小学数学奥数基础教程(六年级)--15
15《小学奥数六年级竞赛必考章节精讲共36讲·小升初必备》-第15讲15讲计数综合1
15讲计数综合1内容概述将关键的已知数据看作变量,得到一类结构相同的计数问题,通过建立这些问题的结果所构成数列的递推关系,逐步地求得原问题的答案.与分数、几何等相关联的计数综合题.典型问题1.一个长方形把平面分成两部分,那么3个长方形最多把平面分成多少部分?【分析与解】一个长方形把平面分成两部分.第二个长方形的每一条边至多把第一个长方形的内部分成2部分,这样第一个长方形的内部至多被第二个长方形分成五部分.同理,第二个长方形的内部至少被第一个长方形分成五部分.这两个长方形有公共部分(如下图,标有数字9的部分).还有一个区域位于两个长方形外面,所以两个长方形至多把平面分成10部分.第三个长方形的每一条边至多与前两个长方形中的每一个的两条边相交,故第一条边被隔成五条小线段,其中间的三条小线段中的每一条线段都把前两个长方形内部的某一部分一分为二,所以至多增加3×4=12个部分.而第三个长方形的4个顶点都在前两个长方形的外面,至多能增加4个部分.所以三个长方形最多能将平面分成10+12+4=26.2.一个楼梯共有10级台阶,规定每步可以迈1级台阶或2级台阶,最多可以迈3级台阶.从地面到最上面1级台阶,一共可以有多少种不同的走法?【分析与解】我们知道最后一步可以迈1级台阶、2级台阶或3级台阶,也就是说可以从倒数第1、2或3级台阶直接迈入最后一级台阶.即最后一级台阶的走法等于倒数第1、2和3级台阶的走法和.而倒数第l级台阶的走法等于倒数第2、3和4级台阶的走法和,……如果将1、2、3……级台阶的走法依次排成一个数列,那么从第4项开始,每一项等于前3项的和.有1,2,3级台阶的走法有1,2,4种走法,所以4,5,6,7,8,9,10级台阶的走法有7,13,24,44,81,149,274种走法.3.一个圆上有12个点A1,A2,A3,…,A11,A12.以它们为顶点连三角形,使每个点恰好是一个三角形的顶点,且各个三角形的边都不相交.问共有多少种不同的连法?【分析与解】我们采用递推的方法.I如果圆上只有3个点,那么只有一种连法.Ⅱ如果圆上有6个点,除A1点所在三角形的三顶点外,剩下的三个点一定只能在A1所在三角形的一条边所对应的圆弧上,表1给出这时有可能的连法.Ⅲ如果圆上有9个点,考虑A1所在的三角形.此时,其余的6个点可能分布在:①A1所在三角形的一个边所对的弧上;②也可能三个点在一个边所对应的弧上,另三个点在另一边所对的弧上.在表2中用“+”号表示它们分布在不同的边所对的弧.如果是情形①,则由Ⅱ,这六个点有三种连法;如果是情形②,则由①,每三个点都只能有一种连法.共有12种连法.Ⅳ最后考虑圆周上有12个点.同样考虑A1所在三角形,剩下9个点的分布有三种可能:①9个点都在同一段弧上:②有6个点是在一段弧上,另三点在另一段弧上;③每三个点在A1所在三角形的一条边对应的弧上.得到表3.共有12×3+3×6+1=55种.所以当圆周上有12个点时,满足题意的连法有55种.4.现在流行的变速自行车,在主动轴和后轴分别安装了几个齿数不同的齿轮.用链条连接不同搭配的齿轮,通过不同的传动比获得若干挡不同的车速.“希望牌”变速自行车主动轴上有3个齿轮,齿数分别是48,36,24;后轴上有4个齿轮,齿数分别是36,24,16,12.问:这种变速车一共有多少挡不同的车速?【分析与解】算出全部的传动比,并列成表:这里有4对传动比是相同的:1,32,2,3,将重复的传动比去掉,剩下8个不同的比,所以共有8挡不同的车速.5.分子小于6,分母小于60的不可约真分数有多少个?【分析与解】 分子的取值范围是从1到5.当分子为1时,分母可从2到59,共有58个真分数,它们当然都是不可约分数. 由于2,3,5都是质数,因此当分子分别为2,3,5时,分母必须而且只需适合下列两个条件:①分母大于分子且小于60.⑦分母不是分子的倍数.易知:当分子为2时,适合条件的分母有29个;当分子为3时,适合条件的分母有38个:当分子为5时,适合条件的分母有44个;最后来看分子为4的情形,与分子为2基本相同,分母不能为偶数,此外分母不能为3.所以共有28(=29—1)个.总之,符合要求的分数共有58+29+38+44+28=197个.6.一个正方形的内部有1996个点,以正方形的4个顶点和内部的1996个点为顶点,将它剪成一些三角形.问:一共可以剪成多少个三角形?如果沿上述这些点中某两点之间所连的线段剪开算作一刀,那么共需剪多少刀?【分析与解】方法一:如下图,采用归纳法,列出1个点、2个点、3个点…时可剪出的三角形个数,需剪的刀数.不难看出,当正方形内部有n个点时,可以剪成2n+2个三角形,需剪3n+l刀,现在内部有1996个点,所以可以剪成2×1996+2=3994个三角形,需剪3×1996+1=5989刀.方法二:我们知道内部一个点贡献360度角,原正方形的四个顶点共贡献了360度角,所以当内部有n个点时,共有360n+360度角,而每个三角形的内角和为180度角,所以可剪成(360n+360)÷180=2n+2个三角形.2n+2个三角形共有3×(2n+2)=6n+6条边,但是其中有4条是原有的正方形的边,所以正方形内部的三角形边有6n+6—4=6n+2条边,又知道每条边被2个三角形共用,即每2条边是重合的,所以只用剪(6n+2)÷2=3n+1刀.