七年级数学培优辅导十三教学文案
七年级数学培优辅导讲义(共十讲80页)
第一讲有理数的巧算有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性.1.括号的使用在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单.例1计算:分析中学数学中,由于负数的引入,符号“+”与“-”具有了双重涵义,它既是表示加法与减法的运算符号,也是表示正数与负数的性质符号.因此进行有理数运算时,一定要正确运用有理数的运算法则,尤其是要注意去括号时符号的变化.注意在本例中的乘除运算中,常常把小数变成分数,把带分数变成假分数,这样便于计算.例2计算下式的值:211×555+445×789+555×789+211×445.分析直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算.解原式=(211×555+211×445)+(445×789+555×789)=211×(555+445)+(445+555)×789=211×1000+1000×789=1000×(211+789)=1 000 000.说明加括号的一般思想方法是“分组求和”,它是有理数巧算中的常用技巧.例3计算:S=1-2+3-4+…+(-1)n+1·n.分析不难看出这个算式的规律是任何相邻两项之和或为“1”或为“-1”.如果按照将第一、第二项,第三、第四项,…,分别配对的方式计算,就能得到一系列的“-1”,于是一改“去括号”的习惯,而取“添括号”之法.解 S=(1-2)+(3-4)+…+(-1)n+1·n.下面需对n的奇偶性进行讨论:当n为偶数时,上式是n/2个(-1)的和,所以有当n为奇数时,上式是(n-1)/2个(-1)的和,再加上最后一项(-1)n+1·n=n,所以有例4在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?分析与解因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3,…,1998之前任意添加符号“+”或“-”,不会改变和的奇偶性.在1,2,3,…,1998中有1998÷2个奇数,即有999个奇数,所以任意添加符号“+”或“-”之后,所得的代数和总为奇数,故最小非负数不小于1.现考虑在自然数n,n+1,n+2,n+3之间添加符号“+”或“-”,显然n-(n+1)-(n+2)+(n+3)=0.这启发我们将1,2,3,…,1998每连续四个数分为一组,再按上述规则添加符号,即(1-2-3+4)+(5-6-7+8)+…+(1993-1994-1995+1996)-1997+1998=1.所以,所求最小非负数是1.说明本例中,添括号是为了造出一系列的“零”,这种方法可使计算大大简化.2.用字母表示数我们先来计算(100+2)×(100-2)的值:(100+2)×(100-2)=100×100-2×100+2×100-4=1002-22.这是一个对具体数的运算,若用字母a代换100,用字母b代换2,上述运算过程变为(a+b)(a-b)=a2-ab+ab-b2=a2-b2.于是我们得到了一个重要的计算公式(a+b)(a-b)=a2-b2,①这个公式叫平方差公式,以后应用这个公式计算时,不必重复公式的证明过程,可直接利用该公式计算.例5计算 3001×2999的值.解 3001×2999=(3000+1)(3000-1)=30002-12=8 999 999.例6计算 103×97×10 009的值.解原式=(100+3)(100-3)(10000+9)=(1002-9)(1002+9)=1004-92=99 999 919.例7计算:分析与解直接计算繁.仔细观察,发现分母中涉及到三个连续整数:12 345,12 346,12 347.可设字母n=12 346,那么12 345=n-1,12 347=n+1,于是分母变为n2-(n-1)(n+1).应用平方差公式化简得n2-(n2-12)=n2-n2+1=1,即原式分母的值是1,所以原式=24 690.例8计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).分析式子中2,22,24,…每一个数都是前一个数的平方,若在(2+1)前面有一个(2-1),就可以连续递进地运用(a+b)(a-b)=a2-b2了.解原式=(2-1)(2+1)(22+1)(24+1)(28+1)×(216+1)(232+1)=(22-1)(22+1)(24+1)(28+1)(216+1)×(232+1)=(24-1)(24+1)(28+1)(216+1)(232+1)=……=(232-1)(232+1)=264-1.例9计算:分析在前面的例题中,应用过公式(a+b)(a-b)=a2-b2.这个公式也可以反着使用,即a2-b2=(a+b)(a-b).本题就是一个例子.通过以上例题可以看到,用字母表示数给我们的计算带来很大的益处.下面再看一个例题,从中可以看到用字母表示一个式子,也可使计算简化.例10计算:我们用一个字母表示它以简化计算.3.观察算式找规律例11某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.分析与解若直接把20个数加起来,显然运算量较大,粗略地估计一下,这些数均在90上下,所以可取90为基准数,大于90的数取“正”,小于90的数取“负”,考察这20个数与90的差,这样会大大简化运算.所以总分为90×20+(-3)+1+4+(-2)+3+1+(-1)+(-3)+2+(-4)+0+2+(-2)+0+1+(-4)+(-1)+2+5+(-2)=1800-1=1799,平均分为 90+(-1)÷20=89.95.例12 计算1+3+5+7+…+1997+1999的值.分析观察发现:首先算式中,从第二项开始,后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000,于是可有如下解法.解用字母S表示所求算式,即S=1+3+5+…+1997+1999.①再将S各项倒过来写为S=1999+1997+1995+…+3+1.②将①,②两式左右分别相加,得2S=(1+1999)+(3+1997)+…+(1997+3)+(1999+1)=2000+2000+…+2000+2000(500个2000)=2000×500.从而有 S=500 000.说明一般地,一列数,如果从第二项开始,后项减前项的差都相等(本题3-1=5-3=7-5=…=1999-1997,都等于2),那么,这列数的求和问题,都可以用上例中的“倒写相加”的方法解决.例13计算 1+5+52+53+…+599+5100的值.分析观察发现,上式从第二项起,每一项都是它前面一项的5倍.如果将和式各项都乘以5,所得新和式中除个别项外,其余与原和式中的项相同,于是两式相减将使差易于计算.解设S=1+5+52+…+599+5100,①所以5S=5+52+53+…+5100+5101.②②—①得4S=5101-1,说明如果一列数,从第二项起每一项与前一项之比都相等(本例中是都等于5),那么这列数的求和问题,均可用上述“错位相减”法来解决.例14 计算:分析一般情况下,分数计算是先通分.本题通分计算将很繁,所以我们不但不通分,反而利用如下一个关系式来把每一项拆成两项之差,然后再计算,这种方法叫做拆项法.解由于所以说明本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项,这种方法在有理数巧算中很常用.练习一1.计算下列各式的值:(1)-1+3-5+7-9+11-…-1997+1999;(2)11+12-13-14+15+16-17-18+…+99+100;(3)1991×1999-1990×2000;(4)4726342+472 6352-472 633×472 635-472 634×472 636;(6)1+4+7+ (244)2.某小组20名同学的数学测验成绩如下,试计算他们的平均分.81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.第二讲绝对值绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据绝对值的定义来解决这些问题.下面我们先复习一下有关绝对值的基本知识,然后进行例题分析.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关.在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数.例1 a,b为实数,下列各式对吗?若不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)若|a|=b,则a=b;(5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.解 (1)不对.当a,b同号或其中一个为0时成立.