纳米金属氧化物的制备及应用研究的若干进展
纳米四氧化三铁的制备及应用的研究报告进展论文综述
目录摘要 (1)关键词 (1)Abstract (1)Key words (1)前言 (1)制备方法 (2)1 固相法 (2)1.1 球磨法 (2)1.2 热分解法 (2)1.3 直流电弧等离子体法 (3)2 液相法 (3)2.1 沉淀法 (4)2.1.1 共沉淀法 (4)2.1.2 氧化沉淀法 (5)2.1.3 还原沉淀法 (5)2.1.4 超声沉淀法 (6)2.2 微乳液法 (6)2.3 水热法/溶剂热法 (7)2.4 水解法 (8)2.5 溶胶-凝胶法 (8)应用 (9)(一)生物医药 (9)(二)磁性液体 (9)(三)催化剂载体 (10)(四)微波吸附材料 (10)(五)磁记录材料 (10)(六)磁性密封 (10)(七)磁保健 (11)展望 (11)致 (11)参考文献 (12)纳米四氧化三铁的制备及应用的研究进展摘要:纳米Fe3O4粒子因其特殊的理化性质而在多个领域得到广泛的应用。
本文综述了纳米四氧化三铁的制备方法和应用领域,其中的制备方法主要有球磨法、沉淀法、微乳液法、水热法/溶剂热、水解法、氧化法、高温分解法和溶胶-凝胶法等,并讨论了纳米四氧化三铁的主要制备方法的优缺点,最后展望了纳米四氧化三铁的应用前景。
关键词:纳米四氧化三铁;制备方法;应用;进展Progress in Preparation and Application of Nano-iron tetroxideStudent majoring in Applied chemistry Name XXXTutor XXXAbstract: Nano-Fe3O4 particles because of their special physical and chemical properties and is widely used in many fields. In this paper, the preparation methods and applications of nano-iron oxide, one of the main methods for preparing milling, precipitation, microemulsion, hydrothermal method / solvent heat, hydrolysis, oxidation, pyrolysis and sol - gel method and discusses the advantages and disadvantages of the main method for preparing iron oxide nanoparticles, and finally the application prospect of nano-iron oxide. Key words: nano-iron oxide; preparation methods; application; progress前言纳米材料是指颗粒尺寸小于100nm的单晶体或多晶体,纳米微粒具有表面效应、体积效应、量子尺寸效应、宏观量子隧道效应等特性[1-2]。
纳米金属氧化物的制备及应用研究
纳米金属氧化物的制备及应用研究汪信陆路德综述了氧化物及复合氧化物纳米晶的各种制备方法及特点,重点介绍了有机配合物前驱体法-聚乙二醇法、明胶法和硬脂酸法制备氧化物纳米晶的原理、特点以及在磁性材料、电磁波吸收材料、催化剂和塑料改性方面的若干应用。
关键词:纳米材料氧化物软化学1复合氧化物纳米晶的制备方法传统的复合氧化物的制备通常是以固态的氧化物或金属碳酸盐为原料,球磨后经高温固相反应,再粉碎得到复合氧化物的粉体。
由于是高温反应,不仅制备的产物粒径大、分布宽,而且某些组分易于挥发或发生偏析,这种方法一般不宜用来制备纳米氧化物。
纳米复合氧化物的制备通常是采用软化学法,即通过反应原料的液相混合使各金属元素高度分散,从而可以在较低的反应温度和较温和的化学环境下制备纳米材料。
采用的方法主要有共沉淀法、溶胶-凝胶法、有机配合物前驱体法等。
1.1共沉淀法共沉淀法是液相化学反应合成金属氧化物纳米颗粒最早采用的方法。
沉淀法成本较低,但有如下问题:沉淀物通常为胶状物,水洗、过滤较困难;沉淀剂作为杂质易混入;沉淀过程中各种成分可能发生偏析,水洗时部分沉淀物发生溶解。
此外由于大量金属不容易发生沉淀反应,因此这种方法适用面也较窄。
1.2溶胶-凝胶法溶胶-凝胶法是另一类重要的制备纳米复合材料的方法。
该方法不仅可以用来制备无机氧化物纳米材料,还可以制备有机/无机的杂化复合材料。
传统的溶胶-凝胶法一般采用有机金属醇盐为原料,通过水解、聚合、干燥等过程得到固体的前驱物,最后再经适当热处理得到纳米材料。
由于采用金属醇盐为原料,使该方法成本较高。
由于凝胶化过程较慢,因此一般合成周期较长。
另外,一些不容易通过水解聚合的金属如碱金属较难牢固地结合到凝胶网络中,从而使得该方法制得的纳米复合氧化物种类有限。
1.3有机配合物前驱体法有机配合物前驱体法是另一类重要的氧化物纳米晶的制备方法。
其原理是采用容易通过热分解去除的多齿配合物,如柠檬酸为分散剂,通过配合物与不同金属离子的配合作用得到高度分散的复合前驱体,最后再通过热分解的方法去除有机配体得到纳米复合氧化物。
金属氧化物纳米材料的制备和性能研究
金属氧化物纳米材料的制备和性能研究引言:金属氧化物纳米材料由于其独特的结构和性能,已经成为材料科学领域研究的热点之一。
本文将从金属氧化物纳米材料的制备方法和性能研究两个方面展开讨论。
一、制备方法1. 化学沉淀法化学沉淀法是制备金属氧化物纳米材料常用的方法之一。
该方法基于化学反应,在溶液中引入金属离子和氧化剂,通过控制反应条件(如温度、pH值等),使得金属氧化物纳米颗粒逐渐生成。
这种方法操作简单,对多种金属离子适用,但得到的纳米材料分散性较差。
2. 水热法水热法是一种以水为介质,在高温高压条件下合成金属氧化物纳米材料的方法。
通过调节反应温度和压力,可以控制纳米材料的尺寸和形貌。
此外,水热法还能够实现杂质的控制和材料的功能化修饰。
这种方法灵活性较高,适用于多种金属氧化物的合成,但操作条件相对复杂。
3. 气相沉积法气相沉积法是一种在气氛中通过热解或化学反应合成金属氧化物纳米材料的方法。
通过调节反应温度、压力和反应气氛条件,可以控制纳米材料的尺寸和形貌。
由于该方法无需溶剂,因此得到的纳米材料纯度高。
然而,该方法在操作过程中的温度和气压控制要求较高。
二、性能研究1. 光学性能金属氧化物纳米材料在光学性能方面具有巨大潜力。
由于其尺寸效应和表面等离子共振效应,金属氧化物纳米材料在吸收光谱、荧光性能和光催化性能等方面表现出不同于宏观材料的特殊性质。
通过调控纳米材料的尺寸、形貌和组分,可以实现对光学性能的精确调控,应用于光电子器件、光催化剂等领域。
2. 电化学性能金属氧化物纳米材料在电化学性能方面也具有广泛应用前景。
金属氧化物纳米材料的电化学性能主要包括电导率、电容性能和储能性能等方面。
通过调控纳米材料的尺寸、形貌和表面结构,可以实现对电化学性能的调控,应用于超级电容器、锂离子电池等领域。
3. 磁学性能金属氧化物纳米材料在磁学性能方面也具有潜在应用。
由于尺寸效应和表面自旋极化效应的存在,金属氧化物纳米材料呈现出与宏观材料不同的磁学性质。
纳米材料的研究进展与应用
纳米材料的研究进展与应用随着科技的不断发展,纳米科技的应用范围也越来越广泛,纳米材料也成为科学研究领域的热点之一。
纳米材料指分子组成的金属或非金属材料中,至少存在一个微小的维度小于100纳米的物质。
纳米材料的细小尺寸使其具有许多特殊的物理、化学和生物学性质,因此在能源、电子、医学等领域有着广泛的应用前景。
一、研究进展1.合成方法目前,纳米材料的制备方法主要分为物理法和化学法两种。
物理法包括蒸发冷凝法、溅射法等,这些方法已经广泛应用于半导体材料和金属氧化物的合成;而化学法包括溶剂热法、水热法等,这些方法已经发展成为制备全新材料的有力工具,具有制备精度高、成本低等优点。
2.性质特点纳米材料的独特性质主要来源于其表面效应、量子效应和缺陷效应。
在表面效应方面,由于纳米材料的表面积较大,表面能就会比普通材料大,表面位错和表面尺寸效应对其性质的影响也将更加明显。
此外,纳米粒子的量子效应体现在其光学、电学等方面,例如量子点可以作为荧光探针等。
缺陷效应是纳米材料的另一个独特性质,在制备过程中容易产生氧化物等缺陷结构,这些结构能够影响其机械、热学等性质。
二、应用研究1.催化剂纳米材料是优异的催化剂,能够提高催化反应速率和选择性,提高催化效率,降低催化剂用量等。
例如,纳米金属催化剂可用于CO和H₂O反应生成CO₂和H₂,广泛应用于环保领域。
2.生物医学应用纳米材料在癌症治疗、药物输送、光疗、核磁共振成像、生物传感器等方面都有广泛的应用。
例如,纳米粒子通过改变表面功能化基团实现具有肿瘤特异性的分子靶向治疗,可较好地避免正常细胞的损伤。
