汽车发动机原理课件
合集下载
汽车发动机作用和工作原理课件PPT课件

冷却系统
组成
由水泵、散热器、风扇、节温器、冷 却液温度表等组成。
作用
将受热零件吸收的部分热量及时散发 出去,保证发动机在最适宜的温度状 态下工作。
汽车发动机的性能指
05
标与评价
发动机的性能指标
功率
发动机在单位时间内所做的功,是衡量发动 机动力性能的重要指标。
燃油消耗率
发动机在单位时间内消耗的燃油量,是评价 发动机经济性能的关键指标。
排放特性曲线
表示发动机排放物含量随转速和负荷 变化的关系曲线,体现了发动机的环 保性能。
汽车发动机的维护与
06
保养
发动机的日常维护
1 2 3
清洁空气滤清器
定期清洁或更换空气滤清器,以确保发动机吸入 的空气干净,防止杂质进入发动机内部。
检查油位和油质
每天检查发动机机油油位,确保机油在正常范围 内;定期更换机油和机油滤清器,以保持机油清 洁并延长发动机寿命。
THANKS.
汽车发动机的作用
02
提供动力
驱动汽车行驶
爬坡和载重
发动机是汽车的心脏,通过燃烧燃料 产生动力,驱动汽车前进或后退。
在面对坡道或承载重物时,发动机需 要提供更大的动力以克服重力或负载。
加速和减速
根据驾驶员的操作,发动机可以调整 输出的动力,使汽车加速或减速。
转换能量
燃料燃烧
发动机将燃料的化学能转 换为热能,通过燃烧过程 释放能量。
排气门打开,活塞向上运动,将燃烧后的 废气排出气缸。
发动机的工作循环
发动机的工作循环由四个基本过程组成: 进气、压缩、做功和排气。这四个过程周 而复始地进行,称为一个工作循环。
发动机的工作循环是发动机产生动力的 基础,了解工作循环的原理对于理解发 动机的工作原理和性能至关重要。
《发动机培训讲义》课件

《发动机培训讲义》ppt课件
contents
目录
• 发动机概述 • 发动机的组成与工作过程 • 发动机的维护与保养 • 发动机的常见故障与排除方法 • 发动机的发展趋势与未来展望
01
发动机概述
发动机的定义与分类
总结词
发动机是一种将其他形式的能量转换为机械能的装置,广泛应用于汽车、船舶 、飞机等领域。根据不同的分类标准,发动机可以分为多种类型。
发动机的工作过程
压缩
将可燃混合气压缩 ,提高其温度和压 力。
膨胀
利用燃烧产生的能 量推动活塞下行, 使曲轴旋转。
进气
吸入空气,使可燃 混合气进入气缸。
燃烧
点燃可燃混合气, 使其在气缸内燃烧 。
排气
将燃烧后的废气排 出气缸。
发动机的燃烧过程
着火延迟期
速燃期
从点火时刻起到燃气开始燃烧的这段时间 。
燃烧速度最快的阶段,放出大量热量,使 压力迅速上升。
详细描述
根据燃料类型,发动机可以分为汽油发动机、柴油发动机、燃气发动机等;根 据实现转换的方式,发动机可以分为内燃机、外燃机等;根据应用领域,发动 机可以分为汽车发动机、航空发动机、船舶发动机等。
发动机的工作原理
总结词
发动机的工作原理主要是通过燃烧燃料产生高温高压气体,推动活塞运动,进而带动曲轴转动,产生机械能。
系统堵塞也可能导致功率不足,需要定期清洗和维护。
05
发动机的发展趋势与未来展望
发动机技术的创新与发展
01Байду номын сангаас
02
03
04
燃油喷射技术
采用高压喷射技术,提高燃油 雾化效果,提高燃烧效率。
缸内直喷技术
将喷油嘴置于缸内,实现燃油 与空气的更佳混合,提高燃烧
contents
目录
• 发动机概述 • 发动机的组成与工作过程 • 发动机的维护与保养 • 发动机的常见故障与排除方法 • 发动机的发展趋势与未来展望
01
发动机概述
发动机的定义与分类
总结词
发动机是一种将其他形式的能量转换为机械能的装置,广泛应用于汽车、船舶 、飞机等领域。根据不同的分类标准,发动机可以分为多种类型。
发动机的工作过程
压缩