(2)对.(3)对.(4)不对.当a≥0时成立.(5)不对.当b>0时成立.(6)不对.当a+b>0时成立.例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则,有b-a<0,a+c<0,c-b<0.再根据绝对值的概念,得|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.于是有原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.例3已知x<-3,化简:|3+|2-|1+x|||.分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解原式=|3+|2+(1+x)||(因为1+x<0)=|3+|3+x||=|3-(3+x)|(因为3+x<0)=|-x|=-x.解因为 abc≠0,所以a≠0,b≠0,c≠0.(1)当a,b,c均大于零时,原式=3;(2)当a,b,c均小于零时,原式=-3;(3)当a,b,c中有两个大于零,一个小于零时,原式=1;(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.说明本例的解法是采取把a,b,c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用.例5若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.解因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.(1)当y=2时,x+y=-1;(2)当y=-2时,x+y=-5.所以x+y的值为-1或-5.例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.解 a,b,c均为整数,则a-b,c-a也应为整数,且|a-b|19,|c-a|99为两个非负整数,和为1,所以只能是|a-b|19=0且|c-a|99=1,①或|a-b|19=1且|c-a|99=0.②由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b±1,于是|b-c|=|a-b|=1.无论①或②都有|b-c|=1且|a-b|+|c-a|=1,所以|c-a|+|a-b|+|b-c|=2.解依相反数的意义有|x-y+3|=-|x+y-1999|.因为任何一个实数的绝对值是非负数,所以必有|x-y+3|=0且|x+y-1999|=0.即由①有x-y=-3,由②有x+y=1999.②-①得2y=2002, y=1001,所以例8 化简:|3x+1|+|2x-1|.分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.这里我们为三个部分(如图1-2所示),即这样我们就可以分类讨论化简了.原式=-(3x+1)-(2x-1)=5x;原式=(3x+1)-(2x-1)=x+2;原式=(3x+1)+(2x-1)=5x.即说明解这类题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,这样就将数轴分成几个部分,根据变数字母的这些取值范围分类讨论化简,这种方法又称为“零点分段法”.例9已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.分析首先使用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,从中选出最大者.解有三个分界点:-3,1,-1.(1)当x≤-3时,y=-(2x+6)-(x-1)+4(x+1)=x-1,由于x≤-3,所以y=x-1≤-4,y的最大值是-4.(2)当-3≤x≤-1时,y=(2x+6)-(x-1)+4(x+1)=5x+11,由于-3≤x≤-1,所以-4≤5x+11≤6,y的最大值是6.(3)当-1≤x≤1时,y=(2x+6)-(x-1)-4(x+1)=-3x+3,由于-1≤x≤1,所以0≤-3x+3≤6,y的最大值是6.(4)当x≥1时,y=(2x+6)+(x-1)-4(x+1)=-x+1,由于x≥1,所以1-x≤0,y的最大值是0.综上可知,当x=-1时,y取得最大值为6.例10设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.分析本题也可用“零点分段法”讨论计算,但比较麻烦.若能利用|x-a|,|x-b|,|x-c|,|x-d|的几何意义来解题,将显得更加简捷便利.解设a,b,c,d,x在数轴上的对应点分别为A,B,C,D,X,则|x-a|表示线段AX之长,同理,|x-b|,|x-c|,|x-d|分别表示线段BX,CX,DX之长.现要求|x-a|,|x-b|,|x-c|,|x-d|之和的值最小,就是要在数轴上找一点X,使该点到A,B,C,D四点距离之和最小.因为a<b<c<d,所以A,B,C,D的排列应如图1-3所示:所以当X在B,C之间时,距离和最小,这个最小值为AD+BC,即(d-a)+(c-b).例11若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.分析与解要使原式对任何数x恒为常数,则去掉绝对值符号,化简合并时,必须使含x的项相加为零,即x的系数之和为零.故本题只有2x-5x+3x=0一种情况.因此必须有|4-5x|=4-5x且|1-3x|=3x-1.故x应满足的条件是此时原式=2x+(4-5x)-(1-3x)+4=7.练习二1.x是什么实数时,下列等式成立:(1)|(x-2)+(x-4)|=|x-2|+|x-4|;(2)|(7x+6)(3x-5)|=(7x+6)(3x-5).2.化简下列各式:(2)|x+5|+|x-7|+|x+10|.3.若a+b<0,化简|a+b-1|-|3-a-b|.4.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.5.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,对于满足p≤x≤15的x 来说,T的最小值是多少?6.已知a<b,求|x-a|+|x-b|的最小值.7.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|,那么B点应为( ).(1)在A,C点的右边;(2)在A,C点的左边;(3)在A,C点之间;(4)以上三种情况都有可能.第三讲求代数式的值用具体的数代替代数式里的字母进行计算,求出代数式的值,是一个由一般到特殊的过程.具体求解代数式值的问题时,对于较简单的问题,代入直接计算并不困难,但对于较复杂的代数式,往往是先化简,然后再求值.下面结合例题初步看一看代数式求值的常用技巧.例1求下列代数式的值:分析上面两题均可直接代入求值,但会很麻烦,容易出错.我们可以利用已经学过的有关概念、法则,如合并同类项,添、去括号等,先将代数式化简,然后再求值,这样会大大提高运算的速度和结果的准确性.=0-4a3b2-a2b-5=-4×13×(- 2)2- 12×(-2)-5=-16+2-5=-19.(2)原式=3x2y-xyz+(2xyz-x2z)+4x2?[3x2y-(xyz-5x2z)]=3x2y-xyz+2xyz-x2z+4x2z-3x2y+(xyz-5x2z)=(3x2y-3x2y)+(-xyz+2xyz+xyz)+(-x2z+4x2z-5x2z)=2xyz-2x2z=2×(-1)×2×(-3)-2×(-1)2×(-3)=12+6=18.说明本例中(1)的化简是添括号,将同类项合并后,再代入求值;(2)是先去括号,然后再添括号,合并化简后,再代入求值.去、添括号时,一定要注意各项符号的变化.例2已知a-b=-1,求a3+3ab-b3的值.分析由已知条件a-b=-1,我们无法求出a,b的确定值,因此本题不能像例1那样,代入a,b的值求代数式的值.下面给出本题的五种解法.解法1由a-b=-1得a=b-1,代入所求代数式化简a3+3ab-b3=(b-1)3+3(b-1)b-b3=b3-3b2+3b-1+3b2-3b-b3=-1.说明这是用代入消元法消去a化简求值的.解法2因为a-b=-1,所以原式=(a3-b3)+3ab=(a-b)(a2+ab+b2)+3ab=-1×(a2+ab+b2)+3ab=-a2-ab-b2+3ab=-(a2-2ab+b2)=-(a-b)2=-(-1)2=-1.说明这种解法是利用了乘法公式,将原式化简求值的.解法3 因为a-b=-1,所以原式=a3-3ab(-1)-b3=a3-3ab(a-b)-b3=a3-3a2b+3ab2-b3=(a-b)3=(-1)3=-1.说明这种解法巧妙地利用了-1=a-b,并将3ab化为-3ab(-1)=-3ab(a-b),从而凑成了(a-b)3.解法4 因为a-b=-1,所以(a-b)3=(-1)3=1,即 a3+3ab2-3a2b-b3=-1,a3-b3-3ab(a-b)=-1,所以 a3-b3-3ab(-1)=-1,即 a3-b3+3ab=-1.