3.能源储存在绿色能源和新能源研究中,纳米材料是很重要的研究方向。
例如,利用石墨烯、纳米碳管等纳米材料设计超级电容器、超级电池、锂离子电池等,可以提高能量密度和导电性能。
4.环保领域纳米材料还可应用于净水和废气处理等方面。
比如引入纳米银材料,能够有效杀灭细菌、减小污染物浓度。
纳米材料在环境净化领域的应用深受关注,并在实际中展现出良好的发展前景。
纳米相增强金属材料制备技术的研究进展及应用
纳米相增强金属材料制备技术的研究进展及应用【摘要】目前纳米技术应用广泛,在高强金属材料应用方面尤为突出。
本文针对现有主要几种纳米增强金属材料制备工艺方法进行概述并比较,讨论其优缺点。
最后还探讨了纳米相增强制备技术未来的发展趋势和改进方向,并对纳米结构材料应用领域和前景进行展望。
【关键词】纳米增强制备方法优缺点随着科技进步,各个领域对于相关材料的性能要求日益提高。
纳米增强技术是改善材料性能的重要方法之一,其在金属材料领域尤其应用广泛。
在电子、汽车、船舶、航天和冶金等行业对高性能复合材料需求迫切,选用最佳制备方法制备出性能更优良的纳米材料是当前复合材料发展的迫切要求。
1 纳米增强技术概述纳米相增强金属材料是由纳米相分散在金属单质或合金基体中而形成的。
由于纳米弥散相具有较大的表面积和强的界面相互作用,纳米相增强金属复合材料在力学、电学、热学、光学和磁学性能方面不同于一般复合材料,其强度、导电性、导热性、耐磨性能等方面均有大幅度的提高[1]。
1.1 机械合金化法机械合金化法(MA)是一种制备纳米颗粒增强金属复合材料的有效方法。
通过长时间在高能球磨机中对不同的金属粉末和纳米弥散颗粒进行球磨,粉末经磨球不断的碰撞、挤压、焊合,最后使原料达到原子级的紧密结合的状态,同时将颗粒增强相嵌入金属颗粒中。
由于在球磨过程中引入了大量晶格畸变、位错、晶界等缺陷,互扩散加强,激活能降低,复合过程的热力学和动力学不同于普通的固态过程,能制备出常规条件下难以制备的新型亚稳态复合材料。
1.2 内氧化法内氧化法(Internal oxidation)是使合金雾化粉末在高温氧化气氛中发生内氧化,使增强颗粒转化为氧化物,之后在高温氢气气氛中将氧化的金属基体还原出来形成金属基与增强颗粒的混合体,最后在一定的压力下烧结成型。
因将材料进行内氧化处理,氧化物在增强颗粒处形核、长大,提高增强粒子的体积分数及材料的整体强度,这样可以提高材料的致密化程度,且可以改善相界面的结合程度,使复合材料的综合力学性能得到提高。
纳米级金属氧化物催化剂的制备及应用研究
纳米级金属氧化物催化剂的制备及应用研究随着化学科研技术的不断发展,人们对新型材料的需求也与日俱增。
其中,纳米级金属氧化物催化剂被广泛应用于化学反应、环境治理和能源开发等领域。
本文将介绍纳米级金属氧化物催化剂的制备及应用研究进展。
一、纳米级金属氧化物催化剂的制备方法1. 溶胶-凝胶法溶胶-凝胶法是制备纳米级金属氧化物催化剂的常用方法之一。
该方法的主要步骤包括溶解金属离子、加入表面活性剂、加入还原剂、沉淀并干燥等。
溶胶-凝胶法制备的催化剂具有高比表面积、粒径小、分散均匀等优点,因而被广泛地应用于催化反应中。
2. 水热法水热法是利用水蒸气的高温、高压条件下进行纳米级金属氧化物催化剂制备的一种方法。
该方法的主要步骤包括将金属离子和配体放入容器中,在加入一定量的水后,采用高温高压条件下进行反应,得到所需的纳米级金属氧化物催化剂。
3. 共沉淀法共沉淀法是一种简单的制备纳米级金属氧化物催化剂的方法。
该方法主要步骤包括将溶有不同金属离子的溶液混合,加入沉淀剂后,沉淀出所需的纳米级金属氧化物催化剂,并通过洗涤、干燥等步骤制得所需的纳米级金属氧化物催化剂。
二、纳米级金属氧化物催化剂的应用研究进展1. 催化剂在环境治理中的应用纳米级金属氧化物催化剂在环境污染治理中具有广阔的应用前景。
比如,氮氧化物(NOx)是一种常见的环境污染物,其在大气中的含量较高,容易形成酸雨和雾霾。
纳米级金属氧化物催化剂可以催化将氮氧化物转化为无害的氮气和水,从而降低大气污染。
2. 催化剂在能源开发中的应用纳米级金属氧化物催化剂在能源开发领域的应用十分广泛。
比如,利用纳米级金属氧化物催化剂可以将生物质转化为有价值的化学品和生物燃料;将太阳能转化为化学能;促进化学反应,提高能源利用效率等。
3. 催化剂在化学反应中的应用纳米级金属氧化物催化剂在化学反应中的应用也十分重要。
例如,在有机物合成中,常需要通过催化剂加快反应速率、降低反应温度、提高产率等。
研究化学气相沉积法制备纳米金属氧化物材料
研究化学气相沉积法制备纳米金属氧化物材料气相沉积法是指利用化学反应在气体相中使金属和非金属元素沉积在固体衬底上形成化合物或混合物制备材料的一种方法。
由于其简单、高效和可控性强等优点,气相沉积法应用广泛,在研究和制备纳米金属氧化物材料方面也有很好的效果。
一、气相沉积法的分类气相沉积法可以分为化学气相沉积(CVD)、物理气相沉积(PVD)和分子束外延(MBE)等几种不同的技术。
其中,CVD是一种化学反应通过气体相转化成固体相的沉积过程,通过制备不同的反应气体来实现沉积,因此使用广泛。
PVD是一种利用物理方法来制备材料的沉积过程,采用的技术有磁控溅射、电子束蒸发等方式。
MBE是指在低压下将分子束瞄准到衬底上,从而形成薄膜或多层薄膜的一种技术,主要用于制备半导体和超导体材料。
二、CVD制备纳米金属氧化物材料CVD制备纳米金属氧化物材料是一种高效的方法,因为该法可以得到非常均匀的薄膜,而且只需用较低的压力就可以完成沉积过程。
CVD制备纳米金属氧化物材料是利用气相反应来形成薄膜的一种方法。
反应气体中的引发剂在高温下分解为化学物质,而金属原子则会从引发剂分解产生出的气态中被携带并继续反应,从而最终在衬底表面形成纳米金属氧化物薄膜。
该方法的主要优势在于可以合成高质量、均匀分布的纳米材料,且可以控制纳米颗粒的大小和形状。
三、制备过程中的参量控制在进行CVD制备纳米金属氧化物材料的过程中,需要控制的一些基本参数如下:1. 反应温度:温度是影响反应性的主要因素之一。
通常反应的温度越高,会促进反应的进行,并且可以得到更大尺寸的纳米粒子。
2. 反应压力:压力可以有效提高反应速率,并控制纳米材料的大小和形状。
通常情况下,压力越高,可以得到更小、更均匀、更高度晶化的纳米颗粒。
3. 气相注入速率:气体注入速率可以控制反应的速率和纳米粒子的分布。
4. 反应气体浓度:反应气体的浓度可以控制材料的化学成分和纳米颗粒的大小。
总之,CVD制备纳米金属氧化物材料是一种高效、可控、均匀的方法,具有广泛的应用前景。
纳米金属氧化物
纳米金属氧化物
纳米金属氧化物是一类具有纳米级粒径的金属氧化物材料,它们因其独特的物理和化学性质而在多个领域有着广泛的应用。
具体如下:
1. 种类多样:包括纳米二氧化钛、纳米二氧化硅、纳米氧化锌、纳米氧化铝、纳米氧化锆、纳米氧化铈、纳米氧化铁等。
2. 制备方法:这些纳米材料的制备方法多种多样,如水热合成法、溶胶-凝胶法、模板法、溶液喷射法、直接发泡法等。
3. 应用领域:纳米金属氧化物在污水治理、空气净化、储能、隔热等领域有着广泛的应用。
它们通常具有优异的催化性能,可以作为催化剂或催化剂载体使用。
4. 结构特点:一些纳米金属氧化物具有独特的连续多孔网络结构,这种结构不仅保留了金属氧化物的化学性质,还赋予了材料优异的物理性能。
5. 研究进展:近年来,科学家们还提出了一些新的制备策略,例如利用前驱体热膨胀形成的气泡作为软模板辅助制备二维金属氧化物,并同步在纳米片上生成大量介孔,这种方法可以一步法成功制备出高结晶度、厚度均一、高比表面积的均相金属氧化物纳米材料。
6. 性能调控:调控金属氧化物纳米材料的形貌对于调变其性能、拓展其应用空间具有重要意义。
因此,研究者们不断探索新的合成方法和条件,以获得具有特定形貌和性能的纳米金属氧化物。
综上所述,纳米金属氧化物是一类非常重要的纳米材料,其不仅在科学研究中占有重要地位,而且在工业和技术应用中也展现出巨大的潜力。
随着科学技术的发展,人们对这类材料的理解和应用能力将不断提升,从而推动相关领域的进步和创新。
纳米氧化锌的制备及其研究进展_杨秀培
