5-氟-2-硝基苯甲酸合成

5-氟-2-硝基苯甲酸合成
5-氟-2-硝基苯甲酸合成

5-氟-2-硝基苯甲酸的制备:O OH

F HNO3

O OH

N+

O-

O

F

所需原料:

1、间氟苯甲酸

2、浓硫酸

3、发烟硝酸

操作步骤:

将101g间氟苯甲酸、210mL浓硫酸加入到1000mL三口瓶中,搅拌冷却至0℃,慢慢滴加混酸(将93g浓硫酸慢慢倒入48g发烟硝酸中,搅拌冷却至室温),使之温度保持在0-5℃,约3小时滴加完毕。再在此温度下,保温反应2小时。取600g冰水混合物至于烧杯中,边搅拌边将反应液慢慢倒入,温度上升较快,析出白色固体,待混合液冷却至20℃过滤,用冰水淋洗五次(每次50mL)。于80-90℃下烘干,熔点142-144℃,得到产品约117g。

注意点:

1、混酸配置要将浓硫酸慢慢倒入发烟硝酸中

2、滴加混酸时,温度上升较快,应慢慢滴入,温度要保持在5℃以下为好,温度过高会产

生异构体。

3、间氟苯甲酸不溶于浓硫酸,随着混酸的加入,慢慢溶解,后有慢慢析出固体。

一氯五氟乙烷化学品安全技术说明书(MSDS)

五氟氯乙烷 简介 五氟氯乙烷 化学性质 熔点 : 30-31°C 沸点 : -39°C 密度 : 1,568 g/cm 3 闪点 : 70°C 水溶解性 : Insoluble CAS 数据库: 76-15-3(CAS DataBase Reference) NIST 化学物质信息: 76-15-3(NIST) EPA 化学物质信息: 76-15-3(EPA Substance) 安全信息 危险品标志 : Xi 危险类别码 : 36/37/38 安全说明 : 38 危险品运输编号 : 1020 HazardClass : 2.2 76-15-3 CAS 号: 76-15-3 英文名称: Chloropentafluoroethane 英文同义词: Refrigerant R115;Monochloropentafiuoroethane;(mono)chloropentafluoroethane; 1-Chlor-1,1,2,2,2-pentafluorethan;1-Chloro-1,1,2,2,2-Pentafluoroethane; 1-chloro-1,1,2,2,2-pentafluoro-ethane;1-chloropentafluoroethane;CF3CF2Cl; cfc115;chloropentafluoretano;chloropentafluorethane; chloropentafluorethane(french);chloropentafluoro-ethan;Chloroperfluoroethane; Chlorpentafluorethan;ethane,chloropentafluoro-;F115;F-115;FC 115;FKW115 中文名称: 五氟氯乙烷 中文同义词: 氟利昂115;氯五氟乙烷;五氟氯乙烷;一氯五氟乙烷 CBNumber: CB5224320 分子式: C2ClF5 分子量: 154.47 MOL File: 76-15-3.mol

年产1000吨高质量3,4-二氯苯胺

项目名称:年产1000吨高质量3,4-二氯苯胺 1、产品功能及应用领域: 3,4-二氯苯胺是一种重要的有机中间体,是合成环丙草胺、敌稗、敌草快、草克尔、新燕灵、敌草隆、利谷隆、草不隆和苯酰敌草隆等除草剂与酰胺唑杀茵剂的重要原料,也用于生产一系列医药和染料等中国体,有广阔的应用前景。技术特点简要说明:采用自制的改性镍催化剂,活性高,选择性好,寿命长,其始原料3,4-二氯硝基苯几乎100%转化,并减少了氢解脱氯反应,分离的平均总收率94.9%,氢解脱氯水于0.2%。溶剂甲醇和催化剂回收套用,失活的催化剂可再生套用。催化加氢绿色合成技术和清洁生产工艺,提高原子利用率,从源头减少“三废”产生量。比传统铁粉还原法“三废”减少95%以上。 本项目以3,4-二氯硝苯为主要起始原料。3,4-二氯硝基苯通过对氯硝基苯氯化或邻二氯苯经硝化和分离制得,省内外均有生产,且价格较低,可直接外购。故本项目以3,4-二氯硝基苯为主要起始原料,经溶解,催化加氢还原,分离和烘干等工序生产3,4-氯苯胺,收率≥95%。 2、本技术与国内外同类产品比较: 自行研发的催化剂完全可以替代国内外文献报道的Pb/C、Pt/C、Ru/C改性lr和镍合金催化剂。本项目中采用的催化剂和产品保护剂未见文献报道。设计了传质和传热好的加氢反应釜,巧妙地过滤和分离设备,减少了催化剂和产品的损耗,有利于安全生产。 在“催化加氢多功能装置”试验结果,催化加氢转化率≥99.5%,产品总收率≥95%,产品纯废≥99%,其主要原因是采用自制的改性镍催化剂,活性高,选择性好,使3,4-二氯硝基苯、氧化偶氮苯和偶氮苯等反应物和稳定的中间产物均转化成3,4-二氯苯胺,同时减少了氢解脱氯的副反应,提高收率,降低生产成本。在产品中加入少量保护剂可防止产品氧化变质,确保产品质量。与会专家一致认为,在年产500吨催化加氢多功能装置上进行了3,4-氯苯胺开发研究。由3,4-氯硝基苯经催化加氢制备3,4-二氯苯胺的工艺路线先进可行,在催化剂、加氢装置和保护剂方面创新,加氢转化率达99.9%,氢解脱卤≤1%,总收率94.9%,含量大于99%,技术处于国内领先水平,产品质量达到国际先进水平。

文献综术2

科研训练论文(文献综述) ( 题目:含硫杂环药物的合成意义及研究进展学生姓名:张志伟 学号:200620515019 学院:化工学院 班级:制药工程专业(1)班 二〇一〇年四月

含硫杂环药物的合成意义研究进展 杂环化合物是有机化合物的重要组成部分,自发现以来,有一个多世纪的历史,近几年随着结构分析和鉴定技术的不断发展,越来越多的杂环化合物被发现,其用途和应用范围也在不断拓展。具统计杂环化合物的数量约占现今有机化合物总数的三分之一[1]。其中含硫杂环化合物是较常见的物质,含硫的单杂环主要有噻吩,噻唑,稠环有苯并杂卓类等。以含硫单杂环,含硫稠环等为起始原料合成的多种含硫杂环化合物及其衍生物有着广泛的用途,此外一些含硫杂环结构的化合物也可拼接到一些化合物的中间体的活性结构上使药效更好,此类药物应用于农业、工业、医药等领域。农业上,可用作杀虫剂,杀菌剂[2];工业上,有含硫系列的合成香料化合物、还可作为部分新型润滑油添加剂[3],金属有机材料[4]等。医药上,用作杀菌、抗病毒[5,6]、抗癌症[7],还是头孢三嗪、头孢他美和头孢地嗪等头孢类抗生素的重要原料[8],一些苯并硫氮杂卓类药物临床上作为抗焦虑药物、催眠药物和心血管药物[9]。 含硫苯并杂环化合物有苯并噻吩,苯并噻唑类等及其衍生物自Hofmann[10]在1879年首次合成2-苯并噻唑之后,越来越多的苯并噻唑类衍生物被合成。下面对含硫苯并杂环化合物的合成进展进行综述。 一、苯并噻唑类杂环化合物的合成 (一)2-芳基苯并噻唑的合成研究进展