说明这种解法是由a-b=-1,演绎推理出所求代数式的值.解法 5a3+3ab-b3=a3+3ab2-3a2b-b3-3ab2+3a2b+3ab=(a-b)3+3ab(a-b)+3ab=(-1)3+3ab(-1)+3ab=-1.说明这种解法是添项,凑出(a-b)3,然后化简求值.通过这个例题可以看出,求代数式的值的方法是很灵活的,需要认真思考,才能找到简便的算法.在本例的各种解法中,用到了几个常用的乘法公式,现总结如下:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a-b)3=a3-3a2b+3ab2-b3;a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2).解由已知,xy=2(x+y),代入所求代数式中,消去xy,然后化简.所以解因为a=3b,所以c=5a=5×(3b)=15b.将a,c代入所求代数式,化简得解因为(x-5)2,|m|都是非负数,所以由(1)有由(2)得y+1=3,所以y=2.下面先化简所求代数式,然后再代入求值.=x2y+5m2x+10xy2=52×2+0+10×5×22=250例6如果4a-3b=7,并且3a+2b=19,求14a-2b的值.分析此题可以用方程组求出a,b的值,再分别代入14a-2b求值.下面介绍一种不必求出a,b的值的解法.解 14a-2b=2(7a-b)=2[(4a+3a)+(-3b+2b)]=2[(4a-3b)+(3a+2b)]=2(7+19)=52.|x|+|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的值.分析所求代数式中六个绝对值的分界点,分别为:0,1,2,据绝对值的意义去掉绝对值的符号,将有3个x和3个-x,这样将抵消掉x,使求值变得容易.原式=x+(x-1)+(x-2)-(x-3)-(x-4)-(x-5)=-1-2+3+4+5=9.说明实际上,本题只要x的值在2与3之间,那么这个代数式的值就是9,即它与x具体的取值无关.例8若x:y:z=3:4:7,且2x-y+z=18,那么x+2y-z的值是多少?分析 x:y:z=3:4:7可以写成的形式,对于等比,我们通常可以设它们的比值为常数k,这样可以给问题的解决带来便利.x=3k,y=4k,z=7k.因为2x-y+z=18,所以2×3k-4k+7k=18,所以k=2,所以x=6,y=8,z=14,所以x+2y-z=6+16-14=8.例9已知x=y=11,求(xy-1)2+(x+y-2)(x+y-2xy)的值.分析本题是可直接代入求值的.下面采用换元法,先将式子改写得较简洁,然后再求值.解设x+y=m,xy=n.原式=(n-1)2+(m-2)(m-2n)=(n-1)2+m2-2m-2mn+4n=n2-2n+1+4n-2m-2mn+m2=(n+1)2-2m(n+1)+m2=(n+1-m)2=(11×11+1-22)2=(121+1-22)2=1002=10000.说明换元法是处理较复杂的代数式的常用手法,通过换元,可以使代数式的特征更加突出,从而简化了题目的表述形式.练习三1.求下列代数式的值:(1)a4+3ab-6a2b2-3ab2+4ab+6a2b-7a2b2-2a4,其中a=-2,b=1;的值.3.已知a=3.5,b=-0.8,求代数式|6-5b|-|3a-2b|-|8b-1|的值.4.已知(a+1)2-(3a2+4ab+4b2+2)=0,求 a,b的值.5.已知第四讲一元一次方程方程是中学数学中最重要的内容.最简单的方程是一元一次方程,它是进一步学习代数方程的基础,很多方程都可以通过变形化为一元一次方程来解决.本讲主要介绍一些解一元一次方程的基本方法和技巧.用等号连结两个代数式的式子叫等式.如果给等式中的文字代以任何数值,等式都成立,这种等式叫恒等式.一个等式是否是恒等式是要通过证明来确定的.如果给等式中的文字(未知数)代以某些值,等式成立,而代以其他的值,则等式不成立,这种等式叫作条件等式.条件等式也称为方程.使方程成立的未知数的值叫作方程的解.方程的解的集合,叫作方程的解集.解方程就是求出方程的解集.只含有一个未知数(又称为一元),且其次数是1的方程叫作一元一次方程.任何一个一元一次方程总可以化为ax=b(a≠0)的形式,这是一元一次方程的标准形式(最简形式).解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b;(5)方程两边同除以未知数的系数,得出方程的解.一元一次方程ax=b的解由a,b的取值来确定:(2)若a=0,且b=0,方程变为0·x=0,则方程有无数多个解;(3)若a=0,且b≠0,方程变为0·x=b,则方程无解.例1解方程解法1从里到外逐级去括号.去小括号得去中括号得去大括号得解法2按照分配律由外及里去括号.去大括号得化简为去中括号得去小括号得例2已知下面两个方程3(x+2)=5x,①4x-3(a-x)=6x-7(a-x) ②有相同的解,试求a的值.分析本题解题思路是从方程①中求出x的值,代入方程②,求出a的值.解由方程①可求得3x-5x=-6,所以x=3.由已知,x=3也是方程②的解,根据方程解的定义,把x=3代入方程②时,应有4×3-3(a-3)=6×3-7(a-3),7(a-3)-3(a-3)=18-12,例3已知方程2(x+1)=3(x-1)的解为a+2,求方程2[2(x+3)-3(x-a)]=3a的解.解由方程2(x+1)=3(x-1)解得x=5.由题设知a+2=5,所以a=3.于是有2[2(x+3)-3(x-3)]=3×3,-2x=-21,例4解关于x的方程(mx-n)(m+n)=0.分析这个方程中未知数是x,m,n是可以取不同实数值的常数,因此需要讨论m,n取不同值时,方程解的情况.解把原方程化为m2x+mnx-mn-n2=0,整理得 m(m+n)x=n(m+n).当m+n≠0,且m=0时,方程无解;当m+n=0时,方程的解为一切实数.说明含有字母系数的方程,一定要注意字母的取值范围.解这类方程时,需要从方程有唯一解、无解、无数多个解三种情况进行讨论.例5解方程(a+x-b)(a-b-x)=(a2-x)(b2+x)-a2b2.分析本题将方程中的括号去掉后产生x2项,但整理化简后,可以消去x2,也就是说,原方程实际上仍是一个一元一次方程.解将原方程整理化简得(a-b)2-x2=a2b2+a2x-b2x-x2-a2b2,即 (a2-b2)x=(a-b)2.(1)当a2-b2≠0时,即a≠±b时,方程有唯一解(2)当a2-b2=0时,即a=b或a=-b时,若a-b≠0,即a≠b,即a=-b时,方程无解;若a-b=0,即a=b,方程有无数多个解.例6已知(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,求代数式199(m+x)(x-2m)+m的值.解因为(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,所以m2-1=0,即m=±1.(1)当m=1时,方程变为-2x+8=0,因此x=4,代数式的值为199(1+4)(4-2×1)+1=1991;(2)当m=-1时,原方程无解.所以所求代数式的值为1991.例7 已知关于x的方程a(2x-1)=3x-2无解,试求a的值.解将原方程变形为2ax-a=3x-2,即 (2a-3)x=a-2.由已知该方程无解,所以例8 k为何正数时,方程k2x-k2=2kx-5k的解是正数?来确定:(1)若b=0时,方程的解是零;反之,若方程ax=b的解是零,则b=0成立.(2)若ab>0时,则方程的解是正数;反之,若方程ax=b的解是正数,则ab>0成立.(3)若ab<0时,则方程的解是负数;反之,若方程ax=b的解是负数,则ab<0成立.解按未知数x整理方程得(k2-2k)x=k2-5k.要使方程的解为正数,需要(k2-2k)(k2-5k)>0.看不等式的左端(k2-2k)(k2-5k)=k2(k-2)(k-5).因为k2≥0,所以只要k>5或k<2时上式大于零,所以当k<2或k>5时,原方程的解是正数,所以k>5或0<k<2即为所求.例9若abc=1,解方程解因为abc=1,所以原方程可变形为化简整理为化简整理为说明像这种带有附加条件的方程,求解时恰当地利用附加条件可使方程的求解过程大大简化.例10若a,b,c是正数,解方程解法1原方程两边乘以abc,得到方程ab(x-a-b)+bc(x-b-c)+ac(x-c-a)=3abc.移项、合并同类项得ab[x-(a+b+c)]+bc[x-(a+b+c)]+ac[x-(a+b+c)]=0,因此有[x-(a+b+c)](ab+bc+ac)=0.因为a>0,b>0,c>0,所以ab+bc+ac≠0,所以x-(a+b+c)=0,即x=a+b+c为原方程的解.解法2将原方程右边的3移到左边变为-3,再拆为三个“-1”,并注意到其余两项做类似处理.设m=a+b+c,则原方程变形为所以即x-(a+b+c)=0.