轴对称课件PPT

合集下载

《轴对称》PPT课件

《轴对称》PPT课件
轴对称
问题一: 你能从几何学的角度刻划画面中的 两个图形的特点吗
从大小 形状 位置去考虑
轴对称概念的准确描述
把一个图形沿着某一条直线折叠;如 果它能与另一个图形重合;那么就说 这两个图形关于这条直线对称 两个图形中的对应点叫做关于这条 直线的对称点
这条直线叫做对称轴 两个图形关于直线 对称也叫做轴对称
思维的延伸
1 已知:如图;CD是△ABC的外角平分 线;BD⊥CD;BD的延长线交AE于点F; 求证:点B与点F关于CD对称
FE
C D
B A
能力训练
如图:某同学打台球时想通过击主球A;使主 球A撞击桌边MN后反弹回来击中彩球B;请 画出主球A的运动路线
A B


ቤተ መጻሕፍቲ ባይዱ

B1
综合创新
设AD是△ABC的∠BAC的平分线;过A引直 线MN⊥AD;过B作BE⊥MN于E;求证: △EBC的周长大于△ABC的周长
概念理解与归纳
轴对称涉及两个图形;它们能完 全重合;因此;轴对称是指两个图 形之间的形状与位置关系
概念对两图形的重合有限制; 它们的位置关系必须满足沿 某一条直线对折后能重合
观察图形归纳特性
从两图形大小 形状来看:
定理1 关于某条直线对称的两 个图形是全等形
从两图形 位置来看:
定理2 如果两个图形关于某条直 线对称;那么对称轴是对应点连 线的垂直平分线
M EA
B D
C1 N
C
课后思考:
1 沿着等腰三角形底边上 的高对折;高两边的图形 完全重合吗 2 沿着直角三形斜边上的 高对折;高两边的图形完 全重合吗
小结
概念 定理 应用
轴 对 称 知 识 结

轴对称课件(60张PPT)

轴对称课件(60张PPT)

轴对称在解直角三角形中应用
在解直角三角形时,可以利用轴对称的 性质来构造全等或相似的直角三角形,
从而简化计算过程。
例如,如果一个直角三角形关于某条直 线对称,那么它的两个锐角相等,同时 它的两条直角边也相等。这样我们就可 以通过已知的一边和一角来求解其他未
知量。
另外,如果两个直角三角形关于某条直 线对称,那么它们一定是相似的。这样 我们就可以通过已知的相似比来求解未
知量。
05
绘制和分析轴对称图形方 法技巧
使用直尺和圆规绘制轴对称图形
确定对称轴
在平面上选择一条直线作为对 称轴。
找到对称点
使用直尺和圆规,按照轴对称 的定义,找到该点关于对称轴 的对称点。
选择一个点
在对称轴的一侧选择一个点。
绘制图形
连接原点和对称点,即可得到轴对 称图形的一部分。重复以上步骤,
可以得到完整的轴对称图形。
动物
一些动物的身体结构也具 有轴对称性,如蝴蝶的翅 膀、蜻蜓的复眼等。
晶体
晶体结构中的原子排列往 往呈现出轴对称性,如雪 花、钻石等。
科技产品中的轴对称设计
电子产品
手机、平板电脑等电子产品的外观设 计中,常采用轴对称元素,实现简洁、 时尚的视觉效果。
汽车设计
航空航天
飞机、火箭等航空航天器的设计中也 广泛应用轴对称性,以确保飞行稳定 性和安全性。
典型例题解析
解析
根据轴对称性质,我们知道 △ABC≌△A'B'C',所以 ∠BAC=∠B'A'C'。
例题2
已知点P(2,3)关于x轴对称的点为P', 求点P'的坐标。
解析
由于点P关于x轴对称,所以点P'的 横坐标不变,纵坐标取反。因此, 点P'的坐标为(2,-3)。

