飞秒光纤激光器的应用
飞秒激光技术在工业制造中的应用
飞秒激光技术在工业制造中的应用飞秒激光技术是高科技生产加工领域的一项先进技术,其应用范围涉及晶体、半导体、玻璃、陶瓷等物质的切割、钻孔、雕刻等工艺过程。
飞秒激光技术具有精度高、速度快、热影响区小、光谱范围宽等特点,可以大幅提高生产效率和产品品质。
一、飞秒激光技术基础飞秒激光技术是利用飞秒激光脉冲对材料进行微观切割、改性处理等加工工艺的技术。
所谓飞秒脉冲,就是一种纳秒级极短的激光脉冲,其能量密度极高,可以在极短时间内对物质进行切割和加工。
飞秒激光脉冲的宽度一般在飞秒级别(1fs=10^-15秒)左右,不同于传统的毫秒级或纳秒级激光,具有极强的穿透能力并且几乎没有热补偿效应。
二、飞秒激光技术的应用1. 飞秒激光切割和钻孔在钣金、半导体、玻璃等领域,飞秒激光可以精确、高效地实现各种形状的孔洞,满足产品制造和生产的需求。
因其能量集中,且热影响区极小,下料精度高,成品质量好,大大提高了生产效率。
2. 飞秒激光雕刻和刻蚀在电子领域,飞秒激光技术可以实现不同形状、不同深度的微纳米结构的制备,例如电路板和芯片的生产也可以应用飞秒激光技术实现更细小的电路结构,有利于提高信号传输速率及稳定性。
3. 飞秒激光打标飞秒激光技术可以实现各种材料的打标,如金属刻字、刻模图案,玻璃印标、陶瓷打标等。
由于飞秒激光技术具有极高的效率和精度,可以实现更加复杂的图案和设计,因此在定制化制造等领域应用广泛。
4. 飞秒激光制备微纳米结构材料配合其他先进加工技术,如等离子体技术、双光子聚合技术等,飞秒激光制备出的微纳米结构材料具有优异的性能,具有广泛应用前景。
例如,在太阳能电池、生物传感、化学催化、微纳米器件等领域都受到了广泛的关注。
三、飞秒激光技术的应用瓶颈飞秒激光技术的应用实际已经非常成熟,但由于高昂的设备成本、技术门槛较高等原因,其应用范围相对较狭窄,且其复杂性也需要高技能的操作人员才能实现。
随着激光技术的不断发展,相信飞秒激光技术将会在未来的工业制造领域中发挥更为广泛的作用。
光学中的高功率飞秒激光的应用
光学中的高功率飞秒激光的应用飞秒激光是一种特殊的激光,其激光脉冲时间短至飞秒级别(1飞秒等于1亿分之一秒)。
高功率飞秒激光作为一种新兴激光技术,有很多应用,特别是在光学领域。
本文将探讨高功率飞秒激光在光学中的应用。
一、飞秒激光的基本原理飞秒激光通过特殊的激光器器件产生,其原理是采用了超短脉冲激光的工作原理。
在这种激光中,由于脉冲时间极短,激光在介质中的传播时间也很短,所以能量非常强,能达到数千瓦甚至上万瓦的高功率。
二、飞秒激光在光学加工领域的应用在光学加工领域,飞秒激光被广泛应用。
在最初的应用中,飞秒激光主要用于三维微加工,比如制造微小的微机电系统和激光微加工。
近年来,人们发现飞秒激光还可以用于材料加工的超精细切割。
与传统的机械切割相比,飞秒激光可以实现材料精细切割。
三、飞秒激光在生物医学领域的应用除了光学加工领域,飞秒激光在生物医学领域也有很多应用。
比如,它可以用于切割角膜、修补血管以及治疗皮肤疾病等。
四、飞秒激光在光谱学领域的应用飞秒激光在光谱学领域也有应用。
由于其脉冲时间极短,可以用于对材料的微观结构进行分析和研究,包括分子和晶体的内部结构以及它们之间的相互作用。
五、飞秒激光在信息处理领域的应用飞秒激光在信息处理领域也有应用。
利用飞秒激光对物质材料进行编码,在空间和时间上形成基于路径的量子逻辑门的运算,以实现量子计算。
这一应用能力说明了在全世界范围内,作为实际应用现场的飞秒激光,具有巨大的发展潜力。
六、飞秒激光的未来发展趋势随着科技的进步和人们对高质量生活的追求,飞秒激光的未来发展趋势是显而易见的。
在生物医学、光学加工和量子计算等领域,飞秒激光将会有越来越广泛的应用。
总之,飞秒激光作为一种新技术,其应用领域非常广泛,已经在很多领域得到了广泛的应用。
未来它将继续发挥重要作用,为科学技术的进步和人类社会的发展做出贡献。
飞秒激光器用途
飞秒激光器用途
飞秒激光器是一种高能量、短脉冲、高频率的激光器,其发射的脉冲时间为飞秒级别,即每个脉冲的时间只有几百万亿分之一秒。
由于其高能量、高精度和高稳定性,飞秒激光器在许多领域都有广泛的应用。
在微电子领域,飞秒激光器可以用于微米级别的加工和切割,例如在晶体管、集成电路和光学器件的生产过程中。
此外,飞秒激光器还可以用于制造纳米级别的微处理器和量子点。
在医疗领域,飞秒激光器可以用于眼科手术,例如LASIK角膜手术,其通过利用激光器的高精度和高稳定性,将激光束聚焦在角膜上进行切割和重塑,从而改善视力。
在科学研究领域,飞秒激光器可以用于研究物质的量子力学特性和光学性质,例如在光谱学、化学反应动力学和物理学的研究中。
在工业领域,飞秒激光器可以用于制造高精度零部件和模具,例如在航空航天、汽车和精密机械制造过程中。
总之,飞秒激光器有着广泛的应用前景,其高能量、高精度和高稳定性使其成为许多行业不可或缺的工具。
- 1 -。
飞秒激光技术在科学研究中的应用
飞秒激光技术在科学研究中的应用作为一种新兴的光学技术,飞秒激光技术因其超快速的响应和微小的光学波长而备受瞩目。
在过去的二十年里,飞秒激光技术在材料科学、化学、生物等多个领域都有广泛的应用,成为近几年来最受欢迎的研究工具之一。
本文将介绍飞秒激光技术在科学研究中的应用,并对其未来的应用前景进行展望。
一、飞秒激光技术的基本原理首先需要了解飞秒激光技术的基本原理。
飞秒激光技术是一种超快速的激光技术,其激光脉冲的持续时间仅为飞秒级别,即1秒内发生的次数为10¹⁵,因此也被称为超短激光技术。
飞秒激光技术以一定的泵浦能量输入样品光团,该能量非常的小,无法改变样品的温度,密度等基础性质。