本题中n=1996,所以可剪成3994个三角形,需剪5989刀.7.如图15—3,某城市的街道由5条东西与7条南北向马路组成.现在要从西南角的A处沿最短路线走到东北角的B处,由于修路十字路口C不能通过,那么共有多少种不同走法?【分析与解】因为每个路口(点)只能由西边相邻点、南边相邻点走过来,所以达到每个点的走法为西边相邻点、南边相邻点的走法之和,并且最南方一排、最西方一排的所有点均只有1种走法.因为C点不能通过,所以C处所标的数字为0.如下图所示:所以,从A到B满足条件的走法共有120种8.经理将要打印的信件交给秘书,每次给一封,且放在信封的最上面,秘书一有空就从最上面拿一封信来打.有一天共有9封信打,经理按第1封,第2封,…,第9封的顺序交给秘书.午饭时,秘书告诉同事,已把第8封信打印好了,但未透露上午工作的其他情况,这个同事很想知道是按什么顺序来打印.根据以上信息,下午打印的信的顺序有多少种可能?(没有要打的信也是一种可能)【分析与解】我们根据最后一封信来计数:(1)第9封信在上午送给秘书;于是,T={1,2,3,4,5,6,7,9}则下午打印的每种可能都是T的一个子集,因为秘书可以把不在子集中的信件上午一送来就打完了,而未打别的信.集T有8个元素,故有28=256个不同子集(包括空集).(2)第9封信在午后才送给秘书.令S={1,2,3,4,5,6,7},则上午未打印的信的号码是S的一个子集.若将9排在子集之后,则与⑴中的情形相同,故只有子集中至少有一封信已把号码9放在该子集的非最后的位置上.对于有k个元素的子集,号码9有k个位置可放,即可放在第i一1个元素之后和i个元素之前,i=1,2,…,k.于是不同的顺序总数为:0×C07+1×C17+2×C27+…+7×C77=7×27÷2=7×26=448即下午有448种可能的打印顺序.所以,下午共有256+448=704种打印的方法.。
小学六年级奥数第15讲 比的应用(二)(含答案分析)
第15讲 比的应用(二)一、知识要点比是反映数量关系的一种常见形式,也是解数学题的一种重要工具,有了它,我们处理倍数关系、解答分数应用题就方便灵活得多。
在这一讲,我们讲探讨稍复杂的比是应用题。
二、精讲精练【例题1】甲、乙两个学生放学回家,甲要比乙多走51的路,而乙走的时间比甲少111,求甲、乙两人速度的比。
练习1:1、小明和小芳各走一段路。
小明走的路程比小芳多51,小芳用的时间比小明多81。
求小明和小芳速度的比。
2、甲走的路程比乙多31,乙用的时间比甲多41。
求甲、乙的速度比。
3、一个人步行每小时走5千米,如果骑自行车每1千米比步行少用8分钟。
这个人骑自行车的速度和步行速度的比是多少?【例题2】制造一个零件,甲需6分钟,乙需5分钟,丙需4.5分钟。
现在有1590个零件的制造任务分配给他们三个人,要求在相同的时间内完成,每人应该分配到多少个零件?练习2:1、加工一个零件,甲需3分钟,乙需3.5分钟,丙需4分钟。
现在有1825个零件需要甲、乙、丙三人加工。
如果规定用同样的时间完成任务,那么各应加工多少个?2、加工某种零件要三道工序,专做第一、二、三道工序的工人每小时分别能完成零件48个,32个,28个,现有118名工人,要使每天三道工序完成的零件个数相同,每道工序应安排多少工人?【例题3】两个服装厂一个月内生产服装的数量是6:5,两厂西服价格的比是11:10。
已知两厂这个月内总产值为6960万元。
两厂的产值各是多少万元?练习3:1、甲、乙两个长方形长的比是4:5,宽的比是3:2,面积的和是242平方厘米。
求甲、乙两个长方形的面积分别是多少平方厘米?2、苹果和梨的单价的比是6:5,王大妈买的苹果和梨的重量的比是2:3,共花去18元。
王大妈买苹果和梨各花了多少元?【例题4】A、B两种商品的价格比是7:3。
如果它们的价格分别上涨70元,它们的价格比就是7:4,这两种商品原来的价格各是多少元?练习4:用两种思路解答下列应用题:1、甲、乙两个建筑队原有水泥重量的比是4:3。
小学数学6年级培优奥数讲义 第15讲-抓“不变量”解题(教师版)
第15讲抓“不变量”解题教学目标掌握“总量不变”,“相差量不变”和“部分量不变”三种不变量思想,并能用不变量思想解决现实生活中的问题。
知识梳理一个数量的变化,往往会引起其他数量的变化。
如“某班转走3名女生”,女生人数变了,总人数也跟着变了,男生与女生、女生与总人数之间的倍数关系也变了……只有注意到这些变化,才能防止出错。
但在这些数量变化时,与它们相关的另外一些数量却没有改变。
在分析数量关系时,这种不变量常常会起到非常重要的作用。
抓住不变量进行思考,可以顺利解答一些经典的应用题,能达到事半功倍的效果。
根据不变量的不同,可以将“量不变”应用题分为三种类型:“总量不变”应用题、“相差量不变”应用题和“部分量不变”应用题。
典例分析考点一:总量不变题中两个变化的量中,一个量在增加,另一个量减少,但是增加的和减少的同样多,所以两个量的总和保持不变。
解题时,一般把两个量的总和看作单位“1”或者把其中一个量看作是1倍的量。
