石英晶体正弦波振荡器
9.4 石英晶体正弦波振荡电路
9.4 石英晶体正弦波振荡电路
2020/6/4
1
石英晶体正弦波振荡电路
1. 石英晶体的特性 (1)结构与压电特性
① 结构与符号 ② 压电特性
当外加交变电场的频率与晶片的固有频率相等时产 生共振,称之为压电振荡,相应的频率称为谐振频率。
(2)等效电路与频率特性 ① 等效电路
很高
2020/6/4
当频率为1MHz时,LC并联 回路等效为感性。符合三点式振荡电路的组成原则,即 满足相位条件,有可能振荡。
(2)是电感三点式并联型石英晶体振荡电路。电路 的振荡频率即为石英晶体的固有频率。
2020/6/4
7
2
石英晶体正弦波振荡电路
② 石英晶体有两个谐振频率:
非
呈纯阻性
常
接
近
当
时,呈电感性,曲线很陡,利于稳频。
当
时,晶体电抗近似为零,可作为小电阻使用。
2020/6/4
3
石英晶体正弦波振荡电路
2. 石英晶体振荡电路 (1)并联型石英晶体振荡电路
并联型石英晶体振荡电 路是利用石英晶体作为一个 电感元件来组成 选频网络, 晶体工作在 fs 与 fp 之间。晶 体与C1、C2构成电容三点式 振荡电路。
振荡频率约等于石英晶体的并联谐振频率 fp2)串联型石英晶体振荡电路
串联型石英晶体振荡
电路是利用石英晶体串联
谐振时阻抗最小的特性组
成振荡电路,晶体工作在
fs 处,即电路的谐振频率 为 fs。
电阻Rf 的大小将影响正反馈强弱,若 Rf太大,则 正反馈过小,电路的幅值条件可能不满足;若Rf 太小, 则正反馈过大,可能导致振荡输出波形明显失真。
2020/6/4
LC三点式振荡器和石英晶体振荡器
3、反馈深度不同时对振荡器的影响 、
测试条件: 测试条件:CT=100pF, , C、C’分别为下列三组数据: 、 分别为下列
C=C3=100pF,C’=C4=1200pF; , ; C=C5=120pF,C’=C6=680pF; , ; C=C7=680pF,C’=C8=120pF , 调节电位器Rp ,使IEQ(静态值,即断开 1后调 静态值,即断开C 调节电位器 IEQ,调好后再接上 1),分别为 ,0.8,2.0,3.0, 调好后再接上C ),分别为 分别为0.5, , , , 4.0所标各值,用示波器分别测出各个振荡幅度(峰峰 所标各值, 所标各值 用示波器分别测出各个振荡幅度( 值)。
二、实验原理及电路说明
1、实验原理 实验原理
LC三点式振荡器的基本构成是放大器加 振 放大器加LC振 放大器加 荡回路,反馈电压取自振荡回路中某个元件, 荡回路 三点式振荡器的一般组成原则 一般组成原则是: 一般组成原则 凡是与晶体管发射极相连的两个回路元件, 其电抗性质必须相同,而不与晶体管发射极相 连的两个回路元件,其电抗性质应相反。
LC三点式振荡器和石英晶体振荡器 三点式振荡器和石英晶体振荡器 一、实验目的
1. 了解LC三点式振荡电路的基本原理; 2. 掌握振荡回路Q值对频率稳定度的影响; 3. 了解反馈系数不同时,静态工作电流IEQ 对振荡器起振及振幅 起振及振幅的影响。 起振及振幅 4.熟悉石英晶体振荡器的工作原理及特点。 5.了解和掌握串联型晶体振荡电路的构成方 法
4、回路Q值和IEQ对频率稳定度的影响 、
值变化时, (1)Q值变化时,对振荡频率稳定度的影 ) 值变化时 响
测试条件: 测试条件: ,IEQ=2mA,CT=100pF, , , 分别改变R值 使其值分别为1K 、10K 、 分别改变 值,使其值分别为 110K ,记录电路的振荡频率, 注意观察频 记录电路的振荡频率, 率显示后几位数的跳动情况
石英晶体振荡器的应用
石英晶体振荡器的应用石英晶体振荡器(quartz crystal oscillator)是一种可靠的电子元件,用于生成精确的频率信号。
它在现代电子设备中广泛应用,例如手机、计算机、通信设备、控制系统和科学仪器等领域。
本文将阐述该元件的应用。
一、电子时钟电子时钟是石英晶体振荡器最常见的应用之一。
振荡器可以精确地控制时间,因此可用于制作电子腕表、台式时钟、壁挂钟等。
它比机械时钟更加精确和可靠,且无需定期校准。
二、计算机计算机使用石英晶体振荡器作为主频率源,以精确控制指令执行速度和计算周期。
对于现代CPU,振荡器的频率通常在1GHz以上。
此外,振荡器还用于计算机主板的时钟输出,用于控制各个组件的时序和同步。
三、通信设备石英晶体振荡器在通信设备中也有广泛应用。
例如,手机里的时钟电路就是由振荡器提供的,用于同步话音信号的采样和数字化。
无线电台、卫星通信系统和雷达等设备中也有应用。
四、科学仪器石英晶体振荡器在科学仪器中也是必不可少的元件,用于测量和控制各种物理量。
例如,在天文望远镜中,振荡器用于精确控制反射镜的位置,实现目标的精确定位。
在光谱仪中,振荡器用于产生精确的时间基准,控制光源的发射谱线等。
五、控制系统石英晶体振荡器还用于各种控制系统中,如自动化控制、电力系统控制等。
振荡器提供精确的时间基准,用于实现各种监控、调节和控制。
总之,石英晶体振荡器是现代电子设备中不可或缺的元件,它的应用范围广泛、功能强大、稳定可靠。
