【全国通用】小学六年级奥数培训经典讲义——比例工程问题

合集下载

六年级奥数专题讲义:工程问题

六年级奥数专题讲义:工程问题

六年级奥数专题讲义:工程问题多人完成工作、水管的进水与排水等类型的应用题.解题时要经常进行工作时间与工作效率之间的转化.1.甲、乙两人共同加工一批零件,8小时司以完成任务.如果甲单独加工,便需要12小时完成.现在甲、乙两人共同生产了225小时后,甲被调出做其他工作,由乙继续生产了420个零件才完成任务.问乙一共加工零件多少个?【分析与解】乙单独加工,每小时加工18-112=124.甲调出后,剩下工作乙需做(8—225)×(18÷124)=845(小时),所以乙每小时加工零件420÷845=25个,则225小时加工225×25=60(个),因此乙一共加工零件60+420=480(个).2.某工程先由甲单独做63天,再由乙单独做28天即可完成.如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么还需做多少天?【分析与解】由右表知,甲单独工作15天相当于乙单独工作20天,也就是甲单独工作3天相当于乙单独工作4天.所以,甲单独工作63天,相当于乙单独工作63÷3×4=84天,即乙单独工作84+28=112天即可完成这项工程.现在甲先单独做42天,相当于乙单独工作42÷3×4=56天,即乙还需单独工作112—56=56天即可完成这项工程.3.有一条公路,甲队独修需10天,乙队独修需12天,丙队独修需15天.现在让3个队合修,但中间甲队撤出去到另外工地,结果用了6天才把这条公路修完.当甲队撤出后,乙、丙两队又共同合修了多少天才完成?【分析与解】甲、乙、丙三个队合修的工作效率为110+112+115=14,那么它们6天完成的工程量为14×6=32,而实际上因为中途撤出甲队6天完成了的工程量为1.所以32-1=12是因为甲队的中途撤出造成的,甲队需12÷110=5(天)才能完成12的工程量,所以甲队在6天内撤出了5天.所以,当甲队撤出后,乙、丙两队又共同合修了5天才完成.4.一件工程,甲队独做12天可以完成,甲队做3天后乙队做2天恰好完成一半.现在甲、乙两队合做若干天后,由乙队单独完成,做完后发现两段所用时间相等,则共用了多少天?【分析与解】甲队做6天完成一半,甲队做3天乙队做2天也完成一半.所以甲队做3天相当于乙队做2天.即甲的工作效率是乙的23,从而乙单独做12×23=8(天)完成,所以两段所用时间相等,每段时间应是:8÷(1+l+23)=3(天),因此共用3×2=6(天).5.抄一份书稿,甲每天的工作效率等于乙、丙二人每天的工作效率的和;丙的工作效率相当甲、乙每天工作效率和的15.如果3人合抄只需8天就完成了,那么乙一人单独抄需要多少天才能完成?【分析与解】已知甲、乙、丙合抄一天完成书稿的18,又已知甲每天抄写量等于乙、丙两人每天抄写量之和,因此甲两天抄写书稿的18,即甲每天抄写书稿的116;由于丙抄写5天相当于甲乙合抄一天,从而丙6天抄写书稿的18,即丙每天抄写书稿的148;于是可知乙每天抄写书稿的18-116-148=124.所以乙一人单独抄写需要1÷124=24天才能完成.6.游泳池有甲、乙、丙三个注水管.如果单开甲管需要20小时注满水池;甲、乙两管合开需要8小时注满水池;乙、丙两管合开需要6小时注满水池.那么,单开丙管需要多少小时注满水池?【分析与解】乙管每小时注满水池的18-120=340,丙管每小时注满水池的16-340=11120.因此,单开丙管需要1÷11120=12011=101011(小时).7.一件工程,甲、乙两人合作8天可以完成,乙、丙两人合作6天可以完成,丙、丁两人合作12天可以完成.那么甲、丁两人合作多少天可以完成?【分析与解】甲、乙,乙、丙,丙、丁合作的工作效率依次是18、16、112.对于工作效率有(甲,乙)+(丙,丁)-(乙,丙)=(甲,丁).即18+112-16=124,所以甲、丁合作的工作效率为124.所以,甲、丁两人合作24天可以完成这件工程.8.一项工作,甲、乙两人合做8天完成,乙、丙两人合做9天完成,丙、甲两人合做18天完成.那么丙一个人来做,完成这项工作需要多少天?【分析与解】方法一:对于工作效率有:(甲,乙)+(乙,丙)-(丙,甲)=2乙,即18+19-118=1372为两倍乙的工作效率,所以乙的工作效率为21 144.而对于工作效率有,(乙,丙)-乙=丙,那么丙的工作效率为19-13144=148那么丙一个人来做,完成这项工作需1÷148=48天.方法二:2(甲,乙,丙)=(甲+乙)+(乙、丙)+(甲、丙)=18+19+118=2172,所以(甲,乙,丙)=2172÷2=21144,即甲、乙、丙3人合作的工作效率为21144.那么丙单独工作的工作效率为21144-18=148,那么丙一个人来做,完成这项工作需48天.9.某工程如果由第1、2、3小队合干需要12天才能完成;如果由第1、3、5小队合干需要7天才能完成;如果由第2、4、5小队合干需要8天才能完成;如果由第1、3、4小队合干需要42天才能完成.那么这5个小队一起合干需要多少天才能完成这项工程?【分析与解】由已知条件可得,对于工作效率有:(1、2、3)+(1、3、5)+2(2、4、5)+(1、3、4)=3(1、2、3、4、5).所以5个小队一起合作时的工作效率为:(112+17+2×18+142)÷3=16所以5个小队合作需要6天完成这项工程.评注:这类需综合和差倍等知识的问题在工程问题中还是很常见的.10.一个水箱,用甲、乙、丙三个水管往里注水.若只开甲、丙两管,甲管注入18吨水时,水箱已满;若只开乙、丙两管,乙管注入27吨水时,水箱才满.又知,乙管每分钟注水量是甲管每分钟注水量的2倍.则该水箱最多可容纳多少吨水?【分析与解】设甲管注入18吨水所需的时间为“1”,而乙管每分钟注水量是甲管每分钟注水量的2倍,那么乙管注入18吨的水所需时间为“O.5”,所以乙管注入27吨水所需的时间为27÷18×0.5=0.75.以下采用两种方法:方法一:设丙在单位时间内注入的水为“1”,那么有:因此18+“1”=27+“O.75”,则“0.25”=9吨,所以“1”=36吨,即丙在单位时间内灌入36吨的水.所以水箱最多可容纳18+36=54吨的水.方法二:也就是说甲、丙合用的工作效率是乙、丙合用工作效率的34.再设甲单独灌水的工作效率为“1”,那么乙单独灌水的工作效率为“2”,有1+丙=34(2+丙);所以丙的工作效率为“2”,即丙的工作效率等于乙的工作效率,那么在乙、丙合灌时,丙也灌了27吨,那么水箱最多可容纳27+27=54吨水.11.某水池的容积是100立方米,它有甲、乙两个进水管和一个排水管.甲、乙两管单独灌满水池分别需要10小时和15小时.水池中原有一些水,如果甲、乙两管同时进水而排水管放水,需要6小时将水池中的水放完;如果甲管进水而排水管放水,需要2小时将水池中的水放完.问水池中原有水多少立方米?【分析与解】甲每小时注水100÷10=10(立方米),乙每小时注水100÷15=203(立方米),设排水管每小时排水量为“排”,则(“排”-10-203)×3=(“排”-10),整理得3“排”-3×503=“排”-10,2“排”=40,则“排”=20.所以水池中原有水(20—10)×2=20(立方米).12.一个水池,底部安有一个常开的排水管,上部安有若干个同样粗细的进水管.当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池.现在需要在2小时内将水池注满,那么最少要打开多少个进水管?【分析与解】记水池的容积为“1”,设每个进水管的工作效率为“进”,排水管的工作效率为“排”,那么有:4“进”-“排”=15, 2“进”-“排”=115.所以有,2“进”=(15-115)=215,那么“进”=115,则“排”=115.题中需同时打开x个进水管2小时才能注满,有:x“进”-“排”=12,即115x-115=12,解得x=8.5所以至少需打开9个进水管,才能在2小时内将水池注满.13.蓄水池有甲、丙两条进水管和乙、丁两条排水管.要灌满一池水,单开甲管需要3小时,单开丙管需要5小时.要排光一池水,单开乙管需要4小时,单开丁管需要6小时.现在池内有16池水.如果按甲、乙、丙、丁的顺序循环开各水管,每次每管开1小时,问经过多少时间后水开始溢出水池?【分析与解】方法一:甲、乙、丙、丁四个水管,按顺序各开l小时,共开4小时,池内灌进的水是全池的13-14+15-16=706.最优情况为:在完整周期后的1小时内灌满一池水.因为此时为甲管进水时间,且甲的效率是四条管子中最大的.那么在最优情况下:完整周期只需注入1-16-13=12池水.所需周期数为12÷706=307=427那么,至少需要5个完整周期,而5个完整周期后,水池内有水16+760×5=16+712=34剩下l-34=14池水未灌满,而完整周期后l小时内为甲注水时间,有14÷13=34(小时).所以,需5个完整周期即20小时,再加上34小时,即2034小时后水开始溢出.方法二:甲、乙、丙、丁四个水管,按顺序各开1小时,共开4小时,池内灌进的水是全池的13-14+15-16=760.加上池内原有的水,池内有水:16+760=1760.再过四个4小时,也就是20小时后,池内有水:1760+760×4=4560,在20小时后,只需要再灌水1-4560=14,水就开始溢出.1 4÷13=34(小时),即再开甲管34小时,水开始溢出,所以20+34=2034(小时)后,水开始溢出水池.方法三:甲、乙、丙、丁四个水管,按顺序各开1小时,共开4小时,池内灌进的水是全池的13-14+15-16=760.一个周期后,池内有水:16+760=1760,4360有待注入;二个周期后,池内有水:1760+760=2460,3660即35有先待注入;三个周期后,池内有水:2460+760=3160,2960有待注入;四个周期后,池内有水:3160+760=3860,2260即1130有待注入;五个周期后,池内有水:3860+760=4560,1560即14有待注入.而此时,只需注入14的水即可,小于甲管1小时注入的水量,所以有14÷13=34(小时),即再开甲管34小时,水开始溢出,所以20+34=2034(小时)后,水开始溢出水池.评注:这道题中要求的是第一次溢出,因为在一个周期内不是均匀增加或减少,而是有时增加有时又减少,所以不能简单的运用周期性来求解,这样往往会导致错误的解答,至于为什么?我们给出一个简单的问题,大家在解完这道题就会知晓.有一口井,深20米,井底有一只蜗牛,蜗牛白天爬6米,晚上掉4米,问蜗牛爬出井需多少时间?14.一个水池,地下水从四壁渗入,每小时渗入该水池的水是固定的.当这个水池水满时,打开A管,8小时可将水池排空;打开B管,10小时可将水池排空;打开C管,12小时可将水池排空.如果打开A,B两管,4小时可将水池排空,那么打开B,C两管,将水池排空需要多少时间?【分析与解】设这个水池的容量是“1”A管每小时排水量是:18+每小时渗入水量;B管每小时排水量是:110+每小时渗入水量;C管每小时排水量是:112+每小时渗入水量;A、B两管每小时排水量是:14+每小时渗入水量.因为18+每小时渗入水量+110+每小时渗入水量=14+每小时渗入水量,因此,每小时渗入水量是:14-(18+110)=140.那么有A、B、C管每小时的排水量如下表所示:于是打开B、C两管,将水池排空需要1÷(18+13120-140)=1÷524=4.8(小时).。