例1、有一个书架,上层与下层书的数量比是7:8,现从上层拿10本给下层,这时上层与下层的数量比是8:7,求原来上、下层各有多少本?【解析】这道题上下层都发生了变化,但总数量不变,可把总数量看作单位“1”,抓住总数量不变,根据上层与下层的数量比是7:8知上层占总数的7/15,又根据上层与下层的数量比是8:7,知上层占总数的8/15,列式:10÷(8/15-7/15)=150(本),150本为总数量,150÷(7+8)=10(本)7×10=70(本)8×10=80(本)。
例2、小丽有故事书108本,小芳有故事书140本,小芳借了若干本故事书给小丽后,小丽的故事书的本数是小芳的3倍。
问小芳借了多少本故事书给小丽?【解析】小芳借了若干本故事书给小丽前后,小芳和小丽拥有故事书的本数都发生了变化,但两人拥有故事书的总本数不变,这是本题解题的关键。
即(108+140)本就是小芳现有故事书的本数的(3+1)倍,因此小芳现有故事书的本数是(108+140) ÷(3+1)=62本,所以小芳借给小丽故事书的本数是140-62=78(本)。
最新小学数学奥数基础教程(六年级)目30讲全[1]
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
小学数学奥数基础教程(六年级)目30讲全无答案
第一讲分数的大小比较同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
也就是说,6.借助第三个数进行比较。
有以下几种情况:(2)对于分数m和n,若m-k>n-k,则m>n。
前一个差比较小,所以m<n。
(3)对于分数m和n,若k-m<k-n,则m>n。
注意,(2)与(3)的差别在于,(2)中借助的数k小于原来的两个分数m和n;(3)中借助的数k大于原来的两(4)把两个已知分数的分母、分子分别相加,得到一个新分数。
新分数一定介于两个已知分数之间,即比其中一个分数大,比另一个分数小。
利用这一点,当两个已知分数不容易比较大小,新分数与其中一个已知分数容易比较大小时,就可以借助于这个新分数。
比较分数大小的方法还有很多,同学们可以在学习中不断发现总结,但无论哪种方法,均来源于:“分母相同,分子大的分数大;分子相同,分母小的分数大”这一基本方法。
小学数学奥数基础教程(六年级)目30讲全[1]
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
苏教版小学数学奥数基础教程(六年级)
一、拓展提优试题1.如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.2.(15分)一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的倍,求切割成小正方体中,棱长为1的小正方体的个数?3.已知三个分数的和是,并且它们的分母相同,分子的比是2:3:4.那么,这三个分数中最大的是.4.从12点整开始,至少经过分钟,时针和分针都与12点整时所在位置的夹角相等.(如图中的∠1=∠2).5.若三个不同的质数的和是53,则这样的三个质数有组.6.被11除余7,被7除余5,并且不大于200的所有自然数的和是.7.如图,圆P的直径OA是圆O的半径,OA⊥BC,OA=10,则阴影部分的面积是.(π取3)8.如图,一个直径为1厘米的圆绕边长为2厘米的正方形滚动一周后回到原来的位置.在这个过程中,圆面覆盖过的区域(阴影部分)的面积是平方厘米.(π取3)9.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.10.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是.11.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.12.甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票张.13.等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.14.将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a=.15.张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.16.请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是.17.若(n是大于0的自然数),则满足题意的n的值最小是.18.如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于.19.王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距千米.20.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.21.如图,正方形ABCD和EFGH分别被互相垂直的直线分为两个小正方形和两个矩形,小正方形的面积的值已标在图中,分别为20和10,18和12,则正方形ABCD和EFGH中,面积较大的正方形是.22.