但是,由于超快速的响应特性,飞秒激光与样品相互作用时会产生非常强烈的局部场,将样品加热到非常高的温度,并且经过短暂的时间就会冷却回去。
这一过程类似于一种“烤焦即焕新”的过程,即飞秒激光的微小功率集中于样品的局部区域,将其加温后再冷却,从而使材料的内部结构发生变化。
这样,飞秒激光技术就可以作为一种非常精确而有力的加工工具,将物质加热并产生非常短暂但高度能量密度的局部场,以实现样品上的各种操作。
二、飞秒激光技术在材料科学中的应用飞秒激光技术在材料科学中的应用十分广泛。
首先是在制造纳米器件方面的应用。
利用飞秒激光技术可以制造出非常细微的设备和结构,同时攻克了传统机械加工技术所面临的纳米尺度加工难题,具有更大的预测性和可控性。
这项技术广泛应用于半导体加工、微机电系统制造和纳米器件制造等领域。
另外,飞秒激光技术还可用于材料微观结构分析和表面改性,通过控制激光工艺参数、改变材料表面能量状态,改善材料的物理和化学性能。
例如,使用飞秒激光技术可以制造出非常精细的金属纳米结构,具有优异的可见光透过率和电学性能;同时,它还可以在不影响材料内部结构的情况下改变材料表面的形貌,从而实现材料表面的精密工艺处理,如通过制造非常细密的孔洞或精密的凹凸点阵等得到更多的物理或化学特性。
飞秒激光技术的应用前景
飞秒激光技术的应用前景激光技术从问世至今已经发展了几十年,应用范围涉及到医疗、通讯、材料处理、光学仪器等众多领域。
而其中,飞秒激光技术作为一种新兴的技术,给我们带来了更多的发展前景。
一、飞秒激光技术简介飞秒激光简单地说,就是一种快速的激光技术,其脉冲宽度仅为10-15秒。
在过去,激光技术因为没有很好的纳秒级别的技术支持,无法实现高精度加工,但随着飞秒激光技术的问世,这一瓶颈得以突破。
由于其特殊的技术特点,飞秒激光在工业、科研各领域都有着很大的应用前景。
二、飞秒激光技术在医疗上的应用在医疗领域中,飞秒激光技术可以用于近视矫正手术等眼部手术中。
它的作用是借助高能量短脉冲光,将角膜组织切割,达到改善视力的效果。
由于飞秒激光的加工精度极高,切割角膜时不会对眼睛的内部组织及血管造成任何损伤,因此成功率大,风险也较小。
除了眼部手术,飞秒激光技术还可以用于美容保健。
三、飞秒激光技术在材料加工中的应用在工业加工中,飞秒激光技术同样有着广泛的应用。
用飞秒激光加工工艺加工的材料,表面光洁度能够达到毫米级别。
与以往的加工方法相比,更为优秀。
它可以被用于制造更为细小的微型元器件以及精密装置。
飞秒激光技术不仅可以制造小型零部件,还可以加工极硬高强度的材料,改善原本微弱脆弱的材料。
四、飞秒激光技术在通讯领域的应用飞秒激光技术在通讯技术中也有着很大的应用前景。
它能够制造出高精度的退火、超导等设备,并且还能在寿命不长的器件中使用。
同时,飞秒激光技术还可以用于数据传输。
在数据加密过程中,飞秒激光技术能够用于制作不可破译的加密设备。
此外,飞秒激光技术还可以用于制造纳米计量的光学设备,进一步提升现代通讯技术的效率。
五、结语总体来说,飞秒激光技术的应用前景十分广阔。
如今,工业制造、生物医药、通讯技术、光学仪器等领域都对飞秒激光技术有着越来越多的需求,也将有越来越多的技术实现在这一领域中。
未来,飞秒激光技术将在各领域不断推出新的应用,给人们的生活带来更多的便利和改善。
飞秒激光器和光纤激光器的区别
一、光纤飞秒激光器是什么飞秒是一种时间单位,1飞秒只有1秒的一千万亿分之一,即1e−15秒或0.001皮秒(1皮秒是,1e−12秒)。
光纤飞秒激光器是新一代的飞秒激光器,具有小型化、便携化、风冷却、低成本和稳定性高等优势。
光纤飞秒激光器是光纤频率梳的核心种子光源,光纤频率梳已成为很多高端研究的基础科学仪器,例如光钟的频率测量、引力波的测量、高精度绝对距离测量,导航定位以及时间频率标准传递等。
二、光纤飞秒激光器的应用以光纤飞秒激光频率梳为核心的精密光谱源标准装置的建立,不仅为我国国防、军事等领域广泛应用的红外激光源提供精密的校准测试服务,而且为将来便携式激光跟踪仪、小型化激光雷达等高新武器提供更精密的激光源。
此外,光纤激光频率梳的研究还可改进现有的全球定位系统、提高全球定位系统的精度,同时为战略武器导航、全球通信、航空航天、探矿、救援等涉及国防安全的领域提供精确地的定位,使我国在该领域的工作彻底摆脱对国外的封锁和限制,它的建立还可以将长度、时间和频率等物理量统一到极高精度的标准,最终促成新一代全球定位系统的产生。
三、飞秒激光器和光纤激光器的区别飞秒光纤激光器是主体以光纤为基础,包括光纤做成的增益介质,光纤做成的锁模谐振器等等,制造的飞秒脉冲激光器。
飞秒激光器指的是所有能够产生飞秒脉冲激光的激光器,包括飞秒光纤激光器,飞秒半导体激光器,飞秒调Q激光器,等等。
飞秒激光器和光纤激光器的区别有以下几点:1、波长不同,飞秒激光器是800nm,光纤激光器一般是1064nm2、脉宽不同,飞秒激光器脉宽单位是fs,光纤激光器脉宽单位是ns3、功率不同,飞秒激光器功率一般在5W以下,光纤激光器一般在10W以上4、峰值功率不同,飞秒激光器峰值功率远远高于光纤激光器的峰值功率。
飞秒激光微纳加工用途
飞秒激光微纳加工用途
飞秒激光微纳加工是一种高精度、高效率的微观加工技术,利用飞秒激光的特殊能量特性,可以对各种材料进行微细加工。
这种技术广泛应用于微纳电子、光学器件、生物医学、光子学等领域,在改善设备性能和提高产品质量方面发挥了巨大作用。
以下是飞秒激光微纳加工的主要用途:
1.微电子加工:飞秒激光可以用于制作微电子元器件,例如微型传感器、微电极和微通道等。
这种高精度加工技术可以提高电子元器件的性能和可靠性。
2.光学器件加工:飞秒激光可以用于制作微型光学器件,如光纤连接器、光波导和微型透镜等。