(完整word版)六年级奥数《工程问题》讲义

(完整word版)六年级奥数《工程问题》讲义

工程问题工程问题是将一般的工作问题分数化,换句话说从分率的角度研究工作总量、工作时间(完成丁作总量所需的时间)、工作效率(,单位时间内完成的工作於)三者之间关系的问题•它的特点是将工作总量看成单位“1”,用分率表示工作效率,对做工的问题进行分析解答.T•程问题的三个基本数址关系式是:工作效率X工作时间=工作总量. 工作总就十工作时间=工作效率. 工作总量一工作效率=丁作时间.V —件工程,甲、乙合做需6天完成,乙.丙合做需9天完成•甲、丙合做需15天完成•现在甲.乙、丙三人合做需要多少天完成?分析先求出三人合做一天完成这件工程的几分之几•再求三人合做需要多少天完成.解1+ [(¥ + + +需)十2]= 5 天).答甲、乙.丙三人合做需要5器天完成.冷<2卩一项工作,甲、乙合做要12天完成•若甲先做3天后,再由乙工作8天,共完成这件工作的卷如果这件工作由甲、乙单独做•甲需要多少天?乙需要多少天?分析把甲先做3天后再由乙工作8天共完成这件工作的立•看作甲、乙合作3天再由乙单砂做5天“完成这件T作的寻•又这件工作甲、乙台做要12夭完成"则甲、乙合做1天完成这件工作的越3天完成这件工作的备x 3 =与前述进行比较知•乙5 天完成这件工作的5 1 1———■12 4 6-解乙单独完成这件工作的天数「壬(辛*5)=30(天儿甲单独完成这件匸作的天数士 1 -=-(吉一点)=20(天).答这件工作由甲、乙单独做•甲需要20夭,乙需宴30天.亠(】)做一件工程•甲独做需要12小时完成,乙独做需要]8小时兀成■甲、乙合做1小时肩,然后由甲工作1小时,再由乙工作]小时两人如此交替工作'完成任务还需多少时间?<2)加工一批零件'甲、乙两人合做]小时势完成了这批零件的器乙、丙两人接着生产1小时•又完成了為甲、丙又合做2小时,完成了剩下的任务.甲•乙、丙三人合做■还妄多少小时完成?'?晅»有—水池,装有甲、乙两个注水管.下面装有丙管放水■池空时•单开卬管5分钟可注满.单开乙管10分钟可注满;水池装潢水肩.单开丙管15分钟可将水放完.如果在池空时•将甲、乙、丙三管齐开分钟启关闭乙管*还要多少分钟可注满水池?分析三管齐开2分钟肩的T作量是1 —(辛+吉一吉)x2.*[1_(言+壽_養餐2]斗(吉一吉)="分九答2分钟后关闭乙管.还妄4分钟可注满水池.密一份穡件.甲单独打字需6小时完成•乙单独打字需K)小时完成.现在甲单独打若干小时后•因有事由乙接着打完,共用了7小时.那么甲打字用了多少小时?分析乙7小时共打字盖幻=岳送样就差—磊=磊的稿件.因此甲每小时比乙多打全部稿件的吉一霁=磊*磊*点=4号(小时人*答甲打字用了4寺小时2再单独做4夭•还剩下这项工程的着没有完成,求甲、乙两队工作效卒之比.(2)甲、乙两项工程分别由一*二队来完成.在晴天•一队完成甲工程需要12天,二队完成乙工程需姜15天卡在雨天”一队的工作效率要下降40%•二队的工作效率耍下降10%.结果两队同时完成这两项工程•那么•在施工的日子卑•雨天有多少天?g;有卬、乙两项工程•张师傅单独完成甲丁程需寰9天,单独完成乙1 [程需要12天;王师傅单独完成甲工程需要3天. E独完成乙H 程需要15天.如果两人合作完成这两项丁程.最少需要多少天?分折由题目条件知,王师傅擅长做甲工程,所以让王师傅先做甲丁程,张师傅先做乙工程.等王师傅做完甲工程再和张师傅做乙工程.解3+(】_誇)+(吉+養)=3十5 = 8(天》.答两人合作完成这两项工程,堆少需要8天.0 <34某地要修筑-条公路,甲丁•程队单独干需要io天完成,乙工程队单独干需要15天完成*如果两队合作*他们的工作效率就要降低■甲队只能完成原来的壬,乙队只能完成原来的壽.现在if划8天完成这项工程,且要求两队合作天数尽可能少*那么两队要合作多少天?分析根据题意•甲、乙及甲.乙合做的工作效率分别为霁、1 tJL 1 4 1 9 7运及10X J +l5X l0 =50*此3种情况中乙的效率最低,甲、乙合做的效率最高,要使甲、乙合作天数尽可能的少.则必须甲尽可能地多做.如果全是甲做怡天可完成磊X8 =磊=£的工作虽尚有*的匚作没有完成■这部分工作要由甲、乙合做比甲多做的部分来完成.* (1~]^x8h(io x f+n x w~^)1 2=1■十韵=5(天〉.答两队要合作5天.(1) 一项工程•甲、乙合做全工程的晋^剩下的由甲单独完成. 甲一共做了10.5天”这项工程由甲单独做需要15天,如果由乙单独做•需要多少天?(2) 师徒三人合作承包一项工程显天能够全部完成.已知师傅单•独做所需的夭数与两个徒弟合作做所需的天数相等宇而师傅与乙徒第合作做所需的天数的2倍与甲徒弟单独做完所需的天数相等•那么甲徒弟单独做,完成这项丁程需要多少天?乙徒弟单独做,完成这项工程需要多少天?练习题1 完成一项工作"噩耍甲队干5天,乙队干6天•或者甲队干7 天•乙臥干2天.如果甲.乙两队独立完成该工程各需多少天?O 一个水池•甲.乙两个水管同时打开击小时可以灌满水池:若甲管打开8小时后关闭+然后打幵乙管,再工作3小时也可以灌满水池.问:甲管先工作2小时后关闭,乙管再工作儿小时可以港满全水池?3 一件工作甲5小时完成了吉”乙£小时完成了剩下的一半,余T的部分由甲、乙合作,还需要多少小时?O 甲、乙合作完战一项工作,由于配合得好舟甲的工作效率比单独做时提高壽■乙的工作效率比单独做时提高+•甲.乙合作6小时完成了这项任务.如果甲单独做需羹H小时,那么乙单独做需要多少小时?5某工程如果由第一、二、三小队合干,需12天才能完成;由第一.三、五小队合干,需7天才能完成*由第二、四.五小队合干•需圧天才能完成*曲第一、三、四小队合干•需42天才能完成■那么这五个小队一起合干,需要多少天才能完成这项工程?0 一批工人到甲、乙两个工地进行清理工作•甲T:地的「作绘是乙工地工作址的L5倍.上午去甲工地的人数是去乙匚地人数的3倍■下午这批工人中有召的人去甲工地•其他工人到乙工地.到傍晚时•甲工地的工作已做完农乙工地的工作还需4名工人再做1天・那么,这批工人有多少人?。

