小学数学奥数基础教程(六年级)--03
小学数学奥数基础教程(六年级)目30讲全[1]
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
高斯小学奥数六年级上册含答案第03讲 递推计数
第三讲递推计数有许多计数问题很复杂,直接处理比较困难,此时硬碰硬是不行的.一个比较有效的策略是退而求其次:先考虑该问题的简单情形,看看简单情形如何处理;在解决了简单情形后,再考虑如何利用简单情形的结论来解决更复杂的问题……这个由简单到复杂的推导过程就叫“递推”.那如何利用“递推法”来解决计数问题呢?下面我们就来看几个例子.例1.老师给小高布置了12篇作文,规定他每天至少写1篇.如果小高每天最多能写3篇,那么共有多少种不同的完成方法?(小高每天只能写整数篇)「分析」从简单情况入手,看看能否找到合适的突破口.如果老师只布置1篇作文,小高有多少种不同的完成方法?如果老师布置2篇作文,小高有多少种不同的完成方法?如果老师布置3篇、4篇、……小高又分别有多少种不同的完成方法?篇数由少到多,完成方法数也会逐渐变多,这其中有什么规律呢?练习1、一个楼梯共有12级台阶,规定每步可以迈二级台阶或三级台阶.走完这12级台阶,共有多少种不同的走法?⨯的方格表,共有多少种覆盖方法?例2.用10个13⨯的长方形纸片覆盖一个103「分析」与例1的类似,我们还是从简单情形入手找递推关系.可具体从什么样的情形入手呢?⨯的方格表,共有多少种覆盖方法?练习2、用7个12⨯的长方形纸片覆盖一个72例3.在一个平面上画出100条直线,最多可以把平面分成几个部分?「分析」当直线数量不多时,画图数一数即可.但现在有100条,画图数并不现实.我们不妨在纸上将直线逐一画出,并在画的过程中仔细观察:每增加一条直线,平面被分成的部分会增加多少?这个增量..有什么变化规律?练习3、如果在一个圆内画出50条直线,最多可以把圆分成多少部分?下面我们来学习一类很经典的递推计数问题——传球问题.例4.四个人分别穿着红、黄、绿、蓝四种颜色的球衣练习传球,每人都可以把球传给另外三个人中的任意一个.先由红衣人发球,并作为第1次传球,经过8次传球后球仍然回到红衣人手中.请问:整个传球过程共有多少种不同的可能?「分析」看到这个问题,很多同学可能想通过树形图来求解,我们不妨来试一试.设穿着红、黄、绿、蓝四种颜色球衣的人分别是A 、B 、C 、D .如下图,最开始时,球在A 手上,第一次传球由A 传给B 、C 、D ,也就是第一层有三个字母就够了.然后B 、C 、D 都会继续往下传球,各有3种传法,传到第二层需要9个字母.再传到第三层,需要27个字母……每一层需要的字母增加迅猛!如果传8次球,到最后一层会用到836561 个字母,这要多大的一个树形图啊!可见画树形图的方案不可行.但树形图对这道题就没有用了吗?并非如此.它可以帮助我们找出传球过程中所隐藏的递推关系.事实上,我们并不关心树形图长啥样,我们关心的是数量——树形图每一层分支的数量.因此,只要知道每一层各字母出现的次数就可以了,我们不妨制作一个表格来统计这个次数.如下表,我们用第一列来表示层数,第一行来表示每个人,其余空格用于填写字母在该层中出现的次数.请你从上方的树形图中数一数,填出表格中的前几行.然后思考一下:这其中隐藏着什么样的递推关系?BC DACDABDABCAB C D A B D A B C B C D A C D A B C B C D A C D A B D练习4、三个人分别穿着红、黄、蓝三种颜色的球衣练习传球,每人都可以把球传给另外两个人中的任意一个.先由红衣人发球,并作为第1次传球,经过7次传球后传到蓝衣人手中.请问:整个传球过程共有多少种不同的可能?解传球问题的方法称为“传球法”.“传球法”是递推法的一种特殊形式,是一种极其实用的数表累加计数法.例5.一个七位数,每一位都是1、2或者3,而且没有连续的两个1,这样的七位数一共有多少个?「分析」这道题与前面两道题有何异同?应该如何求解呢?前面的计数问题,递推关系都表现为数列、数表的简单累加,但这不是递推的全部.简单累加只是递推的一种表现形式,递推还有很多其它形式.下面我们就来看一道无法通过简单累加求解的计数问题.例6.圆周上有10个点A1、A2、L、A10,以这些点为端点连接5条线段,要求线段之间没有公共点,共有多少种连接方式?「分析」圆周上10个点,连5条线段,连法很多,很难直接画出来枚举.像这类问题,我们同样还是从简单的情况入手.那么是应该按1个点、2个点、3个点、……这样依次计数,来找递推关系吗?神奇的汉诺塔一位法国数学家曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面.僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽.不管这个传说的可信度有多大,如果考虑一下把64片金片,由一根针上移到另一根针上,并且始终保持上小下大的顺序.这需要多少次移动呢?这里需要递归的方法.