大学物理习题册及解答 第二版 刚体的定轴转动

合集下载

刚体定轴转动 大学物理习题答案

刚体定轴转动 大学物理习题答案

薄圆盘对过球心轴的转动惯量为 d J 1 r 2 d m 1 R5 cos 5 d
2
2
J 2
/2 1 r2 dm
/2
R5 cos 5d
8
R 5
8
m R5 2 mR 2
02
0
15
15 4 R 3
5
3
由平行轴定理, J J mR 2 2 mR 2 mR 2 7 mR 2
5
5
悬垂。现有质量 m=8g 的子弹,以 v=200m/s 的速率从 A 点射入棒中,假定 A 点与 O 点的距离为 3 l , 4
如图 4-11 所示。求:(1)棒开始运动时的角速度;(2)棒的最大偏转角。
解:(1) 子弹射入前后系统对 O 点的角动量守恒
mv 3 l J , J 1 Ml 2 m ( 3 l)2 1 1 0.42 0.008 9 0.42 0.054 kg m2
计小球大小)
A
解:M (3m m)g l cos l mg cos ,J 3m( l )2 1 ml2 m( l )2 1 ml 2
4
2
4 12
43
l/4 O
l
图 4-5
13
大学物理练习册—刚体定轴转动
M
l mg cos 2
3g
cos
J
1 ml 2
2l
3
4-6 一均匀圆盘,质量为 m,半径为 R,可绕通过盘中心的光滑竖直轴在水平桌面上转动,如图 4-6 所示。 圆盘与桌面间的动摩擦因数为 ,若用外力推动使其角速度达到 0 时,撤去外力,求(1)转动过程 中,圆盘受到的摩擦力矩;(2)撤去外力后,圆盘还能转动多少时间?
dt d 0
0

大学物理上练习册 第2章《刚体定轴转动》答案-2013

大学物理上练习册 第2章《刚体定轴转动》答案-2013

第2章 刚体定轴转动一、选择题1(B),2(B),3(C),4(C),5(C) 二、填空题(1). 62.5 1.67s (2). 4.0 rad/ (3). 0.25 kg ·m 2(4). mgl μ21参考解:M =⎰M d =()mgl r r l gm l μμ21d /0=⎰(5). 2E 0三、计算题1. 如图所示,半径为r 1=0.3 m 的A 轮通过皮带被半径为r 2=0.75 m 的B 轮带动,B 轮以匀角加速度π rad /s 2由静止起动,轮与皮带间无滑动发生.试求A 轮达到转速3000 rev/min 所需要的时间.解:设A 、B 轮的角加速度分别为βA 和βB ,由于两轮边缘的切向加速度相同, a t = βA r 1 = βB r 2则 βA = βB r 2 / r 1 A 轮角速度达到ω所需时间为 ()75.03.060/2300021⨯π⨯π⨯===r r t B A βωβωs =40 s2.一砂轮直径为1 m 质量为50 kg ,以 900 rev / min 的转速转动.撤去动力后,一工件以 200 N 的正压力作用在轮边缘上,使砂轮在11.8 s 内停止.求砂轮和工件间的摩擦系数.(砂轮轴的摩擦可忽略不计,砂轮绕轴的转动惯量为21mR 2,其中m 和R 分别为砂轮的质量和半径).解:R = 0.5 m ,ω0 = 900 rev/min = 30π rad/s ,根据转动定律 M = -J β ① 这里 M = -μNR ②μ为摩擦系数,N 为正压力,221mR J =. ③ 设在时刻t 砂轮开始停转,则有: 00=+=t t βωω从而得 β=-ω0 / t ④将②、③、④式代入①式,得 )/(2102t mR NR ωμ-=- ∴ m =μR ω0 / (2Nt )≈0.5r1. 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量)解:在r 处的宽度为d r 的环带面积上摩擦力矩为r r r R mgM d 2d 2⋅π⋅π=μ总摩擦力矩 mgR M M R μ32d 0==⎰故平板角加速度 β =M /J设停止前转数为n ,则转角 θ = 2πn由 J /Mn π==4220θβω可得 g R MJ n μωωπ16/342020=π=2. 一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.解:根据转动定律: J d ω / d t = -k ω ∴ t J kd d -=ωω两边积分:⎰⎰-=t t J k02/d d 100ωωωω得 ln2 = kt / J∴ t =(J ln2) / k5.一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg ­T =ma ① T r =J β ② 由运动学关系有: a = r β ③ 由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0 ∴ S =221at , a =2S / t 2 ⑤将⑤式代入④式得:J =mr 2(Sgt 22-1)3.如图所示,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度. 解:作示力图.两重物加速度大小a 相同,方向如图.m 1g -T 1=m 1a T 2-m 2g =m 2a 设滑轮的角加速度为β,则 (T 1-T 2)r =J β 且有 a =r β 由以上四式消去T 1,T 2得: ()()J r m m gr m m ++-=22121β 开始时系统静止,故t 时刻滑轮的角速度.()()Jrm m grt m m t ++-==22121 βω7.一根放在水平光滑桌面上的匀质棒,可绕通过其一端的竖直固定光滑轴O 转动.棒的质量为m = 1.5 kg ,长度为l = 1.0 m ,对轴的转动惯量为J = 231ml .初始时棒静止.今有一水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图所示.子弹的质量为m '= 0.020 kg ,速率为v = 400 m ·s -1.试问:(1) 棒开始和子弹一起转动时角速度ω有多大?(2) 若棒转动时受到大小为M r = 4.0 N ·m 的恒定阻力矩作用,棒能转过多大的角度θ?解:(1) 角动量守恒:ω⎪⎭⎫ ⎝⎛'+='2231l m ml l m v ∴ l m m m ⎪⎭⎫ ⎝⎛'+'=31vω=15.4 rad ·s -1(2) 由转动定律,得: -M r =(231ml +2l m ')β0-ω 2=2βθ∴ rM l m m 23122ωθ⎪⎭⎫ ⎝⎛'+==15.4 rad8.如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J =10 kg ·m 2 和 J =20 kg ·m 2.开始时,A 轮转速为600 rev/min ,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求: mm , lOm '(1) 两轮啮合后的转速n ; (2) 两轮各自所受的冲量矩.解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用,故系统角动量守恒J A ωA +J B ωB = (J A +J B )ω,又ωB =0得: ω ≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速 ≈n 200 rev/min (2) A 轮受的冲量矩⎰t M A d = J A (J A +J B ) = -4.19×10 2N ·m ·s 负号表示与A ω方向相反. B 轮受的冲量矩⎰t MBd = J B (ω - 0) = 4.19×102 N ·m ·s方向与A ω相同.4.一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度ω.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)解:碰撞前瞬时,杆对O 点的角动量为L m L x x x x L L 0202/002/30021d d v v v v ==-⎰⎰ρρρ式中ρ为杆的线密度.碰撞后瞬时,杆对O 点的角动量为ωωω2221272141234331mL L m L m J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=因碰撞前后角动量守恒,所以 L m mL 022112/7v =ω ∴ ω = 6v 0 / (7L)10. 空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .)解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒.对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点.小球到B 点时: J 0ω0=(J 0+mR 2)ω ①2121()222220212121BRmJmgRJ v++=+ωωω②式中v B表示小球在B点时相对于地面的竖直分速度,也等于它相对于环的速度.由式①得:ω=J0ω 0 / (J0 + mR2) 1分代入式②得2222Jm RRJgRB++=ωv当小球滑到C点时,由角动量守恒定律,系统的角速度又回复至ω0,又由机械能守恒定律知,小球在C的动能完全由重力势能转换而来.即:()RmgmC2212=v, gRC4=v四研讨题1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。