全国通用版 六年级春季奥数培优讲义 6-05-真题汇编-工程问题-教师专用

全国通用版 六年级春季奥数培优讲义 6-05-真题汇编-工程问题-教师专用

第5讲 工程问题【学习目标】1、复习工程问题;2、熟悉小升初的常见题型。

【知识梳理】1、基础公式:(1)工作量=工作效率×工作时间;(2)工作时间=工作量÷工作效率;(3)工作效率=工作量÷工作时间。

2、常用方法:(1)分工法;(2)比例法。

【典例精析】1、修一条公路,计划每天修60米,实际每天多修15米,结果提前4天修完,一共修了多少米?60×4÷15=16(天)(60+15)×16=1200(米)2、有一批零件由甲、乙两人合作完成,原计划甲比乙多做50个,结果乙实际做的比计划少70个,比甲实际做的总数的53多10个,这批零件共有多少个? 70×2+50=190(个)(190+10)÷(1-53)=500(个) 500-190+500=810(个)3、一项工程,甲单独做40天完成,乙单独做60天完成。

现在两人合作,中间甲因病休息了若干天,所以经过27天才完成。

甲休息了多少天?27-22=5(天)4、单独完成某路段维修工程,甲队需10天,乙队需15天,丙队需20天。

开始三个队一起开工,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。

问:甲队实际工作了几天?5、加工一批零件,甲、乙两人合作需要12天完成,现在由甲先做3天,然后由乙做2天,还6、加工一批服装,原计划甲、乙两车间在25天合作完成,甲、乙合作10天后,甲单独做8天,接着乙又单独做14天,这样共完成全部任务的81%,已知甲比乙每天多做10套,求计划加工多少套服装?7、甲、乙、丙合作一项工程,4天干了整个工程的31,这4天内,除丙外,甲休息了2天,乙休息了3天,之后三人合作完成,甲的效率是丙的3倍,乙的效率是丙的2倍,问工程前后一共用了多少天?解:设丙的工效是x ,4+4=8(天)8、甲、乙、丙三人去完成植树任务,已知甲植1棵树的时间,乙可以植2棵树,丙可以植3棵树,他们先一起工作了5天,完成全部任务的31,然后丙休息了8天,乙休息了3天,甲没休息,最后一起完成任务。