在未来,随着科技的不断进步和发展,它的应用也将越来越广泛,带来更多便利和创新。
石英晶体正弦振荡器电路图
石英晶体正弦振荡器电路图
石英晶体正弦振荡器电路图
如图所示电路是由石英谐振晶体SJT和六反相器集成电路CD4069的1个门A构成的正弦波振荡器。
与普通的RC移相振荡器相比,晶体振荡器的频率稳定度可高达10-5或更高。
这是RC移相振荡器无法达到的高指标(RC移相振荡器的频率稳定度只能达到10-2的量级)。
CMOS非门与负反馈偏置电阻Rl构成反相放大电路。
石英晶体SJT与Cl、C2构成7c型正反馈支路。
石英晶体在其固有谐振频率的附近,自身呈感性,此电感与电容Cl、C2构成谐振回路,形成选频移相反馈网络反馈到放大器输入端,产生振荡。
调整电容C2可微调振荡频率。
元器件选择:
六反相器集成块A:CD4069。
电容Cl:20pF,C2:3~22pF,C3:1000pF。
电阻Rl:10MΩ。
石英晶体SJT:32.768kHz。
电路连接方法:
六反相器集成电路CD4069只用了1/6个门,剩余门若无它用可将输入端接VDD或VSS,输出端悬空。
14脚(VDD)接正电源,7脚(VSS)接地。
石英晶体正弦波振荡器设计
目录第一章振荡器的基本常识 (1)第一节振荡器的分类 (1)第二节振荡产生的原理 (1)一自激振荡的产生 (1)二产生振荡的条件 (2)第三节起振和稳幅 (3)一起振过程 (3)二振幅的稳定 (3)第四节正弦波振荡器 (4)第五节频率稳定度 (5)第二章石英晶体 (6)第一节石英晶体的基本特性 (6)一石英晶体的基本结构 (6)二压电效应 (6)第二节石英晶体等效电路和振荡电路 (7)第三章12MHz石英晶体正弦波振荡器 (10)第一节电路的选择 (10)第二节石英晶体振荡器设计 (10)一主要技术指标 (10)二设计说明........................................... (10)(一)选择电路............................................ .10 (二)选择晶体管和石英晶体. (11)(三)确定直流工作点并计算偏置电路元件参数 (11)(四)求C1\C2\Ct的电容值 (12)心得体会 (13)参考文献 (13)第一章振荡器的基本常识第一节振荡器的分类震荡器(Oscillator)是一种能量转换装置。
它的能量来源一般是直流形式(振荡器电路的直流供电电源)。
经过振荡器转换后,此直流能量转换为一定频率、一定幅度和一定波形的交流能量输出。
这种电能的“转换”过程被称作“振荡”(Oscillation)。
振荡器的作用是产生特定的输出信号,因此也常常被称为信号发生器(signal creator)。
振荡器的类型繁多,按照振荡过程是否依赖于外部激励信号的参与,可以分为他激振荡器和自激振荡器;按照波形分类有正弦波振荡器和非正弦波振荡器;按照振荡器振荡频率的高低,可以分为低频振荡器、高频振荡器、超高频振荡器等;按照振荡器的选频元件分类,则有RC振荡器、LC振荡器、石英晶体振荡器等。
第二节振荡产生的原理一自激振荡的产生无需外加激励就能产生特定波形的交流输出信号,这种振荡电路称为自激振荡器。
高频振荡器实验-石英晶体振荡器
实
调整RW1电位器,使IC=2mA
验
调整时采用间接测量法。 :即用直流电压表测量晶体管发射极对
数
地电压,并将测量结果记录于表中。
据
BG1
Re=1K
记
Vb
Ve
Vce
Ic计算值
录
四、实验应会技能
实验内容二: 振荡器的频率与幅度调测
实验准备
SW1“右”(LC振荡) SW2“左”(RL=110K)
SW3“左”(C2=330Pf)
fo 1
2 LC
三、实验应知知识
6与.3考毕串兹联电型路相改进电容三端式振荡器(克拉泼电路)
比,电在路电组感成L如上图串示:
联特一点个是电在容考。毕但兹电路的基础上,
它用有一以电下容特C点3与:原电路中的电感L相 1可串、不。振影功荡响用频反主率馈要改系是变以增加回路总电 数容。和减小管子与回路间的耦合来
三点式
三点电容(考毕兹) 三点电感(哈特莱)
改进三 点式
电容串联改进(克拉泼) 电容并联改进(西勒)
串联型
皮尔斯
并联型
密勒
① 放大网络 三、实验应知知识 以有源器件为主体,起能量转换作用,将直流电源提供的能量,通过振荡系统转
换§成4固反定频馈率型的交正流能弦量波,即振构荡成驱器动的系统电。路构成与工作原理
-
•
Vo
正反馈网络
•
Vf
-
-
-
•
Vf
谐振放大+ 器输出的信号电压经反馈网络产生回授电压uf,作为正回授反馈 到基极。且uf>ui。经放大后再输出,再回授。
振荡器只要满足A*F>1,振荡器则周而复始形成对某单一频率信号放大—回 授,且有uin>ui2>ui1.从而形成振荡过程,实现将直流能量转换成交流信号。
高频实验报告_石英晶体振荡器实验报告
石英晶体振荡器实验报告学号 200805120109 姓名 刘皓 实验台号实验结果及数据(一) 静态工作点(晶体管偏置)不同对振荡器振荡频率、幅度和波形的影响 1、把单刀开关K2闭合,用示波器和频率计在c 点监测。