大学物理同步训练第2版第三章刚体定轴转动详解

大学物理同步训练第2版第三章刚体定轴转动详解

mg
3g 1 cos L 1 1 1 cos mL2 2 2 2 3 L
可知当 从 0 至 90 度的过程中,角速度从小到大。 5. (☆)如图 3 所示,A、B 为两个相同的绕着轻绳的定滑轮。A 滑 轮挂一质量为 m 的物体,B 滑轮受拉力 G,而且 G=mg。设 A、B 两 滑轮的角加速度分别为βA 和βB,不计滑轮轴的摩擦,则有 (A) A B (C) A B 答案:C 分析: (定性)由于物体 m 有向下的加速度,故作用于物体上的绳子张力小于 mg,即小于 右边绳子的张力(=mg) ,故 A 滑轮受到的力矩小于 B 滑轮,故 A B 。 (定量)设圆盘转动惯量为 I ,参考计算题第 1 题的计算过程,可得 A、B 圆盘的转动角加 速度为 (B) A B (D)开始时 A B ,以后 A B
mg TA ma mgR mgR A ; GR I B B TA R I A 2 I mR I R a A
故 A B 。 6. 一轻绳跨过一具有水平光滑轴、转动惯量为 J 的定滑轮, 绳的两端分别悬 有质量为 m1 和 m2 的物体 (m1<m2) , 如图 4 所示。 绳与轮之间无相对滑动。 若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A)处处相等 (C)右边大于左边 答案:C 分析: (定性)由于重的物体 m2 最终必然下落,可知圆盘最后将做顺时针转动,因此圆盘 受到的合外力矩应为顺时针,即右边绳子的张力要大于左边绳子的张力。 (定量)参考课本例题( (★)阿特伍德机:P84,例 3-5)可得 (B)左边大于右边 (D)无法判断哪边大
A J B A
6. (☆)如图 10 所示,一静止的均匀细棒,长为 L,质量为 m1,可绕通过棒的端点且垂直 于棒长的光滑固定轴 O 在水平面内转动,转动惯量为 m1L2/3。一质量为 m、速率为 v 的子 弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为 v/2,则 此时棒的角速度应为 答案: 。

第5章 刚体的定轴转动 习题解答

第5章 刚体的定轴转动 习题解答

对飞轮,由转动定律,有 式中负号表示摩擦力的力矩方向与角速度 方向相反。
联立解得

以 F 100 N 等代入上式,得
Fr R 2 (l1 l2 ) F J mRl1
5-1
第 5 章 刚体的定轴转动

2 0.40 (0.50 0.75) 40 100 rad s 2 60 0.25 0.50 3 t
由以上诸式求得角加速度

(2)
Rm1 rm2 g I m1 R 2 m2 r 2 0.2 2 0.1 2

1 1 10 0.202 4 0.102 2 0.202 2 0.102 2 2
9.8 6.13 rad s 2
T2 m2 r m2 g 2 0.10 6.13 2 9.8 20.8N T1 m1 g m1 R 2 9.8 2 0.2. 6.13 17.1N v 2a1h 2 Rh 2 6.13 0.2 2 2.21 m s 1
M M f J 1

t1
。移去力矩 M 后,根据转动定律,有
M f J 2
2
联立解得此转轮的转动惯量
0 t2
J
M 20 17.36 kg m 2 1 1 1 100 2 1 60 10 100 t1 t2
v0
6(2 3 3m M l J l 1M (1 2 ) (1 ) 2 ml 2 3m 12 m
(2) 由①式求得相碰时小球受到的冲量为:
I Fdt mv mv mv0
负号说明所受冲量的方向与初速度方向相反。

大学物理习题册及解答 第二版 刚体的定轴转动

大学物理习题册及解答 第二版  刚体的定轴转动

Z
R
由平行轴定理,关于刀口的转动惯量为 J zo J zc MR 2 2MR 2
(2)由垂直轴定理有: J J 1 J MR2
由平行轴定理有:
J
xC
J
yC
2
MR2
zC
3
2 MR 2
PP
xC
(3)复摆的摆动周期为 T 2π J
2
mgl
T 2 2R T 2 3R
T1 4 1.1547
2.力矩的定义式为_M_____r__F_.
在力矩作用下,一个绕轴转动的物体作_变__角__动_量_运动. 若系统所受的合外力矩为零,则系统的____角__动_量_____守恒.
3 质量为20 kg、边长为1.0 m的均匀立方物体,放在水平地面 上.有一拉力F作用在该物体一顶边的中点,且与包含该顶边的 物体侧面垂直,如图所示.地面极粗糙,物体不可能滑动.若 要使该立方体翻转90°,则拉力F不能小于___
(A) 动量守恒.
(B) 机械能守恒.
(C) 对转轴的角动量守恒.
(D) 动量、机械能和角动量都守恒.
(E) 动量、机械能和角动量都不守恒.
7.花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,
转动惯量为J0,角速度为0,然后她将两臂收回,使转动惯量减少
为J0
/3,这时她转动的角速度变为
(A) 1 (B) 1
分析:
2as
2 0
2 02
a r
0 r0
s
r
N
2
13.3圈
02 0.024rad / s2 2
4.一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两端 分别悬有质量为m1和m2的物体(m1 >m2).绳与轮之间无相对滑 动.若某时刻滑轮沿逆时针方向转动,则绳中的张力