张阿姨和李阿姨每月的工资相同,张阿姨每月把工资的30%存入银行,其余的钱用于日常开支,李阿姨每月的日常开支比张阿姨多10%,余下的钱也存入银行,这样过了一年,李阿姨发现,她12个月存入银行的总额比张阿姨少了5880元,则李阿姨的月工资是元.23.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.24.A、B、C、D四个箱子中分别装有一些小球,现将A箱中的部分小球按如下要求转移到其他三个箱子中:该箱中原有几个小球,就再放入几个小球,此后,按照同样的方法依次把B、C、D箱中的小球转移到其他箱子中,此时,四个箱子都各有16个小球,那么开始时装有小球最多的是箱,其中装有小球个.25.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.26.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.27.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.28.若A、B、C三种文具分别有38个,78和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人.29.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?30.若算式(□+121×3.125)÷121的值约等于3.38,则□中应填入的自然数是.31.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.32.从五枚面值为1元的邮票和四枚面值为1.60元的邮票中任取一枚或若干枚,可组成不同的邮资种.33.王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是19,那么王老师在黑板上共写了39个数,擦去的两个质数的和最大是.34.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.35.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.36.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.37.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了件.38.如图,已知AB=40cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是cm2.(π取3.14)39.若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N,则N最小是.40.一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是.【参考答案】一、拓展提优试题1.解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.2.解:大正方体表面积:6×6×6=216,体积是:6×6×6=216,切割后小正方体表面积总和是:216×=720,假设棱长为5的小正方体有1个,那么剩下的小正方体的棱长只能是1,个数是:(63﹣53)÷13=91(个),这时表面积总和是:52×6+12×6×91=696≠720,所以不可能有棱长为5的小正方体.(1)同理,棱长为4的小正方体最多为1个,此时,不可能有棱长为3的小正方体,剩下的只能是切割成棱长为2的小正方体或棱长为1的小正方体,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,则解得:(2)棱长为3的小正方体要少于(6÷3)×(6÷3)×(6÷3)=8个,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,棱长为3的小正方体有c个,化简:由上式可得:b=9c+24,a=,当c=0时,b24=,a=24,当c=1时,b=33,a=19.5,(不合题意舍去)当c=2时,b=42,a=15,当c=3时,b=51,a=10.5,(不合题意舍去)当c=4时,b=60,a=6,当c=5时,b=69,a=28.5,(不合题意舍去)当c=6时,b=78,a=﹣3,(不合题意舍去)当c=7时,a=负数,(不合题意舍去)所以,棱长为1的小正方体的个数只能是:56或24或42或60个.答:棱长为1的小正方体的个数只能是:56或24或42或60个.3.解:==,答:这三个分数中最大的一个是.故答案为:.4.解:设所走的时间为x小时.30x=360﹣360x3x+360x=360﹣30x+360390x=360x=小时=55分钟.故答案为:55.5.