苯并噻唑类化合物是一类重要的双环化合物,广泛存在于自然界。其中苯并噻唑的衍生物特别是二位取代的苯并噻唑具有很强的生理活性,如杀菌、抗病毒等,因此它们在药物化学和农药方面有广泛的研究和应用。苯并噻唑作为其衍生物的重要中间体,其合成方法主要采用Jacobson环化和Hugerschoff反应,虽然这些反应能有效地合成苯并噻唑类化合物,但是该类反应中使用的赤血盐和液溴等化学试剂具有毒性大、不易操作等缺点,因此开发了新的合成方法,即合成一系列的硫代酰胺与Mn(III)在微波辐射的条件下发生自由基环加成反应,合成一系列2-芳基苯并噻唑(4a-h),其结构经红外光谱、核磁共振光谱和质谱等得到了证实。具体方案如下:

对硝基苯甲酸的制备1

对硝基苯甲酸的制备 一、实验目的: 1. 掌握利用对硝基甲苯制备对硝基苯甲酸的原理及方法。 2. 熟练掌握回流、抽滤、重结晶等过程的操作。 3. 练习并掌握固体酸性产品的纯化方法。 二、实验原理: 三、实验操作流程图: 250mL + 6g 对硝基甲苯 18g K 2Cr 2O 7 40mL H 2O 颜色 ? 搭建回流 搅拌装置 小火微沸 回流0.5h 颜色 ? 稍 冷 倒入盛有80mL 冷水的250m L 的烧杯 S 抽 滤 粗产品 颜 色 ? 25mL ×2 水洗涤 转移到盛有 30mL 50% H 2SO 4 的250m L 烧杯 (研碎固体) 直火煮沸 10min 转移到盛有 50mL 5% NaOH 的250m L 烧杯 滤 液 1g 活性C 脱 色 趁热抽滤 滤 液 冷 却 搅拌下缓慢转移到盛有 60mL 15% H 2SO 4的250mL 烧杯 冰水冷却 10min S ↓ 颜色 ? 抽 滤 少量水洗涤2次 产 品 100~105℃ 烘箱干燥 20min CH 3 NO 2 +Na 2Cr 2O 7+4H 2SO 4 + ++Na 2SO 4Cr 2(SO 4)35H 2O CO 2H NO 2 煮 沸3 min 50℃温热溶解 抽 滤 缓慢加入 25mL 浓 硫酸20m i n 加完 滤液(倒入指定废液桶) 沉 淀 物 t <沸腾温度 pH 为1~2 10mL ×2水洗 称重 计算产率

四、实验注意事项 1. 在滴加硫酸反应过程中由于反应剧烈放热,必要时可用冷水冷却,以免对硝基甲苯因升华而凝结在冷凝管内壁,故必须严格控制硫酸的滴加速度。 2. 滴加完后加热反应过程中,冷凝管内壁可能有对硝基甲苯析出,这时可适当关小冷凝水,使其熔融滴下。 3. 粗产品加硫酸煮沸的目的是溶解未反应的铬盐。 4. 沉淀用NaOH溶液处理的目的是除去未反应的对硝基甲苯(m.p.为51.3℃)和进一步除去铬盐(生成Cr(OH)3沉淀),如过滤温度过低,则对硝基苯甲酸钠也会析出而被滤去。 5. 不能把硫酸往脱色后的滤液中滴加,否则生成的沉淀会包含一些钠盐而影响产物的纯度。中和时应使溶液呈强酸性(pH为1~2),否则需补加少量的硫酸。 6. 所得的产品对硝基苯甲酸除可用升华法进行精制外,还可用50%的乙醇溶液精制。

绿色环保制冷剂

二氟一氯甲烷(R22) 二氟一氯甲烷(R22)可作为工业、商业、家庭等空调系统的制冷剂;可用作杀虫剂和喷漆的气雾喷射剂,也可用于生产灭火剂1211;还是生产含氟高分子化合物的基本原料。 产品质量:优级品,纯度≥%。 环境参数:ODP=,GWP=1700。 产品名称:二氟甲烷(R32) 二氟甲烷(R32)可用作为混合制冷剂,替代R22。 产品质量:优级品,纯度≥%。 环境参数:ODP=0,GWP=550。 四氟乙烷(R134a) 四氟乙烷(R134a)作为制冷剂可广泛用于汽车空调、冰箱、中央空调、商业制冷等制冷空调系统;还可作为医药、农药、化妆品、清洗等产品的气雾推进剂、阻燃剂以及发泡剂。 产品质量:优级品,纯度≥%。 环境参数:ODP=0,GWP=1300。 五氟乙烷(R125) 五氟乙烷(R125)可用作混合制冷剂,替代R22;用作灭火剂,替代Halon-1211和Halon-1301。产品质量:优级品,纯度≥%。 环境参数:ODP=0,GWP=3400。 二氟乙烷(R152a) 二氟乙烷(R152a)可用作制冷剂、发泡剂、气雾剂和清洗剂等。 产品质量:优级品,纯度≥%。 环境参数:ODP=0,GWP=120。 氯-1,1-二氟乙烷(R142b) 1-氯-1,1-二氟乙烷(R142b)可用作制冷剂,温度控制器介质及航空推进剂的中间体。 产品质量:优级品,纯度≥%。 环境参数:ODP=0,GWP=550。 R415B

R415B是一种新型环保制冷剂,适用于冰箱、冷柜、汽车空调、制冰机、食品柜、自动售货机以及其它各种R12或R134a的制冷空调系统。 主要用途:作制冷剂,替代R12和R134a。 产品质量:优级品,纯度≥%。 环境参数:ODP=,GWP=530。 技术特点:环保性能好;无毒、不易燃;制冷速度快,节能效果好;无需改动原R12和R134a 系统的润滑油、管路、部件和生产线,可直接充灌。 R418A是一种新型环保制冷剂,适用于家用空调、中央空调、工业制冷、运输制冷、冷库以及其它各种R22或R502的制冷空调系统。 主要用途:作制冷剂,替代R22和R502。 产品质量:优级品,纯度≥%。 环境参数:ODP=,GWP=1500。 技术特点:环保性能好;无毒、不燃;制冷速度快,节能效果好;无需改动原R22和R502系统的润滑油、管路、部件和生产线,可直接充灌。