《刚体定轴转动》答案

《刚体定轴转动》答案

第2章 刚体定轴转动一、选择题1(B),2(B),3(A),4(D),5(C),6(C),7(C),8(C),9(D),10(C) 二、填空题(1). v ≈15.2 m /s ,n 2=500 rev /min (2). 62.5 1.67s (3). g / l g / (2l ) (4). 5.0 N ·m (5). 4.0 rad/s (6). 0.25 kg ·m 2(7). Ma 21(8). mgl μ21参考解:M =⎰M d =()mgl r r l gm l μμ21d /0=⎰(9).()212mRJ mr J ++ω(10). l g /sin 3θω=三、计算题1. 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量)解:在r 处的宽度为d r 的环带面积上摩擦力矩为总摩擦力矩 mgR M M R μ32d 0==⎰故平板角加速度 ? =M /J设停止前转数为n ,则转角 ? = 2?n由 J /Mn π==422θβω可得 g R MJ n μωωπ16/342020=π=2. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系. 解:根据牛顿运动定律和转动定律列方程对物体: mg -T =ma ①对滑轮: TR = J ? ② 运动学关系: a =R ? ③ 将①、②、③式联立得a =mg / (m +21M )∵ v 0=0,∴ v =at =mgt / (m +21M )3. 为求一半径R =50 cm 的飞轮对于通过其中心且与盘面垂直的固定转轴的转动惯量,在飞轮上绕以细绳,绳末端悬一质量m 1=8 kg 的重锤.让重锤从高2 m 处由静止落下,测得下落时间t 1=16 s .再用另一质量m 2=4 kg 的重锤做同样测量,测得下落时间t 2=25 s .假定摩擦力矩是一个常量,求飞轮的转动惯量.解:根据牛顿运动定律和转动定律,对飞轮和重物列方程,得 TR -M f =Ja / R ① mg -T =ma ②h =221at ③则将m 1、t 1代入上述方程组,得a 1=2h /21t =0.0156 m / s 2 T 1=m 1 (g -a 1)=78.3 N J =(T 1R -M f )R / a 1 ④ 将m 2、t 2代入①、②、③方程组,得a 2=2h /22t =6.4×10-3 m / s ? T 2=m 2(g -a 2)=39.2 NJ = (T 2R -M f )R / a 2 ⑤由④、⑤两式,得 J =R 2(T 1-T 2) / (a 1-a 2)=1.06×103 kg ·m 24. 一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为?0.设它所受阻力矩与转动角速度成正比,即M =-k ? (k 为正的常数),求圆盘的角速度从?0变为021ω时所需的时间.解:根据转动定律: ?????????????? ???? J d ? / d t = -k ??????????????????????????????????????????????????∴ t J kd d -=ωω两边积分: ⎰⎰-=t t J k02/d d 100ωωωω得 ln2 = kt / J ∴ t =(J ln2) / k 5. 某人站在水平转台的中央,与转台一起以恒定的转速n 1转动,他的两手各拿一个质量为m 的砝码,砝码彼此相距l 1 (每一砝码离转轴21l 1),当此人将砝码拉近到距离为l 2时(每一砝码离转轴为21l 2),整个系统转速变为n 2.求在此过程中人所作的功.(假定人在收臂过程中自身对轴的转动惯量的变化可以忽略)解:(1) 将转台、砝码、人看作一个系统,过程中人作的功W 等于系统动能之增量:W =?E k =212210222204)21(214)21(21n ml J n ml J π+-π+2这里的J 0是没有砝码时系统的转动惯量. (2) 过程中无外力矩作用,系统的动量矩守恒:2?(J 0+2121ml ) n 1 = 2? (J 0+2221ml ) n 2∴ ()()1222212102n n n l n l m J --=(3) 将J 0代入W 式,得 ()2221212l l n mn W -π= 6. 一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为?),圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v 0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求 (1) 子弹击中圆盘后,盘所获得的角速度. (2) 经过多少时间后,圆盘停止转动.(圆盘绕通过O 的竖直轴的转动惯量为221MR ,忽略子弹重力造成的摩擦阻力矩)解:(1) 以子弹和圆盘为系统,在子弹击中圆盘过程中,对轴O 的角动量守恒.m v 0R =(21MR 2+mR 2)?(2) 设?表示圆盘单位面积的质量,可求出圆盘所受水平面的摩擦力矩的大小 为 ⎰π⋅=Rf r rg r M 0d 2σμ=(2 / 3)??σgR 3=(2 / 3)?MgR设经过?t 时间圆盘停止转动,则按角动量定理有-M f ??t =0-J ?=-(21MR 2+mR 2)?=- m v 0R∴ ()Mg m MgR R m M R m t fμμ2v 33/2v v 000===∆ 7.一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度?.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)解:碰撞前瞬时,杆对O 点的角动量为式中?为杆的线密度.碰撞后瞬时,杆对O 点的角动量为 因碰撞前后角动量守恒,所以∴ ? = 6v 0 / (7L)8. 长为l 的匀质细杆,可绕过杆的一端O 点的水平光滑固定轴转动,开始时静止于竖直位置.紧挨O 点悬一单摆,轻质摆线的长度也是l ,摆球质量为m .若单摆从水平位置由静止开始自由摆下,且摆球与细杆作完全弹性碰撞,碰撞后摆球正好静止.求: (1) 细杆的质量.(2) 细杆摆起的最大角度?.解:(1) 设摆球与细杆碰撞时速度为v 0,碰后细杆角速度为?,系统角动量守恒 得:J ? = m v 0l由于是弹性碰撞,所以单摆的动能变为细杆的转动动能2202121ωJm=v代入J=231Ml,由上述两式可得M=3m(2) 由机械能守恒式mglm=221v及()θωcos121212-=MglJ并利用(1) 中所求得的关系可得31arccos=θ四研讨题1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。