假设有n 片,移动次数是()f n .显然(1)1f =,(2)3f =,(3)7f =,且(1)2()1f k f k +=+.此后不难证明()21n f n =-.64n =时,64(64)2118446744073709551615f =-=.假如每秒钟一次,共需多长时间呢?一个平年365天有31536000 秒,闰年366天有31622400秒,平均每年31556952秒,计算一下,18446744073709551615/31556952=584554049253.855年.这表明移完这些金片需要5845亿年以上,而地球存在至今不过45亿年,太阳系的预期寿命据说也就是数百亿年.真的过了5845亿年,不说太阳系和银河系,至少地球上的一切生命,连同梵塔、庙宇等,都早已经灰飞烟灭.课 堂 内 外作业1. 有10个蛋黄派,萱萱每天吃1个或2个,那么共有多少种不同的吃法?2. 甲、乙两人玩抓石子游戏,共有12个石子,甲先乙后轮流抓取.每次可以抓取其中的2个、3个或4个,直到最后抓取完毕为止.那么共有多少种抓取石子的方案?3. 用直线把一个平面分成100部分,至少要在平面上画几条直线?4. 一个七位数,它由数字0、1、2、3、4组成,相邻位置上的数字不相同,并且个位数字是2.这样的七位数有多少个?5. 用8个的长方形纸片覆盖下面的方格表,共有多少种覆盖方法?12第五讲 进位制问题例题:例7. 答案:(1)31023、3735、11B9、7DD ;(2)257;(3)1742详解: (1)(2)32025051525257⨯+⨯+⨯+⨯=; (3)3202120121122121742⨯+⨯+⨯+⨯=.例8.答案:(1)5;(2)13121、731 详解:三进制转九进制从右往左两位两位转换;二进制转四进制从右往左两位两位转换;二进制转八进制从右往左三位三位转换.例9.答案:15031 详解:列竖式计算.例10. 答案:212.a =5、b =5、c =2例11. 答案:10个详解:若要称量1克的重量必须有1克的砝码,若要称量2克的重量必须有2克的砝码,依次类推可得:1+2+4+8+16+32+64+128+256+512,此时可以称量1克到1023克的所有重量,此时需要10个砝码.例12. 答案:12...... 3 ...... 2 ...... 1 0 (3)...... 2 ...... 3 (7) (3)…… 9 ……12 (1) (1)...... 13 ...... 13 (7)详解:所看页数列为1、1、2、4、8、……、256、512、989.练习:6. 答案:554;2781;195;7227. 答案:161578. 答案:212349. 答案:248.a =5、b =0、c =3作业:1. 答案:(1)354;(2)458;(3)C 30;(4)14443;(5)433;(6)852. 答案:(1)1131;(2)123123. 答案:100简答:a 很容易知道只能为1,再根据进位制展开解方程得出b 、c 均为0,所以原数十进制是100.4. 答案:22简答:由题意有,其中a 、b 、c 均小于3,则有,化简得,符合条件的a 、b 、c 为2、1、1,化成十进制是22.5. 答案:24简答:由题意有,其中a 、b 均要大于7,则有,符合条件的最小的a 、b 为15、9,和是24.4774a b +=+ ()()4774a b = 815a b c =+ 93164a b c c b a ++=++ ()()34abc cba =。
六年级奥数第三节课
辅导讲义授课时间:年月日年级:第次课学员姓名:辅导科目:数学教师姓名:课题§小学六年级奥数题教学目标重点、难点教学内容行程问题行程问题是我们在小学应用题中经常会遇到的,其中还包括水流问题以及一些特殊的行程问题我们在解决行程问题前,要牢记以下公式:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间路程一定,时间和速度成反比速度一定,路程和时间成正比时间一定,路程和速度成正比关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和追及问题:追及时间=路程差÷速度差速度差=路程差÷追及时间追及时间×速度差=路程差追及问题:(直线):距离差=追者路程-被追者路程=速度差X追击时间追及问题:(环形):快的路程-慢的路程=曲线的周长流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷21.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
问:狗再跑多远,马可以追上它?2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。
最新小学数学奥数基础教程(六年级)目30讲全[1]
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