第24卷 第3期西华师范大学学报(自然科学版)2003年9月 Vol.24 No.3Journal of China West Normal University(Natural Sciences)Sep.2003文章编号:1001-8220(2003)03-0347-05纳米氧化锌的制备及其研究进展杨秀培(西华师范大学化学系,四川南充637002)摘 要:纳米氧化锌具有许多特殊的性能,本文介绍了纳米氧化锌在各方面的应用状况;综述了国内外纳米氧化锌的制备方法及研究进展;讨论了目前纳米氧化锌制备中存在的问题.关键词:纳米粒子;氧化锌;制备;研究进展中图分类号:TQ132 文献标识码:B1 前 言氧化锌作为一种新型无机化工材料,在橡胶、染料、油墨、涂料、玻璃、压电陶瓷、光电子及日用化工等领域都有着广泛的应用.纳米氧化锌(粒子直径在1-100nm)是近年来已发现的一种高新技术材料,由于其粒子的尺寸小,比表面积大,因而它具有明显的表面与界面效应、量子尺寸效应、体积效应和宏观量子遂道效应以及高透明度、高分散性等特点,使其在化学、光学、生物和电学等方面表现出许多独特优异的物理和化学性能.与普通ZnO相比,具有优良的光活性、电活性、烧结活性和催化活性,如无毒和非迁移性、荧光性、压电性、吸收和散射紫外线能力.这一新的物质状态,赋予了ZnO这一古老产品在众多领域表现出巨大的应用前景[1-9].如制造气体传感器、荧光体、紫外线屏蔽材料、变阻器、图像记录材料、压电材料、压敏电阻、磁性材料、高效催化剂等.利用ZnO的电阻变化,可制成气体报警器、吸湿离子传导温度计;利用纳米ZnO的紫外屏蔽能力,可制成紫外线过滤器、化妆品(如防晒霜);以ZnO为主体,配以Bi2O3,Pb6O11,BaO等粉末材料烧结成型,可得变阻器;利用ZnO半导体光敏理论,纳米ZnO可作高效光催化剂,用于降解废水中有机污染物,净化环境等.氧化锌的传统制备方法从原理上讲分为3类:即直接法(亦称美国法)、间接法(亦称法国法)和湿化学法.直接法以氧化锌矿为原料,还原其中的锌为气相锌,再通过空气氧化并加以整形而得到产品,此法生产成本低,但能耗大,易引入低熔点杂质,产品质量不高;间接法以锌锭为原料,锌蒸气通过氧化得到ZnO,此法产品质量好,但能耗大,成本高;湿化学法可用各种含锌物料为原料,采用酸浸、氨浸、碱浸或加压浸出锌,然后沉淀锌,最后焙烧分解获得氧化锌.而纳米氧化锌的制备从方式上讲有物理法、气相法和化学法,当前出售的超细纳米氧化锌产品都生产自气相法和湿化学法,因此对这两种工艺的研究比较多,是近20年来超细和纳米氧化锌产品应用和开发的主要活跃点[10,11].2 纳米氧化锌的制备方法2.1 物理法物理法包括机械粉碎法和深度塑性变形法.机械粉碎法是采用特殊的机械粉碎、电火花爆炸等技术,将普通级别的氧化锌粉碎至超细.张伟[12]等人研究了利用立式振动磨制备纳米粉体的过程和技术,得到了α-Al2O3,ZnO,MgSiO3等超微粉,最细粒度可达到0.1μm.工艺简单,但能耗大,产品纯度低,粒度分布不均匀,磨介的尺寸和进料的细度影响粉碎性能.该法得不到1-100nm的纳米粉体;深度塑性变形法是原材料在准静压作用下发生严重塑性形变,使材料的尺寸细化到纳米量级.该法制得的氧化锌粉体纯度高、粒度可控,但对生产设备要求高.收稿日期:2002-10-14作者简介:杨秀培(1970-),男,四川广元人,西华师范大学化学系讲师,硕士,主要从事仪器分析、纳米材料的制备及表征等方面的研究.2.2 气相法2.2.1 化学气相氧化法Mitarai[13]以O 2为氧源,锌粉为原料,在高温下(823-1300K ),以N 2作载气,发生以下氧化还原反应: 2Zn +O 2823-1300K2ZnOYoko Suyama 在1123-1343K 的范围内把锌蒸气气相氧化获得了纳米ZnO ,TE M 观察表明,所得粉体为球状和类四角锥体两种形状.此法制得的纳米氧化锌,粒径在10-20nm .该法原料易得,产品粒度细,单分散性好.但反应往往不完全,从而导致产品纯度降低.2.2.2 激光诱导化学气相沉积法(LIC VD )[14]EI -shall M .S .等利用反应气体分子对特定波长激光束的吸收,引起气体分子激光分解、热解、光敏化和激光诱导化学合成反应,在一定反应条件下合成纳米粒子.纳米ZnO 是以惰性气体为载气,以锌盐为原料,用CWC O 2激光器为热源加热反应原料,使之与氧发生反应生成的.LIC VD 法具有能量转换效率高,粒子大小均一,且不团聚,粒径大小可准确控制等优点.但成本高,产率低,难以实现工业化生产.2.2.3 气相冷凝法[15]该法通过真空蒸发、加热、高频感应等方法将氧化锌物料气化或形成等离子体,再经气相骤冷、成核,控制晶体长大,制备纳米粉体.该法反应速度快,制得的产品纯度高、结晶组织好.但对技术设备要求较高.2.2.4 喷雾热解法赵新宇等[16]利用喷雾热解技术,以二水合醋酸锌为前驱体合成ZnO 纳米粒子.二水合醋酸锌水溶液经雾化为气溶胶微液滴,液滴在反应器中经蒸发、干燥、热解、烧结等过程得到产物粒子,粒子由袋式过滤器收集,尾气经检测净化后排空.Liu Tianquan 用醋酰锌的甲醇溶液超声喷雾热解得到了约100nm 的ZnO 粒子,研究表明,随着溶液的浓度增大,得到的粉体越细.该法产物纯度高,粒度和组成均匀,过程简单连续,颇具工业化潜力.2.3 化学法2.3.1 溶胶-凝胶法以金属醇盐Zn (OR )2为原料,在有机介质中进行水解、缩聚反应,使溶液经溶胶化过程得到凝胶,凝胶经干燥、煅烧成粉体的方法[17-18].此法的优点是产物颗粒均匀、纯度高,反应过程易控制,但成本昂贵是它的唯一缺点.其化学反应为:水解反应Zn (OR )2+2H 2O R OHZn (OH )2+2R OH 缩聚反应Zn (OH )2ZnO +H 2O 2.3.2 醇盐水解法利用金属醇盐在水中快速发生水解,形成氢氧化物沉淀,沉淀经水洗、干燥、煅烧而得到纳米粉体[19].该法反应中易形成不均匀成核,且原料成本高,其突出的优点是反应条件温和,操作简单.例如:以Zn (OC 2H 5)2为原料,发生以下反应:Zn (OC 2H 5)2+2H 2O Zn (OH )2↑+2C 2H 5OH Zn (OH )2ZnO +H 2O2.3.3 直接沉淀法直接沉淀法是制备纳米氧化锌广泛采用的一种方法.其原理是在包含一种或多种离子的可溶性盐溶液中加入沉淀剂后,于一定条件下生成沉淀从溶液中析出,将阴离子除去,沉淀经热分解制得纳米氧化锌.选用不同的沉淀剂,可得到不同的沉淀产物.就资料报道来看,常见的沉淀剂为氨水、碳酸铵和草酸铵等,其反应机理为:(1)以NH 3O ·H 2O 作沉淀剂Zn 2++2NH 3·H 2O Zn (OH )2↑+2NH +4Zn (OH )2ZnO +H 2O ←(2)以碳酸氢铵作沉淀剂Zn 2(OH )2CO 3↑+2NH +4348 西华师范大学学报(自然科学版) 2003年Zn 2(OH )2CO 3637~1073K2ZnO +C O 2←+H 2O(3)以草酸铵作沉淀剂Zn 2++(NH 4)2C 2O 4+2H 2O ZnC 2O 4·2H 2O ↑+2NH +4ZnC 2O 4·2H 2O 513KZnC 2O 4(s )+H 2OZnC 2O 4637~823KZnO (s )+CO 2←+CO ←晋传贵、张金辉等[20,21]分别以ZnSO 4·7H 2O 和Na OH ,Na 2CO 3为原料,利用此法合成了10-35nm 的ZnO 粉体;刘建本[22]等以此法,通过加入表面活性剂制得的前驱体,经200℃热分解得到了平均粒径约为5.7nm的ZnO 粉体.直接沉淀法操作简便易行,对设备、技术要求不高,不易引入杂质,产品纯度高,有良好的化学计量性,成本较低.该法的缺点是洗涤溶液中的阴离子较困难,得到的粉体粒径分布较宽,分散性较差、有部分团聚现象.李东升等将超声辐射引入纳米ZnO 的制备,采用超声直接沉淀法获得了平均粒径约10nm ,且分散性好,外貌为球形的ZnO 纳米粉体.2.3.4 均匀沉淀法此法是利用某一化学反应使溶液中的构晶离子由溶液中缓慢地、均匀地放出来.加入的沉淀剂不立刻与被沉淀组分发生反应,而是通过化学反应使沉淀剂在整个溶液中缓慢地析出.与直接沉淀法相比,由于沉淀剂在整个溶液中均匀的释放出来,从而使沉淀在整个溶液中缓慢均匀地析出.利用均匀沉淀法在不饱和溶液中均匀地得到沉淀的方法通常有两种即:(1)在溶液中进行包含氢离子变化的缓慢的化学反应,逐渐提高溶液的pH 值,使溶解度下降而析出沉淀;(2)借助形成或放出沉淀离子的反应提高沉淀离子的浓度.在均匀沉淀过程中,由于构晶离子的过饱和度在整个溶液中比较均匀所以沉淀物的颗粒均匀而致密,便于洗涤过滤,制得的产品粒度小、分布窄、团聚少.只是阴离子的洗涤较繁杂,这是沉淀法普遍存在的问题.目前,常用的均匀沉淀剂有六次甲基四胺和尿素,以尿素作沉淀剂,发生以下反应:分解反应C O (NH 2)2+3H 2O CO 2←+2NH 3·H 2O 沉淀反应Zn 2++2NH 3·H 2O Zn (OH )2↑+2NH +4热处理Zn (OH )2ZnO +H 2O刘超峰等[23]利用尿素作沉淀剂采用均匀沉淀法,在450℃下热处理,制得了15-80nm 分散性好的纳米ZnO 粒子.2.3.5 固相配位化学法以草酸盐和醋酸盐等为原料,在室温下利用固相配位化学反应首先制得可在较低温度分解的固相金属配合物前驱体,如:二水合草酸锌、碳酸锌,然后经热分解、净化制得纳米氧化锌.沈茹娟等[24]以醋酸锌和8-羟基喹啉为原料,室温下以固相法合成的8-羟基喹啉合锌,经400℃热分解得到了平均粒径约为10nm 的ZnO 粉体;张永康等[25]以ZnSO 4·7H 2O 和Na 2CO 3为原料用此法合成的ZnO 粉体粒径为6.0-12.7nm ;俞建群等[26]利用此法也得到了平均粒径为20nm 的ZnO 粉体.