刚体的定轴转动(带答案)

刚体的定轴转动(带答案)

欢迎阅读页脚内容刚体的定轴转动一、选择题1、(本题3分)0289关于刚体对轴的转动惯量,下列说法中正确的是 [ C ] (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关。

(B )取决于刚体的质量和质量的空间分布,与轴的位置无关。

(C(D 2、(本题静止开的? [ A ](A (B (C (D 3. (A ) (B ) (C )页脚内容(D ) 它受热时角速度变小,遇冷时角速度变大. 4、(本题3分)0292一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体,物体所受重力为P ,滑轮的角加速度为β,若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 [ C ](A )不变 (B )变小 (C )变大 (D )无法判断 5、(本题设A (A )βA (C )βA 6、(本题(A (B (C (D 7、(本题现有一个小球自左方水平打击细杆,设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统[ C ](A)只有机械能守恒。

(B)只有动量守恒。

(C)只有对转轴O的角动量守恒。

(D)机械能、动量和角动量均守量。

8、(本题3分)0677一块方板,可以绕通过其一个水平边的光滑固定转轴自由转动,最初板自由下垂,今有一小团粘土,(A9、(本题(A)ω(C)ω10、ω[ C ](A(C)减少(D)不能确定11、(本题3分)0133如图所示,一静止的均匀细棒,长为 ,质量为M,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为1/2 ML2,一质量为m,速率为v的子弹在水平面内沿与棒垂直的方向射入并穿入棒的自由端,设穿过棒后子弹的速率为 V,则此时棒的角速度应为 [B ](A(312、中心(A(C13、(A(B(C14、页脚内容有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心。

大学物理习题答案解答第五章刚体的定轴转动

大学物理习题答案解答第五章刚体的定轴转动
(1)闸瓦对飞轮的摩擦力矩为
(2)对飞轮应用角动量定理,即
则图5-4

从开始制动到停止,飞轮转过的转数为
所花的时间为
(3)从开始制动到停止,对飞轮应用动能定理,有
5、解:分别对定滑轮和物体进行受力分析并如图5-5(a),(b)所示,对物体,有
而对定滑轮,有
其中定滑轮绕轴的转动惯量
注意到 和 ,由以上三式可以得到物体与滑轮之间的绳子的张力为
第五章刚体的定轴转动
二、填空题
1、飞轮的角加速度为
轮边缘切向加速度为
因为
开始制动后转过 时的角速度为
线速度为
2、t时刻的角速度为
角加速度为
3、如图5-1所示,突然释放A端,则杆将绕B端转动,设杆绕B端的转动惯量为 ,则

杆的角加速度为
所以杆质心的加速度为
图5-1
考察杆对C点的转动,角加速度仍为 。记杆绕C点的转动惯量为 ,则有
和物体下落的加速度为图5-5(a)图5-5(b)
6、解:对物体 , 和定滑轮分别进行受力分析,如图5-6(a),(b),(c)所示,对物体 有
对物体 ,有
对定滑轮,有图5-6(a)图5-6(b)
其中定滑轮绕轴的转动惯量
注意到 , , 和 。
(1)由以上三式可以得到 下落的加速度的大小为
(2)两段绳子中的张力大小分别为图5-6(c)
的角加速度为
图5-3(a)图5-3(b)图5-3(c)
若不系重物,改用大小为 的力 拉绳的一端,则滑轮的受力分析如图5-3(c)所示,有
注意到 ,所以滑轮的角加速度为
3、解:对细圆环,有
转动动能为
对薄圆盘,由课本例题5-3,知
转动动能为