将可燃混合气压缩 ,提高其温度和压 力。
膨胀
利用燃烧产生的能 量推动活塞下行, 使曲轴旋转。
进气
吸入空气,使可燃 混合气进入气缸。
燃烧
点燃可燃混合气, 使其在气缸内燃烧 。
排气
将燃烧后的废气排 出气缸。
发动机的燃烧过程
着火延迟期
速燃期
从点火时刻起到燃气开始燃烧的这段时间 。
燃烧速度最快的阶段,放出大量热量,使 压力迅速上升。
详细描述
根据燃料类型,发动机可以分为汽油发动机、柴油发动机、燃气发动机等;根 据实现转换的方式,发动机可以分为内燃机、外燃机等;根据应用领域,发动 机可以分为汽车发动机、航空发动机、船舶发动机等。
发动机的工作原理
总结词
发动机的工作原理主要是通过燃烧燃料产生高温高压气体,推动活塞运动,进而带动曲轴转动,产生机械能。
系统堵塞也可能导致功率不足,需要定期清洗和维护。
05
发动机的发展趋势与未来展望
发动机技术的创新与发展
01Байду номын сангаас
02
03
04
燃油喷射技术
采用高压喷射技术,提高燃油 雾化效果,提高燃烧效率。
缸内直喷技术
将喷油嘴置于缸内,实现燃油 与空气的更佳混合,提高燃烧
发动机原理与汽车理论课件

通的重要方向之一。
智能驾驶技术
自动驾驶
自动驾驶技术利用传感器、计算机视觉和人工智能等技术实现车辆自主行驶。随着算法和 硬件的不断发展,未来自动驾驶汽车将更加安全、高效和舒适。
车联网
车联网技术通过无线通信将车辆与周围环境、其他车辆以及基础设施连接起来,实现信息 共享和协同驾驶。这将有助于提高道路安全、减少交通拥堵和提高出行效率。
发动机原理与汽车理论课件
contents
目录
• 发动机原理 • 汽车理论 • 发动机与汽车的关系 • 未来发展趋势
01
发动机原理
发动机类型
01
02
03
04
汽油发动机
利用汽油与空气混合后的气体 燃烧产生动力。
柴油发动机
利用柴油与空气混合后的气体 压缩后点火产生动力。
燃气发动机
利用燃气产生动力。
混合动力发动机
汽车动力学
行驶稳定性
分析汽车的行驶稳定性, 包括纵向、横向和垂向的 稳定性。
操纵稳定性
分析汽车的操纵稳定性, 包括转向灵敏度、转向回 正性和抗侧倾能力等。
舒适性
评估汽车的舒适性,包括 振动、噪声和空气动力学 特性等。
03
发动机与汽车的关系
发动机对汽车性能的影响
发动机是汽车动力的来源,其性能直接影响汽车的行驶速度、加速性能和爬坡能力 。
人工智能在驾驶辅助中的应用
人工智能在驾驶辅助中的应用包括但不限于自动泊车、车道偏离预警、行人识别等。这些 技术的应用将使驾驶更加便捷和安全。
THANKS
感谢观看
介绍底盘和车身的结构特点,包括 悬挂系统、转向系统和制动系统等 。
汽车性能
01
02
03
汽车发动机的工作原理图解

活塞
排气门关闭
作功终了:温度 1500~1700 K, 压 力300~500 kPa
4·排气行程
作用:
进气门关闭
排出膨胀做功后的废气
过程:
排气门开启,进气门仍然
关闭,活塞从下止点向上 止点运动,曲轴转动 180°。排气门开启时, 燃烧后的废气一方面在汽 缸内外压差作用下向缸外 排出,另一方面通过活塞 的排挤作用向缸外排气
3·作功行程
作用:
进气门关闭
燃烧高温高压气体膨胀做功
过程:
当活塞接近上止点时,由
火花塞点燃可燃混合气, 混合气燃烧释放出大量的 热能,使汽缸内气体的压 力和温度迅速提高高温高 压的燃气推动活塞从上止 点向下止点运动,并通过 曲柄连杆机构对外输出机 械能。
瞬时最高:温度 2200~2800 K, 压 力3~5MPa
排气门
吸气行程
压缩行程 作功行程
排气行程
瞬时:温度 1800~2200K压力
喷油泵
5~10 MPa
二·二冲程汽油机的工作原理
火花塞 换气孔
压缩混合 气
排气孔
点火燃烧
曲轴箱
进气孔
