书>> 工业技术>> 化学工业>> 一般问题编辑本段化工原理(第三版)(下册)作者:谭天恩,窦梅,周明华等编著出版社:化学工业出版社出版时间:2006-8-1版次: 3页数:261I S B N :9787502587857包装:平装所属分类:图书>> 工业技术>> 化学工业>> 一般问题编辑本段内容简介本书在第二版的基础上进行修订。

论述化工过程单元操作的基本原理、典型设备等。

本版更注重基本概念的阐述,加强实际应用与培养工程观念;适当调整了全书结构,删减已少用的内容,补充了新型分离过程的内容;更换和补充了例题、习题,并给出了习题的参考答案。

全书分上、下册。

上册包括绪论、流体流动、流体输送、机械分离和固体流态化、搅拌、传热、传热设备、蒸发等章;下册包括:传质过程导论、吸收、蒸馏、气液传质设备、萃取、干燥、其他传质分离过程等。

本书为工科高等院校化工(多学时)及相关专业的化工原理课程的教材,亦可供化工行业从事研究、设计与生产的工程技术人员参考。

编辑本段目录一、上册绪论一、本课程的历史背景和内容二、贯穿本课程的三大守恒定律三、单元操作的研究方法四、贯穿本课程的主线——工程观点第一章流体流动第一节流体静止的基本方程一、密度二、压力的表示方法三、流体静力学方程四、流体静力学方程的应用第二节流体流动的基本方程一、基本概念二、质量衡算——连续性方程三、机械能衡算方程第三节流体流动现象一、流动型态二、湍流的基本概念三、管内流动的分析四、边界层与边界层分离第四节管内流动的阻力损失一、沿程损失的计算通式及其用于层流二、量纲分析法三、湍流的摩擦系数四、非圆形管内的沿程损失五、局部损失六、管内流动总阻力损失的计算第五节管路计算一、简单管路二、复杂管路三、可压缩流体的管路计算第六节流量测量一、变压头的流量计二、变截面的流量计习题符号表参考文献第二章流体输送机械第一节离心泵一、离心泵的操作原理与构造二、离心泵的理论压头与实际压头三、离心泵的主要性能参数四、离心泵的特性曲线及其应用五、离心泵的工作点与流量调节六、离心泵的安装高度七、离心泵的类型、选用、安装与操作第二节其他类型泵一、容积式泵二、其他叶片式泵三、各类泵在化工生产中的应用第三节通风机、鼓风机、压缩机和真空泵一、离心式风机二、旋转鼓风机和压缩机三、往复压缩机四、真空泵习题符号表参考文献第三章机械分离与固体流态化第一节筛分一、颗粒的特性二、颗粒群的特性三、筛分第二节沉降分离一、重力沉降原理二、重力沉降分离设备三、离心沉降原理四、离心沉降分离设备第三节过滤一、概述二、过滤设备三、过滤的基本理论四、滤饼洗涤五、生产能力第四节离心分离第五节固体流态化一、基本概念二、流化床的两种状态三、流化床的主要特性四、流化床的操作流速范围习题符号表参考文献第四章搅拌第一节搅拌设备一、主要部件二、叶轮形式三、叶轮的操作四、搅拌槽与挡板五、典型搅拌器构型六、搅拌器的液体循环量与压头第二节搅拌功率一、功率关联式二、功率曲线第三节搅拌器放大一、搅拌器放大的基础二、搅拌器放大的实例习题符号表参考文献第五章传热第一节概述一、传热在工业生产中的应用二、传热的三种基本方式三、传热速率与热阻第二节热传导一、傅里叶定律二、热导率三、平壁的稳定热传导四、圆筒壁的稳定热传导第三节两流体间的热量传递一、两流体通过间壁传热的分析二、传热速率和传热系数三、传热温差和热量衡算四、复杂流向时的平均温差五、传热效率�传热单元数法六、壁温的计算第四节给热系数一、给热系数的影响因素和数值范围二、给热系数与量纲分析三、流体做强制对流时的给热系数四、流体做自然对流时的给热系数五、蒸气冷凝时的给热系数六、液体沸腾时的给热系数第五节辐射传热一、基本概念二、物体的发射能力与斯蒂芬�波尔茨曼定律三、克希霍夫定律四、两固体间的相互辐射五、气体热辐射的特点六、辐射、对流的联合传热习题符号表参考文献第六章传热设备一、换热器的分类二、夹套式换热器三、蛇管式换热器四、套管式换热器五、列管式换热器六、换热器的强化途径七、板式换热器八、螺旋板式换热器九、板翅式换热器十、翅片管换热器及空气冷却器十一、热管换热器习题符号表参考文献第七章蒸发第一节概述第二节单效蒸发一、单效蒸发的计算二、蒸发设备中的温差损失三、溶液的沸点升高与杜林规则四、液柱静压头和加热管内摩擦损失对溶液沸点的影响五、真空蒸发第三节多效蒸发一、多效蒸发的流程二、蒸发器的生产能力、生产强度和多效蒸发器效数的限制三、多效蒸发的计算四、提高加热蒸汽经济程度的其他措施第四节蒸发设备一、蒸发器的结构及特点二、蒸发辅助设备第五节蒸发器的生产强度习题符号表附录附录一单位换算表附录二某些气体的重要物理性质附录三某些液体的重要物理性质附录四某些固体材料的重要物理性质附录五水的重要物理性质附录六干空气的物理性质(101.3kPa)附录七水的饱和蒸汽压(-20~100℃)附录八饱和水蒸气表(按温度排列)附录九饱和水蒸气表(按压力排列)附录十水的黏度(0~100℃)附录十一液体黏度共线图附录十二气体黏度共线图