大学物理上练习册 第2章《刚体定轴转动》答案-2013

大学物理上练习册 第2章《刚体定轴转动》答案-2013

第2章 刚体定轴转动一、选择题1(B),2(B),3(C),4(C),5(C) 二、填空题(1). 62.5 1.67s (2). 4.0 rad/ (3). 0.25 kg ·m 2(4). mgl μ21参考解:M =⎰M d =()mgl r r l gm l μμ21d /0=⎰(5). 2E 0三、计算题1. 如图所示,半径为r 1=0.3 m 的A 轮通过皮带被半径为r 2=0.75 m 的B 轮带动,B 轮以匀角加速度π rad /s 2由静止起动,轮与皮带间无滑动发生.试求A 轮达到转速3000 rev/min 所需要的时间.解:设A 、B 轮的角加速度分别为βA 和βB ,由于两轮边缘的切向加速度相同, a t = βA r 1 = βB r 2则 βA = βB r 2 / r 1 A 轮角速度达到ω所需时间为()75.03.060/2300021⨯π⨯π⨯===r r t B Aβωβωs =40 s2.一砂轮直径为1 m 质量为50 kg ,以 900 rev / min 的转速转动.撤去动力后,一工件以 200 N 的正压力作用在轮边缘上,使砂轮在11.8 s 内停止.求砂轮和工件间的摩擦系数.(砂轮轴的摩擦可忽略不计,砂轮绕轴的转动惯量为21mR 2,其中m 和R 分别为砂轮的质量和半径).解:R = 0.5 m ,ω0 = 900 rev/min = 30π rad/s ,根据转动定律 M = -J β ① 这里 M = -μNR ②μ为摩擦系数,N 为正压力,221mR J =. ③ 设在时刻t 砂轮开始停转,则有: 00=+=t t βωω从而得 β=-ω0 / t ④将②、③、④式代入①式,得 )/(2102t mR NR ωμ-=- ∴ m =μR ω0 / (2Nt )≈0.5r1. 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量)解:在r 处的宽度为d r 的环带面积上摩擦力矩为r r r R mgM d 2d 2⋅π⋅π=μ总摩擦力矩 mgR M M R μ32d 0==⎰故平板角加速度 β =M /J设停止前转数为n ,则转角 θ = 2πn由 J /Mn π==4220θβω可得 g R MJ n μωωπ16/342020=π=2. 一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.解:根据转动定律: J d ω / d t = -k ω ∴ t J kd d -=ωω两边积分:⎰⎰-=t t J k02/d d 100ωωωω得 ln2 = kt / J∴ t =(J ln2) / k5.一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg ­T =ma ① T r =J β ② 由运动学关系有: a = r β ③ 由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0 ∴ S =221at , a =2S / t 2 ⑤将⑤式代入④式得:J =mr 2(Sgt22-1)3.如图所示,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度. 解:作示力图.两重物加速度大小a 相同,方向如图.m 1g -T 1=m 1a T 2-m 2g =m 2a 设滑轮的角加速度为β,则 (T 1-T 2)r =J β 且有 a =r β 由以上四式消去T 1,T 2得: ()()J r m m gr m m ++-=22121β 开始时系统静止,故t 时刻滑轮的角速度.()()Jrm m grt m m t ++-==22121 βω7.一根放在水平光滑桌面上的匀质棒,可绕通过其一端的竖直固定光滑轴O 转动.棒的质量为m = 1.5 kg ,长度为l = 1.0 m ,对轴的转动惯量为J = 231ml .初始时棒静止.今有一水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图所示.子弹的质量为m '= 0.020 kg ,速率为v = 400 m ·s -1.试问:(1) 棒开始和子弹一起转动时角速度ω有多大?(2) 若棒转动时受到大小为M r = 4.0 N ·m 的恒定阻力矩作用,棒能转过多大的角度θ?解:(1) 角动量守恒:ω⎪⎭⎫ ⎝⎛'+='2231l m ml l m v ∴ l m m m ⎪⎭⎫ ⎝⎛'+'=31vω=15.4 rad ·s -1(2) 由转动定律,得: -M r =(231ml +2l m ')β0-ω 2=2βθ∴ rM l m m 23122ωθ⎪⎭⎫ ⎝⎛'+==15.4 rad8.如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J =10 kg ·m 2 和 J =20 kg ·m 2.开始时,A 轮转速为600 rev/min ,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求: mm , lOm '(1) 两轮啮合后的转速n ; (2) 两轮各自所受的冲量矩.解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用,故系统角动量守恒J A ωA +J B ωB = (J A +J B )ω,又ωB =0得: ω ≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速 ≈n 200 rev/min (2) A 轮受的冲量矩⎰t MAd = J A (J A +J B ) = -4.19×10 2 N ·m ·s负号表示与A ωϖ方向相反. B 轮受的冲量矩⎰t MBd = J B (ω - 0) = 4.19×102 N ·m ·s方向与A ωϖ相同.4.一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度ω.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)解:碰撞前瞬时,杆对O 点的角动量为L m L x x x x L L 0202/002/30021d d v v v v ==-⎰⎰ρρρ式中ρ为杆的线密度.碰撞后瞬时,杆对O 点的角动量为ωωω2221272141234331mL L m L m J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=因碰撞前后角动量守恒,所以 L m mL 022112/7v =ω ∴ ω = 6v 0 / (7L)10. 空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .)解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒.对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点.小球到B 点时: J 0ω0=(J 0+mR 2)ω ①2121()22220200212121BR m J mgR J v ++=+ωωω ② 式中v B 表示小球在B 点时相对于地面的竖直分速度,也等于它相对于环的速度.由式①得:ω=J 0ω 0 / (J 0 + mR 2) 1分代入式②得222002J mR RJ gR B ++=ωv 当小球滑到C 点时,由角动量守恒定律,系统的角速度又回复至ω0,又由机械能守恒定律知,小球在C 的动能完全由重力势能转换而来.即: ()R mg m C 2212=v , gR C 4=v 四 研讨题1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。

《刚体定轴转动》选择题解答与分析

《刚体定轴转动》选择题解答与分析

2 刚体定轴转动转动惯量1. 关于刚体对轴的转动惯量,下列说法中正确的是 (A )只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B )取决于刚体的质量和质量的空间分布,与轴的位置无关. (C )取决于刚体的质量、质量的空间分布和轴的位置. (D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关. 答案:(C ) 参考解答:首先明确转动惯量的物理意义,从转动定律与牛顿第二定律的对称关系可以看出,与质量m 是平动惯性大小的量度相对应,转动惯量I 则是刚体转动惯性大小的量度。

从转动惯量的的公式∑=∆=ni i i r m I 12可以看出,其大小除了与刚体的形状、大小和质量分布有关外,还与转轴的位置有关。

凡选择回答错误的,均给出下面的进一步讨论:1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。

参考解答:不能.因为刚体的转动惯量∑∆i i m r 2与各质量元和它们对转轴的距离有关.如一匀质圆盘对过其中心且垂直盘面轴的转动惯量为221mR ,若按质量全部集中于质心计算,则对同一轴的转动惯量为零.2. 一刚体由匀质细杆和匀质球体两部分构成,杆在球体直径的延长线上,如图所示.球体的半径为R ,杆长为2R ,杆和球体的质量均为m .若杆对通过其中点O 1,与杆垂直的轴的转动惯量为J 1,球体对通过球心O 2的转动惯量为J 2,则整个刚体对通过杆与球体的固结点O 且与杆垂直的轴的转动惯量为 (A) J =J 1+J 2. (B) J =mR 2+mR 2.(C) J =(J 1+mR 2)+(J 2+mR 2).(D) J =[J 1+m (2R )2]+[J 2+m (2R )2]. 答案:(C) 参考解答:根据转动惯量具有叠加性,则整个刚体对通过杆与球体的固结点0且与杆垂直的轴的转动惯量为细杆和球体分别对该轴转动惯量之合。

《大学物理》刚体的转动练习题及答案

《大学物理》刚体的转动练习题及答案

《大学物理》刚体的转动练习题及答案一、简答题:1、为什么刚体绕定轴转动的动能的改变只与外力矩有关,而与内力矩无关?答案:对刚体,由于刚体内各质点间相对位移始终为零,内力总是成对出现,每对内力大小相等,方向相反,在一直线上,故内力矩做功之和一定为零,故刚体绕定轴转动的动能的改变与内力矩无关。

2、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。

3、下列物理量中,哪些量与原点的选择有关:(1) 速度,(2) 位矢,(3) 位移,(4) 角动量,(5) 动量 答案:与原点有关的物理量为:位矢,角动量。

4、质量、半径相同的两个圆盘,第一个质量分布均匀,第二个大部分质量分布在盘边缘,当它们以相同的角速度绕通过盘中心的轴转动时,哪个盘的转动动能大?为什么?答案:第二个盘的动能大。