与液相合成法相比,该法原料成本低、合成温度低、工艺流程短,不需溶剂,产率高,反应条件易掌握.2.3.6 有机液相合成法主要采用在有机溶剂中能够稳定存在的金属有机化合物和某些无机物为反应原料,在适当的反应条件下生成纳米材料[27].该法的显著优点是克服了某些反应物在水溶液中不能稳定存在的缺点,可以在许多介质中制备纳米材料,反应产物可以通过精馏或结晶达到很高纯度.有机液相合成法的缺点是反应时间过长,产物须进行后处理才能得到结晶较好的纳米颗粒.2.3.7 水热合成法水热法是利用水热反应制备粉体的一种方法[28-29].水热反应是高温高压下在水溶液或蒸气等流体中进行有关的化学反应.主要有:水热氧化、水热沉淀、水热合成、水热还原、水热分解、水热结晶等类型.水热法为各种前驱物的反应和结晶提供了一个在常压条件下无法得到的、特殊的物理和化学环境.粉体的形成经历了溶解、结晶过程,相对于其他制备方法具有晶粒发育完整、粒度小、分布均匀、颗粒团聚较轻、可使用较为便宜的原料、易得到合适的化学计量物和晶形等优点.近年来,发展的新技术主要有:(1)微波水热法;(2)超临界水热合成;(3)反应电极埋弧(RESA )法,此法是水热法中制备纳米粒子的最新技术. 第24卷第3期杨秀培:纳米氧化锌的制备及其研究进展3493 纳米氧化锌的研究现状目前,国内外就纳米氧化锌的研究报道很多[30-36].日本、美国、德国、韩国等都做了很多工作.德国拜耳公司(Ba yer Co .,Ltd .)首先向市场提供纳米氧化锌产品,之后又出现比利时的产品,而目前的主要供货厂家却来自日本和美国,其中日本处于领先地位.国内纳米氧化锌的研究起步较晚.但近年来由于工业和技术的进步,以及国内专家的高度重视,“863”计划和“攀登”计划等的列入,促使纳米氧化锌的较快发展.国内纳米氧化锌的研究报道源于20世纪90年代初,现已有中试报道.表1,表2分别列出了国内外对纳米氧化锌的研究状况.表1 国外纳米ZnO 研制概况Table 1 The foreign research general situation of nano -ZnO国别研究单位 原 料制备方法粒径(n m )报道时间(年)日本Techol .Univ .锌的乙酰络合物气相合成法126-1361983Mitsubishi Corp .锌盐水溶液锌盐水溶液20-501992ToHoKu Univ .Zn (NO 3)2喷雾热解法10-1001992Nicco Aen Corp .Zn ,O 2CVD 法10-201988美国Techol lnst .锌的醇盐水解法401986PCT Inst .Appl .卤氧化锌热分解法1001993Cammon wealth Univ .锌盐LICVD 10-201994德国Inst .Werkstoffwiss Univ .乙酸锌溶胶凝胶法1001992韩国Harcros Corp .Zn (NO 3)2均匀沉淀法50-601997表2 国内纳米ZnO 研制概况Table 2 The domestic r esearch general situation of nano -ZnO研究单位 原 料 制备方法 粒径(n m ) 报道时间(年)武汉工业大学碳铵,锌盐直接沉淀法501995上海技术师范学院氯化锌,草酸铵直接沉淀法20-401991武汉大学锌盐CWCO 2激光诱导1001994郑州轻工学院硫酸锌,尿素均匀沉淀法1201993西北大学化工系硝酸锌,尿素均匀沉淀法8-601995新疆大学草酸锌低温固相合成201999华东冶金学院硫酸锌,氢氧化钠直接沉淀法10-201999吉首大学硫酸锌,碳酸钠室温固相合成6.0-12.72000中国科学院化工冶金研究所碱式碳酸锌高频ICP5019984 结束语综上所述,随着高科技的迅速发展和对合成新材料的迫切需要,纳米氧化锌的开发研究必将日益受到人们的高度重视.虽然,目前对纳米氧化锌的研究已取得不少成果,新的制备工艺不断提出并得到应用,但仍存在一些关键技术问题需进一步研究解决.(1)对合成纳米氧化锌的过程机理缺乏深入的研究,对控制微粒的形状、分布、粒度、性能及团聚体的控制与分散等技术的研究还很不够.(2)工艺的稳定性、质量可重复性的控制及纳米粉体的保存、运输技术问题.(3)现有的制备技术还不成熟,对工艺条件的研究还不够,已取得的成果大都停留在实验室和小规模生产阶段,对生产规模扩大时将涉及的问题,目前研究的很少.(4)对纳米氧化锌的合成装置缺乏工程研究,能够进行工业化生产的设备有待进一步研究和改进.(5)深入对纳米氧化锌材料的性能测试和表征手段急需改进.350 西华师范大学学报(自然科学版) 2003年参考文献:[1]REED M A ,FRENSLY W R ,MATYI R J .Realization of a Three Terminal Resonant Tunneling Device :the Bipolar Quantu m Resonant Tunneling Transistor [J ].Appl Phys Lett ,1989,54(11):1034-1036.[2]UEH ARA M ,B ARB ARA B ,DIE NY B .Staircase Behavior in the Magnetization Reversal of a Chemically Disordered Magnet at Low Tem -perature [J ].Phys Lett ,1986,114A (1):23-26.[3]HAYASHI C .Ultrafine Particles [J ].Phys .Today ,1987,(12):44-51.[4]KUBO R .Electronic Properties of Metallic Fine Particles [J ].Phys .Soc .of Jap .,1962,17(6):975-986.[5]和田伸彦.超微粒的基本性质———开拓物质与原子的中间领域[J ].日本科学与技术,1985,(1):1-6.[6]商连弟.国内外活性氧化锌的进展[J ].现代化工,1995,(7):12-14.[7]FRENAY J .Leachin g of Oxided Zinc Ores in Various Media [J ].Hydrometallurgy ,1985,(15):243-253.[8]RABINI J B .Quenching of Aqueous Colloidal ZnO Fluorescence by Electron and Hole Scavengers E ffect Oga Pos itive Poly Electrolyte [J ].J .Phys .Chem .,1989,(93):2559-2561.[9]CHITT R ,MATI J .Uniform Particles Zinc Oxide of Different Morphologies [J ].Colloids and Surfaces ,1990,(48):65-67.[10]徐甲强,潘庆谊,孙雨安,等.纳米氧化锌的乳液合成、结构表征与气敏性能[J ].无机化学学报,1998,14(3):355-359.[11]杨秀培,周在德,钟 辉.从氧化锌矿制备高纯超细ZnO 粉体[J ].化学研究与应用,2002,14(3):366-368.[12]张 伟,王凤珠.利用立式振动磨制备超细粉的研究[J ].功能材料,1997,28(5):511-513.[13]孙志刚,胡黎明.气相法合成纳米颗粒的制备技术进展[J ].化工进展,1997,16(2):21-24.[14]祖 庸,刘超峰,李晓娥.超细氧化锌的合成技术进展[J ].化工新型材料,1997,(8):11-15.[15]陈和生,孙振亚,陈文怡,等.纳米科学技术与精细化工[J ].湖北化工,1999,16(1):8-10.[16]赵新宇,郑柏存,李春忠,等.喷雾热解合成Zn O 超细粒子工艺及机理研究[J ].无机材料学报,1996,11(4):612-616.[17]王旭升.溶胶-凝胶法制备WO 3-SiO 2材料的氨敏特性研究[J ].功能材料,1998,29(3):276-281.[18]邹小平,张良莹,姚 熹,等.溶胶-凝胶法有机-无机精细复合材料P (VDF /TE FE )-Si O 2的制备与显微结构[J ].功能材料,1998,29(3):327-329.[19]刘 珍,梁 伟,许并社,等.纳米材料制备方法及其研究进展[J ].材料科学与工艺,2000,8(3):103-108.[20]晋传贵,朱伟长,方道来,等.氧化锌纳米粒子的制备[J ].精细化工,1999,16(2):26-28.[21]张金辉,储 刚.ZnO 超微粉末的化学法合成与表征[J ].精细石油化工,1997,(2):43-45.[22]刘建本,易保华,肖卓炳,等.液相法制备纳米氧化锌的研究(Ⅰ)[J ].吉首大学学报,2000,21(2):9-11.[23]刘超峰,胡行方,祖 庸.以尿素为沉淀剂制备纳米氧化锌粉体[J ].