通过精确控制激光参数和加工条件,可以实现高精度和高质量的光学器件加工。
3.生物医学应用:飞秒激光微纳加工在生物医学领域有广泛应用。
可以通过飞秒激光实现细胞操作、组织修复和细胞杀伤等操作。
这种精确控制的加工技术在生物医学领域有着重要的应用前景。
4.材料改性和表面处理:飞秒激光可以用于材料表面的微纳改性和处理。
通过控制激光能量和作用时间,可以实现材料表面的微纳结构化、溅射和烧蚀等处理,从而改善材料的性能和表面特性。
5.光子学器件加工:飞秒激光可以用于制作微型光子学器件,如集成光路和微型光电子器件等。
这种高精度加工技术可以实现光子学器件的高集成度和高可靠性。
总的来说,飞秒激光微纳加工技术在微纳加工领域有着广泛的应用前景。
它具有高精度、高效率和可控性等优点,可以对各种材料进行精确加工和处理。
随着科学技术的不断发展,飞秒激光微纳加工技术在各个领域的应用将会越来越广泛。
飞秒光纤光栅的用途
飞秒光纤光栅的用途飞秒光纤光栅是一种重要的光纤器件,具有广泛的应用领域。
下面将从科学研究、通信技术、生物医学和工业制造等方面介绍其用途。
1. 科学研究飞秒光纤光栅在科学研究中起到了重要的推动作用。
它可以用于超快光学实验,例如超快光谱分析、超快动力学研究等。
光栅可以通过调节光纤中的折射率分布,实现对光信号的调制和控制,从而提供了精确的光学参数控制能力。
这使得科学家们可以更好地研究和理解光与物质的相互作用过程,推动了光学领域的发展。
2. 通信技术飞秒光纤光栅在光通信领域也有着重要的应用。
光栅可以用于光纤通信系统中的滤波器、耦合器、分光器等器件,用于实现光信号的调制、分配和路由。
光栅具有高稳定性和可调谐性的特点,可以实现光信号的精确控制和调节,提高光通信系统的传输效率和可靠性。
3. 生物医学飞秒光纤光栅在生物医学领域具有广泛的应用。
光栅可以用于光纤传感器,实现对生物体内部参数的测量和监测。
例如,可以将光栅传感器插入人体血管中,实时监测血液的流速和压力,为临床医生提供重要的生理参数。
此外,光栅还可以用于光学成像,如光纤内窥镜等,用于实现对生物体内部组织和器官的高分辨率成像。
4. 工业制造飞秒光纤光栅在工业制造领域也有着重要的应用。
光栅可以用于激光加工和微纳加工中的光束整形和调控。
通过调节光栅的参数,可以实现激光光束的聚焦、分光、分束等功能,从而实现对材料的精确加工和微纳结构的制造。
光栅在工业制造中具有高精度和高稳定性的优势,可以提高制造工艺的精确度和效率。
飞秒光纤光栅具有广泛的应用领域,包括科学研究、通信技术、生物医学和工业制造等。
光栅在这些领域中发挥着重要的作用,推动了相关技术的发展和应用的创新。
随着科技的不断进步,相信飞秒光纤光栅将在更多领域发挥重要的作用,为人类社会带来更多的便利和发展。
飞秒激光器的发展现状
飞秒激光器的发展现状飞秒激光器是一种能够产生极短脉冲的激光器,其脉冲宽度在飞秒级别(10的负15次方秒)以下。
飞秒激光器由于其独特的脉冲特性,在不同的科学研究和工业应用中得到了广泛的应用。
本文将对飞秒激光器的发展现状进行探讨。
首先,飞秒激光器在科学研究中具有重要的作用。
在物理、化学和生物学等领域中,飞秒激光器被用于研究材料的光学特性、分子结构和生物功能等。
飞秒激光器的短脉冲宽度使得它们能够准确地观测材料的动态变化,例如电子和分子的运动。
此外,飞秒激光器还可以被用于制备纳米材料和研究材料的超快光学现象,如非线性光学效应和超快激光光谱学。
这些研究对于推动各个领域的科学进步具有重要意义。
其次,飞秒激光器在工业应用中也得到了广泛的应用。
飞秒激光器可以用于微加工和材料加工。
由于其极短的脉冲时间,飞秒激光器可以在几乎没有热影响区域的情况下进行精细加工。
这种加工方式适用于各种材料,如金属、玻璃、陶瓷等。
飞秒激光器被用于制造微小的零件、光学元件和微芯片等。
此外,飞秒激光器还被用于医疗美容领域,如激光去眼袋、激光去斑和激光纹身去除等。
飞秒激光器的应用领域不断扩大,为工业生产提供了新的可能性。
还有,飞秒激光器的发展也受到了技术的驱动。
随着技术的不断进步,飞秒激光器的脉冲宽度和输出功率得到了大幅度提高。
传统的飞秒激光器通常需要复杂的调谐系统和高功率扩展系统,这对于其商业化应用来说是一个挑战。
然而,新型的飞秒激光器采用了更简单和紧凑的设计,使得飞秒激光器更易于集成到现有的系统中。
此外,飞秒激光器的价格也在逐渐降低,使得更多的用户能够负担得起。
同时,飞秒激光器的应用也面临着一些挑战。
例如,飞秒激光器的稳定性和可靠性仍然需要进一步提高。
高功率飞秒激光器的实现也需要解决热管理和光学材料的选择等问题。
此外,对于一些特定的应用来说,飞秒激光器的功率密度可能不足以满足需求,需要更高功率的飞秒激光器来实现。
综上所述,飞秒激光器在科学研究和工业应用中具有广泛的应用前景。
飞秒激光技术在材料加工中的应用
飞秒激光技术在材料加工中的应用飞秒激光技术是近年来备受关注的一种切割、雕刻、打孔等材料加工方法。
相比传统工艺,飞秒激光具有更高的精度、更短的作业时间、更少的热损伤以及更低的噪声等优点,因此在微电子制造、精微加工、生物医学等领域得到了广泛应用。
一、原理与特点飞秒激光技术是建立在飞秒激光器装置基础上的一种加工方法。
飞秒激光器产生的激光脉冲微弱、纯净、短时,在飞秒级别内完成光子吸收和电子释放,作用于材料表面时可引发剧烈的物理、化学反应,使材料表面产生瞬时的高能电子云,经过电磁波的作用后经历光致电子的发射,从而实现物质原子的削减、切割、加工。
由于飞秒激光器的每个激光波包时间极短,仅有纳秒级别,同时在一定范围内具有高功率密度,可以实现高度局部加工,这也是它优于其他激光器的显著特点之一。