对氨基苯甲酸的制备方法

对氨基苯甲酸乙酯的制备方法 【【实验目的】 1. 通过苯佐卡因的合成,了解药物合成的基本过程。 2. 掌握氧化、酯化和还原反应的原理及基本操作。 3.学习以对甲苯胺为原料,经乙酰化、氧化、酸性水解和酯化,制取对氨基苯甲酸乙酯的原理和方法。 【实验原理】 苯佐卡因的合成涉及四个反应: (1)将对甲苯胺用乙酸酐处理转变为相应的酰胺,其目的是在第二步高锰酸钾氧化反应中保护氨基,避免氨基被氧化,形成的酰胺在 所用氧化条件下是稳定的。 (2)对甲基乙酰苯胺中的甲基被高锰酸钾氧化为相应的羧基。氧化过程中,紫色的高锰酸盐被还原成棕色的二氧化锰沉淀。鉴于溶液 中有氢氧根离子生成故要加入少量的硫酸镁作为缓冲剂,使溶液 碱性不致变得太强而使酰胺基发生水解。反应产物是羧酸盐,经 酸化后可使生成的羧酸从溶液中析出。 (3)使酰胺水解,除去起保护作用的乙酰基,此反应在稀酸溶液中很容易进行。 (4)用对氨基苯甲酸和乙醇,在浓硫酸的催化下,制备对氨基苯甲酸乙酯。 反应式如下: 【实验试剂】 对甲苯胺、高锰酸钾、无水乙醇、95%乙醇溶液、乙醚、锌粉、无水硫酸镁、七水硫酸镁、浓盐酸、18%盐酸溶液、浓硫酸、冰醋酸、10%氨水溶液、10%碳酸钠溶液 【实验器械】 数字显示熔点仪、电子台秤、电磁炉、磁力搅拌器、烘箱、球形冷凝管、直形冷凝管、空气冷凝管、刺型分馏柱、接收器、蒸馏头、圆底烧瓶(100mL、50mL)、烧杯(500mL、250mL、100mL)、量筒(50mL、10mL)、锥形瓶、抽滤瓶、布氏漏斗、分液漏斗、玻璃棒、药匙、pH试纸、表面皿【实验装置】

图1 图2 图3 【实验步骤】 (一)对甲基乙酰苯胺 在100mL圆底烧瓶中,加入10.7g(0.1mol)对甲苯胺、14.4mL(0. 25mol)冰醋酸、0.1g锌粉(<=0.1g),搭建装置(图1)作为反应装置,加热,使反应温度保持在100~110℃,当反应温度自动降低时,表示反应结束。取下圆底烧瓶,将其中的药品倒入放有冰水的500mL烧杯中,冷却结晶,然后抽滤,取滤渣即对甲基乙酰苯胺。取2g对甲基乙酰苯胺(其它的放入烘箱中烘干)放入50mL圆底烧瓶中,再加入10mL2:1的乙醇—水溶液和适量活性炭,搭建回流装置(图2)进行重结晶,加热15分钟后趁热抽滤除去活性炭,再冷却结晶,抽滤得成品,用滤纸干燥后,取部分测熔点,并记录数据。将烘干后的对甲基乙酰苯胺与重结晶后的对甲基乙酰苯胺一起称重,记录数据。 (二)对乙酰氨基苯甲酸 在100mL烧杯A中加入7.5g(0.05mol)对甲基乙酰苯胺、20g七水硫酸镁,混合均匀。在500mL烧杯B中加入19g高锰酸钾(不可过量)和42 0mL冷水,充分溶解。从B中移出20mL溶液于100mL烧杯C中,再将A中的混合物倒入B中,加热至85℃,同时不停搅拌,直至溶液用滤纸检验时无紫环出现,再边搅拌边逐滴加入C中溶液,至用滤纸检验紫环消褪很慢时停止滴加。趁热抽滤,在滤液中加入盐酸至生成大量沉淀,抽滤,收好产品。 (三)对氨基苯甲酸 称量上一步产物,并测熔点,记录数据。在100mL圆底烧瓶中加入5. 39g对乙酰氨基苯甲酸和40.0mL18%盐酸溶液,小火回流(图2)30分钟。然后,冷却,加入50mL水,用10%氨水溶液调节pH至有大量沉淀生成(此时pH≈5),抽滤,干燥产品,称重,测熔点,记录数据。 (四)对氨基苯甲酸乙酯 在100mL圆底烧瓶中加入1.09g对氨基苯甲酸、15.0mL95%乙醇溶液,旋摇圆底烧瓶,使尽早溶解,之后在冰水冷却下,加入1.00mL浓硫酸,生成沉淀,加热回流(图2)30分钟。然后将反应混合物转入250mL烧杯中,

新型手性二茂铁配体合成进展..

探索新型手性配体是不对称合成研究的重点内容。人们在探索新型手性配体的过程中发现,三种类型的手性骨架的不对称诱导效果一般是比较优异的:联萘骨架、螺二氢茚骨架以及二茂铁骨架。 其中二茂铁骨架相比起其它两种骨架的不同之处在于它独特的平面手性。平面手性的二茂铁衍生物作为配体在现代不对称合成中占有十分重要的地位,大到工业化应用,小到新型反应探索,都有它们的用武之地。以二茂铁配体家族中最有名的Josiphos类配体为例,根据取代基的不同,目前已制备出150多种衍生物,其中有40种被选出来组成配体套装用于条件筛选以及公斤级规模的产品生产。值得一提的是,目前已知最大规模的对映选择性工业生产程序用到的正是二茂铁配体家族中赫赫有名的Josiphos类配体。 鉴于平面手性二茂铁无论是在学术界亦或是工业界的重要应用价值,如何高效地构建结构多样的平面手性二茂铁衍生物是一个特别重要的研究方向。目前合成平面手性二茂铁的策略主要有如下四种:手性辅基诱导的非对映选择性邻位金属化、手性配体控制的对映选择性邻位金属化、催化不对称C-H官能化以及催化动力学拆分。下面将一一介绍。 手性辅基诱导的非对映选择性邻位金属化 在合成平面手性二茂铁的策略中,较早报道并且至今已发展德比较成熟的是手性辅基诱导的非对映选择性邻位金属化。 首例二茂铁衍生物的非对映选择性邻位金属化报道于1969年。Aratani等选择2-甲基哌