解:53以内的质数有:2、3、5、7、11,13,17,19,23,29,31,37,41,43,47,51,53;若三个不同的质数的和是53,可以有以下几组:(1)3,7,43;(2)3,31,19;(3)3,37,13;(4)5,11,37;(5)5,7,41;(6)5,17,31;(7)5,19,29;(8)7,17,29;(9)11,13,29;(10)11,23,19;(11)13,17,23;所以这样的三个质数有11组.故答案为:11.6.解:不大于200的所有自然数被11除余7的数是:18,29,40,62,73,84,95,106,117,128,139,150,161,172,183,194;不大于200的所有自然数被7除余5的是:12,19,26,33,40,47,54,61,68,75…;同时被11除余7,被7除余5的最小数是40,[11,7]=77,依次是117、194;满足条件不大于200的所有自然数的和是:40+117+194=351.故答案为:351.7.解:3×102÷2﹣3×(10÷2)2=3×100÷2﹣3×25=150﹣75=75答:阴影部分的面积是75.故答案为:75.8.解:2×1×4+3×12=8+3=11(平方厘米)答:阴影部分的面积是11平方厘米.故答案为:11.9.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.10.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.由题意得方程组,解方程组得,所以△ABC与△DEF的面积和是:AB•CM+DE•FN=×2×8+×5×6=8+15=23.故答案为:23.11.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.12.解:5÷()=5=45(张)答:两人共有邮票 45张.故答案为:45.13.解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.14.解:依题意可知:根据浓度是十字交叉法可知:浓度差的比等于溶液质量比即1:3=100:a,所以a=300克故答案为:30015.解:依题意可知:分针开始落后时针共格;后来分针领先格,路程差为格.锻炼身体的时间为:=40(分);故答案为:40.16.解:设这个数是a,[(a+5)×2﹣4]÷2﹣a=[2a+6]÷2﹣a=a+3﹣a=3,故答案为:3.17.解:当n=1时,不等式左边等于,小于,不能满足题意;当n=2时,不等式左边等于+==,小于,不能满足题意;同理,当n=3时,不等式左边大于,能满足题意;所以满足题意的n的值最小是3.故答案是:318.解:如图,设D的面积为x,9:12=15:x9x=12×15x=x=20答:第4个角上的小长方形的面积等于20.故答案为:20.19.解:已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=50千米/小时;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时.设总路程为x千米,得:(x×+x×)﹣(x×+x×)=x﹣x=x=x=330答:王老师家与A地相距330千米.故答案为:330.20.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.21.解:小正方形的面积之和为30时,两正方形的面积差最小,则大正方形的面积越大,即EFGH的面积较大;故答案为:EFGH.22.解:(1﹣30%)×(1+10%)=70%×110%,=77%;5880÷12÷[30%﹣(1﹣77%)]=490÷[30%﹣23%],=490÷7%,=7000(元).即李阿姨的月工资是 7000元.故答案为:7000.23.解:设A、B两校的男生、女生人数分别为8a、7a、30b、31b,由题意得:(8a+30b):(7a+31b)=27:26,27×(7a+31b)=26×(8a+30b),189a+837b=208a+780b,837b﹣780b=208a﹣189a,57b=19a,所以a=3b,所以A、B两校合并前人数的比是:(8a+7a):(30b+31b),=15a:61b,=45b:61b,=(45b÷b):(61b÷b)=45:61;答:A,B两校合并前人数比是45:61.故答案为:45:61.24.解:根据最后四个箱子都各有16个小球,所以小球总数为16×4=64个,最后一次分配达到的效果是,从D中拿出一些小球,使A、B、C中的小球数翻倍,则最后一次分配前,A、B、C中各有小球16÷2=8个,由于小球的转移不改变总数,所以最后一次分配前,D中有小球64﹣8﹣8﹣8=40个;于是得到D被分配前的情况:A8,B8,C8,D40;倒数第二次分配达到的效果是,从C中拿出一些小球,使A、B、D中的小球数翻倍,则倒数第二次分配前,A、B中各有小球8÷2=4个,D中有40÷2=20个,总数不变,所以最后一次分配前,C中有小球64﹣4﹣4﹣20=36个,于是得到C被分配前的情况:A4,B4,C36,D20,同样的道理,在B被分配前,A中有小球4÷2=2个,C中有小球36÷2=18个,D中有小球20÷2=10个,B中有小球64﹣2﹣18﹣10=34个,即B被分配前的情况:A2,B34,C18,D10;再推导一次,在A被分配前,B中有小球34÷2=17个,C中有小球18÷2=9个,D中有小球10÷2=5个,B中有小球64﹣17﹣9﹣5=33个,即A被分配前的情况:A33,B17,C9,D5;而A被分配前的情况,就是一开始的情况,所以一开始,A箱子装有最多的小球,数量为33个;答:开始时装有小球最多的是A箱,其中装有33小球个;故答案为:A,33.25.