二、应用场景飞秒激光技术具有广泛的应用领域,在微电子制造、精密机械、材料学、生物医学等领域得到了广泛应用。
1.微电子制造飞秒激光系统可以制造微处理器计算机芯片及照相机传感器等微型电子部件,同时也可以制造LED封装基板、镀铜基板、柔性电路板等微型电子元件,可以实现金属、氧化铝、蓝宝石等材料的高精度切割和蚀刻。
2.精密机械飞秒激光技术可以应用于机械结构的加工、拼接、切割、切槽等,它可以将金属、非金属、半导体、纤维素、陶瓷等材料进行精密加工,尤其对一些难加工的材料,比如薄板、钢板、玻璃、石英等均是非常有效的加工方式。
3.材料学飞秒激光技术具有很高的能量稳定性,能够在材料表面准确的刻划出绝缘、半导体和导体等结构,在制造一些小型设备如微芯片或微机械时,能够实现与传统工艺相比无法实现的高精度刻录。
4.医学飞秒激光技术被广泛应用于眼科、皮肤和牙科等医疗领域。
在眼科领域中,飞秒激光可用于眼内手术中,如角膜手术和白内障手术。
在皮肤领域中,飞秒激光可用于去除面部痣、纹身、血管瘤和斑痕等,不需要使用传统手术法进行切割。
三、未来展望虽然飞秒激光技术在一些领域得到了广泛的应用,但其发展仍存在一些问题和挑战。
飞秒激光OCT应用
飞秒激光在OCT中的应用光学相干层析技术( Optical Coherence Tomography, 简称OCT )以低相干测量为原理,是一种新型成像技术,可进行活体组织显微镜结构的非接触式、非侵入性断层成像。
OCT是超声的光学模拟品,而纵向分辨力更高,又不象X 射线和射频电磁场一样对生物体产生不良影响。
因此OCT 特别适用于那些具有高散射,非透明性质的样品,而生物体就是这样的样品。
目前OCT越来越多的被应用到生物体组织的诊断,特别是眼科以及皮下组织的病变诊断。
其穿透深度几乎不受眼透明屈光介质的限制,可观察眼前节,又能显示眼后节的形态结构,在眼内疾病尤其是视网膜疾病的诊断,随访观察及治疗效果评价等方面具有良好的应用前景。
图1为OCT影象和超声波检测结果进行对比,很显然,OCT的分辨率更高,影象更清晰。
图1OCT的基本原理如图2所示,基本功能部分为2Х2的WDM,将检测光和参考光都输入光纤,并在光纤耦合器中分成2部分,一部分进入参考臂,一部分进入采样臂。
当参考臂上反射回来的光和采样臂上反射回来的光进行干涉的时候,在干涉臂探测器上将获得最强信号。
然后对不同空间点的采样,就可以获得不同空间的信息。
经过滤波,数模转换等处理,将该信息转换成可视频显示的图象。
因此,光是信号载波,光信号和最终的获得的信息是相关联的,光源的选择对OCT的性能有重大影响。
图2对于OCT的光源选择,有两点值得注意:第一,人体细胞对850nm以下的光,有较强的散射,而细胞中的水份对1500nm以上的光,吸收率又较高,这两点都对OCT的应用极其不利,因此,通常OCT的光源都要求波长在850-1600nm之间。
图3分别显示了850nm和1300nm 下的喉部软骨组织OCT影像。
1300nm下的图象明显更清晰。
图3第二,OCT的纵向扫描分辨率由光源的相干长度/决定。
因此,为了得到更高的分辨率,就必须选用宽光谱光源,例如以前常用的超辐射发光二极管(SLD)和目前比较热门的飞秒激光泵浦的超连续谱。
飞秒激光器的应用与前景
目录摘要 (1)1.激光器的基本原理 (2)1.1自发辐射、受激辐射、受激吸收、粒子数反转 (2)1.2激光器的基本结构与工作原理 (2)1.3激光产生的条件 (3)2.飞秒激光脉冲的产生 (4)2.1 飞秒激光脉冲技术 (4)2.2飞秒激光脉冲的产生 (7)3.飞秒激光器的基本特点及其应用 (9)3.1 飞秒激光器的基本特点 (9)3.2飞秒激光器的应用 (9)4.飞秒激光器发展现状与应用前景 (13)4.1 飞秒激光器发展现状 (13)4.2飞秒激光器应用前景 (14)致谢 (15)参考文献 (15)飞秒激光器的应用与前景李海华(指导教师:李宏)湖北师范学院物理系0301班,湖北,黄石,435002摘要:飞秒激光器具有广泛的应用范围,特别是在材料加工、器件制作及光通信等领域具有重要的应用。
本文对飞秒激光器的原理、技术以及在几个方面的应用进行探讨,最后是对飞秒激光器将来应用及发展前景进行了分析。
关键词:飞秒激光器锁模技术飞秒光脉冲中图分类号:TN209Application and prospect of femto-second laserLI Haihua(Tutor:LI Hong)(Department of Physics , Hubei Normal University ,435002 ) Abstract:Femtosecond laser is of large application scope, and particularly they are used in material processing, apparatus facture and opticalcommunication. The working principle of the laser is demonstrated,and its applications introduced. Finally, application and prospect of thefemto-second laser in the future are discussed.Key word:Femtosecond laser Locking mode technology femtosecond optical pulses1.激光器的基本原理激光器是20世纪60年代出现的一种新型光源。
从锁模到cpa放大——飞秒光纤激光器原理
