气体传感器的技术分析及应用”

气体传感器的技术分析及应用”

气体传感器的技术分析及应用”

随着生活水平的提高和环保意识的加强,人们对各种有毒、有害气体的探测,对大气污染、工业废气的监控以及对食品和人居环境质量的检测都提了更高的要求,作为感官或信号输入部分之一的气体传感器在生产、生活中的作用日益凸显。

8月14日HOPE开放创新平台推出了“HOPE大家说”,邀请了来自德国的电化学气体传感器专家Peter Koller 博士与国内电化学气体传感器应用专家李德霞女士,分享了“气体传感器的技术分析及应用”,并与海尔各产业线上的优秀创客们,对气体传感器在各领域的应用上,进行了深度探讨。

气体传感器的发展历程

20世纪60年代Wickens和Hatman利用气体在电极上的氧化还原反应研制出了世界上第一个气体检测器,而后80年代年英国Persaud等人利用气体检测器模拟生物嗅觉,研发出了气体传感器的雏形。

20世纪初第一只半导体传感器于英国诞生,并一直在欧洲发展和应用,直到20世纪50年代半导体气体传感器技术才流传到日本,并由日本人把这项技术推进到了顶峰。而欧洲人在发现了半导体技术的种种不足后,开始研究其他传感器。气体传感器的理论直到上个世纪70年代才传入我国,80年代才进入研制阶段,整个技术主要继承于德国。

气体传感器的广泛应用

传感器是物联网应用的主干和关键要素。传感器作为通向现实世界的接口,是物联网中的关键“组成部分”,提供与压力、温度、位置、角度、时间、电流、电压等物理参数相对应的电子信号。而气体传感器则是传感器技术领域中重要门类之一,它包括半导体气体传感器、固体气体传感器、催化燃烧气体传感器、电化学气体传感器、光学气体传感器等(如表1),横跨了功能材料、电子陶瓷、光电子元器件、MEMS技术、纳米技术、有机高分子等众多基础和应用学科。

(表1:常用气体传感器的原理、应用场景及优缺点)

气体传感器发展方向的深度分析.

气体传感器发展方向的深度分析 近年来,由于在工业生产、家庭安全、环境监测和医疗等领域对气体传感器的精度、性能、稳定性方面的要求越来越高,因此对气体传感器的研究和开发也越来越重要。随着先进科学技术的应用,气体传感器发展的趋势是微型化、智能化和多功能化。深入研究和掌握有机、无机、生物和各种材料的特性及相互作用,理解各类气体传感器的工作原理和作用机理,正确选择各类传感器的敏感材料,灵活运用微机械加工技术、敏感薄膜形成技术、微电子技术、光纤技术等,使传感器性能最优化是气体传感器的发展方 向。新气敏材料与制作工艺的研究开发对气体传感器材料的研究表明,金属氧化物半导体材料Zn0,SIlo2,Fe203等己趋于成熟化,特别是在C比,C2H5OH,CO等气体检测方面。现在这方面的工作主要有两个方向:一是利用化学修饰改性方法,对现有气体敏感膜材料进行掺杂、改性和表面修饰等处理,并对成膜工艺进行改进和优化,提高气体传感器的稳定性和选择性;二是研制开发新的气体敏感膜材料,如复合型和混合型半导体气敏材料、高分子气敏材料,使得这些新材料对不同气体具有高灵敏度、高选择性、高稳定性。由于有机高分子敏感材料具有材料丰富、成本低、制膜工艺简单、易于与其它技术兼容、在常温下工作等优点,已成为研究的热点。新型气体传感器的研制用传统的作用原理和某些新效应,优先使用晶体材料(硅、石英、陶瓷等),采用先进的加工技术和微结构设计,研制新型传感器及传感器系统,如光波导气体传感器、高分子声表面波和石英谐振式气体传感器的开发与使用,微生物气体传感器和仿生气体传感器的研究。随着新材料、新工艺和新技术的应用,气体传感器的性能更趋完善,使传感器的小型化、微型化和多功能化具有长期稳定性好、使用方便、价格低廉等优点。气体传感器智能化随着人们生活水平的不断提高和对环保的日益重视,对各种有毒、有害气体的探测,对大气污染、工业废气的监测以及对食品和居住环境质量的检测都对气体传感器提出了更高的要求。纳米、薄膜技术等新材料研制技术的成功应用为气体传感器集成化和智能化提供了很好的前提条件。气体传感器将在充分利用微机械与微电子技术、计算机技术、信号处理技术、传感技术、故障诊断技术、智能技术等多学科综合技术的基础上得到发展。研制能够同时监测多种气体的全自动数字式的智能气体传感器将是该领域的重要研究方向。