进气
排气
压缩
进气
燃烧
排气
过程: 活塞向上运动,将三排孔都关闭,活塞上部开始压缩,当活塞
继续上时,活塞下方打开了进气孔,可燃混合气进入曲轴箱,活塞接 近上止点时,火花塞点燃混合气,气体燃烧膨胀,推动活塞向下运动 ,进气孔关闭,曲轴箱内的混合气受到压缩,当活塞接近下止点时, 排气孔打开,排出废气,活塞再向下运动,换气孔打开,受到压缩的 混合气便从曲轴箱经进气孔流入气缸内,并扫除废气。
排气门打开
活塞
残余废气
教学课件 《汽车发动机原理(第4版)》颜伏伍

15
压缩比相同 最高燃烧压力相同
理论循环分析的意义:
(1)指出了改善发动机动力性、经济性的基 本原则和方向
– 在允许的条件下,尽可能提高压缩比ε; – 合理组织燃烧,提高循环加热等容度(减少初
始膨胀比ρ和合理选择燃烧始点); – 保证工质具有较高的绝热指数k;
(2)提供了发动机之间进行动力性、经济性
aczb—定容加热循环 acˊzˊbˊ—定压加热循环 ac〞z〞b〞—混合加热循环
a)压缩比相同 由图a可知:Q2p>Q2m>Q2v → ηtv >ηtm>ηtp 因此,要提高混合加热循环热效率,应增加 定容部分的加热量(即增大λp)
b)最高燃烧压力相同 由图b可知:Q2v>Q2m>Q2p → ηtp >ηtm>ηtv 因此,对于高增压这类受机件强度限制,其 循环最高压力不得过大的情况下,宜按定压 加热循环工作。
汽车发动机原理
2021/3/3
课程简介
《汽车发动机原理》---本课程讲述的内容 主要包括:汽车发动机性能评定的指标, 发动机的工作过程,发动机的特性、增压、 排放与噪声控制,并对未来汽车新型动力 装置的原理进行了介绍。
专业核心课程 动力机械及工程专业考研课程
2
目录
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 第十章
• 发动机的主要性能指标有:动力性能指标 (功率、转矩、转速)、经济性能指标(燃料 与润滑油消耗率)、运转性能指标(冷起动 性能、噪声和排气品质)和耐久可靠性指标 (大修或更换零件之间的最长运行时间与无 故障长期工作能力)等。
4
主要内容
第一节 发动机理论循环 第二节 四冲程发动机的实际循环 第三节 实际循环的评定——指示指标 第四节 发动机动力性和经济性评定——有
压缩比相同 最高燃烧压力相同
理论循环分析的意义:
(1)指出了改善发动机动力性、经济性的基 本原则和方向
– 在允许的条件下,尽可能提高压缩比ε; – 合理组织燃烧,提高循环加热等容度(减少初
始膨胀比ρ和合理选择燃烧始点); – 保证工质具有较高的绝热指数k;
(2)提供了发动机之间进行动力性、经济性
aczb—定容加热循环 acˊzˊbˊ—定压加热循环 ac〞z〞b〞—混合加热循环
a)压缩比相同 由图a可知:Q2p>Q2m>Q2v → ηtv >ηtm>ηtp 因此,要提高混合加热循环热效率,应增加 定容部分的加热量(即增大λp)
b)最高燃烧压力相同 由图b可知:Q2v>Q2m>Q2p → ηtp >ηtm>ηtv 因此,对于高增压这类受机件强度限制,其 循环最高压力不得过大的情况下,宜按定压 加热循环工作。
汽车发动机原理
2021/3/3
课程简介
《汽车发动机原理》---本课程讲述的内容 主要包括:汽车发动机性能评定的指标, 发动机的工作过程,发动机的特性、增压、 排放与噪声控制,并对未来汽车新型动力 装置的原理进行了介绍。
专业核心课程 动力机械及工程专业考研课程
2
目录
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 第十章
• 发动机的主要性能指标有:动力性能指标 (功率、转矩、转速)、经济性能指标(燃料 与润滑油消耗率)、运转性能指标(冷起动 性能、噪声和排气品质)和耐久可靠性指标 (大修或更换零件之间的最长运行时间与无 故障长期工作能力)等。