解:4=2×2,2+2=4,所以4是史密斯数;32=2×2×2×2×2;2+2+2+2+2=10,而3+2=5;10≠5,32不是史密斯数;58=2×29,2+2+9=13=13;所以58是史密斯数;65=5×13;5+1+3=9;6+5=11;9≠11,65不是史密斯数;94=2×472+4+7=13=9+4;所以94是史密斯数.史密斯数有4,58,94一共是3个.故答案为:3.26.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.27.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.28.解:38﹣2=36(个)78﹣6=72(个)128﹣20=108(个)36、48和108的最大公约数是36,所以学生最多有36人.故答案为:36.29.解:依题意可知:玫瑰与康乃馨和百合的枝数化连比为:10:15:3;购买一份比例的价格为:3×20+15×6+15×10=300;正好是1倍关系.答:购买玫瑰10枝,康乃馨15枝,百合3枝.30.解:令□=x,那么:(x+121×3.125)÷121,=(x+121×3.125)×,=x+121×3.125×,=x+3.125;x+3.125≈3.38,x≈0.255,0.255×121=30.855;x=30时,x=×30≈0.248;x=31时,x=×31≈0.255;当x=31时,运算的结果是3.38.故答案为:31.31.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.32.解:根据分析可得:6×5﹣1=29(种);答:可组成不同的邮资29种.故答案为:29.33.解:由剩下的数的平均数是19,即得最大的数约为20×2=40个,又知分母是9,所以剩下的数的个数必含因数9,则推得剩余36个数.原写下了1到39这39个数;剩余36个数的和:19×36=716,39个数的总和:(1+39)×39÷2=780,擦去的三个数总和:780﹣716=64,根据题意,推得擦去的三个数中最小是1,那么两个质数和63=61+2能够成立,61>39不合题意;如果擦去的另一个数是最小的合数4,64﹣4=6060=29+31=23+37,成立;综上,擦去的两个质数的和最大是60.故答案为:39,60.34.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.35.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.36.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.37.解:189=3×3×3×7=27×7147=3×7×7=21×7正好是27×7=189中把27看成21×7=147所以这种商品的实际单价是21元,卖了7件.故答案为:21,7.38.解:40÷2=20(厘米)20÷2=10(厘米)3.14×202﹣3.14×102÷2×4=1256﹣628=628(平方厘米)答:阴影部分的面积是628平方厘米.故答案为:628.39.解:根据分析,先分解质因数9=3×3,8=2×2×2,6=2×3,故有:9×8×7×6×5×4×3×2×1=(3×3)×(2×2×2)×7×(3×2)×5×(2×2)×3×2×1,所以可变换为:9×8×7÷6×5÷4÷3×2×1=70,此时N最小,为70,故答案是:70.40.解:商是10,除数最大是9,余数最大是8,9×10+8=98;被除数最大是98.故答案为:98.。
小学六年级数学奥数基础教程(30讲)
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
小学奥数讲义6年级-15-计数综合-难版
对枚举计数、加法乘法原理、排列组合以及几何计数的综合复习。
枚举法【例1】★数一数,下图中有多少个三角形。
【解析】图中的三角形形状、大小都不相同,位置也很凌乱,不好数清楚。
为了避免数数过程中的遗漏或重复,我们将图形的各部分编上号(见右图),然后按照图形的组成规律,把三角形分成单个的、由两部分组成的、由3部分组成的……再一类一类地列举出来。
单个的三角形有6个:1 ,2,3,5,6,8。
由两部分组成的三角形有4个:(1,2),(2,6),(4,6),(5,7)。
由三部分组成的三角形有1个:(5,7,8)。
由四部分组成的三角形有2个:(1,3,4,5),(2,6,7,8)。
典型例题知识梳理由八部分组成的三角形有1个:(1,2,3,4,5,6,7,8)。
总共有6+4+1+2+1=14(个)。