半导体气体传感器的结构及原理

一、在博物馆文物、档案管理方面的运用 这是温湿度传感器应用的另一个领域。档案的纸张在温湿度适宜的条件可以多存放一些时间,而一旦温湿度条件遭到破坏纸张将要变脆,重要资料也将随之荡然无存,对档案馆进行温湿度记录是必要的,可以预防恶性事故的发生。使用温湿度传感器将使温湿度记录的工作得以简化,也将节约文物保管的成本,使这一工作得以科学化,不受到过多的人为因素的干扰。 二、在疫苗冷链中的运用 气体传感器主要针对于行业中的气体进行检测,在工业、电子、电力、化工、治金等行业中都有一定的应用。气体传感器的种类是比较多的,其中常用的主要有半导体式、接触燃烧方式、化学反应式、光干涉式、热传导式、红外线吸收散式等。而这当中以半导体气体传感器应用更为广泛。 半导体气体传感器由气敏部分、加热丝以及防爆网等构成,它是在气敏部分的sno2、fe2o2、zno2等金属氧化物中添加pt、pd等敏化剂的传感器。传感器的选择性由添加敏化剂的多少进行控制,例如,对于zno2系列传感器,若添加pt,则传感器对丙烷与异丁烷有较高的灵敏度;若添加pd,则对co与h2比较敏感。 气体传感器以陶瓷管为框架,外覆一层敏感膜的材料,利用膜两端的镀金引脚进行测量。敏感膜的材料最常用的有金属氧化物、高分子聚合物材料和胶体敏感膜等。它的两个关键部分是加热电阻和气体敏感膜。金电极连接气敏材料的两端,使其等效为一个阻值随外部待测气体浓度变化的电阻。由于金属氧化物有很高的热稳定性,而且这种传感器仅在半导体表面层产生可逆氧化还原反应,半导体内部化学结构不变,因此,长期使用也可获得较高的稳定性。 原理简介如下:金属氧化物一旦加热,空气中的氧就会从金属氧化物半导体结晶粒子的施主能级中夺走电子,而在结晶表面上吸附负电子,使表面电位增高,从而阻碍导电电子的移动,所以,气体传感器在空气中为恒定的电阻值。这时还原性气体与半导体表面吸附的氧发生氧化反应,由于气体分子的离吸作用使其表面电位高低发生变化,因此,传感器的电阻值要发生变化。对于还原性气体,电阻值减小;对于氧化性气体,则电阻值增大。这样,根据电阻值的变化就能检测气体的浓度。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/8d11992908.html,。

气体传感器介绍

气体传感器介绍 1气体传感器简介 1、稳定性 2、灵敏度 3、选择性 4、抗腐蚀性 2气体传感器分类 1气体传感器简介 气体传感器是电子鼻系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体浓度转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、作干燥或制冷处理、样品抽吸、甚至对样品进行化学处理以便化学传感器进行更快速的测量。 采样方法直接影响传感器的响应时间。目前,气体的采样方式主要是通过简单扩散法,或是将气体吸入检测器。简单扩散是利用气体天然向四处传播的特性。目标气体穿过探头内的传感器,产生一个正比于气体浓度的信号。由于扩散过程渐趋减慢,所以扩散法需要探头的位置非常接近于测量点。扩散法的一个优点是它将气体样本直接引入传感器而无需物理和化学变换。 样品吸入式探头通常用于采样位置接近处理仪器或排气管道的情况,这种技术可以为传感器提供一种速度可控的稳定气流,所以在气流大小和流速经常变化的情况下,这种方法较值得推荐。将测量点的气体样本引到测量探头可能经过一段距离,距离的长短主要是根据传感器的设计。但采样线较长会加大测量滞后时间,该时间是采样线长度和气体从泄漏点到传感器之间流动速度的函数。对于某 SiH以及大多数生物溶剂,气体和汽化物样品量可能会因种目标气体和汽化物如 4 为它们的吸附作用甚至凝结在采样管壁上而减少。 在任何情况下,探头及其内部气体传感器都必须能够检测某给定值以上的气体浓度,并发出报警信号;或者说,当气体浓度低于给定值时,探头不允许发出警报。经常误警会使人对传感器的可靠性产生怀疑,而忽略正确发出的警报,最终可能造成严重的后果。 在介绍气体传感器之前,有必要先对气体传感器的一些特性作一介绍:

气体传感器文献综述

` 气体传感器的发展概况 和发展方向 玛日耶姆·图尔贡 107551600545 Word文档

气体传感器的发展概况和发展方向 【摘要】本文对气体传感器进行分类,介绍了半导体型气体传感器、电阻型气体传感器、非电阻型气体传感器等几种常见气体传感器的特性、总结了这些气体传感器的工作原理,并阐述这几种气体传感器在日常生活及特殊场合中的应用及其选用时的原则。探讨了气体检测仪器在检测对象、检测围和检测方式上向小型化、智能化、多功能化和通用化等方面不断向前发展的方向。 【关键词】气体传感器;特性;应用;发展方向 一、前言 目前,随着人们环保意识的提高,环境问题日益受到政府和社会关注。环境问题变成了重要的民生问题,影响到人民生活幸福感,甚至环境问题严重威胁群众健康。 近年来生态环境污染状况日趋严重,各种工业废水,废气直接排入水体及空气,造成极为严重的环境污染。影响着人们的正常生活和生存发展,并导致环境污染的气体进行处理是十分急迫的问题。随着科学技术的发展,人们生活水平的提高,对气体传感器的需求已有所不同;同时,随着近年酸雨、温室效应、臭氧层破坏、环境污染等,严重影响了人类的健康和生存,这就给气体传感器提出了新的研究课题和增加了新的研究容和难度。检测气体的种类由原来的还原性气体(H2、 C4、 H10、 CH4等)扩展到毒性气体(CO、NO2、 H2S、NO、NH3、 PH3等)以及食品有关的气体(鱼、肉鲜度(CH3)3、醋酸乙脂等)[1]。气体传感器作为气体检测最基础的部分,为了满足这些需求,气体传感器必须具有较高的灵敏度和选择性,重复性和稳定性要好,而且能批量生产,性能价格要高等。 随着人们环保意识的增强以及各国对有毒气体排放和污染物排放方面的严格立法,各种气体传感器正在得到越来越广泛的应用。目前,随着生命科学、人工智能、材料科学等学科的发展,气体传感器的应用领域越来越广泛,在大气监测、食品工业、汽车尾气快速实时测定、有毒气体检测安全检查和航空航天等方面,越来越多地显示出气体传感器的重要作用[2]。 二、气体传感器的发展概况 2.1气体检测仪 气体检测仪是一种气体泄露浓度检测的仪器仪表工具,主要是指便携式/手持式气体检测仪。主要利用气体传感器来检测环境中存在的气体种类。气体检测的目的是分析各种气体混合物中各组分的含量或其中某一组分的含量。气体检测仪表一般由传感器、信号放大、处理单元、显示单元以及控制单元组成,其中传感器是最关键的部分。 2.2传感器 传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。传感器按其基本效应可分为:物理传感器,化学传感器,生物传感器。按检测对象,化学传感器分为气体传感器、湿度传感器、离子传感器。 物理传感器 传感器生物传感器气体传感器 化学传感器离子传感器 湿度传感器

各类气体传感器介绍

各类气体传感器介绍 一、引言 广义的说,传感器(Transducer或Sensor)是一种能把物理量或化学量转变成便于利用的电信号的器件或装置,在有些国家或科学领域,也将传感器称为变换器、检测器或探测器等。将物理量或化学量得变化转变成电信号是传感器的最终目的。 国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。国家标准GB 7765—87给传感器的定义是:能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。此处的可用输出信号,一般即指易于处理和传输的电信号。从这个角度也可以说传感器即为将非电信号转换成电信号的器件。当然,可以预料,将来的“可用信号201D或许是光信息或者是更先进、更实用的其他信息。 本文主要介绍气体传感器的工作原理及应用场合,并对气体传感器的发展方向进行一些介绍。 二、工作原理 传感器之所以具有能量信息转换的机能,在于它的工作机理是基于各种物理的、化学的和生物的效应,并受相应的定律和法则所支配。了解这些定律和法则,有助于我们对传感器本质的理解和对新效应传感器的开发。传感器工作物理基础的基本定律和法则有以下四种类型: (1)守恒定律。包括能量、动量、电荷量等守恒定律。这些定律,是我们探索、研制新型传感器时,或在分析、综合现有传感器时,都必须严格遵守的基本法则。 (2)场的定律。包括运动长的运动定律,电磁场的感应定律等,气相互作用与物体在空间的位置及分布状态有关。一半可由物理方程给出,这些方程可做诶许多传感器工作的数学模型。例如:利用静电场定律研制的电容式传感器;利用电磁感性定律研制的自感、互感、电涡流式传感器;利用运动定律与电池感应定律研制的磁电式传感器等。利用场的定律构成的传感器,其形状、尺寸(结构)决定了传感器的量程、灵敏度等主要性能,故此类传感器可统称为“结构型传感器”。 (3)物质定律。它是表示各种物质本身内在性质的定律(如胡克定律、欧姆定律等),通常以这种物质所固有的物理常数加以描述。因此,这些常数的大小决定着传感器的主要性能。如:利用半导体物质法则—压阻、热阻、磁阻、光阻、湿阻等效应,可分别做成压敏、热敏、光敏、湿敏等传感器件;利用压电晶体物质法则—压电效应,可制成压电、声表面波、超声波传感器等等。这种基于物质定律的传感器,可统称为“物性型传感器”。这是当代传感器技术领域中具有广阔发展前景的传感器。 (4)统计法则。它是把围观系统与宏观系统联系起来的物理法则。这些法则,常常与传感器的工作状态有关,它是分析某些传感器的理论基础。这方面的研究尚待进一步深入。 气体传感器(Gas Sensor)是以气敏器件为核心组成的能把气体成分转换成电信号的装置。它具有响应快,定量分析方便,成本低廉,实用性广等优点,应用越来越广。 气体种类繁多,性质各异,因此,气体传感器种类也很多。按待检气体性质可分为:用于检测易燃易爆气体的传感器,如氢气、一氧化碳、瓦斯、汽油挥发气等;用于检测有毒气体的传感器,如氯气、硫化氢、砷烷等;用于检测工业过程气体的传感器,如炼钢炉中的氧气、热处理炉中的二氧化碳;用于检测大气污染的传感器,如形成酸雨的NO x、CH4、O3,家庭污染如甲醛等。按气体传感器的结构还可分为干式和湿式两类;按传感器的输出可分为电阻式和费电阻式两类;按检测院里可分为电化学法、电气法、光学法、化学法几类,如图:

气体传感器模块详细解析

气体传感器模块 1、概述 气体传感器模块包含了一个MQ2型烟雾传感器,该传感器具有良好的重复性和长期的稳定性,响应时间短,长时间工作性能好。可用于家庭和工厂的气体泄漏监测装置,适宜于液化气、丁烷、丙烷、甲烷、酒精、氢气、烟雾等的探测。本模块接口是黑色色标,黑色色标是模拟口,需要连接到主板上带有黑色标识接口。 2、技术规格 ●工作电压:5 0V±0 1 V ●加热电压:5 0V±0 1 V ●加热电阻:33Ω±5% (室温) ●加热功率:<800mw ●预热时间:>24h ●检测范围:100-10000ppm ●检测温度:20±2℃(标准) ●使用温度:-20℃-50℃ ●储存温度:-20℃-70℃ ●相对湿度:<95%RH ●氧气浓度:21%(标准条件) 3、功能特性 ●10K可调电阻用于调节灵敏度; 1

●使用前必须先加热一段时间; ●当检测到可燃气体时,蓝色指示灯亮; ●具备数字信号与模拟信号输出接口; ●传感器稳定性强、检测速度快; ●模块的白色区域是与金属梁接触的参考区域; ●具有反接保护,电源反接不会损坏IC; ●支持mBlock图形化编程,适合全年龄用户; ●使用RJ25接口连线方便; ●配有VCC、GND、DO、AO接头支持绝大多数Arduino系列主控板。 4、引脚定义 气体传感器模块有四个针脚的接头,每个针脚的功能如下表 序号引脚功能 1 GND 地线 2 VCC 电源线 2

3 AO 模拟量输出 4 DO 数字量输出 表1 4-Pin 接头功能表 5、接线方式 ●RJ25连接 由于气体传感器模块接口是黑色色标,当使用RJ25接口时,需要连接到主控板上带有黑色色标的接口。以Makeblock Orion为例,可以连接到6,7,8号接口,如图 图1 气体传感器模块与Makeblock Orion连接 ●杜邦线连接 当使用杜邦线连接到Arduino Uno主板时,模块AO引脚需要连接到ANALOG(模拟)口,DO引脚需要连接到DIGITAL(数字)口,如下图所示: 3

气体传感器在工业安全领域的应用

气体传感器在工业安全领域的应用(一) 2016-02-01 10:23:24 气体传感器在工业安全领域的销量是最大的,产值大约占到60%。工业安全类的传感器的全球出货量约500万只。 工业安全的分类比较多,凡是有可能产生气体爆炸、窒息或中毒的场合都会用到,这些场合包括:煤矿、天然气、钢铁厂、石油开采、炼化、空气分离、石油化工、煤化工、氨化工等。 最近十年,中国煤矿的产能大增,随着矿难的频发,国家在煤矿安全上颁布了大量的法规和行政命令,因此用在煤矿里的气体传感器数量快速增长。主要需要检测的气体是甲烷、一氧化碳和硫化氢。甲烷传感器的用量每年约100万只,CO传感器约10万只,H2S传感器约1万只。因为雾霾天和燃煤之间关系密切,国家从环保战略考虑,要求减少燃煤。因此,从2013年下半年开始,矿用仪表企业的产品销售量呈现下跌趋势。到目前为止,还看不到缓解的趋势。 天然气行业却得益于国家的环保战略。燃煤消减的这部分能源供给,需要天然气、核电、风电、太阳能发电来填充,其中绝大部分需要天然气来填充。天然气行业所需要的检测的气体包括:甲烷、一氧化碳、硫化氢、氧气。天然气行业利润较高,因此可以接受的安全仪表价格也较高,性能要求也较高。天然气管道沿线都会有加压站、每个加压站内几乎都会配红外原理的CH4检测仪表。每个加压站之间的距离少则1、2公里,多则7、8公里,因此计算一下中国天然气管道就知道大概需要多少仪表了。除了管道,沿海的LNG船只的接气站也需要配置大量的气体监测仪表。随着燃气商用车的大量推广,车载的低成本天然气监测仪表的需求也是会有爆发式增长的。 气体传感器在工业安全领域的应用(二) 2016-02-01 10:23:42 在石油开采、除杂质、运输的过程中也会用到大量气体检测仪表和传感器。石油成分很复杂,不仅含有大量液态烃,还含有水、泥沙、甲烷CH4、一氧化碳CO、硫化氢H2S,以及挥发出来的有机物气体VOC。石油工业安全隐患有两点,一是爆炸和燃烧,二是毒气扩散导致人体中毒。所用到的传感器包括: 1. 催化燃烧原理和红外原理的CH4传感器,全中国所用到的量大约20万只,用在固定表和便携表中。 2. 电化学原理的CO和H2S的用量差不多,各5万只左右。 3. 测VOC主要靠光离子化传感器PID。和石油炼化、化工合并在一起,销量约5千只。 现如今,石油最主要的用途还是提炼成汽油、煤油、航空煤油、柴油,这个产业叫炼化。在提炼的过程中,石油裂解的成分非常复杂,而且还有加氢H2工艺。因此,所需要测的气体包括CH4、H2、CO、H2S、乙烷C2H6、乙烯C2H4、丙烯C3H6,和很多种VOC。提炼完成的油品需要大型的储油罐储存,为提供漏油预警,在储油罐和管线周边都要安装气体监测仪。油品的挥发性各不相同:汽油挥发性最强、柴油较弱、航空煤油最弱。要侦测到油品的泄露,最理想的还是用能够检测到PPB——PPM级别VOC的PID,但价格也是最贵。 气体传感器在工业安全领域的应用(三) 2016-02-01 10:24:00 钢铁冶金是气体传感器应用的大户,所用到的传感器种类不多,但数量较大。