调整DW 1,使振荡器振荡;微调C 2,使振荡频率在4MHz 左右。
2、调整DW 1,使BG 1工作电流E Q I 逐点变化,E Q I 可用万用表在A 点通过测量发射极电阻R 4两端的电压得到(R 4=1k Ω)。
振荡器工作情况变化及测量结果如表1所示:表1 静态工作点变化对振荡器的影响(二)2C 取值不同对振荡器振荡频率范围的影响2C 变化对振荡器的影响 测量条件:E Q I = 1.5 m A保持4.433MHz 基本不变(三)负载变化对振荡器的影响1、K 1断开的情况下,将振荡器的振荡频率调整到4MHz 左右,此时频率osc f = 4.433 MHz ,幅度opp V = 2.92 V 。
2、将K 1分别接1—2、1—3、1—4的位置,即接入不同的负载电阻R 5,测得的相应的频率和幅度及计算结果如表3所示。
表3 负载变化对振荡器的影响 测量条件:osc f =4.433 MHz ,幅度opp V =2.92 V由表3知:负载变化对振荡器工作频率的影响是: 几乎没有影响。
负载变化对振荡器输出幅度的影响是: 随着负载阻抗的减小,输出幅度略微减小。
(四)比较负载变化对LC 正弦波振荡器和石英晶体振荡器的不同影响负载变化对LC 正弦波振荡器的影响比较明显。
而对石英晶体振荡器的影响很小。
这主要是由于石英晶体振荡器的稳定性很高。
思考题晶体振荡器的振荡频率比LC 振荡器稳定得多,为什么? 答:因为(1)石英晶体谐振器具有很高的标准性。
(2)石英晶体谐振器与有源器件的接入系数 ,受外界不稳定因素的影响少。
(3)石英晶体谐振器具有非常高的Q 值,维持振荡频率稳定不变的能力极强。
《石英晶体振荡器》PPT课件
– 提高回路的标准性 – 减小相位及其变化量
6
幅度稳定度
U U Uo
Uo
Uo
7
4.4 石英晶体振荡器
以石英谐振器作选频网络的反馈振荡器称为石英晶体振荡器 其频率稳定度可达 106 ~108 ,而LC回路的一般不超过 105
因为石英谐振器具有极高的Q值和很高的标准性
8
4.4 石英晶体振荡器
振荡器的频率和幅度稳定度
1
稳定度指标
• 振荡器输出的信号即要满足一定的频率和幅度要求 • 使用频率稳定度和幅度稳定度这两个重要的性能指标来衡量一个振荡器电路 • 频率稳定度对一个振荡器而言尤为重要
2
• 频率绝对偏差 • 频率稳定度
频率稳定度
f f f0
f f f0
f0
f0
3
影响频率稳定的因素
VCC
RB1
LC
C1
CB
RB 2
RE
C2
CC RL
晶体
Cq1
RE
Lq1
C0
rq1
19
等效电路
VCC
RB1
LC
CC
C1
RL
CB
RB2
RE
C2
晶体
Cq1
C1
RE
Lq1
C0
RL
rq1
C2
20
并联型石英晶体振荡器分析
• 由三点式电路“射同基反”的构成原则 – 晶体应呈现感性
• 石英谐振器和电容C1、C2组成选频网络 • 工作频率
• 主要影响因素 – 振荡回路参数 – 回路品质因素Q
f0
2
1 LC
f0 1 ( L C ) f0 2 L C
正弦波振荡器(LC振荡器和晶体振荡器)实验
正弦波振荡器(LC 振荡器和晶体振荡器)实验一、实验目的1.掌握电容三点式LC 振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC 振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;通过实验进一步了解调幅的工作原理。
4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。
二、实验仪器1.100M 示波器 一台2.高频信号源 一台3.高频电子实验箱 一套三、实验电路原理1.基本原理振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定波形的交变振荡能量的装置。
正弦波振荡器在电子技术领域中有着广泛的应用。
在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去的。
在超外差式的各种接收机中,是由振荡器产生一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。
振荡器的种类很多。
从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。
此实验只讨论反馈式振荡器。
根据振荡器所产生的波形,又可以把振荡器分为正弦波振荡器与非正弦波振荡器。
此实验只介绍正弦波振荡器。
常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。
按照选频网络所采用元件的不同,正弦波振荡器可分为LC 振荡器、RC 振荡器和晶体振荡器等类型。
(1)反馈型正弦波自激振荡器基本工作原理以互感反馈振荡器为例,分析反馈型正弦波自激振荡器的基本原理,其原理电路如图2-1所示。