从锁模到cpa放大——飞秒光纤激光器原理从锁模到CPA放大——飞秒光纤激光器原理飞秒光纤激光器是一种重要的激光器,它具有超短脉冲宽度和高峰值功率的特点,被广泛应用于科学研究、材料加工、医学和通信等领域。
在飞秒光纤激光器的研究和发展过程中,锁模和CPA放大是两个重要的步骤。
本文将从锁模到CPA放大的原理来介绍飞秒光纤激光器的工作机制。
我们来看一下锁模的概念。
在激光器中,由于光的传播和反射等因素的影响,激光往往会出现空间模式的变化,即横模和纵模的变化。
锁模是指通过一定的方法将激光束限制在一个特定的模式上,使其具有稳定的传输性能。
在飞秒光纤激光器中,通过控制光纤的几何结构和光纤材料的折射率分布等因素,可以实现锁模效果。
锁模的实现是基于光纤的非线性效应和光纤的色散效应。
首先,光纤的非线性效应可以使光的传播速度与光的强度相关,从而实现对光场的调控。
其次,光纤的色散效应是指光在光纤中传播时,不同频率的光具有不同的相速度,从而产生色散现象。
通过合理设计光纤的非线性系数和色散系数,可以实现对光场的调制和限制。
锁模的实现可以通过相位调制、频率调制和干涉效应等方法来实现。
其中,相位调制是通过改变光场的相位分布来实现锁模效果;频率调制是通过改变光场的频率分布来实现锁模效果;干涉效应是通过光的干涉现象来实现锁模效果。
通过这些方法,可以将激光束限制在一个特定的模式上,使其具有稳定的传输性能。
锁模的实现是飞秒光纤激光器实现高峰值功率的基础。
锁模可以使光场的能量集中在一个小的空间范围内,从而增强光场的强度。
这样,在飞秒光纤激光器的工作中,激光束可以达到极高的峰值功率,从而实现对材料的高精度加工和控制。
接下来,我们来看一下CPA放大的原理。
CPA放大是指通过多次放大和压缩的过程,将飞秒光纤激光器的脉冲宽度压缩到飞秒量级,并提高脉冲的峰值功率。
在这个过程中,涉及到放大器和压缩器两个关键部件。
放大器是用来增强光场的能量的装置。
在飞秒光纤激光器中,常用的放大器是光纤放大器和固体放大器。
纳秒超快飞秒激光在精密加工中的应用研究
纳秒超快飞秒激光在精密加工中的应用研究随着科技的不断发展,激光技术逐渐成为了众多高端制造领域的重要应用工具。
其中,超快激光技术在精密加工领域的应用日益成熟,特别是飞秒激光技术,已经成为众多领域的研究重点。
本文将探讨飞秒激光技术在精密加工中的应用研究现状和未来发展趋势。
一、超快飞秒激光技术的特点飞秒激光不仅具有常规激光的优良特性,如卓越的聚焦性、高功率、高稳定性,而且具有纳秒量级的超短脉冲宽度和极高的峰值功率。
飞秒激光的纳秒超短脉冲时间,可以将较大的激光功率转移到狭小的区域内,从而实现精密加工。
通过光纤激光器便于发射激光,维护方便,抗干扰能力强,是广大制造企业选用的首选。
二、纳秒超快激光在材料加工中的应用目前,由于人类需求的不断提高,对工业品质的要求也变得日益高,超快激光技术已逐渐成为精密加工、生物医学、通信等诸多领域研究的重点。
一方面,超快激光在材料加工中具有技术简单、加工精度高、加工效率高等特点,同时又不会改变材料原始性能等优点。
1. 飞秒激光去毛刺加工飞秒激光去毛刺加工一般采用黑色、铁元素比较多的金属材料,如冷轧钢板、铝板等。
方式为以高压空气为介质,利用高能量脉冲飞秒激光对毛刺进行打击或破裂,最终实现对毛刺的去除。
这种加工方式具有清除毛刺干净快速、精度高、效率高、材料损失小等特点。
2. 飞秒激光打标与常规激光打标相比,飞秒激光在打标过程中有着更为精密高质的标记效果,而且能实现更为细小化,如药品数字防伪码、3D打印光刻微流控器件等领域应用已日益成熟。
这种方法不仅能够实现高精准的蚀刻和刻画,同时在保证表面平整度的同时也不会使加工物品变形。
3. 飞秒激光开孔和切割飞秒激光在材料加工中还可以用于开孔和切割,特别是在硅片加工以及复合材料的切割领域得到了广泛应用。
其最大优点是可以实现非常高的切割质量和速度,同时也保证了耗时短,能省去繁琐的后处理工序等优点,对于金属材料、石墨材料等都有一定的应用前景。
4. 其它应用领域超快激光在生命科学、形貌表面工程、通信、数据存储、晶体增长等领域的应用研究也不断取得新的突破。
飞秒激光在光电材料加工中的应用研究
飞秒激光在光电材料加工中的应用研究飞秒激光已经成为了材料加工领域一种非常重要的工具。
通过研究飞秒激光的光学原理以及其在材料加工中的应用,我们可以更好地理解飞秒激光在光电材料加工中的应用。
1. 飞秒激光的光学原理飞秒激光的发射是通过的激光器发出谐振腔来实现的。
其工作原理是利用电子受激跃迁放出能量来实现放大。
由于飞秒激光具有极短的脉冲宽度,其波长可以达到比较长的红外波段,也可以到达紫外波段。
2. 飞秒激光在材料加工中的应用飞秒激光作为材料加工的工具已经被证明是非常有效的。
其最大的作用是产生高质量的切割和加工质量的控制。
2.1 切割飞秒激光切割是基于优秀的脉冲质量和其极短的脉冲宽度的。
由于飞秒激光的特性非常独特,因此可以得到非常高的精度和非常小的切割区域。
其精度可以达到纳米级别。
2.2 加工质量控制飞秒激光的加工质量控制是通过在加工的过程中进行控制来实现的。
由于飞秒激光的脉冲特性,可以实现非常精细的切割和加工,从而可以得到非常好的加工质量。
此外,在飞秒激光的加工过程中,会产生非常少的热量和能源,从而可以保证加工区域没有缺陷和裂缝。
3. 飞秒激光在光电材料加工中的应用飞秒激光在光电材料加工中应用非常广泛。
目前,其应用在光电材料中主要有以下几个方面。
3.1 晶体加工飞秒激光通过其优秀的切割和加工质量控制特性,可以实现非常精细的晶体加工。
在晶体加工中,需要进行非常精细的切割和加工过程,而飞秒激光可以实现非常高的精度和非常小的切割区域。