所以x=a+b+c为原方程的解.说明注意观察,巧妙变形,是产生简单优美解法所不可缺少的基本功之一.例11设n为自然数,[x]表示不超过x的最大整数,解方程:分析要解此方程,必须先去掉[ ],由于n是自然数,所以n与(n+1)…,n[x]都是整数,所以x必是整数.解根据分析,x必为整数,即x=[x],所以原方程化为合并同类项得故有所以x=n(n+1)为原方程的解.例12已知关于x的方程且a为某些自然数时,方程的解为自然数,试求自然数a的最小值.解由原方程可解得a最小,所以x应取x=160.所以所以满足题设的自然数a的最小值为2.练习四1.解下列方程:*2.解下列关于x的方程:(1)a2(x-2)-3a=x+1;4.当k取何值时,关于x的方程3(x+1)=5-kx,分别有:(1)正数解;(2)负数解;(3)不大于1的解.第五讲方程组的解法二元及多元(二元以上)一次方程组的求解,主要是通过同解变形进行消元,最终转化为一元一次方程来解决.所以,解方程组的基本思想是消元,主要的消元方法有代入消元和加减消元两种,下面结合例题予以介绍.例1解方程组解将原方程组改写为由方程②得x=6+4y,代入①化简得11y-4z=-19.④由③得2y+3z=4.⑤④×3+⑤×4得33y+8y=-57+16,所以 y=-1.将y=-1代入⑤,得z=2.将y=-1代入②,得x=2.所以为原方程组的解.说明本题解法中,由①,②消x时,采用了代入消元法;解④,⑤组成的方程组时,若用代入法消元,无论消y,还是消z,都会出现分数系数,计算较繁,而利用两个方程中z的系数是一正一负,且系数的绝对值较小,采用加减消元法较简单.解方程组消元时,是使用代入消元,还是使用加减消元,要根据方程的具体特点而定,灵活地采用各种方法与技巧,使解法简捷明快.例2解方程组解法1由①,④消x得由⑥,⑦消元,得解之得将y=2代入①得x=1.将z=3代入③得u=4.所以解法2由原方程组得所以x=5-2y=5-2(8-2z)=-11+4z=-11+4(11-2u)=33-8u=33-8(6-2x)=-15+16x,即x=-15+16x,解之得x=1.将x=1代入⑧得u=4.将u=4代入⑦得z=3.将z=3代入⑥得y=2.所以为原方程组的解.解法3①+②+③+④得x+y+z+u=10,⑤由⑤-(①+③)得y+u=6,⑥由①×2-④得4y-u=4,⑦⑥+⑦得y=2.以下略.说明解法2很好地利用了本题方程组的特点,解法简捷、流畅.例3解方程组分析与解注意到各方程中同一未知数系数的关系,可以先得到下面四个二元方程:①+②得x+u=3,⑥②+③得y+v=5,⑦③+④得z+x=7,⑧④+⑤得u+y=9.⑨又①+②+③+④+⑤得x+y+z+u+v=15.⑩⑩-⑥-⑦得z=7,把z=7代入⑧得x=0,把x=0代入⑥得u=3,把u=3代入⑨得y=6,把y=6代入⑦得v=-1.所以为原方程组的解.例4解方程组解法1①×2+②得由③得代入④得为原方程组的解.为原方程组的解.说明解法1称为整体处理法,即从整体上进行加减消元或代入消为换元法,也就是干脆引入一个新的辅助元来代替原方程组中的“整体元”,从而简化方程组的求解过程.例5已知分析与解一般想法是利用方程组求出x,y,z的值之后,代入所求的代数式计算.但本题中方程组是由三个未知数两个方程组成的,因此无法求出x,y,z的确定有限解,但我们可以利用加减消元法将原方程组变形.①-②消去x得①×3+②消去y得①×5+②×3消去z得例6已知关于x,y的方程组分别求出当a为何值时,方程组(1)有唯一一组解;(2)无解;(3)有无穷多组解.分析与一元一次方程一样,含有字母系数的一次方程组求解时也要进行讨论,一般是通过消元,归结为一元一次方程ax=b的形式进行讨论.但必须特别注意,消元时,若用含有字母的式子去乘或者去除方程的两边时,这个式子的值不能等于零.解由①得2y=(1+a)-ax,③将③代入②得(a-2)(a+1)x=(a-2)(a+2).④(1)当(a-2)(a+1)≠0,即a≠2且a≠-1时,方程④有因而原方程组有唯一一组解.(2)当(a-2)(a+1)=0且(a-2)(a+2)≠0时,即a=-1时,方程④无解,因此原方程组无解.(3)当(a-2)(a+1)=0且(a-2)(a+2)=0时,即a=2时,方程④有无穷多个解,因此原方程组有无穷多组解.例7已知关于x,y的二元一次方程(a-1)x+(a+2)y+5-2a=0,当a每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解.解法1根据题意,可分别令a=1,a=-2代入原方程得到一个方程组将x=3,y=-1代入原方程得(a-1)·3+(a+2)·(-1)+5-2a=0.所以对任何a值都是原方程的解.说明取a=1为的是使方程中(a-1)x=0,方程无x项,可直接求出y值;取a=-2的道理类似.解法2可将原方程变形为a(x+y-2)-(x-2y-5)=0.由于公共解与a无关,故有例8甲、乙两人解方程组原方程的解.分析与解因为甲只看错了方程①中的a,所以甲所得到的解4×(-3)-b×(-1)=-2.③a×5+5×4=13.④解由③,④联立的方程组得所以原方程组应为练习五1.解方程组2.若x1,x2,x3,x4,x5满足方程组试确定3x4+2x5的值.3.将式子3x2+2x-5写成a(x+1)2+b(x+1)+c的形式,试求4.k为何值时,方程组有唯一一组解;无解;无穷多解?5.若方程组的解满足x+y=0,试求m的值.第六讲一次不等式(不等式组)的解法不等式和方程一样,也是代数里的一种重要模型.在概念方面,它与方程很类似,尤其重要的是不等式具有一系列基本性质,而且“数学的基本结果往往是一些不等式而不是等式”.本讲是系统学习不等式的基础.下面先介绍有关一次不等式的基本知识,然后进行例题分析.1.不等式的基本性质这里特别要强调的是在用一个不等于零的数或式子去乘(或去除)不等式时,一定要注意它与等式的类似性质上的差异,即当所乘(或除)的数或式子大于零时,不等号方向不变(性质(5));当所乘(或除)的数或式子小于零时,不等号方向要改变(性质(6)).2.区间概念在许多情况下,可以用不等式表示数集和点集.如果设a,b为实数,且a<b,那么(1)满足不等式a<x<b的数x的全体叫作一个开区间,记作(a,b).如图1-4(a).(2)满足不等式a≤x≤b的数x的全体叫作一个闭区间,记作[a,b].如图1-4(b).(3)满足不等式a<x≤b(或a≤x<b)的x的全体叫作一个半开半闭区间,记作(a,b](或[a,b)).如图1-4(c),(d).3.一次不等式的一般解法一元一次不等式像方程一样,经过移项、合并同类项、整理后,总可以写成下面的标准型:ax>b,或ax<b.为确定起见,下面仅讨论前一种形式.一元一次不等式ax>b.(3)当a=0时,用区间表示为(-∞,+∞).例1解不等式解两边同时乘以6得12(x+1)+2(x-2)≥21x-6,化简得-7x≥-14,两边同除以-7,有x≤2.所以不等式的解为x≤2,用区间表示为(-∞,2].例2求不等式的正整数解.正整数解,所以原不等式的正整数解为x=1,2,3.例3解不等式分析与解因y2+1>0,所以根据不等式的基本性质有例4解不等式为x+2>7,解为x>5.这种错误没有考虑到使原不等式有意义的条件:x≠6.解将原不等式变形为解之得所以原不等式的解为x>5且x≠6.例5已知2(x-2)-3(4x-1)=9(1-x),且y<x+9,试比较解首先解关于x的方程得x=-10.将x=-10代入不等式得y<-10+9,即y<-1.例6解关于x的不等式:解显然a≠0,将原不等式变形为3x+3-2a2>a-2ax,即(3+2a)x>(2a+3)(a-1).说明对含有字母系数的不等式的解,也要分情况讨论.例7已知a,b为实数,若不等式(2a-b)x+3a-4b<0解由(2a-b)x+3a-4b<0得(2a-b)x<4b-3a.。
最新人教版七年级数学培优班暑期讲义教学文案
3. 有理数 a,b,c 大小关系如图 , 则下列式子中一定成立的是 A. a+b+c>0 B. c>|a+b| C. |a-c|=|a|+c D. |b-c|>|c-a
4. 如果 a+b+c=0,且 |a|>|b|>|c|, 则下列说法中可能成立的是
A. a,b 是正数 ,c<0 B. a,c
是正数 ,b<0
9. 若 a 与 b 互为相反数 , c 到原点的距离为 3, 求 2 a c b 的值 .
10. 已知 | x 4 | | y 7 | | z 3| 0 , 求 x y z 的值 .
§ 2. 有理数的运算
-、知识提要
1. 整数和分数统称为有理数 . 2. 有理数还可以这样定义: 形如 p ( 其中 m, p 均为整数 , 且 m 0 ) 的数是有理数 .
C. a ( 1 )2 为正数 D. 2007
a2
1 为正数
2007
7. 若 a<b<0<c<d,则以下四个结论中 , 正确的是 ( )
A. a+b+c+d 一定是正数.
B. d+c-a-b
可能是负数.
C. d-c-b-a 一定是正数.
D. c-d-b-a
一定是正数.
8. 已知 2m 3和 7 互为相反数 , 求 m 的值 .