啶为导向基,用正丁基锂和干冰处理得到氨基酸中间体,再通过季铵盐化、钠汞齐还原以及重氮甲烷甲基化三步,可以最终94%的光学纯度得到产物2-甲基二茂铁甲酸甲酯。虽然不久后Ugi等重复此实验只得到67%的光学纯度,并就此提出质疑,但是该报道作为非对映选择性邻位金属化的首例是没有争议的。 随后的一年,Ugi等以N,N-二甲基-二茂铁乙基胺为底物进行非对映选择性邻位金属化。他们从二茂铁乙醇3出发,先后与光气和二甲胺反应得消旋产物rac-4,再用酒石酸进行拆分可以十克级的规模高收率得到N,N-二甲基-二茂铁乙基胺(的两个对映异构体(R)-4与(S)-4。 对该中心手性底物(R)-4进行邻位锂化,其中的一个非对映异构中间体因为空间位阻而占优,非对映选择性达到优秀水平,最后用亲电试剂淬灭锂化中间体可以得到平面手性的1,2-二取代二茂铁氨基化合物(R, S p)-5,氨基季铵盐化后,可以进一步发生消除反应或者亲核取代反应,从而转化为多种平面手性的1,2-二取代二茂铁衍生物。 Ugi等报道的这个手性底物在二茂铁衍生物的非对映选择性邻位金属化上取得了巨大的成功,从此为该领域奠定了坚实的基础,并在日后平面手性二茂铁的合成中得到了广泛的应用。为纪念Ugi所做的贡献,这个底物(R)-4又叫做Ugi胺。

对氨基苯甲酸的制备

告验报实对氨基苯甲酸的制备合成化学实验名称课程名称 2 实验次数姓名汪建红化学化工学院二级学院专业化学 18 日实验日期: 3 月 mmHg % 大气压验条件:室温℃相对湿度 一、实验目的、熟悉制备对氨基苯甲酸的原理和方法;1 、熟练掌握回流装置的安装和使用; 2 、熟练掌握真空泵的使用方法。3二、实验原理、对氨基苯甲酸的用途1PABA,磺胺药具有抑制细菌把的组成部分(PABA)对氨基苯甲酸是维生素B(叶酸)10作为组分之一合成叶酸的反应的作用。、对氨基苯甲酸合成涉及的三个反应2)将对甲苯胺用乙酸酐处理变为相应酰胺,此酰胺比较稳定,这样可以在高锰酸钾1(氧化反应中保护氨基,避免氨基被氧化;)高锰酸钾将对甲基乙酰苯胺中的甲基氧化成相应的羧基;由于反应中会产生氢氧2(反应产物羧酸盐避免碱性太强而使酰基发生水解;根离子,故要加入少量硫酸镁作缓冲剂,经酸化后得到羧酸,能从溶液中析出。)水解除去保护的乙酰基,稀酸溶液中很容易进行。( 3 、合成对氨基苯甲酸的反应式3O(CHCO)23NHCOCHCHp-CHCHNHp-CHHCHCO+ 3266443323NaCHCO 232KMnONHCOCHHp-CHC2MnO+HCO+Kp-CHCONHCOH+KOH+ 44363246232+KCOHp-CHCONHCH+HHCOp-CHCONHC26432634 HCOCp-NHHHHCOCONHCp-CHHCH++COOH 26422463232三、仪器与试剂,直型水冷凝管,烧杯,锥形瓶,酒精灯,铁架台,℃)(100仪器:圆底烧瓶,温度计布什漏斗,真空泵,抽滤瓶。供参考. 试样:对甲苯胺(A.R),醋酸酐(A.R),结晶醋酸钠(CHCOONa·3HO)或无水醋酸钠23(A.R),高锰酸钾(A.R),硫酸镁晶体(MgSO·7HO)(A.R),乙醇(A.R),盐酸(A.R),硫酸(A.R),24氨水(A.R)。 四、实验装置图

2,6-二氯苯胺

1、物质的理化常数 国标编号: 61768 CA S: 608-31-1 中文名称: 2,6-二氯苯胺 英文名称: 2,6-Dichloroaniline 别名: 分子式: C 6H 5 Cl 2 N;Cl 2 C 6 H 3 NH 2 分子 量: 162.02 熔点: 39℃ 密度: 蒸汽压: >110℃ 溶解性: 溶于乙醇、乙醚等多数有机溶剂 稳定性: 稳定 外观与性 状: 针状结晶 危险标记: 15(毒害品) 用途: 用于有机合成 2.对环境的影响: 一、健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:与苯胺及氯苯胺的作用类似,是强高铁血蛋白形成剂。对中枢神经系统、肝、肾有损害。引起头痛、头晕、恶心、呕吐、指甲与上唇青紫、呼吸困难等。 慢性影响:患者有神经衰弱综合症表现,伴有轻度发绀、贫血和肝、脾肿大。 二、毒理学资料及环境行为 危险特性:遇明火、高热可燃。与强氧化剂可发生反应。受高热分解,产生有毒的氮氧化物和氯化物气体。

燃烧(分解)产物:一氧化碳、二氧化碳、氧化氮、氯化氢。 3.现场应急监测方法: 4.实验室监测方法: 液相色谱法 气相色谱法,参照《分析化学手册》(第四分册,色谱分析),化学工业出版社 5.环境标准: 前苏联车间空气中有害物质的最高容许浓度 0.5mg/m3[皮](3,4-二氯苯胺) 6.应急处理处置方法: 一、泄漏应急处理 隔离泄漏污染区,周围设警告标志,建议应急处理人员戴好防毒面具,穿化学防护服。不要直接接触泄漏物,用洁净的铲子收集于干燥净洁有盖的容器中,运至废物处理场所。如大量泄漏,收集回收或无害处理后废弃。 二、防护措施 呼吸系统防护:高浓度环境中,佩带防毒面具。紧急事态抢救或逃生时,应该佩戴自给式呼吸器。睛防护:戴安全防护眼镜。 防护服:穿紧袖工作服,长统胶鞋。 手防护:戴橡皮手套。 其它:工作现场禁止吸烟、进食和饮水。及时换洗工作服。工作前不饮酒,用温水洗澡。监测毒物。进行就业前和定期的体检。 三、急救措施 皮肤接触:立即脱去污染的衣着,用肥皂水及清水彻底冲洗。注意手、足和指甲等部位。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水冲洗。 吸入:迅速脱离现场至空气新鲜处。呼吸困难时给输氧。呼吸停止时,立即进行人工呼吸。就医。