无机材料学报,1999,14(3):391-396.[24]沈茹娟,贾殿赠,乔永民.纳米ZnO 的固相合成及其气敏特性[J ].无机材料学报,2001,16(4):625-629.[25]张永康,刘建本,易保华,等.常温固相反应合成纳米氧化锌[J ].精细化工,2000,17(6):343-344.[26]俞建群,贾殿赠,郑毓峰,等.纳米氧化镍、氧化锌的合成新方法[J ].无机化学学报,1999,15(1):8-10.[27]惠 春,徐爱兰.水热合成PZT 热电体陶瓷材料烧结性的研究[J ].红外技术,1995,17(2):39-44.[28]DAWSON W J .Hydrothemal Synthesis of Advanced Ceramic Powder [J ].Am Ceram SocBull ,1988,67(10):1673.[29]严东生.纳米材料的合成与制备[J ].无机材料学报,1995,10(1):1-6.[30]施利毅,李春忠,房鼎业.TiCl 4-O 2体系高温反应制备超细TiO 2光催化材料的研究[J ].无机材料学报,1999,(5):718-725.[31]高 濂,陈锦元,黄军华.醇盐水解法制备二氧化钛纳米粉体[J ].无机材料学报,1995,(4):332-336.[32]卫志贤,李晓娥,祖 庸.溶胶-凝胶法制纳米二氧化钛小试放大研究[J ].无机盐工业,1998,(5):5-8.[33]陈代荣,孟详建,李 博.偏钛酸作前驱体水热合成TiO 2微粉[J ].无机材料学报,1997,(1):110-114.[34]田明原,施尔畏,仲维卓.纳米陶瓷与纳米陶瓷粉末[J ].无机材料学报,1998,(2):129-137.[35]施利毅,华 彬,张剑平.微乳液的结构及其在制备超细颗粒中的应用[J ].功能材料,1998,(2):136-139.[36]张敬畅,曹维良,于定新.超临界流体干燥法制备纳米级TiO 2的研究[J ].无机材料学报,1999,(1):2-9.The Preparation and Scientific Development of Nano -Zinc OxideYANG Xiu -pei(Department of Chemistry ,China West Normal University ,Nanchong 637002,China )A bstract :Nanocrystalline zinc oxide particles have many specific microscopic properties .This paper has introduced the application situations in many aspects ,summarized the preparation and scientific development of nanocr ystalline zinc ox -ide ,and in the end discussed the problems in preparation techniques .Keywords :nano -particle ;zinc oxide ;pr eparation ;scientific development 第24卷第3期杨秀培:纳米氧化锌的制备及其研究进展351。
无机化学中的金属氧化物纳米材料在光催化中的应用
无机化学中的金属氧化物纳米材料在光催化中的应用随着科技的不断发展和人们对环境保护的关注,光催化技术作为一种绿色环保的技术逐渐受到关注。
在光催化反应中,金属氧化物纳米材料作为重要的催化剂,具有独特的优势和广阔的应用前景。
本文将从金属氧化物纳米材料的制备方法、光催化原理以及应用领域等方面进行探讨。
首先,金属氧化物纳米材料的制备方法多种多样,常见的有溶胶-凝胶法、水热法、热分解法等。
其中,溶胶-凝胶法是一种较为常用的制备方法。
该方法通过溶胶的形成和凝胶的固化过程,可以控制金属氧化物纳米材料的形貌、尺寸和晶型等特性。
而水热法则是通过高温高压的条件下,在水溶液中使金属离子与氧化物形成纳米颗粒。
热分解法则是通过热分解金属有机化合物来制备金属氧化物纳米材料。
这些制备方法的选择取决于所需的纳米材料的性质和应用。
其次,金属氧化物纳米材料在光催化反应中的应用主要基于光催化原理。
光催化反应是指在光照射下,催化剂吸收光能激发电子,产生电子-空穴对,从而促进化学反应的进行。
金属氧化物纳米材料作为催化剂,具有较高的比表面积和丰富的表面活性位点,能够有效吸收光能并产生电子-空穴对。
此外,金属氧化物纳米材料还具有良好的稳定性和可重复使用性,能够在光催化反应中发挥长效催化作用。
金属氧化物纳米材料在光催化中的应用领域广泛。
首先是环境污染治理方面。
金属氧化物纳米材料可以用于水处理中的有机物降解、重金属离子去除等。
例如,二氧化钛纳米材料被广泛应用于水中有机物的光催化降解,其高比表面积和优异的光催化性能使其成为一种理想的光催化剂。
其次是能源领域。
金属氧化物纳米材料可以用于太阳能光电转化和人工光合作用等方面。
例如,氧化锌纳米材料在染料敏化太阳能电池中作为光阳极,可以有效提高光电转化效率。
此外,金属氧化物纳米材料还可以用于有机合成、抗菌材料等领域。
然而,金属氧化物纳米材料在光催化中还存在一些挑战。
首先是纳米材料的制备和表征技术方面的挑战。
纳米材料的制备方法需要进一步改进,以实现纳米材料的可控制备。
纳米金属氧化物催化剂的研究及其应用
纳米金属氧化物催化剂的研究及其应用随着化学工业的快速发展,催化剂的需求与日俱增。
而纳米金属氧化物催化剂凭借其独特的性质,已成为催化领域的一大热点研究方向。
本文将就纳米金属氧化物催化剂的研究进展及其应用进行探讨。
一、纳米金属氧化物催化剂的研究进展纳米金属氧化物催化剂的研究起源于上世纪90年代中期,随后得到了长足的发展,具体而言,研究进展主要从以下三个方面展开。
1. 合成方法的研究纳米金属氧化物催化剂的性质与晶体结构密切相关,而合成方法能够决定其晶体结构、粒径、分散度等特征。
传统的合成方法包括水热法、溶胶-凝胶法、共沉淀法等,这些方法能够制备出高稳定性、纯度高的纳米金属氧化物催化剂。
而近年来,还涌现了很多新的合成方法,比如溶液相法、可控大分子刻蚀法、模板法等,这些方法不仅能够控制催化剂的尺寸、形态及晶面等性质,还具有绿色合成的特点,能够有效地减少对环境的影响。
2. 催化性能的研究纳米金属氧化物催化剂的催化性能与其纳米尺度效应有关,具体而言,主要表现在以下几个方面:一是表面积大,活性位点多,因此催化活性较高;二是电子结构易于调控,催化剂的选择性较好;三是具有优异的吸附性能,催化剂的稳定性较高。
3. 应用研究纳米金属氧化物催化剂的应用范围广泛,涉及有机合成、环境保护、能源等领域。
在有机合成领域,纳米金属氧化物催化剂已经成为合成精细化合物和药物的重要工具,例如在羰基化、氢化和氧化反应中,纳米金属氧化物催化剂均可以发挥重要的催化作用;在环境保护领域,纳米金属氧化物催化剂可以用于VOCs的去除和重金属离子的吸附等。
此外,在能源领域,纳米金属氧化物催化剂也有广泛的应用,例如用于柴油机废气净化、太阳能电池材料的合成等。
二、纳米金属氧化物催化剂的应用前景综上所述,纳米金属氧化物催化剂具有许多独特的性质和广泛的应用前景,尤其是在环保和能源方面有着独特的优势。
除了已经应用于生产中的有机合成、废气净化、太阳能电池等领域,纳米金属氧化物催化剂还有许多未被充分开发的应用领域,例如用于水催化氧化CO、NOx污染物等气体污染的去除。
纳米TiO2的制备与应用的进展
纳米TiO2的应用与制备的研究进展李俊(中南大学化学化工学院应化0903班)摘要本文主要介绍了纳米TiO2的制备方法的现阶段进展,从物理法,化学法,新型合成方法三方面介绍了国内外的研究进展,同时综述了纳米TiO2在传感器材料,催化剂载体,光催化剂、太阳能电池原料和紫外线添加剂等方面的应用。
关键词纳米粉体 TiO2化学法应用综述1.前言纳米技术是当今世界的研究前沿。
纳米级的TiO2因其化学性高、分散性好、吸收紫外线能力强等,广泛用于化工、涂料、塑料、橡胶、纤维、造纸、油墨、搪瓷、电子等行业。
对其研究比较深的主要有传感器材料、催化剂载体、光催化剂、处理水和空气中的污染物、杀菌、太阳能电池原料以及通过贵金属沉积、离子掺杂、染料敏化、半导体复合等方法来改变其光学性质这几方面。
TiO2俗称钛白粉,无毒、无味、无刺激性、热稳定性好。
其晶相结构有四种:金红石(Rutile)、锐钛矿(Anatase)、板钛矿(Brookite)和无定形,其中以金红石型和锐钛矿型TiO2应用最为广泛[1]。
这两种晶型的TiO2硬度、密度、折光指数、光催化活性等都有所不同、两种晶型的相对含量对产品性能有较大的影响。
本文主要介绍纳米TiO2的制备和其应用的研究进展。
2.纳米TiO2的应用研究2.1 传感器材料TiO2作为敏感材料,制成传感器可检测H2、CO等可燃性气体和氧气。