小学数学奥数基础教程(打印版)
小学数学奥数基础教程(打印版)小学数学奥数基础教程(打印版)----------------------------------------------------------数学奥数是培养小学生数学思维能力和解决问题能力的一种特殊教学方法。
本教程旨在为小学生提供扎实的数学基础知识和奥数解题技巧,让他们在数学方面取得更好的成绩并培养对数学的兴趣。
本教程以打印版的形式呈现,方便学生进行随时随地的学习。
一、数学基础知识----------------------------------------------------------第一章:数的基本概念1.1 自然数与整数1.2 分数与小数1.3 负数与绝对值第二章:算数运算2.1 加法与减法2.2 乘法与除法2.3 平方与平方根第三章:代数与方程3.1 代数式与多项式3.2 简单方程与解集3.3 一元一次方程第四章:图形与几何4.1 点、线、线段与射线4.2 角的概念与性质4.3 三角形与四边形第五章:空间与立体几何5.1 立体图形的组成5.2 直方体、正方体与长方体5.3 圆柱体、圆锥体与球体二、奥数解题技巧----------------------------------------------------------第六章:逻辑推理6.1 量的关系6.2 条件与结论6.3 逻辑推理题示例第七章:模型建立7.1 数量关系模型7.2 平衡方程模型7.3 几何变换模型第八章:数学推理8.1 数学归纳法8.2 反证法与逆否命题8.3 数列与数表推理三、实践练习题----------------------------------------------------------第九章:填空题第十章:选择题第十一章:解答题四、奥数竞赛模拟----------------------------------------------------------第十二章:奥数竞赛模拟试题五、总结与展望----------------------------------------------------------本教程涵盖了小学数学奥数所需的基础知识和解题技巧,并提供了丰富的练习题和竞赛模拟试题。
小学奥数六年级基础课程
小学奥数六年级根底课程第1讲比拟分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1〞第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步〔一〕第28讲运筹学初步〔二〕第29讲运筹学初步〔三〕第30讲趣题巧解第一讲比拟分数的大小同学们从一开场接触数学,就有比拟数的大小问题。
比拟整数、小数的大小的方法比拟简单,而比拟分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母一样,分子一样以与分子、分母都不一样三种情况,其中前两种情况判别大小的方法是:分母一样的两个分数,分子大的那个分数比拟大;分子一样的两个分数,分母大的那个分数比拟小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母一样,化为第一种情况,再比拟大小。
由于要比拟的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子〞。
当两个分数的分母的最小公倍数比拟大,而分子的最小公倍数比拟小时,可以把它们化成同分子的分数,再比拟大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母〞,那么这里讲的方法可以称为“通分子〞。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比拟大小时是否简便,就要看具体情况了。
3.先约分,后比拟。
有时分数不是最简分数,可以先约分。
4.根据倒数比拟大小。
5.假设两个真分数的分母与分子的差相等、那么分母〔子〕大的分数较大;假设两个假分数的分子与分母的差相等,那么分母〔子〕小的分数较大。
小学数学奥数基础教程(六年级)目30讲全无答案
第一讲分数的大小比较同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
也就是说,6.借助第三个数进行比较。
有以下几种情况:(2)对于分数m和n,若m-k>n-k,则m>n。
前一个差比较小,所以m<n。
(3)对于分数m和n,若k-m<k-n,则m>n。
注意,(2)与(3)的差别在于,(2)中借助的数k小于原来的两个分数m和n;(3)中借助的数k大于原来的两(4)把两个已知分数的分母、分子分别相加,得到一个新分数。
新分数一定介于两个已知分数之间,即比其中一个分数大,比另一个分数小。
利用这一点,当两个已知分数不容易比较大小,新分数与其中一个已知分数容易比较大小时,就可以借助于这个新分数。