a 0, a b 0 .and a+6>O,then the points in real number b
axis,given by a and b,can be represented as( )
( 英汉词典 point :点. real number axis :实数轴. represent :表示. )
初一数学教案文案(精选20篇)
初一数学教案文案(精选20篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、党团范文、工作计划、演讲稿、活动总结、行政公文、文秘知识、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, Party and Youth League model essays, work plans, speeches, activity summaries, administrative documents, secretarial knowledge, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!初一数学教案文案(精选20篇)初一教案能够帮助教师全面理解教学要点,把握教学重点和难点。
七年级数学培优辅差工作计划
七年级数学培优辅差工作计划七年级数学培优辅差工作计划七年级数学培优辅差工作计划本学期我所带的两个班的数学,大致情况是这样的:学生两极分化较严重,从数学来看,对数学的兴趣和爱好,对数学知识的接受能力都存在较大的差异,如何在数学教学中的培优补差就是摆在我面前的工作。
“分层次教学”是一种符合因材施教原则的教学方法,它能面向全体学生,为学生的全面发展创造条件,有利于学生数学素质的普遍提高。
但每个人都有自己的个性,以往的教育体系不能很好的考虑这些,没能真正把每个人都视为特殊的个体,教学以统一模式,老师为主体,学生跟着老师设计好的问题一步步学习,学校生产统一的产品,不尊重个体。
那什么是个性化的教育在新课程改革下如何在教学课堂中体现呢?在新课程改革下如何在数学中培优补差。
一、分层教学,让不同的学生得到不同的发展。
如果在一个水平线上对所有学生提出同一要求,势必会导致优等生“吃不饱”,而学困生“消化不良”,针对这一状况,在今年的教学中进行了分层教学的实验。
(一)分层教学:通过第一月考和期中考试根据学生的成绩进行适当分组,每一组6人,每组1、2号成绩较优秀,思维能力发展较好,3、4、5号成绩居中或中下的学生,6号为学困生,成绩偏差,甚至有的对小学的数学知识掌握较差。
对于他们要求所学内容相同,但要求不同,对每组1、2号学生,在反馈练习中注意拓宽学生知识面,有时也可给与生活相结合且有深化知识的竞赛类练习,使他们在每节课都能得到较深层次的发展,并且让他们每天派一名学生上台讲解,全方位的提高他们的能力;对每组3、4、5号学生按照教学大纲,以课本练习为主,注意这类学生牢固掌握基础知识;对每组6号学生,因基础差,应根据内容要求,对课本练习作适当删减,使这类学生基本掌握基础知识。
(二)分层检测:检测是同样根据不同的层次完成不同的练习,让每个学生都体验到完成任务的快感。
二、在组内设立帮扶一对一小组课堂上,以帮扶小组为单位开展讨论、设疑、解疑等活动,课下,利用帮扶小组进行知识落实活动,真正使期中的每一名学生都收益。
人教版七年级数学下册培优辅导讲义资料(最新全18讲第5—13章)
2017年上学期七年级数学下册辅导讲义第1讲 与相交有关概念及平行线的判定考点·方法·破译1.了解在平面内,两条直线的两种位置关系:相交与平行.2.掌握对顶角、邻补角、垂直、平行、内错角、中旁内角的定义,并能用图形或几何符号表示它们. 3.掌握直线平行的条件,并能根据直线平行的条件说明两条直线的位置关系. 经典·考题·赏析【例1】如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪 几对对顶角?一共构成哪几对邻补角?【解法指导】(1)顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线. ⑶邻补角:两个角有一条公共边,另一边互为反向延长线.有6对对顶角. 12对邻补角.【变式题组】01.如右图所示,直线AB 、CD 、EF 相交于P 、Q 、R ,则:⑴∠ARC 的对顶角是 . 邻补角是 . ⑵中有几对对顶角,几对邻补角?02.当两条直线相交于一点时,共有2对对顶角;当三条直线相交于一点时,共有6对对顶角;当四条直线相交于一点时,共有12对对顶角.问:当有100条直线相交于一点时共有 对顶角.【例2】如图所示,点O 是直线AB 上一点,OE 、OF 分别平分∠BOC 、 ∠AOC .⑴求∠EOF 的度数;⑵写出∠BOE 的余角及补角.【解法指导】解这类求角大小的问题,要根据所涉及的角的定义,以及各角的数量关系,把它们转化为代数式从而求解;【解】⑴∵OE 、OF 平分∠BOC 、∠AOC ∴∠EOC =21∠BOC ,∠FOC =21∠AOC ∴∠EOF =∠EOC +∠FOC =21∠BOC +21∠AOC =()AOC BOC ∠+∠21又∵∠BOC +∠AOC =180° ∴∠EOF =21×180°=90° ⑵∠BOE 的余角是:∠COF 、∠AOF ;∠BOE 的补角是:∠AOE . 【变式题组】 01.如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,且∠EOC =100°,则∠BOD 的度数是( ) A .20° B . 40° C .50° D .80°A C D EF A BCD EF PQ RA BCEF O E D 1 402.(杭州)已知∠1=∠2=∠3=62°,则∠4= .【例3】如图,直线l 1、l 2相交于点O ,A 、B 分别是l 1、l 2上的点,试用三角尺完成下列作图: ⑴经过点A 画直线l 2的垂线. ⑵画出表示点B 到直线l 1的垂线段.【解法指导】垂线是一条直线,垂线段是一条线段.【变式题组】01.P 为直线l 外一点,A 、B 、C 是直线l 上三点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离为( )A .4cmB . 5cmC .不大于4cmD .不小于6cm02 如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 为位于公路两侧的村庄;⑴设汽车行驶到路AB 上点P 的位置时距离村庄M 最近.行驶到AB 上点Q 的位置时,距离村庄N 最近,请在图中的公路上分别画出点P 、Q 的位置.⑵当汽车从A 出发向B 行驶的过程中,在 的路上距离M 村越来越近..在 的路上距离村庄N 越来越近,而距离村庄M越来越远.【例4】如图,直线AB 、CD 相交于点O ,OE ⊥CD ,OF ⊥AB ,∠DOF =65°,求∠BOE 和∠AOC 的度数.【解法指导】图形的定义现可以作为判定图形的依据,也可以作为该图形具备的性质,由图可得:∠AOF =90°,OF ⊥AB .【变式题组】01.如图,若EO ⊥AB 于O ,直线CD 过点O ,∠EOD ︰∠EOB =1︰3,求∠AOC 、∠AOE 的度数.02.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD .⑴求∠AOC 的度数;⑵试说明OD 与AB 的位置关系.03.如图,已知AB ⊥BC 于B ,DB ⊥EB 于B ,并且∠CBE ︰∠ABD =1︰2,请作出∠CBE 的对顶角,并求其度数.A B O 2l 1 FB AOC DECD BA EOBACD O A BD【例5】如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称: ∠1和∠2:∠1和∠3:∠1和∠6:∠2和∠6:∠2和∠4:∠3和∠5:∠3和∠4:【解法指导】正确辩认同位角、内错角、同旁内角的思路是:首先弄清所判断的是哪两个角,其次是找到这两个角公共边所在的直线即截线,其余两条边所在的直线就是被截的两条直线,最后确定它们的名称.【变式题组】01.如图,平行直线AB 、CD 与相交直线EF ,GH 相交,图中的同旁内角共有( )A .4对B . 8对C .12对D .16对02.如图,找出图中标出的各角的同位角、内错角和同旁内角.03.如图,按各组角的位置判断错误的是( )A .∠1和∠2是同旁内角B .∠3和∠4是内错角C .∠5和∠6是同旁内角D .∠5和∠7是同旁内角【例6】如图,根据下列条件,可推得哪两条直线平行?并说明理由• ⑴∠CBD =∠ADB ;⑵∠BCD +∠ADC =180° ⑶∠ACD =∠BAC【解法指导】图中有即即有同旁内 角,有“”即有内错角.【解法指导】⑴由∠CBD =∠ADB ,可推得AD ∥BC ;根据内错角相等,两直线平行. ⑵由∠BCD +∠ADC =180°,可推得AD ∥BC ;根据同旁内角互补,两直线平行. ⑶由∠ACD =∠BAC 可推得AB ∥DC ;根据内错角相等,两直线平行.C F EB A D 1 4 2 3 6 5 A BDCH G E F7 1 5 6 8 4 1 2 乙丙3 23 4 5 61 23 4甲1 A B C23 4567 ABCDO【变式题组】 01.如图,推理填空.⑴∵∠A =∠ (已知) ∴AC ∥ED ( ) ⑵∵∠C =∠ (已知)∴AC ∥ED ( )⑶∵∠A =∠ (已知)∴AB ∥DF ( )02.如图,AD 平分∠BAC ,EF 平分∠DEC ,且∠1=∠2,试说明DE 与AB 的位置关系. 解:∵AD 是∠BAC 的平分线(已知)∴∠BAC =2∠1(角平分线定义)又∵EF 平分∠DEC (已知)∴ ( )又∵∠1=∠2(已知)∴ ( )∴AB ∥DE ( )03.如图,已知AE 平分∠CAB ,CE 平分∠ACD .∠CAE +∠ACE =90°,求证:AB ∥CD .04.