因为由刚体转动动能221ωJ E k =知,在角速度一样时,转动惯量大的动能大;又因为2121mR J =,22mR J ≈,第二个转动惯量较大,所以转动动能较大。

5、在某一瞬时,刚体在一外力矩作用下,其角速度可以为零吗? 其角加速度可以为零吗?答案:由刚体转动定律αJ M =,知,在某一瞬时,刚体在一外力矩作用下,其角加速度不可以为零;由dtd ωα=,有⎰+=t dt 00αωω,可知其角速度此时可以为零。

6、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。

表达式为:αJ M =。

7、简述刚体定轴转动时的特点有哪些, 常用哪些物理量来描述刚体的转动?答案:刚体定轴转动的特点:转轴相对参照系固定,刚体内所有点都具有相同的角位移、角速度、角加速度;质点在垂直转轴的平面内运动,且作圆周运动。

刚体的转动通常用转动惯量J 、力矩M 、角加速度α、角动量L 等来描述。

大学物理-刚体的定轴转动-习题和答案

大学物理-刚体的定轴转动-习题和答案

第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时,角加速度β不变。

刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。

又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。

2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。

()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====。

既 z M I β=。

所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。

3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。

4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。

(完整版)大学物理刚体的定轴转动习题及答案.doc

(完整版)大学物理刚体的定轴转动习题及答案.doc

第 4 章 刚体的定轴转动 习题及答案1. 刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时 ,角加速度不变。

刚体上任一点都作匀变速圆周运动, 因此该点速率在均匀变化,v l ,所以一定有切向加速度a t l ,其大小不变。

又因该点速度的方向变化,2所以一定有法向加速度a n l,由于角速度变化,所以法向加速度的大小也在变化。

2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴 Z 转动时,动量矩定理的形式为M z dL z , M z 表示刚体对 Z 轴的合外力矩, L z 表示刚体对 Z 轴的动量矩。

dtL zml i i2I ,其中 I mlii2,代表刚体对定轴的转动惯量,所以M zdL z d I IdI 。

既M z I 。

dtdtdt所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。

3. 两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:( 1)如果它们的角动量相同,哪个轮子转得快?( 2)如果它们的角速度相同,哪个轮子的角动量大?答: (1)由于 L I ,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;( 2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。

4. 一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问 平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。

大学物理第3章刚体的定轴转动习题解答

大学物理第3章刚体的定轴转动习题解答

习题3-1 一汽车发动机曲轴的转速在12s 内由每分钟1200转匀加速地增加到每分钟2700转,求:(1)角加速度;(2)在此时间内,曲轴转了多少转?解:(1))/(401s rad πω= )/(902s rad πω=)/(1.13)/(6251240902212s rad s rad t≈=-=∆-=πππωωβ匀变速转动(2))(78022122rad πβωωθ=-= )(3902圈==πθn 3-2 一飞轮的转动惯量为J ,在0=t 时角速度为0ω,此后飞轮经历制动过程。

阻力矩M 的大小与角速度ω的平方成正比,比例系数0>K 。

求:(1)当30ωω=时,飞轮的角加速度;(2)从开始制动到30ωω=所需要的时间。

解:(1)依题意 2ωβK J M -== )/(92202s rad JK J K ωωβ-=-= (2)由J K dt d 2ωωβ-== 得 ⎰⎰-=32000ωωωωK Jd dt t ωK Jt 2=3-3 如图所示, 发电机的轮A 由蒸汽机的轮B 通过皮带带动。

两轮半径A R =30cm ,=B R 75cm 。

当蒸汽机开动后,其角加速度π8.0=B βrad/s 2,设轮与皮带之间没有滑动。

求(1)经过多少秒后发电机的转速达到A n =600rev/min ?(2)蒸汽机停止工作后一分钟内发电机转速降到300rev/min ,求其角加速度。

解:(1)t A A βω= t B B βω=因为轮和皮带之间没有滑动,所以A 、B 两轮边缘的线速度相同,即B B A A R R ωω=又)/(20606002s rad A ππω=⨯=联立得)(10s R R t B B A A ==βω(2))/(10603002s rad A ππω=⨯=)/(62s rad t A A A πωωβ=-'= 3-4 一个半径为=R 1.0m 的圆盘,可以绕过其盘心且垂直于盘面的转轴转动。

第3章刚体的定轴转动

第3章刚体的定轴转动

大学物理习题及习题解答第三章 刚体的定轴转动3­1 两个不同半径的皮带轮 A 、B ,由传动皮带相连,轮半径 A Br r > .当它们转动时,问: (1)两轮边缘各点的线速度大小是否相等? (2)两轮角速度的大小是否相等?(3)两轮边缘处质点的法向加速度大小是否相等? (4)两轮边缘处质点的切向加速度大小是否相等? 答:当皮带在两轮上不打滑时,(1)相等,两轮边缘各点线速度的大小都等于皮带上点的速率。

(2)不等。

由于v r w = , A B v v = ,而 A B r r > 故 A Bw w < (3)不等。

由于 2n v a r= , A B v v = 而 A B r r > ,故 nA nBa a < (4)相等。

由于 A B v v = ,而A Bdv dv dt dt= ,故 tA tB a a = 3­2 一飞轮以转速 1 min 1500 - × = r n 转动,受制动均匀减速,经 s t 50 = 后静止。

(1)求角加速度a 和从制动开始到静止这段时间飞轮转过的转数 N ; (2)求制动开始后 s t 25 = 时飞轮的角速度w ;(3)设飞轮的半径 , 1m r = 求在 s t 25 = 时飞轮边缘上一点的速度和加速度。

解:(1) 1 0 2 601500- × ´ =s rad p w 由 0 t t w w a -= ,且 0 t w = ,得220 15002 3.14 6050rad s rad s t w pa - =-=-´×=-× 又 2 0 11() 22 N t t w a p =+´ ,将 0t w a =- 代入得111500 50 r 625 r 2260N t w ==´´= (注意求转数时p 可消去,能减少计算误差。