比较分数大小的方法还有很多,同学们可以在学习中不断发现总结,但无论哪种方法,均来源于:“分母相同,分子大的分数大;分子相同,分母小的分数大”这一基本方法。
小学数学奥数基础教程(六年级)目30讲全[1]
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
小学数学奥数基础教程(六年级)
小学数学奥数基础教程(六年级)本教程共30讲圆柱与圆锥这一讲学习与圆柱体和圆锥体有关的体积、表面积等问题。
圆柱体的体积=兀寸h,圆柱体的fill面积=2%rh,風柱体的表面积= 27Tr (r + h),圆锥体的体枳=£兀十応■J例1如右图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?分析与解:本题的关键是要找出容器上半部分的体积与下半部分的关系。
设圆锥容器的底面半径为「则水面半径为*。
容器的容积为gjrJh,容器中來的体积为护(|)=右/飢1 2 1 Q-Tr J h + ——十h =83 24这表明容器可以装8份5升水,已经装了1份,还能装水5X (8- 1)=35 (升)。
例2用一块长60厘米、宽40厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。
这样做成的铁桶的容积最大是多少?(精确到1厘米3)分析与解:铁桶有以60厘米的边为高和以40厘米的边为高两种做法。
以60厘米的边为高时,桶底周长掬40厘米。
由2Jl r=40^, —°此TV时桶的容积是空20 厘24000 5<r2h =双—)2x 60 =---------- (厘氷以40厘米的边为高时,桶底周长为60厘米。
由2兀r= 60知,r =—.此时兀桶的容积是盘30 360000=兀(—)2斗同0寺- (厘米)7C 7C比较知,容积最大是沁“1也(厘氷J o例3有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30分米3。
现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见右图)。
问:瓶内现有饮料多少立方分米?分析与解:瓶子的形状不规则,并且不知道底面的半径,似乎无法计算。
比较一下正放与倒放,因为瓶子的容积不变,装的饮料的体积不变,所以空余部分的体积应当相同。
将正放与倒放的空余部分变换一下位置,可以看出饮料瓶的容积应当等于底面积不变,高为20 + 5=25 (厘米)的圆柱体的体积。
小学数学奥数基础教程(六年级)目30讲全[1]
小学(xiǎoxué)数学奥数基础教程(六年级)目30讲全[1]第1讲比较(bǐjiào)分数的大小第2讲巧求分数(fēnshù)第3讲分数运算(yùn suàn)的技巧第4讲循环小数(xún huán xiǎo shù)与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(chūbù)〔一〕第28讲运筹学初步(chūbù)〔二〕第29讲运筹学初步(chūbù)〔三〕第30讲趣题巧解第一(dìyī)讲比较分数的大小同学们从一开始接触数学(shùxué),就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是;分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1,“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
小学数学奥数基础教程(六年级)目30讲全[1]
小学奥数基础教程(六年级)109页第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
2018-2019年小学六年级数学奥数基础教程【30讲】
1 由于要比较的分数千差万别,所以通分的方法不一定是 最简捷的。下面我们介绍另外几种方法。 1.“通分子”。 当两个已知分数的分母的最小公倍数比较大,而分子的最小 公倍数比较小时,可以把它们化成同分子的分数,再比较大 小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲 的方法可以称为“通分子”。 2.化为小数。
就非常简单了。
练习 3 括号。此题要求的是 10 个数的倒数和为 1,于是做成:
所求的 10 个数是 2,6,12,20,30,42,56,72,90,10。
的 10 和 30,仍是符合题意的解。 4.代数法
8.在自然数 1~60 中找出 8 个不同的数,使这 8 个数的倒
比较分数大小的方法还有很多,同学们可以在学习中不 断发现总结,但无论哪种方法,均来源于:“分母相同,分 子大的分数大;分子相同,分母小的分数大”这一基本方法。
分析:若把这个分数的分子、分母调换位置,原题中的 分母加、减 1 就变成分子加、减 1,这样就可以用例 1 求平 均数的方法求出分子、分母调换位置后的分数,再求倒数即 可。
2
是多少?