附录十三液体比热容共线图附录十四气体比热容共线图(常压下用)附录十五液体汽化潜热共线图附录十六管子规格附录十七IS型单级单吸离心泵性能表(摘录)附录十八8-18、9-27离心通风机综合特性曲线图附录十九列管式换热器附录二十常用筛子的规格附录二十一无机物水溶液在101.3kPa(绝)下的沸点习题参考答案二、下册第八章传质过程导论第一节概述一、工业生产中的传质过程二、相组成的表示法第二节扩散原理一、基本概念和菲克定律二、一维稳定分子扩散三、扩散系数第三节流体与界面间的传质第四节质量、热量、动量传递之间的联系——三种传递间的类比第五节传质设备简介习题符号说明第九章吸收第一节概述一、工业生产中的吸收过程二、吸收的流程和溶剂第二节吸收的基本理论一、气液相平衡二、吸收传质速率第三节吸收(或脱吸)塔的计算一、物料衡算和操作线方程二、填料层高度——对低浓度气体的计算三、传质单元四、吸收塔的调节和操作型问题五、填料层高度——对高浓度气体的计算六、塔板数七、脱吸第四节其他类型的吸收一、多组分吸收二、化学吸收三、非等温吸收第五节传质系数和传质理论一、传质系数关联式二、传质理论概况习题附录一若干气体在水中的亨利系数E附录二氨在水中的溶解度符号说明参考文献第十章蒸馏第一节二元物系的汽液相平衡一、理想溶液二、挥发度和相对挥发度三、非理想溶液第二节蒸馏方式一、简单蒸馏二、平衡蒸馏三、平衡级蒸馏和精馏原理第三节二元连续精馏的分析和计算一、全塔物料衡算二、精馏段的分析及其图解三、提馏段的分析和进料状况的影响四、理论塔板数五、实际塔板数与塔板效率六、填料精馏塔的填料层高度七、回流比的影响及其选择八、理论板数的捷算法九、精馏塔的操作型问题第四节其他蒸馏方式一、水蒸气蒸馏二、间歇蒸馏三、恒沸蒸馏和萃取蒸馏四、反应精馏第五节多元蒸馏一、基本概念二、多元物系的汽�液平衡三、多元精馏的物料衡算四、捷算法求理论塔板数习题符号说明第十一章气液传质设备第一节板式塔一、主要类型板式塔的结构和特点二、板式塔的水力学性能三、设计要领四、板效率第二节填料塔一、填料塔与塔填料二、填料塔的水力学性能与传质性能三、气液传质设备的比较与选用习题符号说明参考文献第十二章萃取第一节萃取的基本概念一、三角形相图二、三角形相图在单级萃取中的应用三、萃取剂的选择第二节萃取过程的流程和计算一、单级萃取二、多级错流萃取三、多级逆流萃取四、连续接触逆流萃取五、回流萃取,双溶质的萃取六、萃取过程的传质第三节萃取设备一、混合�澄清槽二、重力流动的萃取塔三、输入机械能量的萃取塔四、离心萃取机五、萃取设备的选用习题符号说明第十三章干燥第一节湿空气的性质及湿度图一、湿空气的性质二、空气湿度图三、湿度图的用法第二节干燥器的物料衡算及热量衡算一、湿物料中含水率的表示方法二、空气干燥器的物料衡算三、空气干燥器的热量衡算四、干燥过程的图解第三节干燥速度和干燥时间一、水分在空气与物料间的平衡关系二、恒定干燥条件下的干燥速度三、恒定干燥条件下恒速阶段干燥时间的计算四、恒定干燥条件下降速阶段干燥时间的计算五、干燥条件变化情况下的干燥过程第四节干燥器一、概述二、盘架式干燥器三、间歇式减压干燥器四、洞道式干燥器五、转筒式干燥器六、气流干燥器七、流化床干燥器八、喷雾干燥器九、滚筒式干燥器第五节气体的增湿与减湿一、增湿和减湿过程的机理二、增湿器和减湿器习题符号说明参考文献第十四章其他传质分离过程第一节超临界流体萃取一、概述二、超临界流体三、超临界流体萃取的过程四、超临界流体萃取的应用第二节吸附一、吸附剂二、吸附相平衡三、吸附速率四、固定床吸附五、吸附循环第三节膜分离一、分离膜及膜组件二、反渗透、纳滤、超滤和微滤三、电渗析四、气体分离五、渗透汽化和蒸气渗透六、膜接触器习题符号说明参考文献习题参考答案参考读物词条图册更多图册参考资料1化工原理(王晓红) - 图书/dangdangwangshudian/product.asp?id=product_20604942扩展阅读:1图书/dangdangwangshudian/product.asp?id=product_206049422易部客:/SalesService.aspx?bid=100000983易部客:/SalesService.aspx?bid=100000994化工原理,内蒙古工业大学开放分类:科学,化工,图书,化工原理我来完善“化工原理”相关词条:药物化学高分子物理生物分离工程生化分离工程煤化学工业药剂学微生物学仪器分析发酵工程酶工程药物化学高分子物理生物分离工程生化分离工程煤化学工业药剂学微生物学仪器分析发酵工程酶工程物理化学环境化学环境微生物学流体力学无机化学高分子化学食品化学合成化学化工过程大学化学制剂学食品生物化学流变学生物工艺学化工热力学化学反应工程高分子链化工原理课程设计百度百科中的词条内容仅供参考,如果您需要解决具体问题(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

相关文档
最新文档