《刚体定轴转动》答案

《刚体定轴转动》答案

第2章 刚体定轴转动一、选择题1(B),2(B),3(A),4(D),5(C),6(C),7(C),8(C),9(D),10(C) 二、填空题(1). v ≈15.2 m /s ,n 2=500 rev /min (2). 62.5 1.67s (3). g / l g / (2l ) (4). 5.0 N ·m (5). 4.0 rad/s (6). 0.25 kg ·m 2 (7).Ma 21(8). mgl μ21参考解:M =⎰M d =()mgl r r l gm l μμ21d /0=⎰(9).()212mRJ mr J ++ω(10).l g /sin 3θω=三、计算题1. 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量) 解:在r 处的宽度为d r 的环带面积上摩擦力矩为 总摩擦力矩mgR M M Rμ32d 0==⎰故平板角加速度 ? =M /J设停止前转数为n ,则转角 ? = 2?n 由 J /Mn π==4220θβω可得g R MJ n μωωπ16/342020=π=2. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系. 解:根据牛顿运动定律和转动定律列方程对物体: mg -T =ma ① 对滑轮: TR = J ? ② 运动学关系: a =R ? ③ 将①、②、③式联立得 a =mg / (m +21M ) ∵ v 0=0,∴ v =at =mgt / (m +21M ) 3. 为求一半径R =50 cm 的飞轮对于通过其中心且与盘面垂直的固定转轴的转动惯量,在飞轮上绕以细绳,绳末端悬一质量m 1=8 kg 的重锤.让重锤从高2 m 处由静止落下,测得下落时间t 1=16 s .再用另一质量m 2=4 kg 的重锤做同样测量,测得下落时间t 2=25 s .假定摩擦力矩是一个常量,求飞轮的转动惯量. 解:根据牛顿运动定律和转动定律,对飞轮和重物列方程,得 TR -M f =Ja / R ① mg -T =ma ② h =221at ③ 则将m 1、t 1代入上述方程组,得a 1=2h /21t =0.0156 m / s 2 T 1=m 1 (g -a 1)=78.3 NJ =(T 1R -M f )R / a 1 ④ 将m 2、t 2代入①、②、③方程组,得 a 2=2h /22t =6.4×10-3 m / s ?T 2=m 2(g -a 2)=39.2 NJ = (T 2R -M f )R / a 2 ⑤由④、⑤两式,得 J =R 2(T 1-T 2) / (a 1-a 2)=1.06×103 kg ·m 24. 一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为?0.设它所受阻力矩与转动角速度成正比,即M =-k ? (k 为正的常数),求圆盘的角速度从?0变为021ω时所需的时间. 解:根据转动定律: ?????????????? ???? J d ? / d t = -k ?????????????????????????????????????????????????? ∴ t J kd d -=ωω两边积分:⎰⎰-=t t J k 02/d d 100ωωωω得 ln2 = kt / J∴ t =(J ln2) / k5. 某人站在水平转台的中央,与转台一起以恒定的转速n 1转动,他的两手各拿一个质量为m 的砝码,砝码彼此相距l 1 (每一砝码离转轴21l 1),当此人将砝码拉近到距离为l 2时(每一砝码离转轴为21l 2),整个系统转速变为n 2.求在此过程中人所作的功.(假定人在收臂过程中自身对轴的转动惯量的变化可以忽略)解:(1) 将转台、砝码、人看作一个系统,过程中人作的功W 等于系统动能之增量: W =?E k=212210222204)21(214)21(21n ml J n ml J π+-π+2 这里的J 0是没有砝码时系统的转动惯量.(2) 过程中无外力矩作用,系统的动量矩守恒:2?(J 0+2121ml ) n 1 = 2? (J 0+2221ml ) n 2 ∴ ()()1222212102n n n l n l m J --=(3) 将J 0代入W 式,得 ()2221212l l n mn W -π=6. 一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为?),圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v 0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求(1) 子弹击中圆盘后,盘所获得的角速度. (2) 经过多少时间后,圆盘停止转动. (圆盘绕通过O 的竖直轴的转动惯量为221MR ,忽略子弹重力造成的摩擦阻力矩) 解:(1) 以子弹和圆盘为系统,在子弹击中圆盘过程中,对轴O 的角动量守恒. m v 0R =(21MR 2+mR 2)? (2) 设?表示圆盘单位面积的质量,可求出圆盘所受水平面的摩擦力矩的大小 为 ⎰π⋅=Rfr r g r Md 2σμ=(2 / 3)??σgR 3=(2 / 3)?MgR设经过?t 时间圆盘停止转动,则按角动量定理有 -M f ??t =0-J ?=-(21MR 2+mR 2)?=- m v 0R ∴()Mg m MgR R m M R m t fμμ2v 33/2v v 000===∆ 7.一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度?.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)解:碰撞前瞬时,杆对O 点的角动量为式中?为杆的线密度.碰撞后瞬时,杆对O 点的角动量为 因碰撞前后角动量守恒,所以∴ ? = 6v 0 / (7L)8. 长为l 的匀质细杆,可绕过杆的一端O 点的水平光滑固定轴转动,开始时静止于竖直位置.紧挨O 点悬一单摆,轻质摆线的长度也是l ,摆球质量为m .若单摆从水平位置由静止开始自由摆下,且摆球与细杆作完全弹性碰撞,碰撞后摆球正好静止.求: (1) 细杆的质量.(2) 细杆摆起的最大角度?.解:(1) 设摆球与细杆碰撞时速度为v 0,碰后细杆角速度为?,系统角动量守恒 得: J ? = m v 0l由于是弹性碰撞,所以单摆的动能变为细杆的转动动能2202121ωJ m =v 代入J =231Ml ,由上述两式可得 M =3m (2) 由机械能守恒式mgl m =2021v 及 ()θωc o s 121212-=M g l J 并利用(1) 中所求得的关系可得 31a r c c o s =θ四 研讨题1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杆与水平方向夹角为60°时, ?=30o, α ? g/2l
8 长为l、质量为M的匀质杆可绕通过杆一端 O的水平光滑固定轴
转动,转动惯量为 Ml2/3,开始时杆竖直下垂.有一质量为 m的子
弹射以入水后平瞬速间度杆的? 0角射速入度杆?上=A点,并嵌在杆中6,?
OA=2l/3,则子弹
0
?4 ? 3M / m?l
分析:
2as
?
?
?
2 0
2??
?
?
?
2 0
a ? r?
?0 ? r? 0
??s
r
N?
? 2?
? 13.3圈
?
?
??
2 0
?
? 0.024rad
/ s2
2?
4.一轻绳跨过一具有水平光滑轴、质量为 M的定滑轮,绳的两端
分别悬有质量为 m1和m2的物体(m1 >m2).绳与轮之间无相对滑 动.若某时刻滑轮沿逆时针方向转动,则绳中的张力
物体侧面垂直,如图所示.地面极粗糙,物体不可能滑动.若 要使该立方体翻转90°,则拉力F不能小于___
解:要使该立方体翻转90o,则拉力F对转轴的力矩 F
不能小于重力对转轴的力矩,即:
mg
aF ? 1 amg 2
F ? 1 mg ? 98N 2
4.定轴转动刚体的角动量(动量矩)定理的内容是定轴转动刚体所受外 力对轴的冲量矩等于转动刚体对轴的角动量(动量矩)的增量.
(A) 处处相等.
(B) 左边大于右边.
(C) 右边大于左边. (D) 哪边大无法判断.
5.将细绳绕在一个具有水平光滑轴的飞轮边缘上,在绳端挂一质 量为m的重物,飞轮的角加速度为 ? .如果以拉力2mg代替重物拉 绳时,飞轮的角加速度将
(A) 小于? (B )大于?,小于2 ? (C)大于2?, (D)等于2?.
无初转速地释放.则杆刚被释放时的角加速度a 0? _ , 杆与水平方向夹角为60°时的角加速度a?_
? mg
解:将小球和刚作为一系统,因杆质量可忽略,所以系统在转动时受 到的对转轴的力矩为小球的重力矩,对系统应用转动定律有:
lmg sin θ ? ml2α
α ? g sin θ / l
杆刚被释放时?=0, α ? g/l 0
J
xC
?
J
yC
2 zC
? MR2 ?
3
2 MR2
PP?
xC
(3)复摆的摆动周期为 T ? 2π J
2
T ? 2? 2R
1
g
T ? 2? 3R
2
2g
mgl
T1 ? 4 ? 1.1547
T2
3
2 长为l质量为m2的均匀细杆一端固定。另一端连有 质量为 m1、半径为 b的均匀圆盘。求该系统从图中 位置释放时的角加速度。
4m、3m、2m和m的四个质点,PQ=QR=RS=l,则系统对 OO?
轴的转动惯量为:_5__0_m_l 2
2.力矩的定义式为_M_?__?__r?_?_F_?.
在力矩作用下,一个绕轴转动的物体作_变__角__动_量_运动. 若系统所受的合外力矩为零,则系统的____角__动_量_____守恒.
3 质量为20 kg、边长为1.0 m的均匀立方物体,放在水平地面 上.有一拉力 F作用在该物体一顶边的中点,且与包含该顶边的
杆的方向上正对着杆的一端,以相同速率v相向运动,当两小球同
时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,
则这一系统碰撞后的转动角速度应为
(A ) 2?
(B ) 4?
3L
5L
( D ) 8?
( E ) 12 ?
9L
7L
(C ) 6?
7L
v
v
O
1-2 题俯视图 图
二.填空题
1.如图所示,P、Q、R和S是附于刚性轻质细杆上的质量分别为
6.一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个 人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的 摩擦,此系统
(A) 动量守恒.
(B) 机械能守恒.
(C) 对转轴的角动量守恒.
(D) 动量、机械能和角动量都守恒.
(E) 动量、机械能和角动量都不守恒.
7.花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,
3. 一根绳子绕在半径为30 cm的轮子上.当轮子由初速度2.0 rad/s 匀减速到静止,绳子在轮上的长度为25 m.轮子的加速度和轮子 转过的周数为
(A) - 0.942rad/s 2 ,13.3
(B) - 0.884rad/s 2 ,13.3
(C) - 0.942rad/s 2 ,2.67
(D) - 0.884rad/s 2 ,2.67
R C
解:(1)圆环放在刀口上O,以环中 心的平衡位置C点的为坐标原点。Z轴
J zc ? MR2
O
P
?
P?
x
指向读者。圆环绕Z轴的转动惯量为
Z
R
由平行轴定理,关于刀口的转动惯量为 J zo ? J zc ? MR2 ? 2MR2
(2)由垂直轴定理有: J ? J ? 1 J ? MR 2
由平行轴定理有:
? 其数学表达式可写成
M d t t2
ex
t1
z
?
J?
?
J? 0