六年级奥数比和比例讲座【DOC范文整理】

六年级奥数比和比例讲座【DOC范文整理】

六年级奥数比和比例讲座比和比例两个数相除又叫做两个数的比.一、比和比例的性质性质1:若a:b=c:d,则:=a:b=c:d;性质2:若a:b=c:d,则:=a:b=c:d;性质3:若a:b=c:d,则:=a:b=c:d;性质4:若a:b=c:d,则a×d=b×c;正比例:如果a÷b=,则称a、b成正比;反比例:如果a×b=,则称a、b成反比.二、比和比例在行程问题中的体现在行程问题中,因为有速度=,所以:当一组物体行走速度相等,那么行走的路程比等于对应时间的反比;当一组物体行走路程相等,那么行走的速度比等于对应时间的反比;当一组物体行走时间相等,那么行走的速度比等于对应路程的正比..A和B两个数的比是8:5,每一数都减少34后,A是B的2倍,试求这两个数.【分析与解】方法一:设A为8x,则B为5x,于是有:=2:1,x=17,所以A为136,B为85.方法二:因为减少的数相同,所以前后A、B的差不变,开始时差占3份,后来差占1份且与B一样多,也就是说减少的34,占开始的3-1=2份,所以开始的1份为34÷2=17,所以A为17×8=136,B为17×5=85..近年来火车大提速,1427次火车自北京西站开往安庆西站,行驶至全程的再向前56千米处所用时间比提速前减少了60分钟,而到达安庆西站比提速前早了2小时.问北京西站、安庆西站两地相距多少千米?【分析与解】设北京西站、安庆西站相距多少千米?x=60:120,即:x=1:2,即x=x+112,解得x=1232.即北京西站、安庆西站两地相距1232千米,.两座房屋A和B各被分成两个单元.若干只猫和狗住在其中.已知:A房单元内猫的比率大于B房单元内猫的比率;并且A房第二单元内猫的比率也大于B房第二单元内猫的比率.试问是否整座房屋A内猫的比率必定大于整座房屋B内猫的比率?【分析与解】如下表给出的反例指出:对所提出问题的回答应该是否定的.表中具体写出了各个单元及整座房屋中的宠物情况和猫占宠物总数的比率.4.家禽场里鸡、鸭、鹅三种家禽中公篱与母篱数量之比是2:3,已知鸡、鸭、鹅数量之比是8:7:5,公鸡、母鸡数量之比是1:3,公鸭、母鸭数量之比是3:4.试求公鹅、母鹅的数量比.【分析与解】公鸡占家禽场家禽总数的=,母鸡占总数的;公鸭占总数的,母鸭占总数的;公鹅占总数的,母鹅占总数的,公鹅、母鹅数量之比为:3:2..在古巴比伦的金字塔旁,其朝西下降的阶梯旁6的地方树立有1根走子,其影子的前端正好到达阶梯的第3阶.另外,此时树立l根长70c自杆子,其影子的长度为175c,设阶梯各阶的高度与深度都是50c,求柱子的高度为多少?【分析与解】70c的杆子产生影子的长度为175c;所以影子的长度与杆子的长度比为:175:70=2.5倍.于是,影子的长度为6+1.5+1.5×2.5=11.25,所以杆子的长度为11.25÷2.5=4.5..已知三种混合物由三种成分A、B、c组成,种仅含成分A和B,重量比为3:5;第二种只含成分B和c,重量比为I:2;第三种只含成分A和c,重量之比为2:3.以什么比例取这些混合物,才能使所得的混合物中A,B和c,这三种成分的重量比为3:5:2?【分析与解】注意到种混合物种A、B重量比与最终混合物的A、B重量比相同,均为3:5.所以,先将第二种、第三种混合物的A、B重量比调整到3:5,再将第二种、第三种混合物中A、B与种混合物中A、B视为单一物质.第二种混合物不含A,第三种混合物不含B,所以1.5倍第三种混合物含A为3,5倍第二种混合物含B为5,即第二种、第三种混合物的重量比为5:1.5.于是此时含有c为5×2+1.5×3=14.5,在最终混合物中c的含量为3A/5B含量的2倍.有14.5÷2-1=6.25,所以含有种混合物6.25.即、二、三这三种混合物的比例为6.25:5:1.5=25:20:6.7.现有男、女职工共1100人,其中全体男工和全体女工可用同样天数完成同样的工作;若将男工人数和女工人数对调一下,则全体男25天完成的工作,全体女工需36天才能完成,问:男、女工各多少人?【分析与解】直接设出男、女工人数,然后在通过方程求解,过程会比较繁琐.设开始男工为“1”,此时女工为“”,有1名男工相当名女工.男工、女工人数对调以后,则男工为“”,相当于女工“2”,女工为“I”.有2:1=36:25,所以=.于是,开始有男工数为×1100=500人,女工600人..有甲乙两个钟,甲每天比标准时间慢5分钟,而乙每天比标准时间快5分钟,在3月15日的零点零分的时候两钟正好对准.若已知在某一时刻,乙钟和甲钟时针与分针都分别重合,且在从3月15日开始到这个时候,乙钟时针与分针重合的次数比甲钟多10次,那么这个时候的标准时间是多少?【分析与解】标准的时钟每隔分钟重合一次.假设经历了x分钟.于是,甲钟每隔分钟重合一次,甲钟重合了×x次;同理,乙钟重合了×x次;于是,需要乙钟比甲钟多重合×x-×x=×x=10;所以,x=24×60;所以要经历24×60×65分钟,则为天.于是为65天小时分钟..一队和二队两个施工队的人数之比为3:4,每人工作效率之比为5:4,两队同时分别接受两项工作量与条件完全相同的工程,结果二队比一队早完工9天.后来,由一队工人与二队工人组成新一队,其余的工人组成新二队.两支新队又同时分别接受两项工作量与条件完全相同的工程,结果新二队比新一队早完工6天.试求前后两次工程的工作量之比?【分析与解】一队与二队的工作效率之比为::=15:16.一队干前一个工程需9÷=144天.新一队与新二队的工作效率之比为:新一队干后一个工程需6÷=282天.一队与新一队的工作效率之比为所以一队干后一个工程需282×天.前后两次工程的工作量之比是144:=:=540:1081.。

小学六年级奥数教师讲义版 工程问题

 小学六年级奥数教师讲义版 工程问题

六年级奥数第三讲工程问题顾名思义,工程问题指的是与工程建造有关的数学问题。

其实,这类题目的内容已不仅仅是工程方面的问题,也括行路、水管注水等许多内容。

在分析解答工程问题时,一般常用的数量关系式是:工作量=工作效率×工作时间,工作时间=工作量÷工作效率,工作效率=工作量÷工作时间。

工作量指的是工作的多少,它可以是全部工作量,一般用数1表示,也可工作效率指的是干工作的快慢,其意义是单位时间里所干的工作量。

单位时间的选取,根据题目需要,可以是天,也可以是时、分、秒等。

工作效率的单位是一个复合单位,表示成“工作量/天”,或“工作量/时”等。

但在不引起误会的情况下,一般不写工作效率的单位。

例1 单独干某项工程,甲队需100天完成,乙队需150天完成。

甲、乙两队合干50天后,剩下的工程乙队干还需多少天?分析与解:以全部工程量为单位1。

甲队单独干需100天,甲的工作效例2某项工程,甲单独做需36天完成,乙单独做需45天完成。

如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。

问:甲队干了多少天?分析:将题目的条件倒过来想,变为“乙队先干18天,后面的工作甲、乙两队合干需多少天?”这样一来,问题就简单多了。

例3 单独完成某工程,甲队需10天,乙队需15天,丙队需20天。

开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。

问:甲队实际工作了几天?分析与解:乙、丙两队自始至终工作了6天,去掉乙、丙两队6天的工作量,剩下的是甲队干的,所以甲队实际工作了例4 一批零件,张师傅独做20时完成,王师傅独做30时完成。

如果两人同时做,那么完成任务时张师傅比王师傅多做60个零件。

这批零件共有多少个?分析与解:这道题可以分三步。

首先求出两人合作完成需要的时间,例5 一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。

1六年级奥数之工程问题课件

1六年级奥数之工程问题课件

接下来由基本公式求解 1÷[(1/12+1/15+1/20)÷2]=10(天)
③答:如果由甲乙丙三队合作需10天完成。
习题1.一件工作,甲5小时完成了1/4,乙6小 时又完成了剩下任务的一半,最后余下的部 分由甲乙合作,还需要多少时间才能完成?
思路:1.假设工作总量为“1”
2.联系基本公式,层层剥离,找出问题关键点:
一.基本公式
• 工程问题是应用题中的一种类型。在工程问题中,一般要出现三个量:工作总量(即 工量)、工作时间(完成工作总量所需时间 即工时)和工作效率(单位时间内完成的 工作量 即工效):
①工作效率×工作时间=工作总量 ②工作总量÷工作时间=工作效率 ③工作总量÷工作效率=工作时间
下面请同学来回答以上3个量之间的正反比关系~~~
三.例题讲解
• 例1.一项工程,甲乙两队合作需12天完成,乙丙 两队合作需15天完成,甲丙两队合作需20天完成, 如果由甲乙丙三队合作需几天完成?
分析:①设这项工程为1个单位,将所有题设条件转化为数学语言:
甲乙合作工效1/12,乙丙合作工效1/15,甲丙合作工效1/20 ②观察设问:如何求得甲乙丙三队合作的工时 ? 工作时间=工作总量÷工作效率 如今由①知工作总量为1,欲求工时,需知工效.
二.基本思路

①假设工作(一般是它 们完成工作总量所用时间的最小公倍数),利用 上述三个基本关系,可以简单地表示出工作效率 及工作时间. • 而把工量看做单位1时,工效即用工时的倒数
来表示。

关键问题:不管题型如何,都要学会确定工 作量、工作时间、工作效率间的两两对应关系。
习题2.师徒二人合作生产一批零件,6天可以完成任务。 师傅先做5天后,由徒弟接着做3天,共完成任务的 7/10。如果每人单独做这批零件各需几天?