七大类常用气体传感器优缺点对比

七大类常用气体传感器优缺点对比 一、半导体传感器和电化学传感器的区别 半导体传感器因其简单低价已经得到广泛应用,但是又因为它的选择性差和稳定性不理想目前还只是在民用级别使用气体探测器。而电化学传感器因其良好的选择性和高灵敏度被广泛应用在几乎所有工业场合。 二、半导体型气体传感器的优缺点 自从1962年半导体金属氧化物陶瓷气体传感器问世以来,半导体气体传感器已经成为当今应用最普遍、最实用的一类气体传感器。它具有成本低廉、制造简单、灵敏度高、响应速度快、寿命长、对湿度敏感低 和电路简单等优点。不足之处是必须在高温下工作、对气体或气味的选择性差、元件参数分散、稳定性不 理想、功率高等方面。 三、接触燃烧式气体传感器 接触燃烧式气体传感器只能测量可燃气体。又分为直接接触燃烧式和催化接触燃烧式,原理是气敏材料在通电状态下,可燃气体在表面或者在催化剂作用下燃烧,由于燃烧使气敏材料温度升高从而电阻发生变化。后者因为催化剂的关系具有广普特性应用更广,如KG2100A系列,KG100A系列,KG2100B系列, 和KG100B系列等。 四、固态电解质气体传感器 顾名思义,固态电解质就是以固体离子导电为电解质的化学电池。它介于半导体和电化学之间。选择性,灵敏度高于半导体而寿命又长于电化学,所以也得到了很多的应用,不足之处就是响应时间过长。 五、电化学气体传感器的工作原理 电化学气体传感器是通过检测电流来检测气体的浓度,分为不需供电的原电池式以及需要供电的可控电位电解式,目前可以检测许多有毒气体和氧气,后者还能检测血液中的氧浓度。电化学传感器的主要优点 是气体的高灵敏度以及良好的选择性。不足之处是有寿命的限制一般为两年,但深安旭传感技术公司研发 的DH7系列产品多数已经达到3年使用寿命。 六、光学式气体传感器 光学式气体传感器主要包括红外吸收型、光谱吸收型、荧光型等等,主要以红外吸收型为主。由于不同气体对红外波吸收程度不同,通过测量红外吸收波长来检测气体。目前因为它的结构关系一般造价颇高。 七、半导体传感器需要加热的原因 半导体传感器是利用一种金属氧化物薄膜制成的阻抗器件气体探测器,其电阻随着气体含量不同而变化。气体分子在薄膜表面进行还原反应以引起传感器电导率的变化。为了消除气体分子达到初始状态就必须发 生一次氧化反应。传感器内的加热器可以加速氧化过程,这也是为什么有些低端传感器总是不稳定,其原 因就是没有加热或加热电压过低导致温度太低反应不充分。