4
主要内容
第一节 发动机理论循环 第二节 四冲程发动机的实际循环 第三节 实际循环的评定——指示指标 第四节 发动机动力性和经济性评定——有
《汽车发动机》课件

汽缸体与汽缸盖
汽缸体
发动机的骨架,容纳活塞运动的 圆筒形空腔,通常与曲轴箱连成 一体。
汽缸盖
封闭汽缸上部,与汽缸体和活塞 顶部共同构成燃烧室,并承担密 封和散热功能。
活塞与连杆
活塞
在汽缸内往复运动的机件,承受气体压力并通过连杆将动力 传给曲轴。
连杆
连接活塞与曲轴的机件,将活塞的往复运动转变为曲轴的旋 转运动。
发动机。
缸内直喷技术
采用缸内直喷技术,提高燃油的雾化 质量和燃烧效率,降低油耗和排放。
可变压缩比技术
通过改变发动机的压缩比,实现发动 机在不同工况下的最优性能,提高燃 油经济性和动力性。
智能化和自适应技术
未来发动机将更加注重智能化和自适 应技术的应用,实现发动机的自我优 化和自适应控制。
THANKS
台架试验
在实验室条件下,通过专 门的测试设备对发动机进 行各项性能指标的测量和 评价。
道路试验
在实际道路行驶条件下, 通过测量车辆的动力性、 经济性、排放性等指标来 评价发动机性能。
模拟仿真
利用计算机仿真技术,建 立发动机的数学模型,模 拟发动机在各种工况下的 性能表现。
影响发动机性能的因素
结构设计
《汽车发动机》课件
contents
目录
• 汽车发动机概述 • 汽车发动机的工作原理 • 汽车发动机的主要部件及功能 • 汽车发动机的性能指标与评价 • 汽车发动机的维护与保养 • 汽车发动机的发展趋势与展望
01 汽车发动机概述
发动机的定义与分类
定义
发动机是一种将燃料内能转化为机械 能的装置,为汽车提供动力。
02 汽车发动机的工 作原理
四冲程汽油机工作原理
进气冲程
发动机构造工作原理ppt课件

活塞式发动机的分类
▪ 按活塞运动方式 :往复活塞式、旋转活塞式 ▪ 按着火方式:压燃式、点燃式 ▪ 按所用燃料:汽油机、柴油机、气体燃料发动机 ▪ 按冷却方式:水冷式、风冷式 ▪ 按冲程数:四冲程、二冲程 ▪ 按进气状态 :增压式、非增压式 ▪ 按气缸数目、排列方式:单缸、多缸、直列式、V型、对置式
▪ 排放品质
➢ 有害气体CO、HC、NOx、排气颗粒
▪ 噪声水平
➢ 刺激神经、使人烦躁、反映迟钝
发动机速度特性
▪ 速度特性曲线
➢ 燃料供给调节机构位置不变时,发动机性能参数(有效转 矩、功率、燃料消耗率)随转速改变而变化的曲线。
➢ 如何得到曲线:在一定转速下,用测功器对曲轴施加阻力 矩,获取曲线的位置,依此类推。
▪ 主要缺点:
➢ 燃油消耗率高,燃料经济性差
内燃机产品名称与型号编制规则
第五节 发动机的性能指标与特性
▪ 动力性能指标 ▪ 经济性能指标 ▪ 环境指标 ▪ 发动机速度特性
动力性能指标
▪ 有效转矩Te
➢ 发动机对外输出的转矩称为有效转矩,单位为N·m 。 ➢ 有效转矩与曲轴角位移的乘积就是发动机对外输出的有效功。
▪ 压缩比
➢ 表示了气体的压缩程度,它是气体压缩前的容积与气体压缩后的容积之 比值,即气缸总容积与燃烧室容积之比。一般用ε表示。
▪ 工况
Va 1 Vs
Vc
Vc
➢ 内燃机在某一时刻的运行状况,以该时刻内燃机输出的有效功率和曲轴 转速表示。
▪ 负荷率
➢ 内燃机在某一转速下发出的有效功率与相同转速下所能发出的最大有效 功率的比值称为负荷率,以百分数表示。负荷率通常简称负荷。
经济性能指标
▪ 有效热效率ŋe
燃料燃烧产生的热量转化为有效功的百分比。
汽车发动机原理讲课课件

0.78~0.85 0.80~0.92
发动机类型 汽油机
机械效率m
0.80~0.90
如何增大机械效率呢?