《轴对称完整》课件

《轴对称完整》课件

对轴对称的未来展望
轴对称作为数学中的一个基础概念,仍有很大的研究和发展空间。随着数学和其 他学科的发展,轴对称的应用范围也将不断扩大。我们鼓励学生们在未来的学习 和研究中继续关注轴对称,探索它的更多应用和价值。
在《轴对称完整》ppt课件的最后,我们总结了轴对称的基本原理、方法和应用 ,并提出了进一步探索的问题和方向。我们希望学生们能够带着这些问题和思考 ,继续深入探索轴对称的奥秘,为未来的研究和应用打下坚实的基础。
轴对称是数学中的一个重要概念,它描述了一个图形通过某个直线折叠后与自身重合的性质。在《轴对称完整 》ppt课件中,我们深入探讨了轴对称的定义、性质和分类,帮助学生们更好地理解这一概念。
轴对称在几何学中有着广泛的应用,它不仅在平面几何中出现,还涉及到立体几何、解析几何等多个领域。通 过对轴对称的深入理解,学生们可以更好地掌握几何学的基本原理和方法。
05
轴对称的实践应用
在设计中的应用
对称美学的运用
设计作品中,轴对称的运用可以创造出平衡、和谐的感觉。例如,在服装设计中,设计师可以通过轴对称的裁 剪方式,使服装看起来更加优雅、庄重。
产品设计的指导
在产品设计中,轴对称的原理可以帮助设计师更好地布局产品的各个部分,使其更加符合人机工程学,提高使 用体验。
04
轴对称的意义
美学的意义
美学欣赏
轴对称的形状、图案和结 构常常被视为具有美感, 可以给人带来视觉上的享 受和满足感。
艺术创作
艺术家们经常利用轴对称 的原理来创作美丽的艺术 品,如建筑设计、绘画和 雕塑等。
平衡与和谐
轴对称能够给人带来平衡 和和谐的感觉,使整体效 果更加协调和完整。
科学的意义
自然界中的轴对称

三年级 轴对称图形 ppt课件

三年级 轴对称图形 ppt课件

详细描述
动态轴对称图形通常用于动画、视频 制作等领域,通过动态效果展示图形 的对称美感和变化过程。
详细描述
在数字媒体和动画制作中,动态轴对 称图形被广泛应用于电影、广告、游 戏等领域,以创造出独特的视觉效果 和吸引观众的注意力。
03
轴对称图形的制作方法
使用几何软件制作轴对称图形
制作步骤
2. 根据轴对称图形的性质,绘制 出对称轴和基本图形。
03
培养空间观念
学习轴对称图形有助于培 养学生的空间观念和几何 直觉。
提高审美意识
通过欣赏和创作轴对称图 形,可以提高学生的审美 意识和艺术鉴赏能力。
解决实际问题
轴对称图形在实际生活中 有广泛应用,如建筑设计 、机械制造、艺术创作等 。
02
轴对称图形的分类
平面轴对称图形
总结词
平面轴对称图形是指在一个平面内,沿一条直线折叠后,两侧图形能 够完全重合的图形。

晶体结构
许多晶体的结构也是轴对称的, 如石英、长石等矿物晶体。这种 对称性有助于增强晶体的物理性
质。
天体运动
天体运动过程中,如地球的自转 和公转,也呈现出轴对称的特点 。这种对称性有助于解释天体运
动的规律和宇宙的秩序。
05
轴对称图形的拓展知识

轴对称图形的历史发展
轴对称图形在历史上的发展历程
从古埃及文明中的建筑设计,到文艺复兴时期的艺术创作,再到现代的建筑设 计、装饰艺术等,轴对称图形在人类文明的发展中扮演着重要的角色。
轴对称图形在数学领域的发展
在数学领域,轴对称图形的研究经历了从基础概念到复杂变换的过程,为数学 的发展和进步做出了贡献。
轴对称图形的文化内涵
轴对称图形在文化中的意义