特别是用作汽车尾气传感器,通过测定汽车尾气的氧含量,可以控制汽车发动机的效率。
目前研制的电阻型TiO2半导体氧传感器,以其体积小、结构简单、价格便宜而受到人们的关注[2]。
中南大学的李赛[3]将尿素酶(urease)固载于不同粒径(5nm,25nm,2.4 p m)的TiO2膜上,在350℃,pH为7的条件下采用电位法研究吸附在纳米多孔Ti02上的尿素酶的活性变化。
在钛丝基体上沉积一层纳米TiO2多孔膜,然后直接将尿素酶吸附在Ti02膜上。
基于Ti02膜的pH响应,发展了一种廉价的、易于微型化的pH敏尿素酶传感器。
纳米金属氧化物材料在光催化领域的应用研究报告
纳米金属氧化物材料在光催化领域的应用研究报告研究报告:纳米金属氧化物材料在光催化领域的应用摘要:纳米金属氧化物材料因其独特的物理和化学性质,在光催化领域中具有广泛的应用前景。
本研究报告综述了纳米金属氧化物材料在光催化领域的应用研究进展,包括其制备方法、光催化机理以及在环境净化和能源转化等方面的应用。
通过对纳米金属氧化物材料的研究,可以为其进一步的应用和开发提供理论基础和实验指导。
1. 引言纳米金属氧化物材料是一类具有纳米尺度的金属氧化物晶体结构的材料,具有高比表面积、丰富的表面活性位点和优异的光催化性能。
光催化技术是一种利用光能激活催化剂表面的化学反应技术,可以应用于环境净化、水分解、二氧化碳还原等多个领域。
2. 制备方法纳米金属氧化物材料的制备方法多种多样,包括溶液法、气相法、热分解法等。
其中,溶液法是最常用的制备方法之一,可以通过控制反应条件和添加剂来调控纳米材料的形貌和尺寸。
3. 光催化机理纳米金属氧化物材料的光催化机理主要包括光吸收、载流子分离和催化反应三个步骤。
在光吸收过程中,纳米金属氧化物材料吸收光能并产生激发态电子和空穴。
随后,激发态载流子在材料内部进行分离,并在表面活性位点上发生催化反应。
4. 环境净化应用纳米金属氧化物材料在环境净化领域具有广泛的应用前景。
例如,二氧化钛纳米颗粒可以通过光催化氧化分解有机污染物,如苯、甲醛等。
此外,氧化锌纳米材料也可以用于光催化分解有机污染物和杀灭细菌。
5. 能源转化应用纳米金属氧化物材料在能源转化领域也有重要的应用。
以二氧化钛为例,它可以作为光催化剂用于水分解产生氢气,也可以作为光阳极用于光电化学电池中。
此外,铁氧体纳米材料也可以用于光催化还原二氧化碳为可再生燃料。
6. 结论纳米金属氧化物材料在光催化领域的应用研究已经取得了显著进展。
通过合理设计制备方法和深入理解光催化机理,可以进一步提高纳米金属氧化物材料的光催化性能,并拓宽其在环境净化和能源转化等领域的应用。
自组装法制备金属氧化物纳米结构及其性能研究
自组装法制备金属氧化物纳米结构及其性能研究自组装法制备金属氧化物纳米结构及其性能研究近年来,金属氧化物纳米结构因其独特的物理和化学性质在多个领域受到广泛关注。
然而,传统的制备方法如溶剂热法、水热法等存在着操作滞后、能耗高的缺点,且制备得到的纳米结构往往无法控制尺寸和形貌。
因此,自组装法作为一种有效的制备金属氧化物纳米结构的方法逐渐引起了研究者们的兴趣。
本文将重点探讨自组装法制备金属氧化物纳米结构以及其性能的研究。
首先,我们先来了解一下自组装法的基本原理。
自组装是指通过物质自发地组合、排列形成有序结构的过程。
在金属氧化物纳米结构的制备中,常用的自组装方法有溶胶凝胶自组装法、胶体晶体自组装法等。
其中,溶胶凝胶自组装法是通过调节溶胶的浓度、PH值等参数控制氧化物颗粒自发的凝胶化过程,从而形成有序的纳米结构。
而胶体晶体自组装法则是利用胶体微粒在溶液中的自发排列形成晶体结构,通过调节胶体颗粒的浓度和溶剂中的成核条件来控制纳米结构的形貌和尺寸。
接下来,我们要研究自组装法制备金属氧化物纳米结构的性能。
金属氧化物纳米结构由于其独特的尺寸效应和界面效应,具有优异的性能。
例如,金属氧化物纳米结构具有比表面积大、催化活性高、光学性质特殊等特点。
此外,金属氧化物纳米结构还可以用于能量存储、电子器件、传感器等领域。
因此,研究金属氧化物纳米结构的性能对于理解其特殊性质以及拓宽其应用领域具有重要意义。
最后,我们要思考如何进一步改进自组装法制备金属氧化物纳米结构的方法。
虽然自组装法具有许多优点,但是仍然存在一些问题需要解决。
例如,如何进一步控制纳米结构的形貌和尺寸,以及如何提高纳米结构的稳定性等。
因此,未来的研究方向可以集中在改进自组装方法并结合其他技术手段,以实现更精确和可控的金属氧化物纳米结构制备。
总之,自组装法是制备金属氧化物纳米结构的一种有效方法,通过调节参数来控制纳米结构的形貌和尺寸。
金属氧化物纳米结构具有独特的物理和化学性质,具有广泛的应用前景。
纳米氧化铜的制备方法及应用进展
纳米氧化铜的制备方法及应用进展作者:徐玉玲来源:《科技资讯》 2011年第15期徐玉玲(江西师范大学南昌 330022)摘要:综述了纳米氧化铜制备的各种方法,并对各种方法的优缺点进行了分析,同时简要介绍了纳米氧化铜在催化和传感器方面的应用。
关键词:纳米氧化铜制备方法应用中图分类号:TF11 文献标识码:A 文章编号:1672-3791(2011)05(c)-0112-01过渡金属氧化物中,铜氧化物因其重要的性质和用途而备受关注。
在很多化学反应中,CuO作为非均相催化剂表现出极高的催化活性,同时作为一个具有较窄波带(Ek=1.2ev)的重要过渡金属氧化物,氧化铜是一种具有高温超导、巨大的磁子电阻和三个不同磁性阶段的异常特性材料。
纳米粉体材料是指粒径为1nm~100nm的超细粒子材料,具有表面效应、小尺寸效应、量子尺寸效应、宏观量子隧道效应等常规大尺度粒子不具备的特性,因此,与普通氧化铜相比,纳米氧化铜在磁性、光吸收、化学活性、热阻、催化剂和熔点等方面均表现出超乎寻常的物理化学性能,在传感器、超导材料和热导材料等方面均显示出良好的应用前景。
目前纳米氧化铜的制备方法以固相法和液相法为主,近年来,又出现了很多制备纳米氧化铜的新方法,如:溶胶凝胶法、络合沉淀法、界面沉淀法、水热法、微乳液法、激光蒸凝法、回流沉淀法、电化学法等。
本文将对这些新的制备方法以及应用情况进行综述。
1 纳米氧化铜的制备方法1.1 溶胶凝胶法溶胶凝胶法又称胶体化学法,包括金属醇盐与非金属醇盐两种方法。
其基本步骤是:在一定条件下使反应物水解成溶胶,此后进一步合成凝胶并干燥、热处理后制得所需要的纳米粒子。
2002年CorrieL等成功采用了改进溶胶凝胶法制备了粒径7nm~9nm、比表面积120~136m2/g的CuO球形颗粒。
该方法需要无水乙醇作溶剂,成本相对较高,但设备简单、所得产物颗粒细小,具有一定的工业潜力。
利用溶胶凝胶法,结合超临界干燥技术制备纳米CuO粉体的基本步骤为:将配好的铜盐溶液(如Cu(N03)2)溶于无水乙醇中,将铜盐的乙醇溶液放人高压反应釜中,程序升温并控制压力(温度和压力应分别高于乙醇的临界温度243℃和临界压力6.38MPa),保温保压一段时间;然后缓慢放气,再通保护气(N2)自然冷却至室温,便制得黑色蓬松的纳米CuO粉末。
纳米氧化铝—柳亚辉
纳米氧化铝的制备及其应用进展
目前纳米氧化铝的制备主要停留在探索实验阶段,国 内没有实现工业化生产 研究现状 除微乳反应法外,绝大多数制备方法得到的纳米氧化铝 粒晶分布较宽,并且制备过程严格,重复性差,不能进 行广泛的应用
纳米氧化铝的制备及其应用进展
content
微乳液法
两种互不相溶的溶剂在表面活性剂的作用下形成乳液,在
传统制备工艺
液相法
硫酸铝铵热解 硫酸铝铵加热分解 碳酸铝铵热解 碱式碳酸铝铵加热分解-转相、粉碎 醇盐水解法 醇盐在水中分解
气相法
等离子体法 等离子气体气氛下铝盐与空气反应-骤冷
纳米氧化铝的制备及其应用进展
溶胶凝胶法的改进 新型制备工艺
使用铝盐(例如AlCl3)作为原料,反应过程中以及后期的煅烧过 程中可能会产生腐蚀性气体,而如果采用醇盐,则原料昂贵且活性较 大不易存储。 Thiruchitrambalama等利用直接水解金属铝,并通过超声波
煅烧a氧化铝原粉
阳极氧化铝材质
纳米氧化铝的制备及其应用进展
纳米氧化铝(Al2O3)粉体,其纯度高、颗粒细小均 匀且分散性好,易与添加剂混合均匀,具有较好 的透明性
纳米氧化铝(Al2O3)是一种尺寸为1nm~100nm的 超微颗粒,具有较强的体积效应、量子尺寸效应、 表面效应和宏观量子隧道效应
纳米氧化铝的制备及其应用进展
振荡等方法分散产物成为溶胶,而后蒸干水分形成一水软铝石
(勃姆石)凝胶。最终只需在1000℃煅烧1h就得到了α-Al2O3, 这比直接煅烧一水软铝石生成α-Al2O3所需的1200℃降低了很多。
纳米氧化铝的制备及其应用进展
溶液燃烧分解法
溶液燃烧分解法是利用盐溶液加入燃烧剂进行燃烧反应,以此得 到所需的粉体的方法。燃烧时放出的热量可促进单相物质生成;原料 来源广泛,成本低廉。 L.C.Pathak等在Al(NO3)3水溶液中加入柠檬酸和氨,使用 氨水和稀硝酸调节溶液pH,然后蒸发溶液使之发生燃烧反应从 而得到海绵状的Al(OH)3,然后煅烧得到Al2O3.