减小摩擦系数或减小压力
3.机械效率测量(倒拖法)
倒拖法原理 先使发动机在给定工况稳定运转,当冷却液、 机油温度达到正常值时,立刻切断对发动机供油或 停止点火,同时用电力测功器转换为电动机,倒拖 发动机到同样转速,并维持冷却液和机油温度变, 则倒拖功率即为发动机在该工况下机械损失功率。
机械效率的定义:
We Wm 1W W
We为输出功;W为输入功;Wm为损失功。
2.结合新内容说明机械效率
机械效率
指示性指标 有效性指标
活塞
曲轴
Pe Pm m 1 Pi Pi
Pe为有效功;Pi为指示功;Pm为损失功。
一般发动机机械效率
发动机类型 非增压柴油机 增压柴油机
机械效率m
汽车发动机原理 讲课
课题:机械损失与机械效率来自本课题主要内容:1.机械损失产生原因及机械效率的定义(回顾)
2.结合新内容说明机械效率
3.机械效率测量(倒拖法)
重点:机械效率测量
1.机械损失产生原因
1.机械损失产生原因
1.机械损失产生原因
机械构件的自由度≠0
机械运动不可避免摩擦、克服传动惯性力等 摩擦的利用:输送带、电梯等
误差大小及原因
在低压缩比时,误差大约为5%;高压缩比时,
误差高达为5%-15%
原因: 1)气缸内无可燃混合气体燃烧,对活塞上的气体压 力在膨胀行程中大幅度下降。
2)不含有泵气损失
欢迎各位老师、同学指正!
发动机类型 汽油机
机械效率m
0.80~0.90
如何增大机械效率呢?
减小摩擦系数或减小压力
3.机械效率测量(倒拖法)
倒拖法原理 先使发动机在给定工况稳定运转,当冷却液、 机油温度达到正常值时,立刻切断对发动机供油或 停止点火,同时用电力测功器转换为电动机,倒拖 发动机到同样转速,并维持冷却液和机油温度变, 则倒拖功率即为发动机在该工况下机械损失功率。
机械效率的定义:
We Wm 1W W
We为输出功;W为输入功;Wm为损失功。
2.结合新内容说明机械效率
机械效率
指示性指标 有效性指标
活塞
曲轴
Pe Pm m 1 Pi Pi
Pe为有效功;Pi为指示功;Pm为损失功。
一般发动机机械效率
发动机类型 非增压柴油机 增压柴油机
机械效率m
汽车发动机原理 讲课
课题:机械损失与机械效率来自本课题主要内容:1.机械损失产生原因及机械效率的定义(回顾)
2.结合新内容说明机械效率
3.机械效率测量(倒拖法)
重点:机械效率测量
1.机械损失产生原因
1.机械损失产生原因
1.机械损失产生原因
机械构件的自由度≠0
机械运动不可避免摩擦、克服传动惯性力等 摩擦的利用:输送带、电梯等
误差大小及原因
在低压缩比时,误差大约为5%;高压缩比时,
误差高达为5%-15%
原因: 1)气缸内无可燃混合气体燃烧,对活塞上的气体压 力在膨胀行程中大幅度下降。
2)不含有泵气损失
欢迎各位老师、同学指正!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pν =RT PV= mRT V= mν
对空气,R=0.287kJ/kg· K
3、压容图 气体的状态也可用PV图上的一个点表示,比 较直观。
第二节 热力过程及过程量
一、热力过程 功:δ W=Fdx=APdx=PdV W12=∫12PdV P-V图上,一个点表示 对单位质量的工质: w12=W/m=∫12PdV/m 气体的一个热力状态; 一条曲线表示一个热 =∫12Pdν
二、内能-工质内部所具有的各种能量总称
宏观能量 系统本身所具有的能量包括: 微观能量 宏观能量包括: 动能 机械能 位能 内动能 微观能量即系统的内,包括: 内位能
内位能与分子间的距离、吸引力有关,是比容的函数; 内动能包括移动动能、转动动能和振动动能,是温度的单 值函数。
★对于理想气体,不考虑分子间的位能,故内能只
3、比热与气体性质、温度的关系