【全国通用】小学六年级奥数培训经典讲义——比例工程问题

【全国通用】小学六年级奥数培训经典讲义——比例工程问题

【全国通用】小学六年级奥数培训经典讲义——比例工程问题比例工程姓名1、有一批资料要复印,甲机单独复印需要11小时,乙机单独复印需要13小时,当甲、乙两台复印机同时复印时,由于相互干扰,每小时两台共少印28张.现在两台机同时复印了6小时15分才印完,那么这批资料共有多少张?2、加工一批零件,原计划每天加工15个,若干天可以完成。

当完成加工任务的3/5时,采用新技术,效率提高20%。

结果,完成任务的时间提前10天。

这批零件共有多少个?3、某项工程,可由若干台机器在规定的时间内完成,如果增加2台机器,则只需用规定时间的7/8就可做完;如果减少2台机器,那么就要推迟2/3小时做完,现问:由一台机器去完成这项工程需要多少时间?4、向电脑输入汉字。

甲的工效与乙、丙两人工效的和相等,丙的工效率是甲、乙两人合作工效的五分之一。

有一本书,三人合作8小时可全部输入电脑,如果乙单独来输,需要多少小时?5、甲、乙、丙三队要完成A、B两项工程。

B工程的工作量比A工程的工作量多25%,甲、乙、丙三队单独完成A 工程所需的时间分别是20天、24天、30天。

为了共同完成这两项工程,先派甲队做A工程,乙、丙二队做B工程;经过几天后,又调丙队与甲队共同完成A工程。

问乙、丙二队合作了多少天?6、甲、乙、丙三人每天工作量之比是3:2:1。

现有一项工作,三人合作5天正好完成全部工作的三分之一。

然后甲休息4天再继续工作,乙休息3天再继续工作,丙一直没休息。

当他们完成工作时,乙实际连续工作了多少天?7、甲、乙、丙三人做一件工作,原计划按甲、乙、丙的顺序每人一天轮流去做,恰好整数天做完,并且结束工作的是乙。

若按乙、丙、甲的顺序轮流去做,则比计划多用1/2天;若按丙、甲、乙的顺序轮流去做,则比原计划多用1/3天。

已知甲单独做完这件工作要9天。

问:甲、乙、丙三人一起做这件工作,要用多少天才能完成?8、某项工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,15/4天可以完成,需支付1500元;由甲、丙两队承包,20/7天可以完成,需支付1600元。

六年级上册秋季奥数培优讲义——6-09-工程综合3-讲义-学生

六年级上册秋季奥数培优讲义——6-09-工程综合3-讲义-学生

第9讲工程综合【学习目标】1、进一步学习工程问题;2、掌握工作总量为单位“1”的题型的解题方法。

【知识梳理】1、三个基本量:工作效率、工作时间、工作总量;2、基本公式:(1)工作总量=工作效率×工作时间(2)工作效率=工作总量÷工作时间(3)工作时间=工作总量÷工作效率3、常用比例关系:(1)工作时间相同时,工作效率之比=工作效率之比;(2)工作效率相同时,工作总量之比=工作时间之比;(3)工作总量相同时,工作效率之比=工作时间反比;(反比就是前项后项交换位置)4、注意:(1)工作总量、工作效率都可以直接相加求和;(2)工作时间不能直接相加求和。

5、设工作总量:(1)单位“1";(2)设完成时间的最小公倍数。

6、区分合作,轮流做还是同时做。

【典例精析】【例1】—项工程,甲队单独修要45天完成,乙队单独修要60天完成.现在甲、乙两队合做,中途乙队有事请假几天,完成全部工程共用了30天,求乙队中途请了几天假?【趁热打铁-1】一项工程,如果甲、乙单独做分别需要72天和64天完成,现在两人一起做,由于中间甲因病休息了几天,结果用了56天才完成。

甲休息了几天?【例2】—项工作,甲、乙合做要12天完成,若甲先做3天后,再由乙工作8天,共完成这【趁热打铁-2】加工一批零件,甲、乙合做24小时可以完成,现在由甲先独做16小时,然后批零件共有多少个?【例3】单独完成一项工程,甲可比规定时间提前2天完成,乙则要超过规定时间3天才能完成。

如果甲、乙两人一起做2天后,剩下的由乙独做,那么刚好在规定时间完成。

这项工程如果甲、乙两人一起做需多少天完成?【趁热打铁-3】一项工程,如果由甲独做,正好在规定的时间内完成;如果由乙独做,要超过规定的时间5天才能完成;如果甲、乙一起做3天后,其余的再由乙独做,正好也在规定的时间完成。

完成这项工程原计划用多少天?【例4】一项工作,甲、乙、丙三人一起做6时可以完成。

(完整word版)奥数_六年级_千份讲义_119_6.第五讲_比例解行程问题

(完整word版)奥数_六年级_千份讲义_119_6.第五讲_比例解行程问题

比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。

从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。

比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。

我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况: 1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比 2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。

s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。

模块一、时间相同速度比等于路程比第五讲 比例解行程问题知识点拨例题精讲【例 1】甲、乙二人分别从A、 B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进,甲到达B 地和乙到达A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点30千米,则A、B 两地相距多少千米?【例 2】A、B 两地相距7200 米,甲、乙分别从A,B 两地同时出发,结果在距B 地2400 米处相遇.如果乙的速度提高到原来的3倍,那么两人可提前10分钟相遇,则甲的速度是每分钟行多少米?【例 3】甲、乙两人同时从A、 B 两点出发,甲每分钟行80米,乙每分钟行60米,出发一段时间后,两人在C点处相遇;如果甲出发后在途中某地停留了7分钟,两人将在D 点处相遇,且中点距C 、D 距离相等,问A、B 两点相距多少米?【例 4】甲、乙两车分别从A、B 两地同时出发,相向而行.出发时,甲、乙的速度之比是 5 : 4,相遇后甲的速度减少20%,乙的速度增加20%.这样当甲到达B 地时,乙离A地还有10千米.那么A、B 两地相距多少千米?【例 5】早晨,小张骑车从甲地出发去乙地.下午 1 点,小王开车也从甲地出发,前往乙地.下午 2 点时两人之间的距离是15 千米.下午3 点时,两人之间的距离还是l5 千米.下午4 点时小王到达乙地,晚上7 点小张到达乙地.小张是早晨几点出发?【例 6】B地在A,C两地之间.甲从B地到A地去送信,甲出发10分钟后,乙从B地出发到C 地去送另一封信,乙出发后10分钟,丙发现甲、乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间。

奥数班六年级第10讲 用比例解决问题

奥数班六年级第10讲 用比例解决问题

第4讲用比例解决问题【知识点拨】比例的意义:表示两个比相等的式子叫做比例。

比例的认识:比例有四个项,分别是两个内项和两个外项。

在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项。

比例的四个数均不能为0。

比例的基本性质:在一个比例中,两个外项的积等于两个内项的积。

比例尺:表示图上距离和实际距离的比,叫这幅地图的比例尺。

【典型例题】例1:一桶盐水200克,盐和水的质量比是1:24.要是盐水中,盐和水的质量比是1:29,要加入多少克水?例2:学校里有一些球,其中红球与总球数的比是1:3,当再买来8个红球后,红球与总球数的比是5:14,问现在共有多少个球?例3:张家与李家的收入钱数之比是8:5,支出的钱数之比是8:3,结果张家结余240元,李家结余270元。

问每家各收入多少元?例4:甲乙两人各有若干元,若甲拿出他所有钱的20%给乙,则两人所有的钱正好相等,原来甲乙两人所有钱的最简整数比是多少?例5:一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米?【课堂精练】1. A、B两人的钱数比是5:3,A给B拿去15元后,两人的钱同样多,原来两人共有多少钱?2. 一桶8升,一桶13升,往两个桶中加进同样多的水后,两桶中水量之比是5:7,那么往每个桶中加进去的水量是多少升?3. 一班和二班的人数之比是8:7,如果将一班的8名同学调到二班去,则一班和二班的人数比变为4:5.求原来两班的人数4. 有两桶大米共27千克,从大桶中吃掉2千克后,剩下的大米与小桶内大米的比是3:2,求大桶里原有多少千克大米?5. 圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元.问圆珠笔的单价是每支多少元?6. 幼儿园大班和中班共有32名男生,18名女生。