轴对称ppt课件

轴对称ppt课件

对于轴对称的函数图像,其面积在沿 对称轴翻转后保持不变。
轴对称的拓扑性质
连通性
轴对称的图形在拓扑上具有连通 性,即可以通过连续变换从一个
部分到达另一个部分。
闭包
轴对称的图形在拓扑上的闭包也 是轴对称的。
分离性
轴对称的图形在拓扑上具有分离 性,即可以将图形分成互不相交
的两个部分。
轴对称的代数几何性质
轴对称ppt课件
目录
• 轴对称概述 • 轴对称的几何性质 • 轴对称的代数性质 • 轴对称的物理性质 • 轴对称的数学性质 • 轴对称的应用实例
01
轴对称概述
定义与性质
定义
轴对称是指一个平面图形沿着一条直 线折叠后,直线两旁的部分能够互相 重合,那么这个图形叫做轴对称图形 ,这条直线叫做对称轴。
性质
轴对称图形具有对称轴,并且沿着对 称轴折叠后两旁的部分能够完全重合 。
轴对称的应用
01
02
03
美学
轴对称在建筑、雕塑、绘 画等领域有着广泛的应用 ,能够给人以美的感受。
工程
在工程设计中,轴对称图 形可以简化计算和设计过 程,提高效率。
数学
在数学中,轴对称是研究 几何图形的重要性质之一 ,对于图形的分类和性质 研究具有重要意义。
天坛
天坛的圜丘坛和祈年殿也采用了轴对称设计 ,体现了古代建筑的美学和哲学思想。
自然界中的轴对称现象
要点一
蝴蝶
蝴蝶的翅膀具有明显的轴对称特征,这种对称性不仅美观 ,还有助于飞行。
要点二
雪花
雪花的形状也具有轴对称性,这种对称性在自然界中广泛 存在。
工程中的轴对称应用
桥梁
桥梁的梁体设计往往采用轴对称结构,以提高桥梁的稳定性和承载能力。

《轴对称图形》PPT课件

《轴对称图形》PPT课件
北师大版三年级数学下册
轴对称图形
教学目标
1 结合欣赏民间艺术的剪纸图案;以及服饰 工 艺品与建筑等图案;感知现实世界中普遍存 在的对称现象
2 通过折纸 剪纸 画图 图形分类等操作活动; 体会对称图形的特征;能画出简单的图形的 对称轴
3 培养同学们的观察能力 自主探究能力 动手 操作能力以及归纳概括能力 使同学们能画 出简单的图形形
打开 对称轴
把镜子放在虚线上;看一看 镜子中的图形和整个图形;你发现了什么
下面哪些图形是轴对称图形
从镜子中看到的左边图形的样子是哪 个
镜子
找一找哪些数字或字母是轴对称图形 89ABCDEFJHIGKLMNOPQR
你还知道生活中哪些东西 是轴对称图形
智慧城堡
说一说下面哪些图形是轴 对称图形
在方格纸上画出轴对称图形
欣赏之旅
本课总结
了解对称轴的特征;能够画 一个对称图形的对称轴