1 第三讲 分数运算的技巧 对于分数的混合运算,除了掌握常规的四则运算法则外, 还应该掌握一些特殊的运算技巧,才能提高运算速度,解答 较难的问题。 1.凑整法 与整数运算中的“凑整法”相同,在分数运算中,充分 利用四则运算法则和运算律(如交换律、结合律、分配律), 使部分的和、差、积、商成为整数、整十数……从而使运算 得到简化。
5671+9=5680(个)。 第四讲 循环小数与分数 2
5,所以化成混循环小数中的不循环部分有两位。 于是我们得到结论: 一个最简分数化为小数有三种情况: (1)如果分母只含有质因数 2 和 5,那么这个分数一定 能化成有限小数,并且小数部分的位数等于分母中质因数 2 与 5 中个数较多的那个数的个数; (2)如果分母中只含有 2 与 5 以外的质因数,那么这 个分数一定能化成纯循环小数; (3)如果分母中既含有质因数 2 或 5,又含有 2 与 5 以 外的质因数,那么这个分数一定能化成混循环小数,并且不 循环部分的位数等于分母中质因数 2 与 5 中个数较多的那个 数的个数。 例 1 判断下列分数中,哪些能化成有限小数、纯循环小 数、混循环小数?能化成有限小数的,小数部分有几位?能 化成混循环小数的,不循环部分有几位?
高斯小学奥数六年级上册含答案第03讲 递推计数
第三讲递推计数有许多计数问题很复杂,直接处理比较困难,此时硬碰硬是不行的.一个比较有效的策略是退而求其次:先考虑该问题的简单情形,看看简单情形如何处理;在解决了简单情形后,再考虑如何利用简单情形的结论来解决更复杂的问题……这个由简单到复杂的推导过程就叫“递推”.那如何利用“递推法”来解决计数问题呢?下面我们就来看几个例子.例1.老师给小高布置了12篇作文,规定他每天至少写1篇.如果小高每天最多能写3篇,那么共有多少种不同的完成方法?(小高每天只能写整数篇)「分析」从简单情况入手,看看能否找到合适的突破口.如果老师只布置1篇作文,小高有多少种不同的完成方法?如果老师布置2篇作文,小高有多少种不同的完成方法?如果老师布置3篇、4篇、……小高又分别有多少种不同的完成方法?篇数由少到多,完成方法数也会逐渐变多,这其中有什么规律呢?练习1、一个楼梯共有12级台阶,规定每步可以迈二级台阶或三级台阶.走完这12级台阶,共有多少种不同的走法?⨯的方格表,共有多少种覆盖方法?例2.用10个13⨯的长方形纸片覆盖一个103「分析」与例1的类似,我们还是从简单情形入手找递推关系.可具体从什么样的情形入手呢?⨯的方格表,共有多少种覆盖方法?练习2、用7个12⨯的长方形纸片覆盖一个72例3.在一个平面上画出100条直线,最多可以把平面分成几个部分?「分析」当直线数量不多时,画图数一数即可.但现在有100条,画图数并不现实.我们不妨在纸上将直线逐一画出,并在画的过程中仔细观察:每增加一条直线,平面被分成的部分会增加多少?这个增量..有什么变化规律?练习3、如果在一个圆内画出50条直线,最多可以把圆分成多少部分?下面我们来学习一类很经典的递推计数问题——传球问题.例4.四个人分别穿着红、黄、绿、蓝四种颜色的球衣练习传球,每人都可以把球传给另外三个人中的任意一个.先由红衣人发球,并作为第1次传球,经过8次传球后球仍然回到红衣人手中.请问:整个传球过程共有多少种不同的可能?「分析」看到这个问题,很多同学可能想通过树形图来求解,我们不妨来试一试.设穿着红、黄、绿、蓝四种颜色球衣的人分别是A 、B 、C 、D .如下图,最开始时,球在A 手上,第一次传球由A 传给B 、C 、D ,也就是第一层有三个字母就够了.然后B 、C 、D 都会继续往下传球,各有3种传法,传到第二层需要9个字母.再传到第三层,需要27个字母……每一层需要的字母增加迅猛!如果传8次球,到最后一层会用到836561 个字母,这要多大的一个树形图啊!可见画树形图的方案不可行.但树形图对这道题就没有用了吗?并非如此.它可以帮助我们找出传球过程中所隐藏的递推关系.事实上,我们并不关心树形图长啥样,我们关心的是数量——树形图每一层分支的数量.因此,只要知道每一层各字母出现的次数就可以了,我们不妨制作一个表格来统计这个次数.如下表,我们用第一列来表示层数,第一行来表示每个人,其余空格用于填写字母在该层中出现的次数.请你从上方的树形图中数一数,填出表格中的前几行.