3.2 光波导加工飞秒激光在光波导加工中也有非常广泛的应用。
传统的光波导加工需要非常高的精度和精细的制造技术,而飞秒激光可以通过其优秀的切割精度和加工质量控制特性,实现非常好的光波导加工效果。
3.3 薄膜加工飞秒激光在薄膜加工中也有非常重要的应用。
由于飞秒激光可以实现非常高的切割质量和加工精度,因此可以实现非常好的薄膜切割和加工。
4. 结论飞秒激光在光电材料加工中应用非常广泛。
北京飞秒激光器用途
北京飞秒激光器用途
北京飞秒激光器是一种先进的激光技术,它可以产生高强度的短脉冲激光,脉宽为飞秒级别,一般在几十飞秒至几百飞秒之间。
这种激光器在实验室中的应用非常广泛,已经成为物理、化学、生物和医学等领域的重要研究工具。
首先,北京飞秒激光器可以用于材料科学研究。
由于其短脉冲的特性,可以在材料表面制造微米甚至亚微米级别的结构,这对于研究材料表面的物理和化学性质有很大的帮助。
此外,该激光器也可以用于薄膜制备、纳米材料制备等方面的研究。
其次,飞秒激光器还可以应用于生物医学研究。
短脉冲的激光可以精确穿透细胞膜,甚至可以对细胞核进行成像。
这对于生物医学研究中的细胞学和病理学有很大的帮助。
飞秒激光器还可以用于眼科手术等领域,可在不伤害其他组织的情况下,精确地处理眼部疾病。
最后,北京飞秒激光器还可以用于光学通信中。
其高速性和精确性使其成为光学信号处理和数据传输中的一种理想工具。
因此,在日常生活中越来越多的应用也开始关注该激光器的开发和研究。
总的来说,北京飞秒激光器在科学技术的发展中扮演着重要的角色。
无论是研究材料科学、生物医学还是光学通信,它都为我们连接更多的未知知识提供了方便和可能。
飞秒激光的应用及原理
飞秒激光的应用及原理1. 介绍飞秒激光是一种特殊的激光技术,具有独特的应用领域和原理。
本文将介绍飞秒激光的应用及其工作原理。
2. 应用领域飞秒激光在多个领域有广泛的应用,包括以下几个方面:•医疗领域:飞秒激光在眼科手术中有重要的应用,例如激光角膜磨镶手术和LASIK手术等。
•科学研究:飞秒激光被用于材料研究、生物医学研究等领域,可以实现精确的加工和控制。
•工业制造:飞秒激光可以用于制造微细结构,如微孔、微槽和微凸起等,广泛应用于电子、光学和航空航天等行业。
•通信领域:飞秒激光可用于高速数据传输、光纤通信等通信技术中,提供更高的传输速度和稳定性。
3. 原理飞秒激光的原理主要包括以下几个方面:•超短脉冲:飞秒激光是一种超短脉冲激光,脉冲宽度通常在飞秒级别(1飞秒=10^-15秒),这种超短脉冲可以实现非线性光学效应和材料加工的精确控制。
•高能量密度:由于飞秒激光脉冲的高能量密度,激光与物质相互作用时能量多集中在小空间内,使其能够在精确控制下进行材料加工和调控。
•非线性光学效应:飞秒激光的高能量密度可以引发非线性光学效应,如光学击穿效应和高次谐波生成,这些效应可以用于材料加工和科学研究。
•光束质量高:飞秒激光具有高质量的光束,能够提供高的空间和时间相干性,从而在加工和传输中提供更高的效率和精度。
4. 应用案例以下是几个飞秒激光应用的案例:•角膜磨镶手术:飞秒激光用于角膜磨镶手术中,通过精确控制飞秒脉冲,可以实现角膜切割和修复的高精度和稳定性。
•微细结构制造:飞秒激光被应用于制造微细结构,如微孔、微槽和微凸起等,广泛应用于电子元件加工和生物医学器械制造等领域。
•超快动力学研究:飞秒激光可以用于研究材料的超快动力学过程,如电子能级跃迁和光解离等,为材料科学研究提供了重要的工具。
•高速数据传输:飞秒激光在光通信领域可用于高速数据传输,通过其高速和稳定性,提供了更高的带宽和传输速率。
5. 结论飞秒激光作为一种特殊的激光技术,具有广泛的应用和独特的工作原理。
飞秒激光的生物医学应用
飞秒激光的生物医学应用近年来,飞秒激光技术在生物医学领域中的应用越来越广泛。
所谓飞秒激光,就是一种能够产生高强度、高精度光束的激光器。
由于其独特的物理性质,飞秒激光被广泛运用于生物医学领域,为医学科技的发展注入了新的活力。
一、飞秒激光用于眼科手术飞秒激光最早应用于眼科手术。
飞秒激光可以用于制作角膜瓣,置换角膜层状切割,甚至眼内物质的操作。
使用飞秒激光进行手术可以减少手术过程中对角膜的损伤,保证了手术的安全性。
同时,由于激光束的精度和可控性,飞秒激光制作的瓣片可以更加精确地与眼球匹配,治疗效果更加突出,危险系数大大降低。
二、飞秒激光用于皮肤手术由于飞秒激光的高精度和温和性,它也被广泛地用于皮肤手术中。
飞秒激光可以通过轻轻一点,准确地去灰去褐色痣、黑色素、色素性疣等病症。
与传统的手术方法相比,使用飞秒激光可以降低感染率、减少术后恢复时间,并更加精确地取得理想的治疗效果。
三、飞秒激光用于癌症治疗飞秒激光对于癌症的治疗也非常有潜力。
激光束可以准确地扫描组织内部,进行局部的热力学处理,从而消除癌细胞。
不仅如此,飞秒激光对于癌细胞消除完毕后,还可以促进组织的再生,帮助恢复正常的细胞功能。
在新的治疗方案中,也已经开始探索将飞秒激光作为主要治疗手段。
四、飞秒激光用于神经科学研究最后,飞秒激光也在神经科学领域中发挥着越来越重要的作用。
通过使用飞秒激光技术,科学家能够观察到神经元的活动和连通性,甚至对单个神经元进行操作。
这种技术的引入,不仅推动神经科学的研究进展,也为未来的神经治疗提供了新的思路。
总之,飞秒激光在生物医学领域中的应用越来越广泛,带来的成果和突破也越来越多。
作为一项新兴科技,飞秒激光的应用在未来还将不断的拓展,将为医学科技的发展注入新的活力,为更多疑难杂症的治疗提供更多的选择和可能。
飞秒激光技术的应用及其发展趋势
飞秒激光技术的应用及其发展趋势飞秒激光技术是一种最新的激光技术,它的出现引起了全球的关注。