b V bE cE -1L 2L f V bV '+-图 2-1反馈型正弦波自激振荡器原理电路当开关K 接“1”时,信号源b V 加到晶体管输入端,构成一个调谐放大器电路,集电极回路得到了一个放大了的信号F V 。
当开关K 接“2”时,信号源b V 不加入晶体管,输入晶体管是F V 的一部分b V '。
石英晶体LC振荡电路
二、 RC正弦波振荡电路
3.振荡电路工作原理
在右图中,集成运放组成一个同相放大器, 它的输出电压uo作为RC串并联网络的输入电 压,而将RC串并联网络的输出电压作为放大 器的输入电压,当f=f0时,RC串并联网络的相 位移为零,放大器是同相放大器,电路的总 相位移是零,满足相位平衡条件, 而对于其他 频率的信号,RC串并联网络的相位移不为零, 不满足相位平衡条件。 由于RC串并联网络在 f=f0 时的传输系数F=1/3,因此要求起振时, 应使 Au > 3,即:
f
i
f
i
f
i
一、振荡电路
3.电路的组成及振荡的建立过程
组成:放大电路、选频网络、正反馈网络和稳幅环节
振荡的建立过程
一、振荡电路
4.判断电路能否产生振荡的分析方法
(1)检查电路是否满足四个组成部分; (2)检查放大电路是否正常工作; (3)将电路在放大器输入端断开,利用瞬时极性法判 断电路是否满足相位平衡条件;
三、LC正弦波振荡电路
(三)三点式LC振荡电路
三点式LC振荡电路有电感三点式振荡电路、电容三点式振荡电路,仍然由 LC并联谐振电路构成选频网络,中间端的瞬时电位一定在首、尾端电位之间。 如图所示。 三点的相位关系是: A. 若中间点交流接地,则首端与尾端相位相反。 B. 若首端或尾端交流接地,则其他两端相位相同。
(4)分析是否满足振荡产生的幅度条件。 一般 略大于1。
AF
应
二、 RC正弦波振荡电路
1.电路组成 选频网络和正反馈网络是RC串并 联网络(由R2和C2并联后与R1和C1 串联组成); 放大电路由集成运放构成的同相 比例放大电路组成; 在实际应用中主要采用非线性元 件作为放大电路的负反馈元件,以实 现外稳幅。比如,R3可采用负温度 系数的热敏元件。
石英晶体振荡器
⽯英晶体振荡器⽯英晶体振荡器⽯英晶体振荡器是⼀种⽤于频率稳定和选择频率的电⼦器件,它的主要作⽤是提供频率基准,由于它具有⾼稳定的物理化学性能、极⼩的弹性震动损耗以及频率稳定度⾼的特点,因此被⼴泛⽤于远程通信、卫星通信、移动电话系统、全球定位系统(GPS)、导航、遥控、航空航天、⾼速计算机、精密计测仪器及消费类民⽤电⼦产品中,是⽬前其它类型的振荡器所不能替代的.⼀、⽯英晶体谐振器的结构、振荡原理1、⽯英晶体振荡器的结构⽯英晶体振荡器是利⽤⽯英晶体(⼆氧化硅的结晶体)的压电效应制成的⼀种谐振器件,它的基本构成⼤致是:从⼀块⽯英晶体上按⼀定⽅位⾓切下薄⽚(简称为晶⽚,它可以是正⽅形、矩形或圆形等),在它的两个对应⾯上涂敷银层作为电极,在每个电极上各焊⼀根引线接到管脚上,再加上封装外壳就构成了⽯英晶体谐振器,简称为⽯英晶体或晶体、晶振。
其产品⼀般⽤⾦属外壳封装,也有⽤玻璃壳、陶瓷或塑料封装的。
下图是⼀种⾦属外壳封装的⽯英晶体结构⽰意图。
2、压电效应若在⽯英晶体的两个电极上加⼀电场,晶⽚就会产⽣机械变形。
反之,若在晶⽚的两侧施加机械压⼒,则在晶⽚相应的⽅向上将产⽣电场,这种物理现象称为压电效应。
如果在晶⽚的两极上加交变电压,晶⽚就会产⽣机械振动,同时晶⽚的机械振动⼜会产⽣交变电场。
在⼀般情况下,晶⽚机械振动的振幅和交变电场的振幅⾮常微⼩,但当外加交变电压的频率为某⼀特定值时,振幅明显加⼤,⽐其他频率下的振幅⼤得多,这种现象称为压电谐振,它与LC回路的谐振现象⼗分相似。
它的谐振频率与晶⽚的切割⽅式、⼏何形状、尺⼨等有关。
⼆、⽯英晶体振荡器的等效电路与谐振频率1、等效电路⽯英晶体谐振器的等效电路如下图所⽰。
当晶体不振动时,可把它看成⼀个平板电容器称为静电电容Co,它的⼤⼩与晶⽚的⼏何尺⼨、电极⾯积有关,⼀般约⼏个PF到⼏⼗PF。
当晶体振荡时,机械振动的惯性可⽤电感L1来等效。
⼀般L1的值为⼏⼗mH 到⼏百mH。
石英晶体振荡器15808.pptx
第2页/共7页
上页 下不振动时,可以看成是一个
L 平板电容器C0 ,称为静电电容。
C0
C R
C0与晶片的几何尺寸和电极面积有 关, 一般约为几个皮法到几十皮法。
符号
等效电路
当晶体振动时,有一个机械振动的惯性,用电感 L来等 效,一般L值为10-3~102H。
石英谐振器有两个谐振频率,当L 、C 、R支路串联
谐振时,等效电路的阻抗最小(等于R ),串联谐振
频率为
fS
2
1 LC
X
并联谐振频率为 fp
2
1 L CC0
C C0
fS
1 C C0
O
fs fp
f
容性
感 性
容性
第4页/共7页
上页 下页 首页
二、石英晶体振荡电路
1. 并联型石英晶体振荡电路
Rb2 RC
Rb2 RC
Rw
Rb1 Re1
晶体
+VCC
C
Uo
Re2
调节电阻Rw的大小可 以改变正反馈的强弱,
以便获得良好的正弦波
输出。
第6页/共7页
上页 首页
感谢您的观看!