几种气体传感器的研究进展

一、前言 1964 年,由Wickens 和Hatman 利用气体在电极上的氧化还原反应研制出了第一个气敏传感器,1982年英国Warwick 大学的Persaud 等提出了利用气敏传感器模拟动物嗅觉系统的结构,自此后气体传感器飞速发展,应用于各种场合,比如气体泄漏检测,环境检测等。现在各国研究主要针对的是有毒性气体和可燃烧性气体,研究的主要方向是如何提高传感器的敏感度和工作性能、恶劣环境中的工作时间以及降低成本和智能化等。 下面简单介绍各种常用的气体传感器的工作原理和一些常用气体传感器的最新的研究进展。 二、气体传感器的分类和工作原理 气体传感器主要有半导体传感器(电阻型和非电阻型)、绝缘体传感器(接触燃烧式和电容式)、电化学式(恒电位电解式、伽伐尼电池式),还有红外吸收型、石英振荡型、光纤型、热传导型、声表面波型、气体色谱法等。 电阻式半导体气敏元件是根据半导体接触到气体时其阻值的改变来检测气体的浓度;非电阻式半导体气敏元件则是根据气体的吸附和反应使其某些特性发生变化对气体进行直接或间 接的检测。 接触燃烧式气体传感器是基于强催化剂使气体在其表面燃烧时产生热量,使传感器温度上升,这种温度变化可使贵金属电极电导随之变化的原理而设计的。另外与半导体传感器不同的是,它几乎不受周围环境湿度的影响。电容式气体传感器则是根据敏感材料吸附气体后其介电常数发生改变导致电容变化的原理而设计。 电化学式气体传感器,主要利用两个电极之间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。有液体电解质和固体电解质,而液体电解质又分为电位型和电流型。电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。 红外吸收型传感器,当红外光通过待测气体时,这些气体分子对特定波长的红外光有吸收,其吸收关系服从朗伯—比尔(Lambert-Beer)吸收定律,通过光强的变化测出气体的浓度:

新型气体热导传感器及其应用设计重点

2007芷第7期 仪表技术与传感器 Insmtment Technique and Sensor 2007 No.7 新型气体热导传感器及其应用设计 ‘ 刘殿素,吴言荪,欧勇 (重庆大学电气工程学院,重庆400044 摘要:气体热导传感器是利用被测组分和参考气的热导系数不同而响应的浓度型传感器。文中介绍了一种新型气体 热导传感器TCS208F的特点、结构及指标,由于其输出是微弱信号,所以设计出其信号调理电路。传感器检测到的微弱信号由测量电桥调理输出,通过集成芯片AM402中的仪表放大器进行差分放大,由于远距离传输的需要,再将电压信号送入U/I变换器转换成0。20mA的工业标准电流信号,最后再把电流信号转换为电压信号送入单片机。 关键词:热导传感器;TCS208F;AM402;信号调理 中图分类号:TP212文献标识码:B 文章编号:1002—1841(200707—0005—02 Applicable Design of New Type Thermal Conductivity Sensor for Gases LIU Dian-su,WU Yan-SLID,OU Yong (College of Electrical EnoneeriIlg,Chongqing University,Chongqing 400044,China Abstract:Thermal conductivity sensor for gases is concentration sensoy that measure the thermal conductivity coefficient of the 8ain-fled gas different fwm the reference

气体传感器的特性

气体传感器的特性、分类与应用 气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理仪表显示部分 从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。接下来了解一下气体传感器的主要特性: 气体传感器的特性 1、稳定性 稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。 2、灵敏度

灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制(TLV-thresh-oldlimitvalue)或最低爆炸限(LEL-lowerexplosivelimit)的百分比的检测要有足够的灵敏性。 3、选择性 选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。 4、抗腐蚀 性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到最优。 气体传感器的分类 半导气体传感器

传感器设计

泡沫液位传感器课程设计 摘要:泡沫是一种特殊的两相流形态,其力学、热学、光学等多种性能均与单相气体或液体有很大区别,由于泡沫的形成机理多样、性质变化复杂,至今尚无完善的研究理论体系,泡沫的液位测量在国内外也是一个空白,本文主要设计了一种液位控制器,它以8051作为控制器,通过8051单片机和模数转换器等硬件系统和软件设计方法,实现具有液位检测报警和控制双重功能,并对液位值进行显示,一种基于传热原理的测量泡沫液位的传感器,介绍了传感器的构造和原理,以及测量误差和动态响应的计算分析。 关键词:泡沫;液位检测;传感器;两相流; Abstract:The foam is a special phase com pared w ith liqu id and gas.It ha s m any dif f erent cha r acters in m ech anics,therm oties,photology and soon,For different methods to generate fo amsand its special mechanism,even today there have not created a perfect theory system to deal with foam mediums.Foam level meas urement is also nearly to be all unreachable field by now.A kind of foam level sensor based on thermoties theory has be endeveloped,Introduces its structure 、principle 、analyses error and dynam icresponse of sensor. Key Words : Foam ;Level Detecting ;Sensor;8051Single chip microcomputer;

气体传感器的分类及应用

气体传感器的分类及应用 所谓气体传感器是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的仪表。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。在电力工业等生产制造领域,也常用气体传感器定量测量烟气中各组分的浓度,以判断燃烧情况和有害气体的排放量等。在大气环境监测领域,采用气体传感器判定环境污染状况,更是十分普遍。 气体传感器的分类,从检测气体种类上,常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器;从仪表使用方法上,分为便携式和固定式;从获得气体样品的方式上,分为扩散式(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式(是指通过使用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等);从分析气体组分上,分为单一式 (仅对特定气体进行检测)和复合式(对多种气体成分进行同时检测);按传感器检测原理,分为热学式、电化学式、磁学式、光学式、半导体式、气相色谱式等。