氟碳表面活性剂全氟己基磺酸钾的合成研究

氟碳表面活性剂全氟己基磺酸钾的合成研究 范春雷林晓晨 〔辽宁省石油化工规划设计院〕 摘要:本文对氟碳表面活性剂进行了论述并介绍了一种阴离子型氟碳表面活性剂全氟己基磺酸钾的合成方法及其工艺流程。 关键词:氟碳表面活性剂;全氟己基磺酸钾;合成;工艺流程 1. 氟碳表面活性剂概述 1.1氟碳表面活性剂的基本概念 众所周知,表面活性剂一般由极性基团(亲水基)和非极性基团(疏水基)二部份组成。普通表面活性剂的非极性基团为碳氢链,而氟碳表面活性剂的非极性基团为氟碳链,即以氟原子部分或全部取代碳氢链上的氢原子。但二者在极性基团的结构上无明显区别。所以氟碳表面活性剂就是以氟碳链取代碳氢链作为分子中非极性基团的表面活性剂。 1.2氟碳表面活性剂的分类: 与普通表面活性剂一样,氟碳表面活性剂的分类依据其极性基团结构不同可分为离子型和非离子型二大类。离子型又可分为阴离子型、阳离子型和两性离子型氟碳表面活性剂。 1.2.1阴离子型氟碳表面活性剂: 根据其极性基团(亲水基)不同可分为羧酸盐类(RfCOO-M+)、磺酸盐类(RfSO3-M+)、磷酸盐类(RfOPO3-M2+)和硫酸盐类(RfOSO3-M+),工业上应用以前三者为主。 羧酸盐类氟碳表面活性剂一般在强酸或含高价阳离子水溶液中的溶解度较小,但热稳定性较高; 磺酸盐类氟碳表面活性剂相对具有更好的耐氧化性,对强酸、电解质敏感性小; 磷酸盐类氟碳表面活性剂相对发泡性能较差。 1.2.2阳离子型氟碳表面活性剂: 阳离子氟碳表面活性剂几乎都是含氮化合物,即有机胺衍生物。由于大多数物质表面颗粒带负电荷,故阳离子型活性剂易被吸附。 1.2.3两性离子氟碳表面活性剂: 两性离子活性剂分子结构中同时含有酸性基和碱性基,其表现出的离子类型取决于溶液PH值,即在酸性介质中表现为阳离子型,在碱性介质中表现为阴离子型。两性氟碳表面

五氟乙烷

五氟乙烷 HFC-125 ,CHF2CF3 CAS Number:354-33-6 物理性质 外观与性状:无色挥发性液化气体,气味清新。在常温下为无色气体,在自身压力下为无色透明液体。 分子量120.02 临界温度,℃66.05 熔点,℃-103 临界压力,Mpa 3.59 沸点,℃-48.45 临界密度,g/cm3 0.571 相对密度(水=1) 1.248 PH值中性 相对蒸气密度(空气=1) 4.2 引燃温度,℃733 饱和蒸气压(25℃),KPa 1371 在水中溶解度(25℃)W% 0.09(101.Kpa ) 比热(液体25℃),KJ/Kg·℃ 1.26 沸点下蒸发潜能,KJ/Kg 165.0 安全数据 破坏臭氧潜能值(ODP)0 全球变暖系数值(GWP)3500 大气寿命期(年)29 质量指标 级别优级一级 纯度,%≥99.8 99.5 水分,%≤0.001 0.001 酸度%≤0.00001 0.0001 蒸发残留物%≤0.01 0.01 用途: HFC-125可作制冷剂,是混合工质的重要组份,用于替代CFC-502和HCFC-22;作灭火剂用于替代Halon-1211和Halon-1301。 常规包装: 800L/926L 钢瓶 五氟乙烷 英文名Pentafluoroethane

别名1,1,1,2,2-Pentafluoroethane 产品名称五氟乙烷 分子结构 分子式C2HF5 分子量120.02 CAS 登录号354-33-6 EINECS 登录号206-557-8 物理化学性质沸点-48.5 oC 安全数据危险品运输编号UN 3220

含氟烷基化合物的合成

含氟烷基化合物的合成 关键词:四氟乙烯六氟环氧丙烷北京标准物质网 目前含氟烷基化合物工业化生产方法主要有电解氟化法、氟烯烃调聚法和氟烯烃齐聚法。 1.电解氟化法 在低电压、大电流下,于无水氟化氢介质中对烷基磺酸、烷基羧酸或者酰氯进行电解.可得到全氟烷化合物,反应式如下所示: 电解过程中在阴极产生氢气,在阳极有机物被氟原子取代。在有机物氟化的过程中,只有有机物的氢原子被氟原子取代,其他一些官能团如酰基和磺酰基等仍被保留。典型的电解氟化的例子是烷基酰氯和烷基磺酰氯分别在无水氟化氢中电解生成全氟烷基酰氟和全氟烷基磺酰氟,由它们出发,可用普通方法制得各类氟碳表面活性剂。 对于电解氟化反应机理,Burdort J和schmidt H两个研究小组分别提出了四步离子反应机理,又叫做ECEC机理。该机理在1972年通过实验得到了验证。其反应通式如下: 第1步,有机物在阳极表面发生吸附,失去1个电子,自身被氧化成阳离子。第2步,有机物阳离子失去1个质子成为自由基。第3步,自由基再失去1个电子成为阳离子。第4步,阳离子发生亲核取代反应,生成有机氟化物。

电解氟化法的最大优点在于反应一步完成,过程简单,但其成本高,用电量大,需专门的电解设备,而且反应中反应物的裂解、环化、重排现象严重,副产物多,产率较低。 2.氟烯烃调聚法 氟烯烃调聚法利用全氟烷基碘等物质作为端基物,调节聚合四氟乙烯等含氟单体制得低聚合的含氟烷基化合物。典型的氟烯烃调聚反应如Du Pont公司用五氟碘乙烷作端基物对四氧乙烯在加热加压条件下引发连锁反应。 全氟烷基碘与镁反应,生成全氟烷基格氏试剂,格氏合成技术可以进一步合成多种氟表面活性剂。 低级醇也可作为端基物调节聚合四氟乙烯: CH 3CH 2 0H+ n CF 2 CF 2 →H(CF 2 CF 2 )nCH(CH 3 )OH 与通常的加聚反应不同,此体系中存在着链转移常数很大的端基物,它很容易与单体聚台时生成的自由基反应,因此得到的产物是链长在一定范围内变化的低聚合度产物,而不能得到高分子产物,且分子链两端均被端基物占据。目前国内外许多大公司都用此法生产含氟表面活性剂,制取的全氟烷烃基为直链结构,表面活性高,但得到的产物往往是不同链长化合物的混合物。 3氟烯烃齐聚法 氟烯烃齐聚法制备含氟烷基中间体是20世纪70年代发展起来的,它利用氟烯烃在非质于性溶剂中发生齐聚反应得到高支链、低聚合度全氟烯烃齐聚物。齐聚法生产的表面活性剂—般是以氟阴离子为催化剂,单体主要有3种:四氟乙烯、六氟丙烯、六氟丙烯环氧化物。 (1)四氟乙烯的齐聚反应 四氟乙烯通常情况下进行自由基聚合反应,生成高分子化合物即聚四氟乙烯树脂,它几乎不溶于所有溶剂。但如果用阴离子催化进行四氟乙烯阴离子聚合,可得到低相对分子质量的聚合物,或称齐聚物,这一反应称为齐聚反应。四氟乙 烯的齐聚反应一般是在极性非质子溶液中进行,催化剂有CsF、KF,N(CH 3) 4 F