《轴对称图形》课件

《轴对称图形》课件
确定中心点:确定轴对称图形的中心点,以便于绘制对称图形 绘制对称图形:根据中心点,绘制对称图形的一半,然后使用对称工具将其复制 为另一半
调整细节:调整对称图形的细节,如颜色、大小、位置等,使其更加美观 保存和导出:将绘制好的轴对称图形保存为合适的格式,如PNG、JPG等,以便 于在PPT中使用
如何制作复杂的轴对称图形
分析当前轴对称图形的发展趋势和未来发展方向
轴对称图形在数学、物理、化学等领域的应用越来越广泛 轴对称图形在艺术、设计等领域的应用也越来越多 轴对称图形在计算机图形学、虚拟现实等领域的应用前景广阔 轴对称图形在教育、科普等领域的应用也越来越受到重视
对学习轴对称图形的建议和展望
建议:多观察生活中的轴对称图形,如建筑、自然景观等,提高对轴对称图形的感知和理解。
确定轴对称图形的中心点 绘制对称轴 绘制对称图形的一半
复制并翻转对称图形的另一半 调整对称图形的细节和形状 完成复杂的轴对称图形制作
如何解决制作轴对称图形时遇到的问题
掌握基本概念:理解轴对称图形的定义和性质 熟悉工具:熟练使用绘图软件中的工具和功能 练习操作:通过练习掌握制作轴对称图形的技巧 遇到问题:遇到难题时,查阅相关资料或请教他人 总结反思:总结制作过程中的经验和教训,不断提高制作水平
如何提高制作轴对称图形的效率
单击此处添加标题
利用工具:使用专业的图形设计软件,如Adobe Illustrator、 CorelDRAW等,可以快速制作出高质量的轴对称图形。
单击此处添加标题
掌握技巧:熟悉轴对称图形的制作技巧,如使用镜像、旋转等工具,可以 大大提高制作效率。
单击此处添加标题
简化设计:在设计轴对称图形时,尽量简化设计,避免过于复杂的图形, 可以提高制作效率。

13.1.1 轴对称 课件(共23张PPT)

13.1.1 轴对称 课件(共23张PPT)








×

实战演练
2.下图中,左边图形和右边图形成轴对称的有( ). A.1组 B.2组 C.3组 D.4组
C



实战演练
4.如图,Rt△ABC中,∠ABC=90°,∠C=60°,将其折叠,使点A落在边AB上C′处,折痕为BD,则∠C′DA的度数为_______.
把成轴对称的两个图形看成一个整体,它就是一个轴对称图形. 把一个轴对称图形分成两个图形,这两个图形关于这条轴对称.
合作探究
轴对称图形
两个图形成轴对称
图形
区别
联系
一个图形具有的特殊形状
两个全等图形的特殊的位置关系
1.都是沿着某条直线折叠后能重合.
2.可以互相转化.
比一比
合作探究
思考:如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分别是点A,B,C的对称点,线段AA′,BB′,CC′与直线MN有什么关系?
A′
B′
C′
N
M
AA′⊥MN,BB′⊥MN,CC′⊥MN.
PA=PA′
QB=QB′
HC=HC′
P
Q
H
对称轴经过对称点所连线段的中点,并且垂直这条线段。
垂直平分线
合作探究
如图,MN⊥AA′,AP=A′P. 直线MN是线段AA′的垂直平分线.
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.


×

小试牛刀
2.如图所示的每幅图形中的两个图案是轴对称的吗?如果是,指出它们的对称轴,并找出一对对称点. (1) (2) (3)

轴对称图形ppt课件

轴对称图形ppt课件

05

教学方法:讲解、示范、实践
讲解
通过语言描述,向学生解释轴对称图形的定义、性质和特点,使学 生对轴对称图形有基本的认识。
示范
通过展示轴对称图形的制作过程或解题步骤,让学生直观地了解轴 对称图形的应用和操作方法。
实践
组织学生进行实践活动,如制作轴对称图形、解决与轴对称图形相关 的问题等,以提高学生的实际操作能力和问题解决能力。
几何学基础
轴对称图形是几何学中的基础概 念,对于理解几何学的基本原理
和性质至关重要。
对称性研究
在数学中,轴对称图形是研究对 称性的一个重要方面,对于理解 更复杂的对称概念有重要意义。
应用领域
轴对称图形在物理学、工程学、 计算机图形学等领域都有广泛的 应用,是解决实际问题的重要工
具。
04
轴对称图形的制作和创造
轴对称图形ppt课件
目录
• 轴对称图形的基本概念 • 轴对称图形的识别 • 轴对称图形的性质和特点 • 轴对称图形的制作和创造 • 轴对称图形的教学方法和技巧
01
轴对称图形的基本概念
轴对称图形的定义
01 轴对称图形
如果一个平面图形在某一条直线的两侧部分可以 完全重合,那么这个图形就被称为轴对称图形。
03 美学价值
轴对称图形在美学上具有很高的价值,被广泛应 用于建筑设计、图案设计等领域。
轴对称图形的分类
01
02
03
中心对称图形
如果一个图形关于某一点 旋转180度后与自身重合 ,则称为中心对称图形。
镜面对称图形
如果一个图形关于某一条 直线对称,则称为镜面对 称图形。
旋转对称图形
如果一个图形关于某一条 直线旋转一定角度后与自 身重合,则称为旋转对称 图形。