热学式气体传感器 热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的,其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛(如H2、CO2、SO2、NH3、Ar 等)。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸气、酒精乙醚蒸气等。美国RAE Systems公司生产的FGM-3100催化燃烧式可燃气体检测仪,其采样方式为扩散式,检测精度达±2%满量程,响应时间<15s。 催化燃烧式气体传感器 催化燃烧式气体传感器的主要优点是对所有可燃气体的响应有广谱性,对环境温度、湿度影响不敏感,输出信号近线性,且其结构简单,成本低。但其主要不足是精度低,工作温度高 (内部温度可达700~800℃),电流功耗大,易受硫化物、卤素化合物等中毒的不利影响等。

气体传感器——外文翻译

本科生毕业设计 外文资料翻译 题目传感器技术 专业 ************** 班级 ******** 姓名 ******* 指导教师 ************** 所在学院 ************ 附件1.外文资料翻译译文;2.外文原文

多传感器数据融合的多分类器系统 一、引言 在许多应用识别和自动识别的模式中,从不同的传感器监测物理现象提供的免费信息中获得数据是很罕见的。对这类信息的适当组合通常就叫做数据或者信息的融合,而且可以提高分类决策的准确性和信赖度相对于那些基于单个数据源的任何单独的决策。 之前我们已经介绍过Learn++,一种以整体分类为基础的方法,作为一种有效的自动分类算法是能逐步学习的。该算法能够获得额外的数据,在分类系统设计好后就能变成有用的数据了。为了实现增量学习,Learn++生成一个整体的分类器(专家),其中每个分类器都是作为前面的数据库。为了认清数据融合和增量学习之间概念的相似性,我们讨论了数据融合的一些类似的方法:聘用一个正义专家,从提供的数据中训练每个数据,然后战略性的结合他们的输出。我们能发现这些系统的性能在决策应用中是很重要的而且向来是优于那些基于单一的数据源决策的决策在一些基准和真实的数据源世界。 这样一个系统中的应用很多,其中的数据是从相同的应用程序所产生的多种来源(或多个传感器)提供的可能包含补充信息中获得的。例如,在对管道做非破坏性评估时,缺陷信息可从涡流,磁泄漏的图像,超声波扫描,热成像获得,或者几个不同的诊断信息可从不同的医学检测获得,如血液分析心电图,脑电图或者医疗成像设备,如超声波,磁共振或正电子扫描等。直观的,如果来自多个来源的信息可以适当的结合起来,那么分类系统(检测是否有缺陷,或是否可以做出诊断决定)的性能可以得到改善。所以,增量学习和数据融合涉及学习不同的数据集。在增量学习中补充信息必须提取新的数据集,其中可能包含新的分类实例。而在数据融合中补充信息也必须提取新的数据集,其中可能包含代表数据使用不同的特点。 传统的方法一般是根据概率理论(叶贝斯定理,卡尔曼滤波),或登普斯特-谢弗(DS)和它的变化,其中主要用于军事上的应用开发,特别是目标检测和跟踪,如决策理论。以整体分类为基础的方法寻求一个新的和更通用的解决方案提供更广泛的应用。还应当指出的是,在一些应用中如上述的无损检测和医疗诊断等,从不同的来源获得的数据可能已产生不同的物理方式,并因此获得的功能可能是不一样的。虽然在这种情况下使用概率或者决策理论的方法会变得更加的复杂,但异构的功能可以很容易的被安置整体的系统,讨论如下。 一个集成系统结合了集中不同的分类和特定的输出。分类的多样性可以允许使用略有不

常见气体传感器的种类

金属氧化物半导体式传感器 金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率, 通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响 较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故 目前广泛使用的领域为测量气体的微漏现象。 催化燃烧式传感器 催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输 出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无 焰燃烧,使温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的 电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。 定电位电解式气体传感器 定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,在此方面国外 技术领先,因此此类传感器大都依赖进口。定电位电解式气体传感器的结构: 在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之 间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感 器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体 与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。

迦伐尼电池式氧气传感器 隔膜迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良 好的、厚10~30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分形成阳极(用铅、镉 等离子化倾向大的金属)。用氢氧化钾。氧气在通过电解质时在阴阳极发生氧 化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。目前国内技 术已日趋成熟,完全可以国产化此类传感器。 红外式传感器 红外式传感器利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反 应灵敏,对大多数碳氢化合物都有反应。但结构复杂,成本高。 PID光离子化气体传感器 PID由紫外灯光源和离子室等主要部分构成,在离子室有正负电极,形成电场,待测气体在紫外灯的照射下,离子化,生成正负离子,在电极间形成电流,经 放大输出信号。PID具有灵敏度高,无中毒问题,安全可靠等优点。