纳米材料的制备方法及其应用研究进展
纳米材料的制备方法及其应用研究进展纳米材料是一种具有特殊物性和应用潜力的材料,其制备方法多种多样。
本文将介绍几种常见的纳米材料制备方法,并概述其在各个领域的应用研究进展。
一种常见的纳米材料制备方法是溶剂热法。
该方法通过在有机溶剂中加热混合物来控制反应速率,从而合成纳米材料。
溶剂热法可以用于合成各种纳米材料,如金属纳米粒子、金属氧化物纳米粒子和功能性纳米材料等。
例如,金属纳米粒子在催化、传感和生物医学领域具有重要应用。
另一种常见的制备方法是气相沉积法,其中包括化学气相沉积(CVD)和物理气相沉积(PVD)等方法。
化学气相沉积法是通过气体化学反应在固体表面上合成纳米材料的一种方法。
例如,碳纳米管和二维石墨烯就可以通过化学气相沉积法合成。
物理气相沉积法则主要是通过物质的凝聚在固体表面形成纳米材料。
溶胶凝胶法是一种常见的溶液制备纳米材料的方法。
该方法主要通过将溶解在溶剂中的金属离子或有机物与沉淀剂反应,形成胶体溶胶,并通过热处理产生凝胶材料。
该方法的优点是简单、制备周期短,且可以制备多种纳米材料。
该方法常用于制备氧化物基材料、过渡金属化合物纳米粒子等。
此外,还有电化学法、凝胶法、溶胶法、机械合金法、磁控溅射法等多种制备纳米材料的方法。
纳米材料具有较大的比表面积和特殊的物理、化学、力学等特性,因此在各个领域有广泛的应用研究。
在材料科学领域,纳米材料被用于制备高性能电池、储能材料、高性能催化剂等。
在电子学领域,纳米材料被用于制备高密度存储器、导电纳米墨等。
在医学领域,纳米材料被用于制备载药纳米粒子、仿生材料等。
在环境科学和能源领域,纳米材料被用于制备高效光催化剂、污水处理材料等。
尽管纳米材料在各个领域存在着广泛的应用前景,但其制备方法和应用研究仍然面临着诸多挑战。
例如,在大规模生产纳米材料过程中存在的成本和环境问题;纳米材料的生物相容性和毒性问题等。
因此,未来的研究还需要对纳米材料的制备方法和应用性能进行更深入的研究和探索,以推动纳米材料的应用进一步发展。
纳米金属氧化物材料的制备与光催化性能研究
纳米金属氧化物材料的制备与光催化性能研究随着科技的不断进步,纳米材料在各个领域的应用逐渐得到了广泛关注。
其中,纳米金属氧化物材料作为一种重要的纳米材料,在光催化领域具有广泛的应用前景。
本文将就纳米金属氧化物材料的制备方法以及其光催化性能的研究进展进行探讨。
一、纳米金属氧化物材料的制备方法纳米金属氧化物材料的制备方法包括溶胶-凝胶、氢氧化物沉淀、水热法、热分解法等多种手段。
其中,溶胶-凝胶法是一种常用的制备方法。
该方法基于溶胶的定向凝聚,通过控制溶胶的聚集过程,可以制备出均匀分散的纳米金属氧化物颗粒。
另外,氢氧化物沉淀法通过控制沉淀反应的条件,可以得到不同形态的金属氧化物纳米颗粒。
水热法则是将金属盐溶液与反应溶液在高温高压的条件下反应,产生纳米金属氧化物材料。
热分解法则是将金属有机化合物在高温下分解,生成金属氧化物纳米颗粒。
二、纳米金属氧化物材料的光催化性能纳米金属氧化物材料具有良好的光催化性能,可以通过光能量的吸收和传输,实现对有机物降解等催化反应。
以二氧化钛(TiO2)为例,其具有宽带隙、高光催化效率、良好的光稳定性等特点,成为研究领域的热点。
研究发现,纳米金属氧化物材料在光催化反应中,主要通过光生电子-空穴对的形成和传输实现对有机物的降解。
当光照条件下,纳米金属氧化物吸收光能,产生电子-空穴对,电子和空穴在材料表面或界面发生迁移,出现氧化还原反应,使有机物得到降解。
然而,纳米金属氧化物材料的光催化性能也面临一些挑战。
首先,光催化反应受到光热效应的影响,高能量的光照会引起温升,影响反应过程。
其次,光生电子-空穴对的传输效率受到材料的结构和形貌的影响,因此合理设计纳米金属氧化物材料的结构对提高光催化性能具有重要意义。
再者,纳米金属氧化物材料的光催化性能还受到光吸收范围的限制,低能量光的利用率较低,限制了其在可见光区域的应用。
为了克服以上问题,研究者们对纳米金属氧化物材料的结构和形貌进行了改进。
例如,通过调控纳米金属氧化物的晶相、溶胶浓度、热处理温度等制备条件,可以改善其光催化性能。
金属氧化物半导体纳米气敏材料研究进展
金属氧化物半导体纳米气敏材料研究进展近年来,金属氧化物半导体纳米气敏材料的研究受到了广泛关注。
金属氧化物半导体具有许多优点,如良好的化学稳定性、可调控的电子结构和高表面积等,使其成为理想的气敏材料。
本文将综述金属氧化物半导体纳米气敏材料的研究进展。
首先,金属氧化物半导体纳米气敏材料的合成方法包括溶剂热法、水热法、燃烧法、热分解法等。
这些方法能够制备出具有不同形貌和尺寸的纳米材料。
此外,还可以通过控制合成条件来调控金属氧化物半导体纳米材料的晶相组成和结构性能。
其次,金属氧化物半导体纳米气敏材料的气敏性能的研究也取得了显著进展。
金属氧化物半导体纳米材料对不同气体的敏感性和选择性都具有很高的潜力。
例如,二氧化钛纳米材料在氧化杂环境下对一氧化碳等还原性气体具有高灵敏度。
氧化锌纳米材料在硫化氢等硫化气体环境下表现出很好的选择性和稳定性。
此外,利用复合材料的特性可以进一步提高金属氧化物半导体纳米气敏材料的灵敏度和选择性。
第三,金属氧化物半导体纳米气敏材料的机理研究也是研究的重点之一、目前,主要的机理包括电子传导机制、表面离子化机制、化学吸附机制等。
通过研究这些机理,可以深入了解金属氧化物半导体纳米材料的气敏性能,并进一步优化材料的性能。
此外,金属氧化物半导体纳米气敏材料在传感领域的应用也得到了广泛关注。
这些材料可以应用于环境监测、食品安全、医疗诊断等领域。
此外,金属氧化物半导体纳米材料还可以与其他功能材料结合,构建复合材料,以实现更高的灵敏度和选择性。
综上所述,金属氧化物半导体纳米气敏材料作为一种新型的气敏材料,具有很高的应用前景。
未来的研究可以进一步深入研究金属氧化物半导体纳米材料的合成方法、气敏性能和机理,以及其在传感领域的应用。
通过不断地改进和优化,金属氧化物半导体纳米气敏材料有望在环境保护和生命科学领域发挥重要作用。
金属氧化物纳米材料的制备新进展
金属氧化物纳米材料的制备新进展金属氧化物纳米材料制备是纳米科学和纳米技术领域的重要研究方向之一。
随着科学技术的不断发展,研究人员不断提出新的制备方法和技术,取得了一系列新的研究进展。
本文将介绍一些金属氧化物纳米材料制备的新进展。
一、溶液法制备:溶液法是制备金属氧化物纳米材料最常用的方法。
近年来,研究人员在溶液法制备金属氧化物纳米材料方面做了很多创新工作。
例如,研究人员借助微乳液技术,成功制备了一系列具有不同形貌和性能的金属氧化物纳米材料。
此外,研究人员还提出了一种新的溶液法,即借助超声波剥离法,将金属离子从金属片中剥离出来形成纳米颗粒。
这种方法不仅制备简单、成本低,而且可以得到纯度高、分散性好的金属氧化物纳米材料。
二、气相沉积法制备:气相沉积法是制备金属氧化物纳米材料常用的方法之一。
近年来,研究人员在气相沉积法制备金属氧化物纳米材料方面做了很多创新工作。
例如,研究人员借助等离子体共振技术,成功制备了一系列具有良好分散性和稳定性的金属氧化物纳米材料。
此外,研究人员还提出了一种新的气相沉积法,即借助超声波雾化法,在低温下制备金属氧化物纳米粒子。
这种方法不仅制备简单、成本低,而且可以得到纯度高、粒径分布窄的金属氧化物纳米材料。
三、溶胶-凝胶法制备:溶胶-凝胶法是制备金属氧化物纳米材料的一种重要方法。
近年来,研究人员在溶胶-凝胶法制备金属氧化物纳米材料方面做了很多创新工作。
例如,研究人员借助模板法,成功制备了具有长通道和大孔结构的金属氧化物纳米材料。
此外,研究人员还提出了一种新的溶胶-凝胶法,即借助微流体技术,在微尺度上控制金属氧化物纳米材料的形貌和尺寸。
这种方法不仅制备简单、成本低,而且可以得到高比表面积和良好分散性的金属氧化物纳米材料。
四、微乳液法制备:微乳液法是制备金属氧化物纳米材料的一种新方法。
近年来,研究人员在微乳液法制备金属氧化物纳米材料方面做了很多创新工作。
例如,研究人员借助乳化剂和辅助剂,成功制备了具有不同形貌和性能的金属氧化物纳米材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米金属氧化物的制备及应用研究的若干进展汪信陆路德综述了氧化物及复合氧化物纳米晶的各种制备方法及特点,重点介绍了有机配合物前驱体法-聚乙二醇法、明胶法和硬脂酸法制备氧化物纳米晶的原理、特点以及在磁性材料、电磁波吸收材料、催化剂和塑料改性方面的若干应用。
关键词:纳米材料氧化物软化学分类号:O611.12Progress of Preparation and Applications of Metal Oxide NanocrystallinesWANG Xin LU Lu-De(Materials Chemistry Laboratory, Nanjing University of Science and Technology,Nanjing210094)The preparative methods of nanostructured metal oxides are reviewed. Particularly the principles and features of the organic coordination precursor methods, including polyethylene glycol, gelatin and stearic acid methods, are discussed. The oxide nanocrystals has been used as magnetic and microwave-absorbing materials, catalysts and strengthening fillers for modification of plastics.Keywords: nanostructured material oxide soft chemistry一九七八年十月我们有幸作为文革后第一批研究生来到南京大学配位化学研究所学习。