用坐标表示轴对称通用课件

用坐标表示轴对称通用课件
实例
将点$P(2, 3)$绕原点逆时针旋转30度 ,得到点$P'(-1.175, 3.825)$。
相似变换法则
相似变换法则
在平面直角坐标系中,将点$P(x, y)$的横纵坐标同时扩大或缩小相同的倍数k, 得到点$P'(kx, ky)$。
实例
将点$P(2, 3)$的横纵坐标同时扩大2倍,得到点$P'(4, 6)$。
实例
将点$P(2, 3)$沿x轴正方向平移3 个单位,得到点$P'(5, 3)$;若沿 x轴负方向平移2个单位,得到点 $P'(-4, 3)$。
旋转变换法则
旋转变换法则
在平面直角坐标系中,将点$P(x, y)$ 绕原点逆时针旋转$theta$角度,得 到点$P'(xcostheta - ysintheta, xsintheta + ycostheta)$。
自然界中的轴对称现象
总结词
自然界中存在着许多轴对称的现象,这些现象在生物学、化学和物理学等领域都有广泛 的应用。
详细描述
自然界中存在着许多轴对称的现象,如雪花、分子结构、昆虫的身体等。这些现象在生 物学、化学和物理学等领域都有广泛的应用,它们为科学家们提供了深入了解自然界的
途径,有助于揭示自然界的奥秘。
05 轴对称的数学模 型
线性函数模型
总结词
线性函数模型是轴对称数学模型的一种,它表示的是一种线 性关系。
详细描述
线性函数模型一般形式为 y = mx + c,其中 m 是斜率,c 是截距。当一个函数满足关于某一直线对称,那么这个函数 就是线性函数模型的一种。
二次函数模型
总结词
二次函数模型是轴对称数学模型的一 种,它表示的是一种二次关系。