已知大班男生数与女生数的比为5:3,中班中男生数与女生数的比为2:1,那么大班有女生多少名?7. 车库中停放若干辆双轮摩托车和四轮小轿车,已知车的辆数与车轮数的比是2:5,摩托车与四轮小轿车的辆数比是多少?8.甲乙两人同时从A 地到B 地,骑车的速度比是8:9,已知甲每小时行15千米,行完全程比乙多用125小时,两地相距多少千米?9.袋子里红球与白球数量之比是19:13。

小学六年级奥数详细讲解_工程问题

小学六年级奥数详细讲解_工程问题

第一讲工程问题工程问题是应用题中的一种类型.在工程问题中,一般要出现三个量:工作总量、工作时间(完成工作总量所需的时间)和工作效率(单位时间内完成的工作量).这三个量之间有下述一些关系式:工作效率×工作时间=工作总量,工作总量÷工作时间=工作效率,工作总量÷工作效率=工作时间.为叙述方便,把这三个量简称工量、工时和工效.例1一项工程,甲乙两队合作需12天完成,乙丙两队合作需15天完成,甲丙两队合作需20天完成,如果由甲乙丙三队合作需几天完成?分析设这项工程为1个单位,则甲、乙合作的工效为112,乙、丙合作的工效为115,甲、丙合作的工效为120。

因此甲、乙、丙三队合作的工效的2倍为112+115+120,所以甲、乙、丙三队合作的工效为(112+115+120)÷2=110。

因此三队合作完成这项工程的时间为1÷110=10(天)解:1÷[(112+115+120)÷2]=10(天)答:甲、乙、丙三队合作需10天完成.说明:我们通常把工量“一项工程”看成一个单位,这样,工效就用工时的倒数来表示。

如例1中甲、乙两队合作的工时为12天,那么工效就为112,它表示甲、乙两队一天完成全部工程的112。

例2师徒二人合作生产一批零件,6天可以完成任务.师傅先做5天后,因事外出,由徒弟接着做3天,共完成任务的710批零件各需几天?分析设一批零件为单位“1”,其中6天完成任务,用16表示师徒的工效和.要求每人单独做各需几天,首先要求出各自的工效,关键在于把师傅先做5天,接着徒弟做3天转化为师徒二人合作3天,师傅再做2天.解:师傅工效:(710-16×3)÷2=110;徒弟工效:16-110=115;师傅单独做需几天:1÷110=10(天)徒弟单独做需几天:1÷115=15(天)。

答:如果单独做,师傅需10天,徒弟需15天.例3一项工程,甲单独完成需12天,乙单独完成需9天.若甲先做若干天后乙接着做,共用10天完成,问甲做了几天?分析解答工程问题时,除了用一般的算术方法解答外,还可以根据题目的条件,找到等量关系,列方程解题。

小学奥数全国推荐最新六年级奥数通用学案附带练习题解析答案15工程问题(一)

小学奥数全国推荐最新六年级奥数通用学案附带练习题解析答案15工程问题(一)

年 级六年级 学 科 奥数 版 本 通用版 课程标题 工程问题(一)工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,也是函数一一对应思想在应用题中的有力渗透。

工程问题是研究工作效率、工作时间和工作总量之间相互关系的一种应用题。

一般情况下是把工作总量看作单位“1”,因此工作效率就是工作时间的倒数。

工程问题是小学分数应用题中的一个重点,也是一个难点。

工程问题指的是与工程建造有关的数学问题。

其实,这类题目的内容已不仅仅是工程方面的问题,也包括注水与周期等许多内容。

工程问题是研究工作总量、工作时间和工作效率三个量之间的关系的一种应用题,它们有如下关系:工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率。

那么我们应该怎样分析工程问题呢?1. 深刻理解、正确分析相关概念。

对于工程问题,要深刻理解工作总量、工作时间、工作效率,简称工总、工时、工效。

通常工作总量的具体数值是无关紧要的,一般利用它不变的特点,把它看作单位“1”;工作时间是指完成工作总量所需的时间;工作效率是指单位时间内完成的工作量,即用单位时间内完成工作总量的几分之一或几分之几来表示工作效率。

2. 以工作效率为突破口。

工作效率是解答工程问题的要点,解题时往往要求出一个人一天(或一个小时)的工作量,即工作效率(如修路的长度、加工的零件数等)。

如果能直接求出工作效率,再解答其他问题就较容易,如果不能直接求出工作效率,就要仔细分析单独做或合作的情况,想方设法求出单独做的工作效率或合作的工作效率。

工程问题中常出现单独做、几人合作或轮流做的情况,分析时要梳理、理顺工作过程,抓住完成工作的几个过程或几种变化,通过对应工作的每一阶段的工作量、工作时间来确定单独做或合作的工作效率。