如图,已知∠ABC =∠ACB ,BE 平分∠ABC ,CD 平分∠ACB ,∠EBF =∠EFB ,求证:CD ∥EF .【例7】如图⑴,平面内有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31°.A BD E FA BC D E A B C D EF1 2 ABC DE F l 1l 2 l 3 l 4 l 5 l 6l 1 l 2 l 3l 4 l 5 l 6【解法指导】如图⑵,我们可以将所有的直线移动后,使它们相交于同一点,此时的图形为图⑵. 证明:假设图⑵中的12个角中的每一个角都不小于31° 则12×31°=372°>360° 这与一周角等于360°矛盾所以这12个角中至少有一个角小于31° 【变式题组】01.平面内有18条两两不平行的直线,试证:在所有的交角中至少有一个角小于11°.02.在同一平面内有2010条直线a 1,a 2,…,a 2010,如果a 1⊥a 2,a 2∥a 3,a 3⊥a 4,a 4∥a 5……那么a 1与a 2010的位置关系是 .03.已知n (n >2)个点P 1,P 2,P 3…Pn .在同一平面内没有任何三点在同一直线上,设S n 表示过这几个点中的任意两个点所作的所有直线的条数,显然:S 2=1,S 3=3,S 4=6,∴S 5=10…则Sn = .演练巩固·反馈提高01.如图,∠EAC =∠ADB =90°.下列说法正确的是( ) A .α的余角只有∠B B .α的邻补角是∠DAC C .∠ACF 是α的余角 D .α与∠ACF 互补02.如图,已知直线AB 、CD 被直线EF 所截,则∠EMB 的同位角为( )A .∠AMFB .∠BMFC .∠ENCD .∠END 03.下列语句中正确的是( )A .在同一平面内,一条直线只有一条垂线B .过直线上一点的直线只有一条C .过直线上一点且垂直于这条直线的直线有且只有一条D .垂线段就是点到直线的距离04.如图,∠BAC =90°,AD ⊥BC 于D ,则下列结论中,正确的个数有( )①AB ⊥AC ②AD 与AC 互相垂直 ③点C 到AB 的垂线段是线段AB ④线段AB 的长度是点B 到AC 的距离 ⑤垂线段BA 是点B 到AC 的距离 ⑥AD >BD A .0 B . 2 C .4 D .605.点A 、B 、C 是直线l 上的三点,点P 是直线l 外一点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离是( )A .4cmB .5cmC .小于4cmD .不大于4cm A EBCF DA B C DFEMNα第1题图 第2题图A DC第4题图06.将一副直角三角板按图所示的方法旋转(直角顶点重合),则∠AOB +∠DOC = .07.如图,矩形ABCD 沿EF 对折,且∠DEF =72°,则∠AEG = .08.在同一平面内,若直线a 1∥a 2,a 2⊥a 3,a 3∥a4,…则a 1 a 10.(a 1与a 10不重合)09.如图所示,直线a 、b 被直线c 所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a ∥b 的条件的序号是 . 10.在同一平面内两条直线的位置关系有 .11.如图,已知BE 平分∠ABD ,DE 平分∠CDB ,且∠E =∠ABE +∠EDC .试说明AB ∥CD ?12.如图,已知BE 平分∠ABC ,CF 平分∠BCD ,∠1=∠2,那么直线AB 与CD 的位置关系如何?13.如图,请你填上一个适当的条件 使AD ∥BC .ABCDOABCDEFG H abc第6题图第7题图第9题图12 3 4 5 6 7 8AC D E B AB C D E F1 2AB C D E F第13题图第02讲 实 数考点·方法·破译 1.平方根与立方根:若2x =a (a ≥0)则x 叫做a 的平方根,记为:a 的平方根为x =,其中a 的平方根为x叫做a 的算术平方根.若x 3=a ,则x 叫做a 的立方根.记为:a 的立方根为x2.无限不循环小数叫做无理数,有理数和无理数统称实数.实数与数轴上的点一一对应.任何有理数都可以表示为分数pq(p 、q 是两个互质的整数,且q ≠0)的形式. 3.非负数:实数的绝对值,实数的偶次幂,非负数的算术平方根(或偶次方根)都是非负数.即a >0,2n a ≥0(n 为正整数)0(a ≥0) .经典·考题·赏析【例1】若2m -4与3m -1是同一个数的平方根,求m 的值.【解法指导】一个正数的平方根有两个,并且这两个数互为相反数.∵2m −4与3m −l 是同一个数的平方根,∴2m −4 +3m −l =0,5m =5,m =l .【变式题组】01.一个数的立方根与它的算术平方根相等,则这个数是____. 02.已知mm 的平方根是____. 03____.04.如图,有一个数值转化器,当输入的x 为64时,输出的y 是____.【例2】已知非零实数a 、b 满足24242a b a -++=,则a +b 等于( )A .-1B . 0C .1D .2有意义,∵a 、b 为非零实数,∴b 2>0∴a -3≥0 a ≥3∵24242a b a -++=∴24242a b a -++=,∴20b ++=.∴()22030b a b +=⎧⎪⎨-=⎪⎩,∴32a b =⎧⎨=-⎩,故选C . 【变式题组】0l 3b +=0成立,则a b =____.02()230b -=,则ab的平方根是____.03.(天津)若x 、y 为实数,且20x +=,则2017x y ⎛⎫⎪⎝⎭的值为( )A .1B .-1C .2D .-204.已知x 1x π-的值是( )A .11π-B .11π+C .11π- D .无法确定【例3】若a 、b 都为有理效,且满足1a b -=+a +b 的平方根.【解法指导】任何两个有理数的和、差、积、商(除数不为0)还是有理数,但两个无理数的和、差、积、商(除数不为0)不一定是无理数.【变式题组】01.已知m 、n 2)m +(3-n +7=0求m 、n .02.设x 、y 都是有理数,且满足方程(123π+)x +(132π+)y −4−π=0,则x −y =____.【例4】若a 2的整数部分,b −1是9的平方根,且a b b a -=-,求a +b 的值.−2=整数部分+小数部分.整数部分估算可得2,则小数部分−2 −2−4.∵a =2,b −1=±3 ,∴b =-2或4∵a b b a -=-.∴a <b ,∴a =2, b =4,即a +b =6. 【变式题组】01.若3a ,b ,则a +b 的值为____.02a ,小数部分为b a )·b =____.演练巩固 反馈提高 01.下列说法正确的是( )A .-2是(-2)2的算术平方根B .3是-9的算术平方根C . 16的平方根是±4D .27的立方根是±3 02.设3a =-,b = -2,52c =-,则a 、b 、c 的大小关系是( ) A .a <b <c B .a <c <b C . b <a <c D .c <a <b 03.下列各组数中,互为相反数的是( )A .-9与81的平方根B .4与364- C .4与364 D .3与904.在实数1.414,2-,0.1•5•,5−16,π,3.1•4•,83125中无理数有( ) A .2个 B .3个 C .4个 D . 5个05.实数a 、b 在数轴上表示的位置如图所示,则( )A .b >aB .a b >C . -a <bD .-b >a06.现有四个无理数5,6,7,8,其中在2+1与3+1之间的有( )A . 1个B .2个C . 3个D .4个 07.设m 是9的平方根,n =()23.则m ,n 的关系是( )A . m =±nB .m =nC .m =-nD .m n ≠08.(烟台)如图,数轴上 A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点C ,则点C 所表示的数为( )A .-23-B .-13-C .-2 +3D .1+309.点A 在数轴上和原点相距5个单位,点B 在数轴上和原点相距3个单位,且点B 在点A 左边,则A 、B 之间的距离为____.10.对于任意不相等的两个数a 、b ,定义一种运算※如下:a ※b =a b a b +-,如3※2=3232+-=5.那么12.※4=____.11.(长沙中考题)已知a 、b 为两个连续整数,且a <7 <b ,则a +b =____.12.对实数a 、b ,定义运算“*”,如下a *b =()()22a b a b ab a b ⎧⎪⎨⎪⎩≥<,已知3*m =36,则实数m =____. 13.设a 是大于1的实数.若a ,23a +,213a +在数轴上对应的点分别是A 、B 、C ,则三点在数轴上从左自右的顺序是____.14.如图,直径为1的圆与数轴有唯一的公共点P .点P 表示的实数为-1.如果该圆沿数轴正方向滚动一周后与数轴的公共点为P ′,那么点P ′所表示的数是____.15.已知整数x 、y 满足x +2y =50,求x 、y .16.已知2a −1的平方根是±3,3a +b −1的算术平方根是4,求a +b +1的立方根.17.小颖同学在电脑上做扇形滚动的游戏,如图有一圆心角为60°,半径为1个单位长的扇形放置在数轴上,当扇形在数轴上做无滑动的滚动时,当B 点恰好落在数轴上时,(1)求此时B 点所对的数;(2)求圆心O 移动的路程.18.若b =315a - +153a - +31,且a +11的算术平方根为m ,4b +1的立方根为n ,求(mn −2)(3mn +4)的平方根与立方根.19.若x 、y 为实数,且(x −y +1)2与533x y --互为相反数,求22x y +的值.第03讲平面直角坐标系(一)考点.方法.破译1.认识有序数对,认识平面直角坐标系.2.了解点与坐标的对应关系.3.会根据点的坐标特点,求图形的面积.