开学不久,戴安邦教授为全体研究生作了题为“无机化学的进展”的学术报告,把我们带入了内容极为丰富的科学领域。
虽然我们离开南京大学已有多年,虽然戴先生今年已离我们而去,但他的学术思想、治学态度和为人品格无时无刻都在影响着我们,是我们进步的一种动力。
十多年来我们一直把从南京大学学到的知识和理工科大学的教学、科研结合起来,取得了一些成果,下面主要介绍一些无机纳米材料的研究工作。
1 复合氧化物纳米晶的制备方法传统的复合氧化物的制备通常是以固态的氧化物或金属碳酸盐为原料,球磨后经高温固相反应,再粉碎得到复合氧化物的粉体。
由于是高温反应,不仅制备的产物粒径大、分布宽,而且某些组分易于挥发或发生偏析,这种方法一般不宜用来制备纳米氧化物。
纳米复合氧化物的制备通常是采用软化学法,即通过反应原料的液相混合使各金属元素高度分散,从而可以在较低的反应温度和较温和的化学环境下制备纳米材料。
采用的方法主要有共沉淀法、溶胶-凝胶法、有机配合物前驱体法等。
1.1 共沉淀法共沉淀法是液相化学反应合成金属氧化物纳米颗粒最早采用的方法。
沉淀法成本较低,但有如下问题:沉淀物通常为胶状物,水洗、过滤较困难;沉淀剂作为杂质易混入;沉淀过程中各种成分可能发生偏析,水洗时部分沉淀物发生溶解。
此外由于大量金属不容易发生沉淀反应,因此这种方法适用面也较窄。
1.2 溶胶-凝胶法溶胶-凝胶法是另一类重要的制备纳米复合材料的方法。
该方法不仅可以用来制备无机氧化物纳米材料,还可以制备有机/无机的杂化复合材料。
传统的溶胶-凝胶法一般采用有机金属醇盐为原料,通过水解、聚合、干燥等过程得到固体的前驱物,最后再经适当热处理得到纳米材料。
由于采用金属醇盐为原料,使该方法成本较高。
由于凝胶化过程较慢,因此一般合成周期较长。
另外,一些不容易通过水解聚合的金属如碱金属较难牢固地结合到凝胶网络中,从而使得该方法制得的纳米复合氧化物种类有限。
1.3 有机配合物前驱体法有机配合物前驱体法是另一类重要的氧化物纳米晶的制备方法。
其原理是采用容易通过热分解去除的多齿配合物,如柠檬酸为分散剂,通过配合物与不同金属离子的配合作用得到高度分散的复合前驱体,最后再通过热分解的方法去除有机配体得到纳米复合氧化物。
同溶胶-凝胶法相比,有机配合物前驱体法原料来源广、价格便宜,一些不能水解聚合的金属离子也可以通过该方法制得复合氧化物纳米晶。
早期该方法采用的配体大多是柠檬酸、乙二胺四乙酸等小分子,由于不同金属离子的不同配位能力,小分子配体在形成复合前驱体的过程中一部分金属离子容易发生偏析现象,使得金属离子的混合效果不尽理想。
采用大分子配体则可能较好地克服以上问题。
大分子配体由于分子链上有较多的配位反应活性点,使配体与金属离子间有较强的相互作用。
另外,由于大分子链的机械阻隔作用,可以进一步减轻偏析现象的发生,在热分解生成纳米晶的过程中还可以防止纳米晶的团聚。
聚乙二醇(PEG)、淀粉、明胶的分子链上含有大量可与各种金属离子有配位作用的羟基、羧基和氨基等功能基团,易溶于水,而且这些高分子分散剂可以在较低的温度分解去除,因此这些分子是较理想的有机配体。
该方法的基本步骤是:首先将可溶于水的金属有机羧酸盐、硝酸盐等与这些大分子分散剂溶于水中,混合均匀后再缓慢脱水得到凝胶,凝胶经适当热处理即可得到各种不同粒径的氧化物。
通过控制制备条件,可以在纳米尺度调控纳米粒子的大小。
例如采用明胶法时通过控制明胶的交联程度和热处理温度就可以得到6~150nm的纳米TiO2(如图1所示)。
采用这种方法,已成功制备了粒径可在5~100nm范围内调控的纳米TiO2、La2O3、TiO2/Al2O3以及一系列尖晶石型和钙钛矿型复合氧化物纳米晶[1~2]。
图1 明胶的交联程度与热处理温度对TiO2粒径的影响Fig.1 Dependence of particle of TiO2 on the crosslinkedextent of gelatin and calcining temperature上述这些方法大多是以水作溶剂,一些金属离子在水溶液中很容易发生水解反应并进而生成沉淀,从而影响不同金属离子的均匀分散。
采用硬脂酸法则可以克服这一问题。
硬脂酸是一种两亲性的有机酸,端基的羧酸基几乎同所有金属离子都有较强的配位作用,其用作表面活性剂已在许多领域得到应用。
另外由于硬脂酸的熔点较低(约70℃),它本身可以用作各种金属盐的溶剂。
将金属氧化物、氢氧化物、硝酸盐或有机羧酸盐等溶于熔融的硬脂酸酸中,由于硬脂酸兼有配合剂和表面活性剂的双重作用,各种金属离子在液相可以达到高度均匀稳定的混合。
由于合成过程中不需水的参与,从而防止了金属离子的水解沉淀现象,大大拓展了该方法的应用范围。
此外,不同于共沉淀法,各金属元素在制备过程中不损失,而且不会引入外来杂质,因此产物的各组分含量可以通过控制原料的加入量得到精确控制。
另外,该方法生产设备简单、操作方便、生产周期短,是一种较理想的制备混合或复合氧化物纳米材料的方法。
采用这种方法,已成功地制备了一系列六角晶型、尖晶石型铁氧体以及La2O3、Fe2O3、Y2O3及其混合氧化物的纳米晶材料[3~12]。
2 复合氧化物纳米晶的性质及应用2.1 氧化物纳米晶的光谱性质纳米晶的光谱性质有其特殊性。
红外吸收谱研究表明,随着晶粒尺寸的减小,红外吸收峰趋于宽化。
这是随着粒径减小,纳米晶的比表面积增大,表面原子所占比例增大,由于界面原子与内层原子的差异导致了红外吸收峰的宽化。
此外,由于纳米晶的表面存在大量断键,产生的离域电子在表面和体相之间重新分配,使该区域的力常数增大,键的强度增大,从而导致红外区的吸收频率上升,红外吸收峰发生蓝移。
2.2 氧化物纳米晶的磁性质和吸波特性纳米铁氧体的磁性质研究表明,六角晶系铁氧体的磁性质也与晶粒尺寸有关。
当粒径小于10nm时呈现超顺磁特性。
当粒径小于30~50nm时,材料的矫顽力Hc和剩余磁化率mr随粒径的减小而迅速下降;粒径在50~200nm之间时,Hc和mr均达到最大值,具有单畴颗粒特性。
当粒径继续增大时,铁氧体颗粒由单畴向多畴转变,Hc和mr随粒径增大而缓慢下降;此外,材料的磁性质还与掺杂元素的种类和含量有关。
图2是CoTi掺杂的M型钡铁氧体的矫顽力Hc随掺杂量及热处理温度的变化关系。
图2 纳米BaFe12-2x Co x Ti x O19矫顽力与掺杂量及热处理温度的关系Fig.2 Coercivity H c of nanostructuredBaFe12-2x Co x Ti x O19 versus Co content andcalcining temperature纳米材料的电磁特性研究表明,六角晶系铁氧体纳米晶具有优良的电磁波吸收特性。
在测试频率范围8~12GHz内,吸收达到20dB以上。
由于采用硬脂酸合成的铁氧体纳米晶粒度均匀、粒径小、比表面积大,可与其它树脂形成良好的纳米复合材料,还可以通过改变掺杂元素的种类和含量方便地调节材料的电磁参数进而拓宽材料的吸波范围,这类材料可望被用作高效宽频谱的吸波剂而在国防工业和日常生活中发挥重要应用。
图3是纳米(Zn1-xCox)2-W型铁氧体的电磁参数随Co掺杂量的不同的变化关系。
图3 纳米(Zn1-x Co x)2-W型铁氧体的电磁参数随Co掺杂量的变化关系Fig.3 Dependence of μr on the Co content x2.3 氧化物纳米晶的催化性质我们还首次发现了Na+掺杂的纳米TiO2对一些聚合反应具有明显的催化作用[15,16]。
例如,在纳米TiO2的催化作用下,双马来酰亚胺的固化温度降低40~50℃,而玻璃化转变温度可以提高50℃。
纳米TiO2还对马来酸酐的均聚具有催化作用,在其催化下可以得到端基无苯环的聚马来酸酐。
此外,纳米TiO2制备方法的不同,其催化活性也不一样。
表1列出了不同方法制备的纳米TiO2对双马来酰亚胺固化温度的影响。
表1 不同纳米TiO2对双马来酰亚胺固化温度的影响Table 1 Dependence of the Cured Temperature of Bismaleimide on Various采用PEG法制备的一些纳米复合氧化物对汽车尾气的净化具有明显的催化作用,为开发高效价廉的汽车尾气催化剂指出了一条新的制备思路。
另外,还发现纳米氧化物还可以催化一些火炸药的爆炸反应。
例如,少量纳米La2O3可使TNT炸药的爆速提高10%;一些纳米氧化物还可以降低固体发射药的燃速温度系数,并能明显提高燃速。
这一发现可能为含能材料的改性提供了新的方向。
2.4 氧化物纳米晶对塑料的增强增韧作用无机纳米填充改性聚合物材料是纳米材料应用的另一个重要方面。
刚性的无机粒子填充到聚合物材料后可以提高聚合物材料的刚性、硬度和耐磨性等性能,但普通的无机粉体填料填充改性聚合材料时在增强这些性能的同时大都会降低聚合物材料的强度和韧性。