第7页/共7页
晶体
+VCC
Uo
Rb1
+ Re Ce
C1
C2
并联型石英晶体振荡 电路利用石英晶体作 为一个电感来组成选 频网络,晶体工作在 fs和fp之间。
电路的振荡频率
C
f0 fs
1 C0 C
C C1C2 C1 C2
第5页/共7页
上页 下页 首页
2. 串联型石英晶体振荡电路
串联型石英晶体振荡电路利用石英晶体串联谐振时阻 抗最小的特性组成振荡电路,晶体工作在 fs 处。
基于石英晶体的正弦波振荡器设计报告讲解
课程设计任务书学生姓名:专业班级:指导教师:工作单位:信息工程学院题目一:高频石英晶体正弦波振荡器初始条件:具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、采用晶体三极管构成一个多功能正弦波振荡器;2、额定电源电压5.0V ,电流1~3mA;输出频率10 MHz;3、通过跳线可构成串、并联晶体振荡器;4、有缓冲级,在100欧姆负载下,振荡器输出电压≥1 V (D-P);5、完成课程设计报告(应包含电路图,清单、调试及设计总结)。
时间安排:二十周一周,其中4天硬件设计与制作,3天调试及答辩。
指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (I)Abstract (II)1 绪论 (1)2 设计内容及要求 (1)2.1设计目的及主要任务 (1)2.1.1设计目的 (1)2.1.2 设计任务及要求 (1)2.2设计思想 (2)3 石英晶体特性简介 (2)3.1物理特性 (2)3.2等效电路及阻抗特性 (2)3.3晶体谐振器的应用 (3)4 晶体正弦波振荡器的设计 (3)4.1串联型晶体振荡器 (4)4.2并联型晶体振荡器 (5)4.2.1 c-b型并联晶体振荡器 (5)4.2.2 b-e型并联晶体振荡器 (6)4.3输出缓冲级设计 (7)4.4晶体振荡器设计总原理图 (7)4.4.1电路原理图的设计 (7)4.4.2 元件参数的计算 (8)5 电路仿真与硬件调试 (9)5.1电路仿真 (9)5.1.1静态工作点的测试 (9)5.1.2串联型振荡器输出测试 (10)5.1.3并联型振荡器输出测试 (11)5.2硬件调试 (11)6 元器件清单 (13)7 总结与心得体会 (14)参考文献 (15)摘要石英晶体振荡器是一种高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。
石英振荡器原理
石英振荡器原理石英振荡器是一种利用石英晶体的谐振特性产生稳定频率信号的电子元件。
它在现代电子设备中扮演着非常重要的角色,比如在无线通信、计算机、钟表等领域都有广泛的应用。
那么,石英振荡器是如何工作的呢?接下来,我们将深入探讨石英振荡器的原理。
石英振荡器的工作原理基于石英晶体的压电效应。
当在石英晶体上施加外力时,会使其产生电荷,反之亦然。
这种压电效应使得石英晶体具有谐振的特性,即在特定的频率下会产生共振现象。
利用这一特性,可以将石英晶体作为振荡回路的谐振元件,产生稳定的频率信号。
在一个典型的石英振荡器电路中,石英晶体被放置在一个振荡回路中,通常是由晶体管、电容器和电感器构成的。
当电路施加电压时,石英晶体开始振荡,并产生稳定的频率信号。
这个频率取决于石英晶体的尺寸和结构,因此可以通过精确加工石英晶体来获得所需的频率。
除了稳定性高之外,石英振荡器还具有频率稳定度高、温度稳定性好、寿命长等优点。
这些特性使得石英振荡器成为了现代电子设备中不可或缺的元件。
在无线通信领域,石英振荡器被广泛应用于射频发射与接收模块,确保了通信信号的稳定性和准确性。
在计算机领域,石英振荡器被用于时钟电路,提供精准的时钟信号,保证计算机系统的正常运行。
在钟表领域,石英振荡器被应用于石英钟表中,提供准确的时间基准。
总的来说,石英振荡器是一种利用石英晶体的谐振特性产生稳定频率信号的电子元件。
它的工作原理基于石英晶体的压电效应,利用石英晶体作为振荡回路的谐振元件,产生稳定的频率信号。
由于其稳定性高、频率稳定度好、温度稳定性高等优点,石英振荡器在现代电子设备中有着广泛的应用。
希望通过本文的介绍,读者对石英振荡器的原理有了更深入的了解。
石英晶体正弦波振荡器
目录课程设计任务书第一章摘要 (2)第二章特性简介【1】物理特性 (2)【2】晶振符号及等效电路 (2)【3】电抗特性 (3)【4】晶振的特点 (3)【5】晶振的优缺点 (4)第三章晶体振荡器的类型概述【1】并联型晶体振荡器 (4)【2】串联型晶体振荡器 (6)【3】泛音晶体振荡器 (6)第四章正弦波晶体振荡器设计电路【1】晶体振荡器原理图选择依据 (7)【2】晶体振荡器设计原理图 (7)【3】工作点及回路参数的确定 (8)第五章心得体会 (10)第六章参考文献 (11)第一章摘要石英晶体正弦波振荡器简称晶振,是以高稳定度、高Q值的石英谐振器替代LC振荡器中震荡回路的电感、电容元件而构成的自激正弦波振荡器,它利用石英晶体的压电效应实现机械能与电能的相互转化。