也常将问题转化为由甲(或乙)完成全部工程(工作)的情况,使问题得到解决。

要抓住题目中总的工作时间比、工作效率比、工作量比,及隐蔽的条件来确定工作效率,或确定工作效率之间的关系。

第01讲 工程问题综合(学生版)-六年级上册秋季数学奥数培优讲义

第01讲 工程问题综合(学生版)-六年级上册秋季数学奥数培优讲义

四一、工程问题综合提高(六上)在日常生活中,做某件事,制造产品,完成某项任务或工程等,都要涉及到工作总量、工作效率、工作时间这三个量,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”.1、工程问题基本数量关系式:工作总量=工作效率×工作时间工作时间=工作总量÷工作效率工作效率=工作总量÷工作时间.2、工程问题中的比例问题通常可以分为:工作总量相同,工作效率与工作时间成反比;工作时间相同,工作效率与工作总量成正比;工作效率相同,工作时间与工作总量成正比.3、三者之间的换算,注意对应.4、单位“1”的转化.5、解题方法(1) 基本法或假设工作任务为“1”(和总工作量无关);或假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数); 利用上述三个基本关系,可以简单地表示出工作效率及工作时间.(2)分段考虑(3)分对象考虑6、问题转化:牛吃草问题、排队问题、泄洪问题、漏水问题等.第1讲 工程问题综合 六年级 秋季知识点备注一、 量率对应1、生产一批帽子,甲、乙二人合作需15天完成.现由甲先单独工作5天,再由乙单独工作3天后还剩这批帽子的34没完成.若甲每天比乙少加工4个帽子,则这批帽子共有多少个?2、(2014年金帆五春)制作一批零件,甲车间要20天完成,如果甲车间与乙车间一起做只要12天就能完成.乙车间与丙车间一起做,需要16天才能完成.现在三个车间一起做,完成后发现甲车间比乙车间多制作零件400个.问丙车间制作了___________个零件.二、 来回帮忙3、有A 、B 两个仓库,A 仓库的货物是B 仓库的2倍.搬运完A 仓库的货物,甲需要32小时;搬运完B 仓库的货物,乙单干需要24小时,丙单干需要12小时.刚开始甲搬运A 仓库,乙搬运B 仓库,丙帮甲,后来丙又去帮乙,直到最后两个仓库的货物同时搬完.则丙帮了甲几个小时?课堂例题4、(龙校六年级秋季)有甲、乙两个大型挖土工程分别需要挖2万和1万方土.A公司派出60人去做甲工程、30人去做乙工程,同时动工.当甲工程刚好完成23时,B公司派出40人去支援甲工程,若干天之后,乙工程还剩14,B公司立即完全停止支援甲工程,并派20人立即支援乙工程直至完成.最后两项工程都在动工后的50天完成.若同一公司的每个人每天挖土量相等,则单独由A公司的60人做甲工程需要多少天才能完成?三、轮流工作5、小鹿、小羊、小猪三名打字员承担一项打字任务.若由这3人中的某人单独完成全部打字任务,则小鹿需24小时,小羊需20小时,小猪需16小时.(1)如果鹿、羊、猪三人同时打字,那么需要多少小时完成?(2)如果按鹿、羊、猪的次序轮流每人各打1小时,那么需要多少小时完成?6、(金帆六年级秋季)规定两人轮流做一个工程,要求第一个人先做1个小时,第二个人接着做一个小时,然后再由第一个人做1个小时,然后又由第二个人做1个小时,如此反复,做完为止.如果甲、乙轮流做一个工程需要9.8小时,而乙、甲轮流做同样的程只需要9.6小时,那乙单独做这个工程需要多少小时?四、劳逸结合7、甲工程队每工作6天必须休息1天,乙工程队每工作5天必须工作2天.一项工程,甲工程队单独做需104天(含休息).乙工程队单独做需82天(含休息).如果两队合作,从2014年8月28日开工,则该工程在哪一天可以竣工?8、(人大附)一次10分钟的知识竞赛,小明每分钟能做15道题,但做3道错一道,而且他做2分钟要休息1分钟,那么小明这次竞赛做对了____________道题.五、比例解工程问题9、一批蜘蛛侠模型,做了1后,提速25%,提前3小时完成;如果做了400个模型后,提4速20%,可以提前2小时完成任务,那么这批模型有多少个?10、甲、乙两人合作一项工作,如果甲提速20%,则可比计划时间提前1完工;如果乙减10速25%,则会推迟10分钟,那么他们原计划多少分钟完成这项工作?六、水管问题11、一水池装有一个进水管和一个排水管,单开进水管5小时可以将空池灌满,单开排水管7小时可以将满池水排完.如果一开始是空池,打开进水管1小时后又打开排水管,那么再过多少小时池内将积有半池水?12、为了创建绿色学校,科学俱乐部的同学设计了一个回收食堂的洗菜水来浇花草的水池,要求单独打开进水管3小时可以把水池注满,单独打开出水管4小时可以排完满池水.水池建成后,发现水池漏水.这时,若同时打开进水管和出水管14小时才能把水池注满.则当水池注满,并且关闭进水管与出水管时,经过多少小时池水就会漏完?七、列方程(组)解工程问题13、甲、乙两项工程分别由一、二对来完成.在晴天,一队完成甲工程需要12天,二队完成乙工程需要18天;在雨天,一队的工作效率要下降40%,二队的工作效率要上升20%.结果两队同时完成这两项工程,那么在施工的日子里,雨天有多少天?14、若干名工人计划用x分钟完成一项工程,如果开始时离开1名工人则要延误4分钟完成任务,如果开始时离开2人则要延误10分钟,那么原来共有多少人完成此任务?x的值是多少?(每人工作效率相同)1、(金帆五升六)一项工程,甲、队独做10天可以完成,乙队独做30天可以完成.现在两队合作期间甲队休息了2天,乙队休息了8天(两队不在同一天休息).从开始到完工共用了多少天?2、墨莫带着阿呆和阿瓜去割草.单独割完一个草地的草,阿呆需要9个小时,阿瓜需要12个小时,墨莫需要18个小时.现在阿呆和阿瓜各自负责一个大小相同的草地.墨莫先帮助阿瓜,再去帮助阿呆,最后阿呆和阿瓜一起完成了割草的任务,那么墨莫共帮助阿呆割了多少个小时?3、一个水池有两根进水管.单开甲管12小时注满,单开乙管15小时注满.现在甲乙管轮流打开,甲管打开1小时,乙管打开1小时,甲管打开1小时,乙管打开1小时……重复交替下去,那么注满水池共需要多少小时?4、姜太公“三天打鱼两天晒网”(打三天鱼休息两天),周文王“四天打鱼一天晒网”,姜太公打满一缸鱼要38天,周文王打满同样的一缸鱼要37天,两人从2014年9月2号开始打鱼,在几月几号可以合打满一缸鱼?随堂练习5、(金帆五年级春季)一项工程,甲队单独做20天完成,乙队单独做30天完成,现在他们两队一起做,期间甲队休息了3天,乙队休息了若干天,从开始到完成共有16天,乙队休息了多少天?6、(龙校六年级秋季)甲乙共同加工一批零件,开始时甲每天加工的零件个数比乙少14.共同加工7天后,甲每天加工的零件提高了一半,而乙不变.加工结束时,甲总共加工的零件比乙少80个.若乙单独加工这批零件需要25天,求这批零件一共有多少个?7、(金帆五升六)一项工程,甲15天做了14后,乙加入进来,甲、乙一起又做了14,这时,丙也加入进来,甲、乙、丙一起做完.已知乙、丙的工作效率的比为3:5,整个过程中,乙、丙工作的天数之比为2:1,问做完整个工作需要多少天?1、一项工程,甲队单独做20天完成,乙队单独做30天完成,现在由两队合作,其间乙队休息了若干天,从开始到完工共用时14天,那么乙队休息了______天.2、(金帆五升六)一件工作甲先做6小时,乙接着做12小时可以完成.甲先做8小时,乙接着做6小时也可以完成.如果甲做3小时后由乙接着做,还需要多少小时完成?课后作业3、(2015年金帆五春)某工程可由若干台机器在规定时间内完成.如果增加2台机器,则只需用规定时间的78就可做完;如果减少2台机器,那么就要推迟23小时做完.则由一台机器去完成这工程需要________小时.4、草场上放有一堆草,并且还有一片草以均匀的速度生长着.如果放养8头牛,则10天可以吃完;如果放养10头牛,则6天可以吃完,那么如果放养15头牛,可以吃____天.5、有A、B两个同样的仓库,搬运一个仓库里的货物,甲需要10小时,乙需要12小时,丙需要15小时.若一开始甲和丙在A仓库,乙在B仓库,同时开始搬运.中途丙又到B仓库帮助乙搬运,最后两个仓库同时搬完.丙帮助甲多少小时?6、有一个水池,地下水从四壁渗入池中,每小时渗入水量是固定的.打开A管,8小时可将满池水排空;打开C管,12小时可将满池水排空;如果打开A、B两管,4小时可将水排空.那么打开B、C两管,______小时可将满池水排空.7、蓄水池有甲、丙两条进水管和出水管乙.要灌满一池水,单开甲管需3小时,单开丙管需要5小时.要排光一池水,开乙管需4小时.现在池内有16池水,如果按照甲、乙、丙的顺序轮流各打开1小时,______小时后水开始溢出水池.8、某工人做一批零件,做完一半后,提速25%,提前2小时完成任务;如果做了200个零件后,提速20%,也可提前2小时完成任务.那么这批零件有________个.9、某水库建有10个泄洪闸,现有水库的水位已经超过安全线,上游河水还在按不变的速度流入,为了防洪,需调节泄洪速度.假设每个闸门泄洪速度相同,经测算,若打开一个泄洪闸,30小时水位降至安全线;若打开2个泄洪闸,10个小时水位降至安全线.现在抗洪指挥部要求在3小时使水位降至安全线以下,至少要同时打开几个闸门?10、一个长方体水槽,侧面相同高度的地方开有若干大小相同的出水孔.现用一个进水管给空水槽灌水,若出水孔全关闭,灌满水槽需要用1个小时;若打开一个出水孔,灌满水槽则需要用64分钟;若打开两个出水孔,灌满水槽需要用70分钟.要想能够把水槽灌满,最多可以打开__________个出水孔,经过__________分钟才能将水箱灌满.。

小学奥数五六年级-工程问题(培优讲义)