气体传感器实验

气体传感器实验 学院:计信专业:自动化 姜木北 【实验目的】 1. 理解气体传感器的工作原理; 2. 掌握单片机驱动气体传感器的方法。 【实验设备】 1. 装有IAR 开发工具的PC机一台; 2. 下载器一个; 3. 物联网多网技术综合教学开发设计平台一套。 【实验原理】 1. 气体传感器简介 气体传感器是气体检测系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理、样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快速的测量。 2. 气体传感器分类及在本实验中的应用 气体传感器通常以气敏特性来分类,主要可分为:半导体型气体传感器、电化学型气体传感器、固体电解质气体传感器、接触燃烧式气体传感器、光化学型气体传感器、高分子气体传感器等。半导体气体传感器是采用金属氧化物或金属半导体氧化物材料做成的元件,与气体相互作用时产生表面吸附或反应,引起以载流子运动为特征的电导率或伏安特性或表面电位变化。这些都是由材料的半导体性质决定的。如图 1.112所示: 根据其气敏机制可以分为电阻式和非电阻式两种。 本实验采用的是电阻式半导体气体传感器主要是指半导体金属氧化物陶瓷气体传感器,是一种用金属氧化物薄膜(例如:Sn02,ZnO Fe203,Ti02等)制成的阻抗器件,其电阻随着气体含量不同而变化。气味分子在薄膜表面进行还原反应以引起传感器传导率的变化。为了消除气味分子还必须发生一次氧化反应。传感器内的加热器有助于氧化反应进程。它具有成本低廉、制造简单、灵敏度高、响应速度快、寿命长、对湿度敏感低和电路简单等优点。 3. 气体传感器MQ-6灵敏度特性灵敏度特性如下图:1.16所示。

气体传感器及其在火灾探测中的应用

气体传感器及其在火灾探测中的应用 摘要:阐述了几种气体火灾探测器的工作原理、性能特点及其应用, 介绍了几种新型复合气体火灾探测器,探讨了气体火灾探测器的发展前景和趋势。 关键词:火灾探测器;气体火灾探测器;气体传感器。 一、气体火灾探测器概述 气体是火灾的早期特征之一, 研究气体探测器对于防治火灾有重意义。传统的火灾探测器中感温探测器,感烟探刷器,感火焰探测器其原理是基于火灾中温度变化或者利用火灾烟雾,火焰的电学,光学等物理特性来进行火灾识别。这种识别模式很难可靠地发现早期火灾,如感烟探测器不能探测到酒精火焰,感温探测器不易探测到阴燃火源。在现代高大空间建筑中,当存在遮挡和环境干扰的时候,常规的感烟、感温探测器由于火灾燃烧产物在空间传播受空间高度和面积的影响,很难对火灾发生快速响应。近年来,由于气体传感技术有了长足的进步,气体传感器相传统火灾探剧器结合形成多元参数复合探剧技术以及开发研究新型火灾气体传感器已成为火灾探测领域的新动向。目前, 用于检测火灾的气体主要有CO、CO2、NOX、甲烷、H2、H2O、胺( - NH2) 等。对于不同的气体和不同的应用场合, 所用的气体检测方法也不尽相同。可用作探测可燃性气体或可燃物燃烧生成气体传感器已有很多, 应用最广泛的主要有半导体气体传感器、红外吸收气体传感器、电化学传感器以及正在发展的智能气体传感器等。 二、气体传感器 2.1、半导体气体传感器 半导体气体传感器主要是以氧化物半导体作为基本材料, 使气体吸附于该半导体表面, 利用由此产生的电导率的变化而制作的器件。按检测不同气体特征量的方式, 半导体气体传感器大体分为电阻式和非电阻式两种, 见表1。电阻式半导体气体传感器用氧化锡、氧化锌等金属氧化物材料作为敏感元件, 利用其阻值的变化来检测气体的体积分数; 非电阻式半导体气体传感器采用氧化银、金属栅的场效应管、金属/ 半导体结型二极管等作为敏感元件, 利用它们与气体接触后的整流特性, 以及晶体管作用的变化进行表面单位的直接测定。自从1962 年半导体金属氧化物陶瓷气体传感器问世以来, 半导体气体传感器已经成为当今世界上产量最大、最具有实用价值的传感器之一。 表1 半导体气体传感器的分类 2.2、红外吸收式气体传感器

气体检测传感器原理

气体检测传感器原理 金属氧化物半导体式传感器 金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率,通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故目前广泛使用的领域为测量气体的微漏现象。 催化燃烧式传感器 催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,使温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。 定电位电解式气体传感器 定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,在此方面国外技术领先,因此此类传感器大都依赖进口。定电位电解式气体传感器的结构:在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。 迦伐尼电池式氧气传感器 隔膜迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10~30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分形成阳极(用铅、镉等离子化倾向大的金属)。用氢氧化钾。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。目前国内技术已日趋成熟,完全可以国产化此类传感器。 红外式传感器 红外式传感器利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。但结构复杂,成本高。 PID光离子化气体传感器

相关文档
最新文档