【小试牛刀】一条铁路,共有10个车站,如果每个起点站到终点站只用一种车票(中间至少相隔5个车站),那么这样的车票共有多少种?【解析】我们可以利用列举的方法:如果起点站是1,那么终点站只能是7、8、9或10;如果起站站是2,那么终点站只能是8、9或10;如果起点站是3,那么终点站只能是9或10;如果起点站是4,终点站只能是10;如果起点站是5、6时,就找不到与它至少相隔5站的终点站了;如果起点站是7,终点站只能是1;如果起点站是8,那么终点站是2或1;如果起点站是9,那么终点站是3、2或1;如果起点站是10,那么终点站是4、3、2或1。
所以,起点到终点至少相隔5个车站的车票有: 4+3+2+1+0+0+1+2+3+4=20种。
【例2】★在算盘上,用两颗珠子可以表示多少个不同的四位数?【解析】上珠一个表示5,下珠一个表示1。
分三类枚举:(1)两颗珠都是上珠时,可表示5005,5050,5500三个数;(2)两颗珠都是下珠时,可表示1001,1010,1100,2000四个数;(3)一颗上珠、一颗下珠时,可表示5001,5010,5100,1005,1050,1500,6000七个数。
(完整版)小学数学奥数基础教程(六年级)目30讲全
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
小学奥数课程(1-15讲)
第一讲:乘法例1:解答:56×4=例2:解答:3×42= 把42分拆成40和2例3:解答:4×329=例4:有9箱货物(重量如下所示),你能想个好办法计算出结果吗?123kg 124kg 125kg133kg 134kg 135kg143kg 144kg 145kg例5:计算:73÷5 (被除数可以分拆成除数5的倍数50和23)73÷5=14…3 50÷5=1023÷5=4 (3)例6:王华在数学考试时,把一个数除以3错算成了乘3,结果得225,正确答案应该是多少?练习:1.用数卡①②③④⑤⑥⑦⑧⑨摆数(1)任选其中6张数卡,摆出2个三位数,使它们的差最大(2)任选其中6张数卡,摆出2个三位数,使它们的差最小(3)你发现了什么特征吗?2.小华在练习英文打字,5分钟打了450个字母,他平均每分钟打几个字母,照这样计算,10分钟能打多少个字母?(用两种方法解)3.☆7 7×△___________2 4 9 3☆,△各是多少?4.在□里填上适当的数(1)□□□(2)□□ 7× 8 ×□__________ ___________5 2 3 2 2 7 8 5(3) 45÷□=□...3 (4) 51÷□=□ (3)5.从4-9这六个数中选出不同的数字填入□中,使得到的商最接近200。
□□□÷□6.在□中填上合适的数7.一个数与自己本身相乘相除,所得的积与商相乘结果为100,这个数是多少?第二讲:运算定律二、例题例3 4821-998 例4 4×125×25×8例5 125×(8+10)例6 9123-(123+88)例7 124×83+83×176例8 9999×1001例9 136--(36--18)例10 269+(31—17)练习:1、2105-769-2312、585-438+15-623、32×125×73+732+2684、425-2217-7835、38+137+62+12636、(1528+2899)+20727、1245-135-65 8、2132-(632+83)9、7755-(2187+755) 10、3065-738-106511、1883-398 12、(13×125)×(3×8)第三讲:乘法应用题知识要点:理解1.求几个相同数的和的问题可用乘法计算。
小学数学奥数基础教程30讲(6年级)
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
小学数学奥数基础教程(六年级)目30讲全
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学奥数基础教程(六年级) --第15讲
本教程共30讲
棋盘的覆盖
同学们会下棋吗?下棋就要有棋盘,下面是中国象棋的棋盘(图1),围棋棋盘(图2)和国际象棋棋盘(图3)。
用某种形状的卡片,按一定要求将棋盘覆盖住,就是棋盘的覆盖问题。
实际上,这里并不要求一定是某种棋盘,只要是有关覆盖若干行、若干列的方格网的问题,就是棋盘的覆盖问题。
棋盘的覆盖问题可以分为两类:一是能不能覆盖的问题,二是有多少种不同的覆盖方法问题。
例1要不重叠地刚好覆盖住一个正方形,最少要用多少个右图所示的图形?
分析与解:因为图形由3个小方格构成,所以要拼成的正方形内所含的小方格数应是3的倍数,从而正方形的边长应是3的倍数。
经试验,不可能拼成边长为3的正方形。
所以拼成的正方形的边长最少是6(见右图),需要用题目所示的图形
36÷3= 12(个)。
分析与解:在五年级学习“奇偶性”时已经讲过类似问题。
左上图共有34个小方格,17个1×2的卡片也有34个小方格,好象能覆盖住。
我们将左上图黑白相间染色,得到右上图。
细心观察会发现,右上图中黑格有16个,白格有18个,而1×2的卡片每次只能盖住一个黑格与一个白格,所以17个1×2的卡片应当盖住黑、白格各17个,不可能盖住左上图。
例3 下图的七种图形都是由4个相同的小方格组成的。
现在要用这些图形拼成一个4×7的长方形(可以重复使用某些图形),那么,最多可以用上几种不同的图形?