二茂铁的发现_制备及其应用_肖陆飞

收稿日期:2008-09-03 作者简介:肖陆飞(1976-),男,安徽来安人,滁州职业技术学院讲师,安徽大学在读硕士。 二茂铁的发现、制备及其应用 肖陆飞 (滁州职业技术学院基础部,安徽滁州239000) 摘要:二茂铁的发现、结构及其性质都是比较神奇的,自从二茂铁被发现以来就引起了人们的极大兴趣,二茂铁及其衍生物在众多领域有着广泛的应用,本文简单的介绍二茂铁的发现、制备及其应用。 关键词:二茂铁;发现;制备;应用中图分类号:TQ050.9 文献标识码:A 文章编号:1671-5993(2009)01-0064-02 二茂铁(FcH )又名双环戊二烯基铁,学名二环戊二烯基铁,属于金属有机化合物,它是由两个环戊二烯基阴离子和一个二价铁阳离子组成的具有夹心形状的化合物(见图1),其分子式为(C 5H 5)2Fe 。二茂铁易溶于甲 醇、乙醇、乙醚、石油醚、汽油、 二氯甲烷、苯等常用有机溶剂,溶于浓硫酸,在沸腾的烧碱和盐酸溶液中不溶解、 不分解;二茂铁具有高度热稳定性、化学稳定性和耐辐射性;二茂铁具有芳 香性,100℃以上能升华,不容易发生加成反应,易发生 取代反应;此外二茂铁还有低毒性,在溶液中两个环可以自由旋转等特点。正是基于二茂铁的这种稳定性、芳香性、低毒、亲油性、富电性、氧化还原性和易取代等特点,使得自二茂铁出现以来就引起了广大科研工作者极大的兴趣,对于二茂铁及其衍生物的合成、结构及性质和应用的研究一直以来都是大家所关注的热点。二茂铁的出现极大的推动了金属有机化学的发展,被认为是近代化学发展的里程碑。本文对二茂铁的发现、制备方法和其应用范围作一个简要的介绍。 一、二茂铁的发现 1951年Kealy 及Pauson 利用格氏试剂C 5H 5MgBr 和催化剂FeCl 3合成富瓦烯没有成功,但是却意外地得到 了一种黄色的晶体,经过一些简单的研究他们得出该物质的分子式为C 10H 10Fe ,并且初步得出该物质的一些物性,如他们测出该物质的熔点172.5~173℃,沸点249℃,不溶于水、10%NaOH 和热的浓盐酸,但易溶于稀硝酸,浓硫酸及二氯甲烷、苯、乙醚、石油谜、甲醇和乙醇等一些常用有机溶剂,比较稳定。但基于当时研究条件所限,他们未能确定该种物质的结构,因而对于该物质的更多性质也就不能进行。几乎同时,Miller 等人用环戊二烯和铁在300℃及常压下也制得了该物质。 1.2二茂铁结构的研究 尽管Pauson 等人虽然发现了二茂铁但基于当时的条件限制未能确定其特殊的结构,他们还是将这一成果发表在1951年底的Nature 杂志上,1952年初J .Chem .Soc .杂志上也发表了Miller 等人也合成出了该种物质,这些报导激发了很多科学家的极大兴趣。Wilkinson 等人通过红外光谱、磁化率及偶极距等的测定,判定该物质具有夹心型结构。Fischer 等人通过X 射线衍射的研究,提出该物质具有五角反棱柱的结构。通过这些研究确定了该物质是由上下两个带负电的环戊二烯基芳环,中间是一个带二价正电荷的铁离子,形如三明治(见图1),因 图1二茂铁的夹心结构 2009年3月第八卷第1期Mar.2009Vol.8No.1 滁州职业技术学院学报 JOURNAL OF CHUZHOU VOCATIONAL &TECHNICAL COLLEGE ·64·

对硝基苯甲酸的制备

对硝基苯甲酸的制备(预习报告) 一、实验目的 1、掌握利用对硝基甲苯制备对硝基苯甲酸的原理及方法。 2、掌握电动搅拌装置的安装及使用。 3、练习并掌握固体酸性产品的纯化方法。 二、实验原理 C H3 N O2 N a2C r2O7H 2 SO4 + + 4 H 2 ++ + Na2SO4C r2(S O4)3H 2 O 5 该反应为两相反应,还要不断滴加浓硫酸,为了增加两相的接触面,为了尽可能使其迅速均匀地混合,以避免因局部过浓、过热而导致其它副反应的发生或有机物的分解,本实验采用电动搅拌装置。这样不但可以较好地控制反应温度,同时也能缩短反应时间和提高产率。 生成的粗产品为酸性固体物质,可通过加碱溶解、再酸化的办法来纯化。纯化的产品用蒸汽浴干燥。 三、实验药品用量及物理常数

四、实验装置图 滴 液 漏 斗 反应装置 抽滤装置干燥 装置 面皿 布氏漏斗 抽 滤 瓶 五、实验流程及步骤 对硝基甲苯 重铬酸钠 15m l水 30分钟 1.安装带搅拌、回流、滴液的装置如图 2.在250ml的三颈瓶中依次加入6g对硝基甲苯,18g重铬酸钾粉末及40ml水。 3.在搅拌下自滴液漏斗滴入25ml浓硫酸。(注意用冷水冷却,以免对硝基甲苯因温度过高挥发而凝结在冷凝管上)。 4.硫酸滴完后,加热回流0.5h,反应液呈黑色。(此过程中,冷凝管可能会有白色的对硝基甲苯析出,可适当关小冷凝水,使其