经典.考题.赏析【例1】在坐标平面内描出下列各点的位置.A(2,1),B(1,2),C(-1,2),D(-2,-1),E(0,3),F(-3,0)【解法指导】从点的坐标的意义去思考,在描点时要注意点的坐标的有序性.【变式题组】01.第三象限的点P(x,y),满足|x|=5,2x+|y|=1,则点P得坐标是_____________.02.在平面直角坐标系中,如果mn>0,那么(m, |n|)一定在____________象限. 03.指出下列各点所在的象限或坐标轴.A(-3,0),B(-2,-13),C(2,12),D(0,3),E(π-3.14,3.14-π)【例2】若点P(a,b)在第四象限,则点Q(―a,b―1)在()A.第一象限B.第二象限C.第三象限D.第四象限【解法指导】∵P(a,b)在第四象限,∴a>0,b<0,∴-a<0, b-1<0,故选C.【变式题组】01.若点G(a,2-a)是第二象限的点,则a的取值范围是()A.a<0 B.a<2 C.0<a<2 B.a<0或a>202.如果点P(3x-2,2-x)在第四象限,则x的取值范围是____________.03.若点P(x,y)满足xy>0,则点P在第______________象限.04.已知点P(2a-8,2-a)是第三象限的整点,则该点的坐标为___________.【例3】已知A点与点B(-3,4)关于x轴对称,求点A关于y轴对称的点的坐标.【解法指导】关于x轴对称的点的坐标的特点:横坐标(x)相等,纵坐标(y)互为相反数,关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标(y)相等.【变式题组】01.P(-1,3)关于x轴对称的点的坐标为____________.02.P(3,-2)关于y轴对称的点的坐标为____________.03.P(a,b)关于原点对称的点的坐标为____________.04.点A(-3,2m-1) 关于原点对称的点在第四象限,则m的取值范围是____________.05.如果点M(a+b,ab)在第二象限内,那么点N(a,b) 关于y轴对称的点在第______象限.【例4】P(3,-4),则点P到x轴的距离是____________.【解法指导】P(x,y)到x轴的距离是| y|,到y轴的距离是|x|.则P到轴的距离是|-4|=4【变式题组】01.已知点P(3,5),Q(6,-5),则点P、Q到x轴的距离分别是_________,__________.P到y轴的距离是点Q到y轴的距离的________倍.02.若x轴上的点p到y轴的距离是3,则P点的坐标是__________.03.如果点B(m+1,3m-5) 到x轴的距离与它到y轴的距离相等,求m的值.04.若点(5-a,a-3)在一、三象限的角平分线上,求a的值.05.已知两点A(-3,m),B(n,4),AB∥x轴,求m的值,并确定n的取值范围.【例5】如图,平面直角坐标系中有A、B两点.(1)它们的坐标分别是___________,___________;(2)以A、B为相邻两个顶点的正方形的边长为_________;(3)求正方形的其他两个顶点C、D的坐标.【解法指导】平行x轴的直线上两点之间的距离是:两个点的横坐标的差得绝对值,平行y轴的直线上两点之间的距离是:两个点的纵坐标的差得绝对值.即:A(x1,y1),B(x2,y2),若AB∥x轴,则|AB|=|x1-x2|;若AB∥y,则|AB|=|y1-y2|,则(1)A(2,2),B(2,-1);(2)3;(3)C(5,2),D(5,-1)或C(-1,2),D(-1,-1).【变式题组】01.如图,四边形ACBD是平行四边形,且AD∥x轴,说明,A、D两点的___________坐标相等,请你依据图形写出A、B、C、D四点的坐标分别是_________、_________、____________、____________.02.已知:A(0,4),B(-3,0),C(3,0)要画出平行四边形ABCD,请根据A、B、C三点的坐标,写出第四个顶点D的坐标,你的答案是唯一的吗?03.已知:A(0,4),B(0,-1),在坐标平面内求作一点,使△ABC的面积为5,请写出点C的坐标规律.【例6】平面直角坐标系,已知点A(-3,-2),B(0,3),C(-3,2),求△ABC的面积.【解法指导】(1)三角形的面积=12×底×高.(2)通过三角形的顶点做平行于坐标轴的平行线将不规则的图形割补成规则图形,然后计算其面积.则S△ABC=S△ABD-S△BCD=12·3·5-12·3·1=6.【变式题组】01.在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(―3,―1),B(1,3),C(2,-3),求△ABC 的面积.02.如图,已知A(-4,0),B(-2,2),C,0,-1),D(1,0),求四边形ABDC的面积.03.已知:A(-3,0),B(3,0),C(-2,2),若D点在y轴上,且点A、B、C、D四点所组成的四边形的面积为15,求D点的坐标.【例7】如图所示,在平面直角坐标系中,横、纵坐标都为整数的点称为整点.请你观察图中正方形A1B1C1D1、A2B2C2D2……每个正方形四条边上的整点的个数,推算出正方形A10B10C10D10四条边上的整点共有__________个.【变式题组】01.如图所示,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变成△OA3B3.已知:A(1,2),A1(2,2),A2(4,2),A3(8,2),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后的三角形有何变化?找出规律,按此规律再将三角形△OA3B3变换成△OA4B4,则A4的坐标是____________,B4的坐标是_____________;(2)若按(1)题找到的规律将△OAB进行n次变换,得到三角形△OA n B n,推测A n的坐标是_____________,B n的坐标是_____________.02.如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1)…则点A2010的坐标为_______________.演练巩固反馈提高01.若点A(-2,n)在x轴上,则点B(n-1,n+1)在( )A.第一象限B.第二象限C.第三象限D.第四象限02.若点M(a+2,3-2a)在y轴上,则点M的坐标是( )A.(-2,7) B.(0,3) C.(0,7) D.(7,0)03.如果点A(a,b)在第三象限,则点B(-a+1,3b-5)关于原点的对称点是( ) A.第一象限B.第二象限C.第三象限D.第四象限04.下列数据不能确定物体位置的是( )A.六楼6号B.北偏西400C.文昌大道10号D.北纬260,东经135005.在坐标平面内有一点P(a,b),若ab=0,则P点的位置是( )A.原点B.x轴上C.y轴上D.坐标轴上06.已知点P(a,b)到x轴的距离为2,到y轴的距离为5,且|a-b |=b-a,则点P的坐标是_______________.07.已知平面直角坐标系内两点M(5,a),N(b,-2),①若直线MN∥x轴,则a______,b__________;②若直线MN∥y轴,则a___________,b_________.08.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2010次,点P依次落在点P1,P2,P3,…,P2010的位置,则P2010的横坐标x2010=___________。
七年级数学培优辅导十三
第十三讲相交线、平行线、相交线1、垂直的定义:两条直线相交所形成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足.用符号“丄”表示,如图,直线AB、CD互相垂直,记作“ AB丄CD于点0” .注意:(1)垂直是两条直线相交的一种特殊情况,它反映的是两条直线的位置关系;(2)线段、射线的垂直特指它们所在的直线垂直垂直的判定:J/ BOC=90°,「. AB丄CD;垂直的性质:J AB丄CD,:/ AOC=90°2、垂线段的定义:过直线外一点作已知直线的垂线,这一点与垂足连接而成的线段叫垂线段3、点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离.4、垂线的性质:(1)在同一平面内,经过直线外或直线上一点有且只有一条直线与已知直线垂直.(2)直线外一点与直线上各点的连线中,垂线段最短5、垂线的画法:用三角板(一靠二过三画)、量角器、尺规作图6、两条直线被第三条直线所截,构成了八个角,简称“三线八角”如图:直线AB、CD被直线EF所截或直线EF截直线AB、CD于点M、N.直线EF就是第三条直线叫做截线,AB、CD叫做被截线.7、同位角、内错角、同旁内角同位角:在截线同侧,在被截线同方向;内错角:在截线两侧,在被截线的内部;同旁内角:在截线同侧,在被截线的内部注意:(1)同位角、内错角、同旁内角是“两条直线被第三条直线所截”形成的八个角中,没有公共顶点的两个角的位置关系;(2)判断同位角、内错角、同旁内角时,首先要判断截线和被截线:两个角都有一边在这条直线上,那么这条直线就是被截线(公共边)二、平行线1、两条直线的位置关系:同一平面内,两条不重合的直线的位置关系只有两种:相交或平行.2、平行线:在同一平面内,不相交(没有公共点)的两条直线叫做平行线. A ______________ 如图:直线AB、CD互相平行,记作:AB// CD. ___________ 注意:(1)同一平面;(2)不相交是指没有交点;(3)线段、射线平行特指线段、射线所在直线平行3、平行线的性质(1)平行公理:经过已知直线外一点,有且只有一条直线与已知直线平行.