由于晶体振荡器具有体积小、重量轻、可靠性高、频率稳定度高等优点,被广泛应用于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。
第二章特性简介【1】物理特性晶体的基本特性是它具有压电效应。
依靠这种效应,可以将机械能转变为电能;反之,也可以将电能转变为机械能。
当晶体受到机械力时,它的表面上就产生了电荷。
如果机械力由压力变成张力,则晶体表面的电荷极性就反过来。
这种效应成为正压电效应。
反之,如果在晶体表面加入一定的电压,则晶体就会产生弹性变形。
如果外加电压作交流变化,晶体就产生机械振动,振动的大小基本上正比于外加电压幅度,这种效应称为反压电效应。
晶体的压电效应如图1(a)所示。
另外,石英晶体和其他弹性体一样,也具有惯性和弹性,因而存在固有振动频率。
当外加电源频率与晶体的固有振动频率相等时,晶体片就产生谐振。
这时,机械振动的幅度最大,相应地晶体表面产生的电量亦最大,因而外电路中的电流也最大。
因此石英晶体片本身具有谐振回路的特性,如图1(b)所示。
【2】晶振符号及等效电路石英晶体谐振器的符号及等效电路分别如图2(a)(b)所示。
基于石英晶体的正弦波振荡器设计报告要点
课程设计任务书学生姓名:专业班级:指导教师:工作单位:信息工程学院题目一:高频石英晶体正弦波振荡器初始条件:具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、采用晶体三极管构成一个多功能正弦波振荡器;2、额定电源电压5.0V ,电流1~3mA;输出频率 10 MHz;3、通过跳线可构成串、并联晶体振荡器;4、有缓冲级,在100欧姆负载下,振荡器输出电压≥ 1 V (D-P);5、完成课程设计报告(应包含电路图,清单、调试及设计总结)。
时间安排:二十周一周,其中4天硬件设计与制作,3天调试及答辩。
指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (I)Abstract (II)1 绪论 (1)2 设计内容及要求 (1)2.1设计目的及主要任务 (1)2.1.1设计目的 (1)2.1.2 设计任务及要求 (1)2.2设计思想 (2)3 石英晶体特性简介 (2)3.1物理特性 (2)3.2等效电路及阻抗特性 (2)3.3晶体谐振器的应用 (3)4 晶体正弦波振荡器的设计 (3)4.1串联型晶体振荡器 (4)4.2并联型晶体振荡器 (5)4.2.1 c-b型并联晶体振荡器 (5)4.2.2 b-e型并联晶体振荡器 (6)4.3输出缓冲级设计 (7)4.4晶体振荡器设计总原理图 (7)4.4.1电路原理图的设计 (7)4.4.2 元件参数的计算 (8)5 电路仿真与硬件调试 (9)5.1电路仿真 (9)5.1.1静态工作点的测试 (9)5.1.2串联型振荡器输出测试 (10)5.1.3并联型振荡器输出测试 (11)5.2硬件调试 (11)6 元器件清单 (13)7 总结与心得体会 (14)参考文献 (15)摘要石英晶体振荡器是一种高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录课程设计任务书第一章摘要 (2)第二章特性简介【1】物理特性 (2)【2】晶振符号及等效电路 (2)【3】电抗特性 (3)【4】晶振的特点 (3)【5】晶振的优缺点 (4)第三章晶体振荡器的类型概述【1】并联型晶体振荡器 (4)【2】串联型晶体振荡器 (6)【3】泛音晶体振荡器 (6)第四章正弦波晶体振荡器设计电路【1】晶体振荡器原理图选择依据 (7)【2】晶体振荡器设计原理图 (7)【3】工作点及回路参数的确定 (8)第五章心得体会 (10)第六章参考文献 (11)第一章摘要石英晶体正弦波振荡器简称晶振,是以高稳定度、高Q值的石英谐振器替代LC振荡器中震荡回路的电感、电容元件而构成的自激正弦波振荡器,它利用石英晶体的压电效应实现机械能与电能的相互转化。
由于晶体振荡器具有体积小、重量轻、可靠性高、频率稳定度高等优点,被广泛应用于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。
第二章特性简介【1】物理特性晶体的基本特性是它具有压电效应。
依靠这种效应,可以将机械能转变为电能;反之,也可以将电能转变为机械能。
当晶体受到机械力时,它的表面上就产生了电荷。
如果机械力由压力变成张力,则晶体表面的电荷极性就反过来。
这种效应成为正压电效应。
反之,如果在晶体表面加入一定的电压,则晶体就会产生弹性变形。
如果外加电压作交流变化,晶体就产生机械振动,振动的大小基本上正比于外加电压幅度,这种效应称为反压电效应。
晶体的压电效应如图1(a)所示。