然后思考一下:这其中隐藏着什么样的递推关系?BC DACDABDABCAB C D A B D A B C B C D A C D A B C B C D A C D A B D练习4、三个人分别穿着红、黄、蓝三种颜色的球衣练习传球,每人都可以把球传给另外两个人中的任意一个.先由红衣人发球,并作为第1次传球,经过7次传球后传到蓝衣人手中.请问:整个传球过程共有多少种不同的可能?解传球问题的方法称为“传球法”.“传球法”是递推法的一种特殊形式,是一种极其实用的数表累加计数法.例5.一个七位数,每一位都是1、2或者3,而且没有连续的两个1,这样的七位数一共有多少个?「分析」这道题与前面两道题有何异同?应该如何求解呢?前面的计数问题,递推关系都表现为数列、数表的简单累加,但这不是递推的全部.简单累加只是递推的一种表现形式,递推还有很多其它形式.下面我们就来看一道无法通过简单累加求解的计数问题.例6.圆周上有10个点A1、A2、L、A10,以这些点为端点连接5条线段,要求线段之间没有公共点,共有多少种连接方式?「分析」圆周上10个点,连5条线段,连法很多,很难直接画出来枚举.像这类问题,我们同样还是从简单的情况入手.那么是应该按1个点、2个点、3个点、……这样依次计数,来找递推关系吗?神奇的汉诺塔一位法国数学家曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面.僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽.不管这个传说的可信度有多大,如果考虑一下把64片金片,由一根针上移到另一根针上,并且始终保持上小下大的顺序.这需要多少次移动呢?这里需要递归的方法.假设有n 片,移动次数是()f n .显然(1)1f =,(2)3f =,(3)7f =,且(1)2()1f k f k +=+.此后不难证明()21n f n =-.64n =时,64(64)2118446744073709551615f =-=.假如每秒钟一次,共需多长时间呢?一个平年365天有31536000 秒,闰年366天有31622400秒,平均每年31556952秒,计算一下,18446744073709551615/31556952=584554049253.855年.这表明移完这些金片需要5845亿年以上,而地球存在至今不过45亿年,太阳系的预期寿命据说也就是数百亿年.真的过了5845亿年,不说太阳系和银河系,至少地球上的一切生命,连同梵塔、庙宇等,都早已经灰飞烟灭.课 堂 内 外作业1. 有10个蛋黄派,萱萱每天吃1个或2个,那么共有多少种不同的吃法?2. 甲、乙两人玩抓石子游戏,共有12个石子,甲先乙后轮流抓取.每次可以抓取其中的2个、3个或4个,直到最后抓取完毕为止.那么共有多少种抓取石子的方案?3. 用直线把一个平面分成100部分,至少要在平面上画几条直线?4. 一个七位数,它由数字0、1、2、3、4组成,相邻位置上的数字不相同,并且个位数字是2.这样的七位数有多少个?5. 用8个的长方形纸片覆盖下面的方格表,共有多少种覆盖方法?12第五讲 进位制问题例题:例7. 答案:(1)31023、3735、11B9、7DD ;(2)257;(3)1742详解: (1)(2)32025051525257⨯+⨯+⨯+⨯=; (3)3202120121122121742⨯+⨯+⨯+⨯=.例8.答案:(1)5;(2)13121、731 详解:三进制转九进制从右往左两位两位转换;二进制转四进制从右往左两位两位转换;二进制转八进制从右往左三位三位转换.例9.答案:15031 详解:列竖式计算.例10. 答案:212.a =5、b =5、c =2例11. 答案:10个详解:若要称量1克的重量必须有1克的砝码,若要称量2克的重量必须有2克的砝码,依次类推可得:1+2+4+8+16+32+64+128+256+512,此时可以称量1克到1023克的所有重量,此时需要10个砝码.例12. 答案:12...... 3 ...... 2 ...... 1 0 (3)...... 2 ...... 3 (7) (3)…… 9 ……12 (1) (1)...... 13 ...... 13 (7)详解:所看页数列为1、1、2、4、8、……、256、512、989.练习:6. 答案:554;2781;195;7227. 答案:161578. 答案:212349. 答案:248.a =5、b =0、c =3作业:1. 答案:(1)354;(2)458;(3)C 30;(4)14443;(5)433;(6)852. 