众所周知,激光技术有很多应用,但一直以来,激光技术都存在着一个亟待解决的问题,那就是光与物质相互作用时的能量损失问题。
为了解决这个问题,飞秒激光技术应运而生。
下面我们将来讨论一下飞秒激光技术的应用及其发展趋势。
一、飞秒激光技术的应用1. 生物技术领域飞秒激光技术在生物技术领域中的应用很突出,因为它可以有效地进行细胞和组织的精确切割,并且不会对细胞和组织造成伤害。
这一发现在生物学和医学领域中有着广泛的应用,比如可以用来进行DNA的定序和修缮、进行眼科手术等等。
2. 纳米技术领域飞秒激光技术在纳米技术领域中也有着重要的应用,因为利用飞秒激光技术可以对纳米材料进行加工,制作高精度的微观器件和微结构,开拓了全新的纳米技术应用领域。
比如可以用来制造纳米管、纳米显微镜等等。
3. 量子技术领域飞秒激光技术在量子技术领域中也发挥着重要的作用,它可以用来制造量子点、量子线和量子井等等量子器件,这些器件可以实现高效的量子计算和通讯。
这一技术在计算机科学和通讯工程领域中有着巨大的应用前景。
二、飞秒激光技术的发展趋势飞秒激光技术的发展趋势主要体现在三个方面:技术发展、应用扩展、市场规模。
1. 技术发展飞秒激光技术在未来的技术发展方面主要包括以下几个方面:(1)提高机器的精度和稳定性,减小误差和工作时间。
(2)改进激光的光束质量,提高能量利用率。
(3)提高加工速度和效率,满足更多的应用需求。
2. 应用扩展飞秒激光技术在应用扩展方面,将发挥更大的作用。
未来将涉及到更多的领域,掌握飞秒激光技术将是一项非常重要的技能。
(1)医疗领域:飞秒激光技术将会在手术和治疗方面得到广泛应用。
(2)工业领域:可以用来制造高精度的器件和零部件,用于航空、汽车等重要的工业领域。
(3)电子领域:可以制造高质量的微电子器件,开拓电子领域的新应用方向。
3. 市场规模随着飞秒激光技术的发展,其市场规模也将不断扩大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
飞秒光纤激光器的应用飞秒光纤激光器是一种主要由光纤激光器构成,具有飞秒(10负15次秒)区持续时间的脉冲激光器。
飞秒激光器的脉宽极窄,瞬问功率极高,既使平均输出功率为lW,峰值功率也能达到千瓦级至兆瓦级以上。
飞秒激光器现已应用于以往纳秒脉冲激光器或连续波激光器无法应用的各种领域。
1990年,日本爱信精机公司以IMRA AmericaInc.的名字在美国成立了一家子公司,门从事飞秒光纤激光器的研发、生产、销售与应用开发工作。
因此“IMRA”既是美国研究法人的名字,又是爱信精机公司生产的激光器的商标名称,这是在美国研究开发、日本制造的激光器。
1、飞秒光纤激光器的优点1.1、小型轻便光纤激光器在确保必要光学长度的同时,可将光纤卷成半径约3cm的环形。
与固体激光器相比,光纤激光器的体积大幅缩小。
光纤形态每单位体积的表面积大于棒状或片状晶体激光器,散热效果好,不需要冷却器等外围装置,因此在这方面又大幅缩小了激光器的体积。
1.2、高可靠性高稳定性光纤激光器是由光纤部件组装而成。
这些光纤部件采用电弧熔接的方法,因此光学轴长期无偏移,这种连接方法确保了光纤激光器的稳定性和可靠性。
另外,IMRA激光器系统外部采购的元器件都严格选用高可靠性的光通信部件,这也对激光器系统的高可靠性提供了保障。
1.3、高光束质量单模光纤输出的光是近乎理想的点光源,输出光束的圆度和强度分布较容易获得接近理想的高质量输出光束。
飞秒光纤激光器在用于微细加工时,聚焦光束很容易达到透镜的聚焦极限,因此适于微细加工。
1.4、低功耗现已广泛使用的钛宝石飞秒激光振荡器的晶体吸收波长在530nm附近,将大功率Nd:YAG激光器的波长转换成530nm来泵浦激光器,既需要大型Nd:Y AG激光器,又需要冷却器,其电能消耗很大。
而光纤激光器则不需要冷却器,可以用二极管激光器直接泵浦。
结果表明,飞秒光纤激光器的电光转换效率优于钛宝石飞秒激光器1个数量级。
2、飞秒光纤激光振荡器虽然20世纪90年代初问世的飞秒光纤激光器的光学轴具有长期无偏移的特点,但因温度的变化等会使偏振面光纤旋转,从而导致输出功率的改变,因此需要偏振面的调整机构,并需要维护。
1994年,Fermann等人利用新结构的被动锁模飞秒脉冲激光振荡器实现了无调整运转。
科研人员在谐振腔的两端对置法拉第转子,以往返运转来补偿因环境变化所引起的偏振旋转。
振荡器的波长为1560nm,重复频率为50MHz、脉宽为400fs,平均输出功率为5mW。
此外,还附加了光放大器和波长转换器。
该振荡器于1998年开始以“飞秒光R”为品牌投放市场,无须维修,可稳定工作30000h以上,现仍在继续工作这种被动锁模飞秒脉冲激光振荡器可用于最先进的光通信用光计量系统中,作为免维修光源,现已被多家公司的飞秒激光应用仪器所利用。
3、飞秒光纤放大器当飞秒脉冲激光器用于工业加工时,需要兆瓦级的脉冲峰值功率。
因此,为将“飞秒光R”的千瓦级峰值功率放大3个数量级以上,爱信精机公司开发了如下2种放大方式。
3.1、光纤啁瞅脉冲放大为了获得高脉冲能量.采用了在钛宝石等固体激光放大器中广泛应用的啁啾脉冲放大方式。
这种方式是在光放大器之前,利用波长引起的折射率差延长脉宽使峰值功率降低并实现光放大,然后在最终端进行脉冲压缩。
与固体激光放大器的区别是:光纤啁啾放大无需用空间光学部件,而是用光纤的色散来实现放大,因此人们将其称为光纤啁啾脉冲放大(FCPA)。
3.2、用大口径光纤进行光放大当单模光纤内的飞秒脉冲进行光放大时,若脉冲能量为nJ/p以上,非线性效应则变得明显,增益下降。
为了控制这种非线性光学效应,增大光纤内的有效面积,并降低每单位面积的峰值功率,能够有助于实现大功率。