小学奥数五六年级-工程问题(培优讲义)

工程问题 学生姓名 授课日期 教师姓名授课时长知识定位工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。

工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。

在教学中,让学生建立正确概念是工程应用题的关键。

本节课从始至终都以工程问题的概念来贯穿,目的在于使学生理解并熟练掌握概念。

知识梳理1.工程问题在主要概念定义 : 工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间的相互关系的问题。

在工程问题中,一般要出现三个量:工作总量、工作时间(完成工作总量所需的时间)和工作效率(单位时间内完成的工作量)。

工程问题是小升初的常见考题,题型复杂多变,但是核心不变,即:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;在分数应用题中,经常将工作总量抽象成单位“1”;例如:一项工程,甲5天完成,则甲每天完成全部的几分之几?分析:这道题中,我们将一项工程抽象成单位“1”,5为工作时间,所以每天完成整个工程的1÷5=51,即为所求,同时51也是甲完成这项工作的速度,所以51就是这道题中甲的工作效率。

在解决工程问题时,对于题中已知条件给出的每一个数字或字母表示的具体含义必须在读完题后,清晰明了,然后通过所求与已知的逻辑关系,再进一步求解。

常用方法:列表法,条件转换法,整体法;每一种方法的使用要在具体题目中用心体会。

2.解决工程问题的基本思路(1)工作量看作“1”,用完成工作总量所需的时间的倒数作为工作效率,用工作总量除以工作效率和,就可以求出完成这项工程所需的时间。

工程问题一般采用这种方法求解。

(2)先求出独做的队或个人的工作效率,然后用工作总量“1”除以一个队或个人的工作效率,就可以求出一个队或个人独做的工作时间。

(3)求剩余部分的工作量完成的时间。

六年级下册数学讲义-小升初专题精讲:比例中的工程问题(无答案)全国通用

六年级下册数学讲义-小升初专题精讲:比例中的工程问题(无答案)全国通用

比例中的工程问题
【板块简介】
主要学习比例中的工程问题。

有些工程题中,需要运用比例的知识来解题。

当工作总量相同时,工作效率的比和工作时间的比成反比;工作时间相同时,工作总量的比和工作效率的比成正比。

路程相同时,速度和时间成反比;时间相同时,路程和速度成正比。

例1
张师傅计划加工1200个零件,实际由于工作效率提高了20%,结果提前1小时完成,张师傅计划每小时加工多少个零件?
【牛刀小试1】李师傅计划加工1000个零件,实际由于工作效率提高25%,结果提前1小时完
成。

李师傅计划每小时加工多少个零件?
例2
甲乙两人同时加工一批零件,已知甲、乙工作效率的比是4:5,完成任务时,乙比甲多加工120个零件,这批零件共有多少个?
【牛刀小试2】甲、乙两车同时从A、B两地同时出发相向而行,两车在距中点36千米处相遇,
已知甲乙两车的速度比是4:5,求A、B两地的路程。

例3
六年级部分同学去郊外野餐,陈老师要求按“一人一个饭碗,两人一个菜碗,三人一个汤碗”
的标准带55个碗,这次野餐活动去了多少名同学?
【牛刀小试3】(大联盟)有若干人去打猎,平均6人猎得5只野兔,15人猎得2只鹿,
10人猎得1只野猪,结果最后每人分得一只猎物还多4只。

问参加打猎的人数是多少?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比例工程
姓名
1、有一批资料要复印,甲机单独复印需要11小时,乙机单独复印需要13小时,当甲、乙两台复印机同时复印时,由于相互干扰,每小时两台共少印28张.现在两台机同时复印了6小时15分才印完,那么这批资料共有多少张?
2、加工一批零件,原计划每天加工15个,若干天可以完成。

当完成加工任务的3/5时,采用新技术,效率提高20%。

结果,完成任务的时间提前10天。

这批零件共有多少个?
3、某项工程,可由若干台机器在规定的时间内完成,如果增加2台机器,则只需用规定时间的7/8就可做完;如果减少2台机器,那么就要推迟2/3小时做完,现问:由一台机器去完成这项工程需要多少时间?
4、向电脑输入汉字。

甲的工效与乙、丙两人工效的和相等,丙的工效率是甲、乙两人合作工效的五分之一。

有一本书,三人合作8小时可全部输入电脑,如果乙单独来输,需要多少小时?
5、甲、乙、丙三队要完成A、B两项工程。

B工程
的工作量比A工程的工作量多25%,甲、乙、丙三队单独完成A工程所需的时间分别是20天、24天、30天。

为了共同完成这两项工程,先派甲队做A工程,乙、丙二队做B工程;经过几天后,又调丙队与甲队共同完成A工程。

问乙、丙二队合作了多少天?
6、甲、乙、丙三人每天工作量之比是3:2:1。


有一项工作,三人合作5天正好完成全部工作的三分之一。

然后甲休息4天再继续工作,乙休息3天再继续工作,丙一直没休息。

当他们完成工作时,乙实际连续工作了多少天?
7、甲、乙、丙三人做一件工作,原计划按甲、乙、
丙的顺序每人一天轮流去做,恰好整数天做完,并且结束工作的是乙。

若按乙、丙、甲的顺序轮流去做,则比计划多用1/2天;若按丙、甲、乙的顺序轮流去做,则比原计划多用1/3天。

已知甲单独做完这件工作要9天。

问:甲、乙、丙三人一起做这件工作,要用多少天才能完成?
8、某项工程,由甲、乙两队承包,2.4天可以完成,
需支付1800元;由乙、丙两队承包,15/4天可以完成,需支付1500元;由甲、丙两队承包,20/7天可以完成,需支付1600元。

在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
2
2
9、一批工人到甲、乙两个工地进行清理工作。

甲工地的工作量是乙工地的工作量的3/2倍。

上午去甲工地的人数是去乙工地人数的3倍,下午这批工人中有7/12的人去甲工地,其他工人到乙工地。

到傍晚时,甲工地的工作已做完,乙工地的工作还需4名工人再做1天,那么这批工人有多少人?
10、甲乙二人植树,若单独完成则甲比乙所需的时间多1
3 ,若两人合干,则完成任务时乙比甲多植50
棵。

这批树共有多少棵?
11、甲、乙两项工程分别由一、二队完成。

晴天,一队完成甲工程需要12天,二队完成乙工程需要15天;雨天,一队的工作效率下降40%,二队的工作效率下降10%。

结果两队同时完成这两项工程,那么在施工的日子里,雨天有多少天?
12、甲.乙.丙三人合修一堵围墙,甲.乙合修6天完成了1/3,乙.丙合修2天完成了余下工程的1/4,剩下的再由甲.乙.丙三人合修5天完成,共领得报酬18000元,按工作量分配,甲.乙.丙各应得多少元?
13、甲乙丙三人合修一条公路,甲乙6天合修三分之一,乙丙2天合修余下的四分之一,剩下的再由甲乙丙三人合作5天完成,现在领工资2700元。

依工作量分配,甲乙丙应该各得多少元?
14、有160个机器零件,平均分配给甲.乙两个车间加工,乙车间因另有紧急任务,所有在甲车间已加工3小时后,才开始加工,,因此比甲车间迟20分钟完成任务,已知甲.乙两车间生产效率的比是1:3,问甲.乙两车间每小时各加工零件多少个?
15、甲乙丙三人共同完成了一项工作,5天完成了全部工作的1/3,然后甲休息3天。

乙休息2天。

丙没休息,如果甲乙丙1天工作量的比是3:2:1,这项工作从开始算起到第几天完成?
16、某工程队工作4天后采用新施工方案,新施工方案效率可提高50%,因此计划提前1天完工,如果用原施工方案,修路200米后采用新方法,那么可比原来计划提前2天完工,按原计划几天完工?原计划每天修多少米?。

相关文档
最新文档