实验证明,多数气体的比热随温度的升高而增大, 但为使计算简便,不考虑比热随温度的变化,即采用定 值比热(或定比热)。
五、理想气体内能的计算
在保持系统容积不变的加热过程中,加热量为:
qν =cν (T2-T1)
由热力学第一定律 且
q=w+Δ u
推出:Δ
w =0,
u=cv(T2-T1)
四、理想气体的比热
1、比热的定义和单位 热容量:向热力系统加热(或取热)使之温度 升高(或降低)1K所需的热量,用C表示。 比热:单位质量工质的热容量,用 c 表示。即 c=C/m 单位J/(kgK)或c=dq/dT(单位质量的物质
作单位温度变化时吸放的热量)
2、比热与过程的关系 功量和热量都是过程量,故比热与过程有关。 热力过程中最常见的加热过程是保持压力不变 和容积不变,因此比热也相应的分为定压质量 比热和定容质量比热,分别以符号cP 和cν 表 示。绝热指数:K= cP / cν
2、状态参数:用来描述气体热力状态的物理量 主要状态参数: 压力P、比容ν 、温度T、内能U、
熵S、焓H。
基本状态参数:可直接测量的状态参数,包括:
压力(P)、比容(ν )、温度(T)。
基本状态参数:
1、比容:用ν 表示,单位是m3/kg 。 定义:单位质量的物质所占的容积。即: ν =V/M
V--物质的容积,[m3]; 比容的倒数是? M--物质的质量,[kg]。
2、压力:用P表示,单位是Pa,Mpa、kPa。 定义:系统单位面积上受到的垂直作用力。 压力的测量 即:P=F/A 3、温度:用T表示,单位是K。 (T↑气体分子的平均 定义:表征物体的冷热程度 动能越大)
三、理想气体的状态方程
1、理想气体:气体分子本身不占有体积,分 子之间无相互作用力的气体。 2、理想气体的状态方程:
热力系
外界 界面
研究对象以外的一切物质,称为外界; 热力系统和外界的分界面,称为界面。 2、工质:在热力设备中用来实现热能与其它 形式的能量交换的物质。 ※热力设备通过工质状态的变化实现与外界的 能量交换。
二、热力状态与状态参数
1、热力状态: 热力系统在某一瞬间所呈现的
宏观物理状况。 热力平衡状态:当外界条件不变系统内状态长时 间不变,即具有均匀一致的P、V、 T。
汽车发动机原理
三、课程主要内容
课程的主要内容分两大部分,《工程热力学 基础知识》部分的重点是发动机的理想循环。 《发动机原理》部分的重点是内燃机的燃烧 过程和特性。 主要内容包括:工程热力学基础、发动机示 功图和性能指标、燃料和燃烧、发动机换气、 汽油机混合气的形成与燃烧过程、柴油机混 合气的形成与燃烧过程、发动机特性、发动 机的排放与控制等。
是分子的内动能,仅与温度有关,是温度的单值函 数,用符号u表示,单位J。
三、闭口系统的能量方程
1、定义: 与外界没有质量交换的系统。 2、能量方程式
Q-W=Δ U
对于微元过程:
故Q=Δ U+W
δ Q=dU+δ W q=Δ u+w
(J/Kg)
—闭口系统能量方程
对于1kg工质:
★以上各项均为代数值,可正可负或零,且 不受过程的性质和工质性质的限制。
膨胀,W>0 压缩,W<0
三、热量
是系统与外界之间依靠温差来传递的 能量形式,用Q表示 q=Q/m J/kg 规定:传入热力系统的热量为正值, 即吸热为正;传出热力系统的热量为 负值,即放热为负。 ※热量与功一样,是系统在热力过程 中与外界传递的能量形式,因此是过 程量,不是状态参数。
四.熵和温熵图
热力系统从一个平衡状 态到另一个平衡状态的变 化历程。
力过程。
二、膨胀功W(J)
气体在热力过程中由于体 积发生变化所做的功(又 称为容积功)
※故P-V图上, W12为过程线与横轴围 成的面积。
规定:热力系统对外界做功为正,外界对热