苏教版三年级《轴对称图形》通用课件

苏教版三年级《轴对称图形》通用课件

对于每一个轴对称图形, 都存在唯一一条对称轴。
轴对称图形在力学、工 程学等方面具有一定的
稳定性。
轴对称图形在艺术和设 计领域中常常被用来创 造平衡和和谐的美感。
轴对称图形的分类
01
02
03
中心对称图形
以点为中心的轴对称图形, 如圆形、正方形等。
轴对称图形
以直线为中心的轴对称图 形,如长方形、等腰三角 形等。
PART 05
轴对称图形的拓展与提高
探索更多类型的轴对称图形
探索多种轴对称图形
除了教材中介绍的常见轴对称图形,如正方 形、长方形、圆形等,还可以引导学生探索 其他类型的轴对称图形,如心形、菱形、蝴 蝶形等。
发现生活中的轴对称图形
鼓励学生寻找生活中的轴对称图形,如建筑 物、自然界中的树叶、花朵等,以拓展学生
PART 03
轴对称图形的应用
生活中的轴对称图形
总结词
普遍存在、美学价值
详细描述
生活中许多常见的物体和图案都是轴对称的,如飞机、蝴蝶、一些建筑等,这 种对称性不仅美观,而且常常符合人们的审美习惯。
艺术中的轴对称图形
总结词
艺术美感、创作灵感
详细描述
在艺术创作中,轴对称图形经常被用来增强作品的美感和平 衡感,如绘画、雕塑和图案设计等。艺术家们也常从轴对称 图形中获取灵感,创作出独特且富有美感的作品。
苏教版三年级《轴对 称图形》通用课件
• 轴对称图形的基本概念 • 轴对称图形的识别与判断 • 轴对称图形的应用
目录
PART 01
轴对称图形的基本概念
轴对称图形的定义
轴对称图形
对称轴
一个平面图形,如果沿着一条直线折 叠后,直线两旁的部分能够互相重合, 那么这个图形就叫做轴对称图形,这 条直线就是它的对称轴。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BC与B ’ C ’ ,CA与C ’A ’呢? 3. 点A和B ’点关于直线l的对称点各是哪一点?
△ABC△ A ’ B ’ C ’关于直线l对称。 点A和点A ’,点B和点B ’ ,点C ’和点C ’分别是关于直线l的对称点
区别:
“轴对称图形”是指同一个图形的两部 分 沿某直线翻折时,两部分重合的图形。
练习:
一、判断 1. 轴对称图形必有对称轴
()
2. 轴对称图形至少有一条对称轴 ( )
3. 关于某直线成轴对称的两个图形必能互相重合( )
4. 两个完全互相重合的图形必是轴对称( )
二、选择 1. 符合下列哪个条件的图形是轴对称图形? ( D )
(A)能够互相重合的两个图形
(B)一个图形在某直线翻折,能与另一个图形重合
关于这条直线对称, 简称轴对称,这条直线 叫对称轴
2. 两个图形中的对应点(即两图形 重合时互相重合的点)叫做关于这条 直线的对称点
注意:如果一点在对称轴上,它的对称点就是 它本身
1. △ABC和△A’ B ’ C ’是否关于直线l对称?为什么? 2. 线段AB与线段A ’ B ’否关于直线l对称?为什么?
“轴对称”是指两个图形分别位于某条 直 线的两侧,且沿这条直线翻折时,两个
图形重合 。
联系:
(1) 定义中都有一条对称轴,都要沿着这 条直线折叠重合
(2) 如果把成轴对称的两个图形看成一个 整体,那么这个整体的图形就是轴对 称图形; 如果把一个轴对称图形沿着对称轴分 成的两部分看成两个分的形状大小都相同
(D)一个图形沿某直线翻折,直线两旁的部分能够 互相重合
(1)
(2)
1.
B册 P44
2. 一课一练 P65 一、填空题
二、选择题
.-.
(1)
(2)
(3)
(4)
特征: 沿某一条直线翻折后,直线两旁的两个部分能完全重
一、 轴对称图形和对称轴的定义:
1. 把一个图形沿着某一条直线翻折, 如果直线两旁的部分能够互相重合,这个
图形就是轴对称图形
2. 这条直线是这个图形的对称轴
(1) 我们学过的线段和角是不是轴对称图形?
(a)
(b)
线段是轴对称图形,它的对称轴是这条线段的垂直平分线 角是轴对称图形,它的对称轴是这个角的平分线所在的直线
平行四边形不是
轴对称图形!
等腰 三角形 等边 三角形
矩形
菱形
正方形

等腰 梯形
(2) 常见图形
是不是轴 对称图形
画出对称轴 对称轴条数

1条
对称轴的位置
底边的中垂线

3条 三条边的中垂线

2条 长和宽的中垂线

2条 对角线所在的直线

4条
两条邻边的中垂线和 对角线所在的直线

无数条 直径所在的直线

1条 一条底的中垂线
下列(1) (2)两个图形有什么区别?
(1)
(2)
两个图形 轴对称
一个图形 轴对称图形
二、轴对称和对称点的定义:
1. 平面上的两个图形,将其中一个图 形沿着某一条直线翻折过去,如果它能够 与另一个图形重合,那么就说这两个图形
相关文档
最新文档