动量矩守恒的条件是 刚体所受对轴的合外力矩等于零. .
5.一均匀细直棒,可绕通过其一端的光滑固定轴在竖直平面内转 动.使棒从水平位置自由下摆,棒是否作匀角加速转动? __否__.理由是在棒的自由下摆过程中,转动惯量不变,但使棒下摆
的力矩随棒的下摆而减小.由转动定律知棒摆动的角加速度也要 随之变小.
分析:系统对转轴的角动量守恒
三.计算题
1.(1)一个质量为M,半径为R的环放在刀口上,环可以在自
身平面内摆动,形成一个物理摆。求此时圆环摆的转动惯量。
(2)假设一个相同的环固定在与其共面且与圆周相切的轴 PP?
上环可以自由在纸面内外摆动。求此时圆环摆的转动惯量。 O
(*)(3)求两种小摆动的周期。哪种摆动的周期较长?
转动惯量为J0,角速度为? 0,然后她将两臂收回,使转动惯量减少
为J0
/3,这时她转动的角速度变为
(A) 1? (B) 1 ?
30
30
(C) 3? 0
(D) 3? 0
8.光滑的水平桌面上,有一长为2l、质量为m的匀质细杆,可绕过
其中点且垂直于杆的竖直光滑固定轴O自由转动,其转动惯量为
ml2/3,起初杆静止.桌面上有两个质量均为m的小球各自在垂直于
6. 一飞轮以角速度 ? 0绕光滑固定轴旋转,飞轮对轴的转动惯 量为J1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转 轴转动,该飞轮对轴的转动惯量为前者的二倍.啮合后整个系
统的角速度?? ? / 3 0
7.一长为l,质量可以忽略的直杆,可绕通过其一端的
水平光滑轴在竖直平面内作定轴转动,在杆的另一端固 定着一质量为m的小球,如图所示.现将杆由水平位置
相关文档
最新文档