力系统做功为负。 由δ W=PdV得: dV>0,膨胀,δ W>0, 系统对外界做功; dV<0,压缩,δ W<0, 外界对系统做功; dV=0,δ W=0, 系统与外界之间无功量 传递。
第三节 热力学第一定律
一、热力学第一定律
表述为:当热能与其它形式的能量相互转换时,能的总
量保持不变。
对于一个热力系统:
进入系统的能量-离开系统的能量
=系统内部储存能量的变化量
※热力学第一定律是能量转换与守恒定律在热力学上的具体应用, 它阐明了热能和其它形式的能量在转换过程中的守恒关系。 它表达工质在受热作功过程中,热量、作功和内能三者之间的平 衡关系。
熵S的增量等于系统在 过程中交换热量除以传 热时绝对温度所得的商
ds=δ q/T
1Kg工质的熵的单位J/kgK mKg工质熵的单位J/K
吸热,Q>0
放热Q<0
熵s是一个状态参数 ds>0,Q>0,吸热; ds<0,Q<0,放热; ds=0,无热量交换. ※比容ν 的变化量标志着有无做功,熵s的变化 量标志着有无传热。
第一章 工程热力学基础
本章要求:
了解:热力系统、工质、 功、热量、内能和熵等 概念,理想气体和卡诺 循环等。 理解:热力学第一和第 二定律,P-V图和P -S图,理想气体的热 力过程和发动机的理想 循环。
第一节 气体的状态及状态方程
一、热力系统
1、在热力学中,从若干个物体 中规划出所要研究的对象,称 为热力系统;
★内能是一状态量,与热力过程无关,且理想气体的内 能只是温度的函数,故上述公式适用于任何热力过程。
对空气,R=0.287kJ/kg· K
3、压容图 气体的状态也可用PV图上的一个点表示,比 较直观。
第二节 热力过程及过程量
一、热力过程 功:δ W=Fdx=APdx=PdV W12=∫12PdV P-V图上,一个点表示 对单位质量的工质: w12=W/m=∫12PdV/m 气体的一个热力状态; 一条曲线表示一个热 =∫12Pdν
二、内能-工质内部所具有的各种能量总称
宏观能量 系统本身所具有的能量包括: 微观能量 宏观能量包括: 动能 机械能 位能 内动能 微观能量即系统的内,包括: 内位能
内位能与分子间的距离、吸引力有关,是比容的函数; 内动能包括移动动能、转动动能和振动动能,是温度的单 值函数。
★对于理想气体,不考虑分子间的位能,故内能只
3、比热与气体性质、温度的关系
实验证明,多数气体的比热随温度的升高而增大, 但为使计算简便,不考虑比热随温度的变化,即采用定 值比热(或定比热)。
五、理想气体内能的计算
在保持系统容积不变的加热过程中,加热量为:
qν =cν (T2-T1)
由热力学第一定律 且
q=w+Δ u
推出:Δ
w =0,
u=cv(T2-T1)
四、理想气体的比热
1、比热的定义和单位 热容量:向热力系统加热(或取热)使之温度 升高(或降低)1K所需的热量,用C表示。 比热:单位质量工质的热容量,用 c 表示。即 c=C/m 单位J/(kgK)或c=dq/dT(单位质量的物质
作单位温度变化时吸放的热量)
2、比热与过程的关系 功量和热量都是过程量,故比热与过程有关。 热力过程中最常见的加热过程是保持压力不变 和容积不变,因此比热也相应的分为定压质量 比热和定容质量比热,分别以符号cP 和cν 表 示。绝热指数:K= cP / cν
2、状态参数:用来描述气体热力状态的物理量 主要状态参数: 压力P、比容ν 、温度T、内能U、
熵S、焓H。
基本状态参数:可直接测量的状态参数,包括:
压力(P)、比容(ν )、温度(T)。
基本状态参数:
1、比容:用ν 表示,单位是m3/kg 。 定义:单位质量的物质所占的容积。即: ν =V/M
V--物质的容积,[m3]; 比容的倒数是? M--物质的质量,[kg]。