然而,扩大有效面积和单模变成多模会降低光束质量。
为解决这个问题,可通过选择性地提高光纤高阶模的损耗达到理想要求。
实验结果证明,即使将多模光纤用于放大也可以保持高光束质量。
3.3、工业加工用飞秒光纤激光器——FCPA μ Jewel以上述技术为基础,爱信精机公司推出了FCPA μ Jewel脉冲激光器。
该激光器具有小型、轻便、高稳定性和高可靠性的优点。
在以重复频率工作时,具有级的脉冲能量。
因这种激光器的振荡介质不同,所以该公司开发了2种类型。
无论哪种类型,均不需要冷却器,仅使用100V交流电源就可运转。
4、利用FCPA μ Jewel激光器进行飞秒微细加工从原理上讲,飞秒激光加工与以往用较长脉宽的纳秒激光加工有所不同。
用纳秒激光加工时,当激光照射物质时,首先电子振动,然后因其声耦合而变为晶格振动,并对周围传热,使周围物质加热、熔化、蒸发。
采用纳秒激光器可进行钻孔和切割加工。
飞秒激光器因光脉冲的持续时间为飞秒级,因此在声振动转换为晶格振动之前便结束能量供给。
当脉冲能量低于加工阈值时,电子振动停止。
若高于某阈值以上,其强大的振动引起电离,剥离耦合电子,引起物质的烧蚀。
也就是说,飞秒激光器可实现不经过热过程的加工.只用透镜聚焦光束进行控制深度方向的三维加工,这就是飞秒激光加工的特点。
飞秒加工具有下列优点:①对加工区周围的热影响小;②可加工其它激光难以加工的材料,如透明材料、高熔点材料、热分解器和热变形材料等;③可利用聚焦光束进行控制深度方向的内部加工。
但在飞秒加工中,当脉冲能量密度过大时,会使原始材料熔化、出现微裂纹并对周边产生较大的热影响,其加工结果与纳秒加工没有什么区别。
因此,为了实现高品质、重复性好和碎片少的加工,采用略超过加工阈值的脉冲能量密度至关重要。
具有高重复脉冲的FCPA“Jewel激光器能最大限度地利用飞秒加工的优点进行高速加工.并有望实现低成本加工。
综上所述,飞秒加工只能用直径约几微米的焦点进行加工。
如果在进行某种大体积物质的去除加工时,需在光束高速旋转的同时进行高速扫描加工。
飞秒加工机可根据客户的需求进行加工。
5、飞秒加工的实例下面介绍采用FCPAJewel激光器加工的实例。
5.1、在树脂衬底上选择去除金属薄膜爱信精机公司的研究人员对是否能最小限度地保持加工周围的热影响,是否能够仅对所指定的部位进行微细加工进行了试验验证。
对聚酰亚胺树脂薄膜衬底(厚度25m)上的4.5m 铜膜进行了去除实验,加工样品的去除宽度为75m。
采用的激光束直径为40m、以12000r.P.S 的转速旋切,进给速度为0.5mm/s横向扫描3次,深度方向扫描3次实现了去除加工。
结果表明,对树脂无热影响,实现了理想的铜膜去除加工。
这种加工方法有望用于电路的修复、去毛刺和小批量产品的图案成型。
5.2、在石英衬底上加工微通道在生物和制药领域.飞秒激光器可以在石英基板上进行微通道加工。
用飞秒激光器在石英衬底上形成宽70μm、深200μm任意形状的槽。
通常廉价的、一次性使用的微通道采用的是树脂衬底,但对部分需要到达紫外波段的要采用对紫外线透射的石英衬底。
加工方法是以直径为70m的光束旋切,0.5mm/s的进给速度,加工深度随扫描次数的增加而任意增加,也可实现1mm衬底的穿透加工。
利用飞秒激光也可对硼硅玻璃、蓝宝石等衬底材料进行同样的加工,但加工的表面光洁度不理想(Rr=0.5μm)。
为解决这个问题,必须改善进给速度和激光输出功率等加工条件,使其达到最佳化。
5.3、单晶金刚石的微细打子L加工利用FCPA μ Jewel飞秒激光器对其它激光器难以加T的单晶金刚石进行了打孔加工(孔径20μm)。
用光束开孔的同时,采用光束扫描表面并在深度方向以2μm/s的速度扫描实现深孔加工的例子。
在加工部位的周同未见烧伤痕迹,实现单品金刚石的理想加工。
5.4、耐热铬镍铁合金的槽加工铬镍铁合金是一种在l200oC高温下也难以熔化的高耐热性合金.因此难以切削。
用于高压实验的一些元件使用这种材料,其微细布线需要开细槽。
采用FCPA μ Jewel飞秒激光器对铬镍铁合金表面进行了开槽加工,加工结果如图5所示,槽宽为50μm、槽深为42μm,整个槽的深度与宽度都很均匀,说明加工过程非常稳定。
另外从照片可以看出槽边缘部位没有下垂碎沫附着。
5.5、直径1μm子L的加工当用物镜聚焦红外激光时,聚焦直径为几微米。
一般很难实现尺度在聚焦直径以下的微孔加工。
然而,飞秒激光器可利用聚焦点上的光束强度分布,通过对超过加工阈值的中心部分进行调整成功地打出了比聚焦直径小的微孔。
另外,飞秒光纤激光器可用于制作生物传感器要求激光器在SiO膜上、厚度为364nm 的钴膜上打出直径为1μm的孔,而不能伤及钴膜下面的Si02。
若在加工过程中产生碎沫则不能确保纳米级的光洁度,还会影响其后边的工序。
当加工条件达到最佳化时,激光输出聚焦功率达5mW,当用50倍的物镜聚焦时,可以获得约lμm的孔。
当照射时间为4~8msec时,孔深达364nm.正好只去除钴层,而不伤及Si02层。
孔周围几乎没有碎沫,达到了理想的加工结果在加工口处见到的须状物可能是存偏振方向形成的垂直表面的纳米周期结构。
如果将偏振光变成圆偏振光,或无偏振光,那么这种现象就会消失。
6、结束语事实上,爱信精机公司的飞秒激光用于工业加工的最大障碍是受飞秒加工基本利的限制,也就是所谓的“密歇根利(美国利号:专利5656186、日本专利号328365)”。
这项利是加工方法的专利,激光制造商不能直接侵权,但为拓展飞秒加工技术在工业中的应用,爱信精机公司现已获得了该利使用权。
此外,爱信精机公司还组建了能实际利用爱信精机公司生产的激光器进行加工的“开放实验室”希望今后飞秒加T技术的应用得到进一步的发展。