熔融滴下)。 5.待反应物冷却后,搅拌下加入80ml冰水,有沉淀析出,抽滤并用50ml水分两次洗涤。 6.将洗涤后的对硝基苯甲酸的黑色固体放入盛有30ml 5%硫酸中,沸水浴上加热10min,冷却后抽滤。(目的是为了除去未反应完的铬盐) 7.将抽滤后的固体溶于50ml 5%NaOH溶液中,50℃温热后抽滤,在滤液中加入1g活性炭,渚沸趁热抽滤。(此步操作很关键,温度过高对硝基甲苯融化被滤入滤液中,温度过低对硝基苯甲酸钠会析出,影响产物的纯度或产率) 8.充分搅拌下将抽滤得到的滤液慢慢加入盛有60ml 15%硫酸溶液的烧杯中析出黄色沉淀,抽滤,少量冷水洗涤两次,干燥后称重。(加入顺序不能颠倒,否则会造成产品不纯)。 9.混合溶剂重结晶粗对硝基苯甲酸。 六、实验注意事项 1、安装仪器前,要先检查电动搅拌装置转动是否正常,搅拌棒要垂 直安装,安装好仪器后,再检查转动是否正常。 2、从滴加浓硫酸开始,整个反应过程中,一致保持搅拌。 3、滴加浓硫酸时,只搅拌,不加热;加浓硫酸的速度不能太快,否 则会引起剧烈反应。 4、转入到40ml冷水中后,可用少量(约10ml)冷水再洗涤烧瓶。 5、碱溶时,可适当温热,但温度不能超过50℃,以防未反应的对硝

3,5-二氯苯胺的合成及其应用

3,5-二氯苯胺的合成及其在农药上的应用 摘要:3,5一二氯苯胺是环酞亚胺类农用杀菌剂的关键中间体。该类杀菌剂对菌核病、纹枯病和灰霉病有特效。在国内异菌脉和二甲菌核利分别已经进行开发。我国3,5一二氯苯胺的开发刚处于起步阶段,远远不能满足市场需求。因此,开发和应用该品种,对于我国环酞亚胺类杀菌剂的开发和出口创汇都具有重要意义。 关键:3,5-二氯苯胺;合成;应用;农药 1.合成方法 1.1 2,6-二氯-4-硝基苯胺法 该法2,6-二氯-4-硝基苯胺为原料,经重氮化后,制得3,5-二氯硝基苯,再经加氢后制得3,5-二氯苯胺。其化学方程式: 按氯硝苯胺:H2SO4:NaNO2=1:2.75:1.5(摩尔比),在0~5℃下向异丙醇——2,6-二氯-4-硝基苯胺溶液中滴加H2SO4及NaNO2水溶液,反应0.5h后,加入CuSO4升温回流水解2h ,然后经水洗、中和、脱溶、水蒸汽蒸馏后,离心、干操,得3,5-二氯硝基苯,含量90-96%,收率85-88%。

将3,5-二氯硝基苯、Pt/C催化剂或雷尼镍催化剂在0.8-2.0MPa压力下加氢,反应温度9 5 ~100 ℃,反应时间8~16h,得3,5一二氯苯胺,含量95~98%,收率90~95%,也,可用化学还原法制得3,5一二氯苯胺。 以上所述方法是目前国内所采用的主要方法,化工部沈阳化工研究院对该法进行了研究,并在如东农药厂中试成功。其主要优点是原料来源丰富,价格较便宜,工艺条件缓和,产品质量较好。其缺点是反应步骤长,重氮化反应废水较多目难以治理,设备腐蚀严重。此法在今后一段时间内仍是国内采用的主要方法。 1.2 乙酰苯胺法 该法以乙酸苯胺为原料,经氯化、水解后制得混合二氯苯胺,再经溴化、重氮化后,制得3 , 5 -二氯溴化苯,再经氨解后制得3,5-二氯苯胺。其化学方程式为:

[{Ph3Sn(FcCOO)}2(4,4’-bipy)]的合成、结构及电化学性质

[{Ph 3Sn(FcCOO)}2(4,4’-bipy)]的合成、结构及电化学性质 朱成臣,李大成* ,窦建民,王大奇 聊城大学化学化工系,聊城市湖南路1号,252000 *联系人:lidacheng@https://www.360docs.net/doc/8c10642550.html, 由于有机锡化合物可以形成许多结构新颖的配合物, 例如, 单体结构、二聚体、四聚体、低聚体梯状、鼓状结构等[1], 并且有机锡化合物具有潜在的抗癌活性, 加之二茂铁甲酸具有催化活性, 低毒性, 良好的生理活性[2], 电化学性质等. 因此将这两个领域结合起来合成二茂铁羧酸有机锡化合物具有重要的意义. 我们利用二茂铁甲酸, 三苯基氯化锡和4,4’-联吡啶,在甲醇溶液中反应得到了配合物[{Ph 3Sn(FcCOO)}2(4,4’-bipy)], 通过X-射线单晶衍射、红外对配合物进行了表征。并对配合物的循环伏安进行了测试. 0.00.20.40.60.8 1.0 1.2 -0.3 -0.2 -0.1 0.00.1 0.2 C u r r e n t /1e -5A Potential/V 图1. 标题配合物的分子图 图2. 标题配合物的循环伏安图 感谢国家自然科学基金项目(20971063)资助, 山东省自然科学基金的资助(Y2007B01). 参考文献: [1] R.F. Zhang, Q.F. Wang, etal., Polyhedron, 2008, 27, 3123. [2] Y.F. Yuan, S.M. Ye, etal., Huaxue Tongbao, 1995, 5, 24. Synthesis, Crystal Structure and Property of Complex [{Ph 3Sn(FcCOO)}2(4,4’-bipy)] Chengchen Zhu, Dacheng Li*, Jianmin Dou, Daqi Wang Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China The title complex has been prepared and characterized by elemental analysis, FT-IR and X-ray structure determination. The electrochemical property of complex [{Ph 3Sn(FcCOO)}2(4,4’-bipy)] has been investigated., which exhibits reversible voltammogram between 0.1-1.2 V.

含氟表面活性剂经典综述

含氟表面活性剂经典综述 作者:肖进新江洪(大学化学与分子工程学院胶体化学研究室, 100871) 普通表面活性剂的疏水基一般为碳氢链,称碳氢表面活性剂。将碳氢表面活性剂分子碳氢链中的氢原子部分或全部用氟原子取代,就成为碳氟表面活性剂,或称氟表面活性剂。碳氟表面活性剂是特种表面活性剂中最重要的品种,有很多碳氢表面活性剂不可替代的重要用途。本文介绍其合成、性能及应用。 1 碳氟表面活性剂的物化性质和用途 碳氟表面活性剂的独特性能常被概括为“三高”、“两憎”,即高表面活性、高耐热稳定性及高化学稳定性;它的含氟烃基既憎水又憎油。碳氟表面活性剂其水溶液的最低表面力可达到20mN/m以下,甚至到15mN/m左右。碳氟表面活性剂在溶液中的质量分数为0.05%~0.%,就可使水的表面力下降至20mN/m以下。而一般碳氢表面活性剂在溶液中的质量分数为0.%~1.%围才可使水的表面力下降到30mN/m~35mN/m。碳氟表面活性剂如此突出的高表面活性以致其水溶液可在烃油表面铺展(参见本文第二部分)。碳氟表面活性剂有很高的耐热性,如固态的全氟烷基磺酸钾,加热到 420℃以上才开始分解,因而可在300℃以上的温度下使用。碳氟表面活性剂有很高的化学稳定性,它可抵抗强氧化剂、强酸和强碱的作用,而且在这种溶液中仍能保持良好的表面活性。若将其制成油溶性表面活性