另外,石英晶体和其他弹性体一样,也具有惯性和弹性,因而存在固有振动频率。
当外加电源频率与晶体的固有振动频率相等时,晶体片就产生谐振。
这时,机械振动的幅度最大,相应地晶体表面产生的电量亦最大,因而外电路中的电流也最大。
因此石英晶体片本身具有谐振回路的特性,如图1(b)所示。
【2】晶振符号及等效电路石英晶体谐振器的符号及等效电路分别如图2(a)(b)所示。
C0:封装电容。
代表石英晶体支架静电容量,一般为几至几百皮法;L :动态电感。
相当于晶体的质量(惯性),很大,一般以几亨至十分之几亨计;C :动态电容。
相当于晶体的等效弹性模数,很小,一般以百分之几皮法计;R :动态电阻。
相当于晶体的的摩擦损耗,一般以几至几百欧计。
因,易知:石英晶体的品质因数很高。
石英晶体谐振器有两个谐振频率:(1)当L、C、R支路串联谐振时,等效电路的阻抗最小,串联谐振频率为显然,fs < fp,但由于C << C0,因此fs和fp两个频率非常接近。
【3】电抗特性石英晶体谐振器的电抗曲线如图2(c)所示。
可以看出,电抗特性曲线分三个区间和两个谐振频率点:当f < fs或f > fp时,电抗特性呈容性,等效为电容;当fs < f < fp时,电抗特性呈感性,等效为电感;当f = fs时,电抗呈纯电阻性,等效阻抗为最小,为串联谐振点;当f = fp时,电抗呈纯电阻性,等效阻抗为最大,为并联谐振点;在串联谐振频率点与并联谐振频率点之间极窄的频带内石英晶体谐振器呈感性,用其构成的电容三点式振荡器就是利用了这个区间。
【4】晶振的特点在振荡频率上,闭合回路的相移为2nπ。
当开始加电时,电路中唯一的信号是噪声。
满足振荡相位条件的频率噪声分量以增大的幅度在回路中传输,增大的速率由附加分量,即小信号,回路益增和晶体网络的带宽决定。
幅度继续增大,直到放大器增益因有源器件(自限幅)的非线性而减或者由于某一自动电平控制而被减小。
在稳定状态下,闭合回路的增益为1。
【5】晶振的优缺点优点:使用石英晶体作为震荡回路元件,能够使振荡器的频率稳定度大大提高,原因有三:(1)石英晶体的物理特性和化学特性都十分稳定,因此,它的等效谐振回路有很高的标准性。
(2)它具有正、反压电效应,而且在谐振频率附近,晶体的等效参数L很大、C很小、R也不高,因此,晶体的Q值可高达数百万数量级。
(3)在串、并联谐振频率之间很狭窄的工作频率内,具有极陡峭的电抗特性曲线,因而对频率变化具有极灵敏的补偿能力。
缺点:石英晶体谐振器的主要缺点时它的单频性,即每块晶体只能提供一个稳定的振荡频率,因而不能直接用于波段振荡器。
第三章晶体振荡器的类型概述根据石英晶体谐振器的电抗曲线,在串、并联谐振频率之间很狭窄的工作频带内,它呈电感性。
因而石英谐振器或者工作于感性区,或者工作于串联谐振频率上,绝不能使用容性区。
因为如果振荡器电路是设计在晶体呈现电容性时产生振荡,那么,由于晶体在静止时就是呈现电容性的,所以无法判断晶体是否已经在工作,从而不能保证频率稳定作用。
因此,根据晶体在振荡器线路中的作用原理,振荡电路可分为两类:一类是石英晶体在电路中作为等效电感元件使用,这类振荡器称为并联谐振型晶体振荡器;另一类是把石英晶体作为串联谐振元件使用,使它工作于串联谐振频率上,称为串联谐振型晶体振荡器。
【1】并联型晶体振荡器这类晶体振荡器的振荡原理和一般反馈式LC振荡器相同,只是把晶体置于反馈网络的振荡回路之中,作为一个感性元件,并与其他回路元件一起按照三端电路的基本准则组成三端振荡器。
根据这种原理,常用的有两种基本类型:c-b 型电路和b-e型电路。
如图3所示。
图3(a)c-b型电路图3(b)b-e型电路图3(a)所示相当于电容三端振荡电路。
图3(b)所示相当于电感三端振荡电路。
图4(a)晶振电路图4(b)等效电路图4(a)所示为典型的c-b型晶体振荡器线路。
振荡管的基极对高频接地,晶体接在集电极与基极之间,C1与C2为回路的另外两个电抗元件。
振荡器回路的等效电路如图4(b)。
由于Cq非常小,因此,晶体振荡器的谐振回路与振荡管之间的耦合非常弱,从而使频率稳定性大为提高。
图5(a)b-e型晶振图图5(b)等效回路图5(a)所示为典型的b-e型晶体振荡器线路。
图5(b)所示为它的等效回路。
由图可看出,该电路是个双回路振荡器,L1C1回路应呈电感性,因此它的固有谐振频率f0应略高于振荡器的工作频率f,振荡器为哈特莱电路。
【2】串联型晶体振荡器图6(a)所示为一种正弦波串联晶体振荡器电路,图6(b)所示为它的等效电路。
由图可知,该电路与电容三端振荡电路十分相似,只是反馈信号要经过石英晶体JT后,才能送到发射极与基极之间。
石英晶体在串联谐振时阻抗近似于零,可以认为时短路,此时正反馈最强,满足振荡条件。
因此,这个电路的振荡频率和频率稳定度都取决于石英晶体的串联谐振频率。