2、压力:用P表示,单位是Pa,Mpa、kPa。 定义:系统单位面积上受到的垂直作用力。 压力的测量 即:P=F/A 3、温度:用T表示,单位是K。 (T↑气体分子的平均 定义:表征物体的冷热程度 动能越大)
三、理想气体的状态方程
1、理想气体:气体分子本身不占有体积,分 子之间无相互作用力的气体。 2、理想气体的状态方程:
热力系
外界 界面
研究对象以外的一切物质,称为外界; 热力系统和外界的分界面,称为界面。 2、工质:在热力设备中用来实现热能与其它 形式的能量交换的物质。 ※热力设备通过工质状态的变化实现与外界的 能量交换。
二、热力状态与状态参数
1、热力状态: 热力系统在某一瞬间所呈现的
宏观物理状况。 热力平衡状态:当外界条件不变系统内状态长时 间不变,即具有均匀一致的P、V、 T。
汽车发动机原理
三、课程主要内容
课程的主要内容分两大部分,《工程热力学 基础知识》部分的重点是发动机的理想循环。 《发动机原理》部分的重点是内燃机的燃烧 过程和特性。 主要内容包括:工程热力学基础、发动机示 功图和性能指标、燃料和燃烧、发动机换气、 汽油机混合气的形成与燃烧过程、柴油机混 合气的形成与燃烧过程、发动机特性、发动 机的排放与控制等。
是分子的内动能,仅与温度有关,是温度的单值函 数,用符号u表示,单位J。
三、闭口系统的能量方程
1、定义: 与外界没有质量交换的系统。 2、能量方程式
Q-W=Δ U
对于微元过程:
故Q=Δ U+W
δ Q=dU+δ W q=Δ u+w
(J/Kg)
—闭口系统能量方程
对于1kg工质:
★以上各项均为代数值,可正可负或零,且 不受过程的性质和工质性质的限制。
膨胀,W>0 压缩,W<0
三、热量
是系统与外界之间依靠温差来传递的 能量形式,用Q表示 q=Q/m J/kg 规定:传入热力系统的热量为正值, 即吸热为正;传出热力系统的热量为 负值,即放热为负。 ※热量与功一样,是系统在热力过程 中与外界传递的能量形式,因此是过 程量,不是状态参数。
四.熵和温熵图
热力系统从一个平衡状 态到另一个平衡状态的变 化历程。
力过程。
二、膨胀功W(J)
气体在热力过程中由于体 积发生变化所做的功(又 称为容积功)
※故P-V图上, W12为过程线与横轴围 成的面积。
规定:热力系统对外界做功为正,外界对热
力系统做功为负。 由δ W=PdV得: dV>0,膨胀,δ W>0, 系统对外界做功; dV<0,压缩,δ W<0, 外界对系统做功; dV=0,δ W=0, 系统与外界之间无功量 传递。
第三节 热力学第一定律
一、热力学第一定律
表述为:当热能与其它形式的能量相互转换时,能的总
量保持不变。
对于一个热力系统:
进入系统的能量-离开系统的能量
=系统内部储存能量的变化量
※热力学第一定律是能量转换与守恒定律在热力学上的具体应用, 它阐明了热能和其它形式的能量在转换过程中的守恒关系。 它表达工质在受热作功过程中,热量、作功和内能三者之间的平 衡关系。
熵S的增量等于系统在 过程中交换热量除以传 热时绝对温度所得的商
ds=δ q/T
1Kg工质的熵的单位J/kgK mKg工质熵的单位J/K
吸热,Q>0
放热Q<0
熵s是一个状态参数 ds>0,Q>0,吸热; ds<0,Q<0,放热; ds=0,无热量交换. ※比容ν 的变化量标志着有无做功,熵s的变化 量标志着有无传热。
第一章 工程热力学基础
本章要求:
了解:热力系统、工质、 功、热量、内能和熵等 概念,理想气体和卡诺 循环等。 理解:热力学第一和第 二定律,P-V图和P -S图,理想气体的热 力过程和发动机的理想 循环。
第一节 气体的状态及状态方程
一、热力系统
1、在热力学中,从若干个物体 中规划出所要研究的对象,称 为热力系统;
★内能是一状态量,与热力过程无关,且理想气体的内 能只是温度的函数,故上述公式适用于任何热力过程。