答案:(1)1131;(2)123123. 答案:100简答:a 很容易知道只能为1,再根据进位制展开解方程得出b 、c 均为0,所以原数十进制是100.4. 答案:22简答:由题意有,其中a 、b 、c 均小于3,则有,化简得,符合条件的a 、b 、c 为2、1、1,化成十进制是22.5. 答案:24简答:由题意有,其中a 、b 均要大于7,则有,符合条件的最小的a 、b 为15、9,和是24.4774a b +=+ ()()4774a b = 815a b c =+ 93164a b c c b a ++=++ ()()34abc cba =。
(完整)小学六年级奥数教案—03分数运算技巧
小学六年级奥数教案一03分数运算技巧本教程共30讲分数运算的技巧对于分数的混合运算,除了掌握常规的四则运算法则外,还应该掌握一些特殊的运算技巧,才能提高运算速度,解答较难的问题。
1. 凑整法与整数运算中的“凑整法”相同,在分数运算中,充分利用四则运算法则和运算律(如交换律、结合律、分配律),使部分的和、差、积、商成为整数、整十数……从而使运算得到简化。
... 12 3 1 7例1 C才+怙+ 1才+迟)X (2 -莎)1弓2 1 7原式=【(片+ 1亍+(气+写]"―刃7心*(2-亦)=20^2-20 X —20= 40-7-33.1 Af?'j2 ^|-X25 + 32-^4 + 025X 1251 <4解:原式=4X25-H-K25+32 + 4 + - -^4 +0 25x4 X31= W0+5+8 + -+31=144 丄。
7 72. 约分法2^4><6 + 7>< 14^21根据宀十占〔其帕 礙梆,在计算若干个分数之眄郎「丄丄亠丄r/J2 6 12 20 30 42原式二4995例7在自然数1〜100中找出10个不同的数,使这10个数的倒数的和等于1 分析与解:这道题看上去比较复杂,要求10个分子为1,而分母不同的分数的和零于1,似乎无从下手。
但是如果巧埔“丄-亠・丁―"来做, n n + I n(n * 1)就非常简单了。
因为日 +卜卜卜 卜卜卜卜…,所以可根据题中所求,添上11111111 11 ------ 十 ----------- 十 --------十 --- 十 --- ----- 十 --- + ----- + ----- 叶 —1^2 2x3 3X4 <4x5 5^6 6 逐7 7xS Sx9 9敦10 1011111111112 6 12 20 30 42 56 72 90 10所求的 10 个数是 2,6,12,20,30,42,56,72,90,10。
(完整版)小学数学奥数基础教程(六年级)目30讲全
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学奥数基础教程(六年级)
本教程共30讲
分数运算的技巧
对于分数的混合运算,除了掌握常规的四则运算法则外,还应该掌握一些特殊的运算技巧,才能提高运算速度,解答较难的问题。
1.凑整法
与整数运算中的“凑整法”相同,在分数运算中,充分利用四则运算法则和运算律(如交换律、结合律、分配律),使部分的和、差、积、商成为整数、整十数……从而使运算得到简化。
2.约分法
3.裂项法
若能将每个分数都分解成两个分数之差,并且使中间的分数相互抵消,则能大大简化运算。
例7在自然数1~100中找出10个不同的数,使这10个数的倒数的和等于1。
分析与解:这道题看上去比较复杂,要求10个分子为1,而分母不同的
就非常简单了。
括号。
此题要求的是10个数的倒数和为1,于是做成:
所求的10个数是2,6,12,20,30,42,56,72,90,10。
的10和30,仍是符合题意的解。
4.代数法
5.分组法
分析与解:利用加法交换律和结合律,先将同分母的分数相加。
分母为n的分数之和为
原式中分母为2~20的分数之和依次为
练习3
8.在自然数1~60中找出8个不同的数,使这8个数的倒数之和等于1。
答案与提示练习3
1.3。
8.2,6, 8, 12, 20, 30, 42, 56。
9.5680。
解:从前向后,分子与分母之和等于2的有1个,等于3的有2个,等于4的有3个人……一般地,分子与分母之和等于n的有(n-1)个。
分子与分母之和小于9+99=108的有1+2+3+…+106=5671(个),
5671+9=5680(个)。