剂还可降低有机溶剂的表面力。 早期,碳氟表面活性剂曾用作四氟乙烯乳液聚合的乳化剂,以后逐步用作润湿剂、铺展剂、起泡剂、抗黏剂和防污剂等,广泛应用于消防、纺织、皮革、造纸、选矿、农药和化工等各个领域,显示强大的生命力。但碳氟表面活性剂由于合成困难,价格较高,目前主要用于一般碳氢表面活性剂难以胜任或使用效果极差的领域。研究表明,将碳氟表面活性剂与碳氢表面活性剂复配,有可能减少碳氟表面活性剂的用量而保持其表面活性。如将异电性碳氢和碳氟表面活性剂复配,不仅可大大减少碳氟表面活性剂的用量,在某些特殊情况下,复配品甚至具有更高的降低表面力的能力,即达到全面增效作用。碳氟表面活性剂特殊应用的一个典型实例是利用其水溶液可在油面上铺展的特性,制备水成膜泡沫灭火剂,其原理为:欲使水溶液在油面上铺展,必须满足铺展条件,即铺展系数Sw/o>0: 油的表面力约为20mN/m~24mN/m左右。因此欲使铺展系数大于零,水溶液的表面力一般应在18mN/m以下(至少应在20mN/m以下)。有相当数量的碳氟表面活性剂,其水溶液的表面力较高,不能满足铺展条件。在另一种情况下,即使表面活性很高的碳氟表面活性剂,其水溶液也只能在达到一定浓度(临界铺展浓度)时方可在油面上铺展。研究表明,当油面首先加入很少量能够铺展的碳氟表面活性剂水溶液后,一些本来由于表面力太高而不能铺展的碳氟表面活性剂水溶液即可在油面上铺展。若在油面上首先铺展少量在临界铺展浓度之上的碳氟表面活性剂水溶液,临界铺展浓度之下的水溶液也可铺

1_烷基二茂铁甲酸的合成

化学试剂,2008,30(1),37~39 1c 2烷基二茂铁甲酸的合成 王丽英* 1,2 ,李保国2,孙永奇3 (1.内蒙古工业大学化工学院,内蒙古呼和浩特 010051;2.内蒙古大学化学化工学院,内蒙古呼和浩特 010021;3.内蒙古呼和浩特市第二中学,内蒙古呼和浩特 010020) 摘要:由二茂铁甲酸甲酯与酰氯RCO Cl 在三氯化铝催化下进行Friedel 2Crafts 酰化反应,得到1c 2酰基二茂铁甲酸甲酯,继而用克莱门森还原反应将酰化产物还原为相应的1c 2烷基二茂铁甲酸甲酯,再用氢氧化钠在乙醇和水的溶液中进行皂化反应,得到1c 2烷基二茂铁甲酸。通过元素分析、红外光谱及核磁共振氢谱对合成的化合物进行了表征。关键词:二茂铁甲酸甲酯;1c 2烷基二茂铁甲酸;合成 中图分类号:O622.4 文献标识码:A 文章编号:025823283(2008)0120037203 收稿日期:2007207211 作者简介:王丽英(19772),女,内蒙古通辽人,硕士,讲师,研究方向为金属有机合成。 二茂铁甲酸是合成二茂铁衍生物的重要中间 体,可以转化为二茂铁甲酰肼[1]、二茂铁异羟肟酸 [2] 及重要的过渡金属配合物[3] ,也可经酰化反应 形成双核二茂铁衍生物[426] 等,但是二茂铁甲酸在有 机溶剂中的溶解度较小,熔点比较高(225e )[7]。若在二茂铁甲酸的茂环上引入烷基,预期会产生如下效应:1)化合物极性下降,含二茂铁基的络合配体与过渡金属形成的配合物在有机溶剂中的溶解度增加,便于谱学表征;2)由烷基二茂铁甲酸经酰化反应形成的双核二茂铁衍生物将是一类低熔点或液体化合物,应在燃速催化[8]方面有重要用途;3)1c 2烷基二茂铁甲酸由于其对称性较高,当烷基链长度适宜时,其某些衍生物具有液晶现象[9]。因此,研究1c 2烷基二茂铁甲酸的合成及提纯方法,无论在理论和应用方面均有广阔的前景,也为二茂铁衍生物的合成提供了极为丰富的中间体。本文由二茂铁甲酸甲酯经Friedel 2Craf ts 酰化得到1c 2酰基二茂铁甲酸甲酯,再经还原和皂化反应,得到7种1c 2 烷基二茂铁甲酸。反应式如下。 R 为:a 1C 2H 5;b 1C 3H 7;c 1C 4H 9;d 1C 5H 11;e 1C 6H 13;f 1C 7H 15;g 1C 8H 17 1 实验部分 111 主要仪器与试剂 Perkin Elmer 22400型元素分析仪;X 24型显微 熔点仪(温度计未校正);Nexus 2670FT 2IR 傅里叶 变换红外光谱仪(K Br 压片);Varian 2Mercury 2300N M R 型核磁共振仪(CDCl 3为溶剂,T M S 为内标)。 所用试剂均为分析纯;二氯甲烷经P 2O 5回流8h 后蒸馏;苯在二苯甲酮存在下与钠回流至深蓝色后蒸馏;层析柱为中性氧化铝(100~200目);乙酰氯、丙酰氯为市售分析纯;丁酰氯、戊酰氯、己酰氯、庚酰氯、辛酰氯[10]、二茂铁甲酸甲酯[11]、1c 2酰基二茂铁甲酸甲酯[12]按文献方法合成。112 1c 2烷基二茂铁甲酸甲酯(1)的制备 称取13g(012mol)锌粉加到100mL 烧杯中,用4%的盐酸洗涤两次,然后与112g (0144mmol)HgCl 2、110mL 浓盐酸和20mL 水配成的溶液作用,制成锌汞齐。将锌汞齐转移至100mL 三口瓶 表1 1a~1g 物理性质与元素分析数据注Tab.1 The physical property and elemental analy sis of 1a~1g 化合物产率/%元素分析,实测值(计算值),% C H 1a 861461170(61179)5175(5193)1b 821662173(62196)6131(5199)1c 851764103(64102)6185(6172)1d 871665146(64198)7125(7106)1e 831166110(65187)7134(7137)1f 841066152(66168)7162(7166)1g 8416 67159(67141) 7181(7193) 注:外观为棕红色液体。 37 第30卷第1期王丽英等:1c 2烷基二茂铁甲酸的合成

相关文档
最新文档