图6(a)串联型晶振电路图6(b)等效电路使用晶体谐振器时应注意以下几点:(1)石英晶体谐振器的标称频率是在石英晶体谐振器上并接一定负载电容条件下测定的,在使用时也必须外加负载电容,并经微调后才能获得标称频率;(2)石英晶谐振器的激励电平应在规定范围内;(3)在并联型晶体振荡器中,石英晶体起电感的作用;若作为容抗,则在石英晶体片失效时,石英谐振器的支架电容还存在,线路仍可能满足振荡条件而起振,石英晶体谐振器失去了稳频作用;(4)在晶体振荡器中,一块晶体只能稳定一个频率,当要求得到可选择的许多频率时,就要采取其他电路器件。
【3】泛音晶体振荡器所谓泛音,是指石英片振动的机械波。
它与电气谐波的主要区别是:电气谐波与基波是整数倍关系,且谐波与基波同时并存;泛音则与基频不成整数倍关系,只是在基频奇数倍附近,且两者不能同时存在。
图7所示为泛音晶体振荡器的交流等效电路。
图7 泛音晶体振荡器交流等效电路。
第四章正弦波晶体振荡器设计电路【1】晶体振荡器原理图选择依据石英晶体谐振器在串并联谐振频率之间很狭窄的工作频带内,它具有极陡峭的电抗特性曲线,因而对频率变化具有极灵敏的补偿能力。
依据这个特性,选取石英晶体在电路中作为等效电感原件使用,即选择并联谐振型晶体振荡器。
常用的并联谐振型晶体振荡器有两种基本类型:c-b型电路和b-e型电路。
比较这两种电路可知:b-e型电路的输出信号教大,L1C1 回路还可以抑制其他谐波,但频率稳定度不如c-b型电路。
因为在b-e型电路中,石英晶体接在输入阻抗低的b-e之间,降低了石英晶体的标准性。
c-b型电路中的石英晶体则接在阻抗很高的c-b之间,石英晶体的标准性受影响很小。
因此,综合考虑各项因素,本次设计选择并联谐振晶体c-b型振荡器电路。
【2】晶体振荡器设计原理图正弦波晶体振荡器设计电路原理图如下图8(a)所示。
图8(a)正弦波晶体振荡器设计电路原理图振荡管的基极对高频接地,晶体接在集电极与基极之间,C1C2为回路的另外两个电抗元件,C b 为旁路电容,Cq为负载电容。
由于晶振的Cq非常小,因此,晶体振荡器的谐振电路与振荡管之间的耦合非常弱,从而使频率稳定性大为提高。
振荡器回路的交流等效电路如下图8(b)所示。
图8(b)交流等效电路和一般的LC三端电路相比,石英晶体在稳频方面有一个显著特点,即一旦因外界因素变化而影响到晶体的回路固有频率时,它还具有力图使频率保持不变的电抗电抗补偿能力。
这主要是由于石英谐振器的等效电感Le与普通电感不同,Le时频率的函数,并且随着频率w从w q变到w p,Le则从0变到趋于无穷。
在这十分狭窄的之间,存在着一条极陡峭的感抗曲线,而振荡器又被限定在此频率范围内工作。
该电抗曲线对频率有极大的变化速率,亦即石英晶体在这个频率范围内具有极陡峭的相频特性曲线。
因而它具有很高的稳频能力,或者说它具有很高的电感补偿能力。
【3】工作点及回路参数的确定(1)晶体管和晶振的选择选择高频管3DG6C型晶体管作为振荡管。
查手册其参数如下:石英谐振器可选用HC-49S系列,其性能参数为:品牌ZJ 型号HC-49S种类晶振标称频率12.000MHz(MHz)调整频差20PPM(MHz)温度频差20PPM(MHz)总频差20PPM(MHz)负载电容20PF(pF)负载谐振40(Ω)电阻(2)确定直流工作点并计算偏置电路元件参数根据3DG6C的静态特性曲线选取工作点为:射极电流:I E=2mA,集电极发射极电压:Uce=0.6V,Vcc=0.6×12=7.2V;取集电极电压Uc=0.8Vcc=0.8×12=9.6V;发射极电压Ue=0.2Vcc=0.2×12=2.4V则有集电极电阻Rc =(Vcc-Uc)/ IE=(12-9.6)/0.002=1.2KΩ发射极电阻Re = Ue/ IE=2.4/0.002=1.2 KΩ取基极偏置电阻Rb2=5Re=6 KΩ基极偏置电阻Rb1={(Vcc-Ue)/Ue}×RB2=24 KΩ根据实际的标称电阻值,取Rc、Re、RB1、RB2取精度为1%的金属膜电阻: Rc= Re= 1.2KΩ;Rb1= 24 KΩ,Rb2=6.2 KΩ;(3)C1、C2、C3的确定根据振荡器回路的交流等效电路可知:C1、C2、C3串联,C1、C2串联后的值为C12 = C1*C2/(C1+C2);C1、C2、C3串联后的值为C = C12*C3/(C12+C3);依据回路谐振频率f0公式可计算出C取C3=30pF(一般Ct应略大于负载电容值),= C3 *C/ (C3- C)=(30×10)/(30-10)=15 pF则C12= C1*C2/(C1+C2)两式联立解,并取F=1/2由反馈系数F=C1/C2和C12则C1= C12(1+F)=22.5 pFC2= C12(1+1/F)=45 pF根据电容量的标称值,取C1、C2为聚苯乙烯电容,C1=20pF,C2=40pF第五章心得体会经过为期一周的高频电子线路课程设计,我发现了自己能力的不足和知识上的欠缺,同时也学到了很多东西。