分析与解:先从简单的情形开始考虑。
显然,只用1种图形是可以的,例如用7个(7);用2种图形也没问题,例如用1个(7),6个(1)。
经试验,用6种图形也可以拼成4×7的长方形(见下图)。
能否将7种图形都用上呢?7个图形共有4×7=28(个)小方格,从小方格的数量看,如果每种图形用1个,那么有可能拼成4×7的长方形。
但事实上却拼不成。
为了说明,我们将4×7的长方形黑、白相间染色(见右图),图中黑、白格各有14个。
在7种图形中,除第(2)种外,每种图形都覆盖黑、白格各2个,共覆盖黑、白格各12个,还剩下黑、白格各2个。
第(2)种图形只能覆盖3个黑格1个白格或3个白格1个黑格,因此不可能覆盖住另6种图形覆盖后剩下的2个黑格2个白格。
综上所述,要拼成 4×7的长方形,最多能用上 6种图形。
例4 用1×1,2×2,3×3的小正方形拼成一个11×11的大正方形,最少要用1×1的正方形多少个?
分析与解:用3个2×2正方形和2个3×3正方形可以拼成1个5×6的长方形(见左下图)。
用4个5×6的长方形和1 个 1×1的正方形可以拼成 1个11×11的大正形(见右下图)。
上面说明用1个1×1的正方形和若干2×2,3×3的正方形可以拼成11×11的大正方形。
那么,不用1×1的正方形,只用2×2,3×3的正方形可以拼成11×11的正方形吗?
将11×11的方格网每隔两行染黑一行(见下页右上图)。
将2×2
或3×3的正方形沿格线放置在任何位置,都将覆盖住偶数个白格,所以无论放置多少个2×2或3×3的正方形,覆盖住的白格数量总是偶数个。
但是,右图中的白格有11×7=77(个),是奇数,矛盾。
由此得到,不用1×1的正方形不可能拼成11×11的正方形。
综上所述,要拼成11×11的正方形,至少要用1个1×1的小正方形。
例5用七个1×2的小长方形覆盖下图,共有多少种不同的覆盖方法?
分析与解:盲目无章的试验,很难搞清楚。
我们采用分类讨论的方法。
如下图所示,盖住A所在的小格只有两种情况,其中左下图中①②两个小长方形只能如图覆盖,其余部分有4种覆盖方法:右下图中①②③三个小长方形只能如图覆盖,其余部分有3种覆盖方法。
所以,共有7种不同覆盖方法。
例6有许多边长为1厘米、2厘米、3厘米的正方形硬纸片。
用这些硬纸片拼成一个长5厘米、宽3厘米的长方形的纸板,共有多少种不同的拼法?(通过旋转及翻转能相互得到的拼法认为是相同的拼法)
解:有一个边长3厘米纸片有如下3种拼法:
有两个边长2厘米纸片的有如下4种拼法:
有一个边长2厘米及11个边长1厘米纸片的有2种拼法,边长全是1 厘米纸片的有1种拼法。
共有不同的拼法3+4+2+1=10(种)。
答:共有10种不同的拼法。
练习15
在不重叠的情形下,不能再在正方形中多放一个这样的卡片?(要求卡片的边缘与格线重合)
4.小明有8张连在一起的电影票(如右图),他自己要留下4张连在一起的票,其余的送给别人。
他留下的四张票可以有多少种不同情况?
5.有若干个边长为1、边长为2、边长为3的小正方形,从中选出一些拼成一个边长为4的大正方形,共有多少种不同拼法?(只要选择的各种小正方形的数目相同就算相同的拼法)
7.能不能用9个1×4的长方形卡片拼成一个6×6的正方形?
答案与提示练习15
1.3个。
提示:左下图是一种放法。
2.图(2)。
提示:图(1)的小方格数不是3的倍数;图(3)的小方格数是3的倍数但拼不成;图(2)的拼法见右上图。
3.不能。
提示:右图中黑、白格各18个,每张卡片盖住的黑格数是奇数,9张卡片盖住的黑格数之和仍是奇数,不可能盖住18个黑格。
4.25种。
提示:形如图(A)(B)(C)(D)的依次有3,10,6,6种。
5.6种。
解:用小正方形拼成边长为4的大正方形有6种情形:
(1)1个3×3,7个1×1;(2)1个2×2,12个1×1;
(3)2个2×2,8个1×1;(4)3个2×2,4个1×1;
(5)4个2×2;(6)16个1×1。
6.5种。
提示:盖住A有下图所示的5种方法,其中左下图所示的3种都无法覆盖;下中图中,①放好后,左下方和右上方各有2种放法,共有4种覆盖方法;右下图只有1种覆盖方法。
7.不能。
提示:用1,2,3,4对6×6棋盘中的小方格编号(见右图)。
一个1×4的矩形一次只能覆盖1,2,3,4号各一个,而1,2,3,4号数目不等,分别有9,10,9,8个。