(2)平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行4、平行线的识别(1)同位角相等,两直线平行.(J/仁/ 5,二AB / CD)(2)内错角相等,两直线平行.(J/ 4= / 5,二AB / CD)(3)同旁内角互补,两直线平行.(J/ 3+/5=180 °,: AB / CD)(4)垂直于同一直线的两直线平行.(J CD丄AB,EF丄AB,CD / EF)(5)平行线的定义.(6)平行公理推论.(J a / b,a / c,••• b/ c)5、平行线的性质:nA O BDCBD2 1F(1)两直线平行,同位角相等.(J AB / CD• / 2= /6)(2) 两直线平行,内错角相等.(J AB/ CD• / 3= /6)2、F(3)两直线平行,同旁内角互补 .(J AB // CD •••/ 4+Z 6=180 ° )注意:判断线段或射线的垂直或平行,就是判断它们所在直线垂直或平行※典例剖析【例5】如图,已知/ E = Z F ,/ E = Z BAD ,AD 是/ BAC 的平分线吗为什么※培优训练1、 如图一,Z 1=65°,Z C=65°,Z ADC=115°, 则图中的平行线有 _______________________________ .2、 女口图二,若Z 1 = ______________ ,贝U DE / AC ; 若Z 1= _____ ,贝U EF / BC,若Z FED+ ______ =180°,【例1】如图,图中有 _____ 对同位角,分别是 ___________________________ . 图中有 对内错角,分别是 _________________________________________________ . 图中有 对同旁内角,分别是 ________________________________________________ . 【例2】如图,/ 1和/ 2是直线 ________ 和 _____ 被直线 _____ 所截得的 _______ / 2和/ 3是直线 _______ 和 _____ 被直线 ______ 所截得的 _________ 角; / 4和/ A 是直线 ______ 和 _____ 被直线 _____ 所截得的 _________ 角. 【例3】如图,AB 丄CD,垂足为O , OE 是一条射线,OF 平分/ BOC, / AOE=35°,求/ EOF 的度数.【例 4】如图,AB / DE ,Z B=135°,Z D=145 求/ C 的度数.角; AADE贝U DE// AC;若/ 2+ _____ =180°,贝U AB// DF.3、如图三,若AB// CD,则根据 ________________________________________ ,可得/ 2= ______ ;若AD// BC,根据_____________________________________ ,可得/ DAB+ ______ =180 ° .4、如图,已知/ B=62 °,/ 3=30 °,/ 4=88 ° , AB与CD平行吗AD与BC平行吗说明理由5、如图,已知AC// DE, / D= 70 ° CD平分/ ACE,求/ E的度数.6、如图,已知:/ 1 = / 2,Z A=Z C,请猜想/E与/ F的关系,并说明你的理由※能力拓展题组一:1、占八、、A、题组如图,直线CD EF、GH交于一点P,直线M、N,则图中共有内错角().4对平面内有36条B、8 对C、10 对5条直线两两相交,其中仅有B、33 条C、24 条AB 交EF、GH 于D、12 对3条直线经过同一点,则它们彼此截得的线段共有(D、21条D2、F1、如图,已知 AB // CD, / B = Z C.求证:CE// BF2、如图,已知 AB // CD, AE 平分Z BAC , CE 平分Z ACD.求证:AE 丄CE.题组三: 1、如图,已知 AB // CD, 过点P 的直线交HF 于点 2、如图,已知 AB // CD, EF 交AB 、CD 于点G 、H ,点P 是为HD 上一动点,O. 求证:Z HOP=Z AGF-Z HPO. -EAB - ECD Z EAF=4 , Z ECF=4 .求证: 3_/ AFC=4AECC。
七年级数学上学期培优补差计划
七年级数学上学期培优补差计划目标本计划旨在帮助七年级学生在数学上学期取得更好的成绩,培优提高优秀学生的能力,同时也帮助补差,提升研究困难学生的数学水平。
措施1. 每周组织一次集中培训,由资深数学老师授课,内容覆盖当前所学知识点和难点。
2. 针对优秀学生,提供挑战性的数学题目和解题训练,激发他们的研究兴趣和思维能力。
3. 针对研究困难学生,安排专门的辅导班,采用多种教学方法帮助他们理解和掌握数学知识。
4. 每月进行一次小测验,评估学生的研究进展,并对培优和补差效果进行反馈和调整。
5. 鼓励学生参加数学竞赛和奥数培训班,提高他们的数学水平和竞争能力。
时间安排本计划将在上学期开始后的第三周开始实施,持续到下学期开始前的最后一周。
考核与评估1. 学生的参与度和研究态度将作为考核的重要指标。
2. 每月小测验的成绩将用于评估学生的研究进展,并作为培优和补差的依据。
预期效果通过本计划的实施,预期能够达到以下效果:1. 优秀学生的数学能力得到进一步提升,为他们未来研究和发展打下坚实基础。
2. 研究困难学生的数学水平得以提高,减少他们在数学研究上的差距。
3. 提高整体班级的数学平均成绩,增强班级的研究氛围和凝聚力。
参与要求所有七年级学生均参与此计划,参加培优和补差的学生需按照要求积极参与相关活动和辅导。
资源保障1. 学校将提供必要的课程资料和教学资源,确保计划的顺利实施。
2. 学校将配备足够的教师和辅导员,提供必要的指导和支持。
实施机制本计划将由学校数学教研组负责具体的组织和安排,学校领导将对计划的实施进行监督和指导。
结束评估在计划结束后的一周,将对计划的实施效果进行总结和评估,并对后续改进措施进行讨论和制定。
希望与期待希望通过本计划,能够提高七年级学生的数学水平,为他们的研究之路开启一个良好的开端。
以上是《七年级数学上学期培优补差计划》的内容,请各位老师和家长们积极支持和配合,共同努力为学生的数学研究提供更好的环境和机会。
初一数学培优补差教学计划(精选5篇)
初一数学培优补差教学计划初一数学培优补差教学计划日子如同白驹过隙,我们又将奔赴下一阶段的教学,立即行动起来写一份教学计划吧。
想必许多人都在为如何写好教学计划而烦恼吧,下面是小编精心整理的初一数学培优补差教学计划(精选5篇),仅供参考,大家一起来看看吧。
初一数学培优补差教学计划1一、教学目标:1. 培优:帮助学生提高数学基础知识和解题能力,培养他们对数学的兴趣和自信心。
2. 补差:帮助学生弥补数学基础薄弱的部分,提高他们的学习成绩和自信心。
二、教学内容:1. 培优:主要包括数与式、代数式、方程与不等式、函数及图像等内容。
2. 补差:根据学生的具体情况,重点针对他们的薄弱环节进行有针对性的教学,如小数与分数、整数运算、几何图形等。
三、教学方法:1. 培优:采用启发式教学方法,引导学生主动思考和解决问题,提高他们的逻辑思维和解题能力。
2. 补差:采用示范教学方法,通过具体的例子和练习,帮助学生理解和掌握基本的数学概念和运算方法。
四、教学步骤:1. 培优:(1)引入新知识:通过引发学生的兴趣,介绍新的数学知识点,并与实际生活中的问题联系起来。
(2)示范解题:给学生展示解题的思路和方法,引导他们理解解题的过程和思考的方式。
(3)练习巩固:提供一定数量的练习题,让学生独立解题,巩固所学的知识和技能。
(4)拓展应用:通过一些拓展性的问题和应用题,培养学生的创造性思维和解决实际问题的能力。
2. 补差:(1)诊断测试:通过诊断测试,了解学生的数学水平和薄弱环节,确定具体的补差内容。
(2)有针对性辅导:根据学生的具体情况,有针对性地进行辅导,重点解决学生的薄弱环节,并提供大量的练习题进行巩固。
(3)定期检测:定期进行测试,检测学生的学习进展,及时调整教学策略,确保学生的学习效果。
五、教学评价:1. 培优:通过学生的课堂表现、作业完成情况和考试成绩等多个方面进行评价,及时了解学生的学习情况,并给予及时的反馈和指导。
2. 补差:通过学生的学习成绩的提高和对数学的兴趣的培养等方面进行评价,确保学生在补差过程中得到实质性的提高。
七年级数学培优辅导十三
第十三讲 相交线、平行线※ 知识纵横一、相交线1、 垂直的定义:两条直线相交所形成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足. 用符号“⊥”表 示,如图,直线AB 、CD 互相垂直,记作“AB ⊥CD 于点O ”.注意:(1)垂直是两条直线相交的一种特殊情况,它反映的是两条直线的位置关系;(2)线段、射线的垂直特指它们所在的直线垂直. 垂直的判定:∵∠BOC=90°,∴AB ⊥CD ; 垂直的性质:∵AB ⊥CD ,∴∠AOC=90°2、 垂线段的定义:过直线外一点作已知直线的垂线,这一点与垂足连接而成的线段叫垂线段.3、 点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离.4、 垂线的性质:(1)在同一平面内,经过直线外或直线上一点有且只有一条直线与已知直线垂直. (2)直线外一点与直线上各点的连线中,垂线段最短. 5、 垂线的画法:用三角板(一靠二过三画)、量角器、尺规作图 6、 两条直线被第三条直线所截,构成了八个角,简称“三线八角”.如图:直线AB 、CD 被直线EF 所截或直线EF 截直线AB 、CD 于点 M 、N . 直线EF 就是第三条直线叫做截线,AB 、CD 叫做被截线. 7、 同位角、内错角、同旁内角同位角:在截线同侧,在被截线同方向; 内错角:在截线两侧,在被截线的内部; 同旁内角:在截线同侧,在被截线的内部.注意:(1)同位角、内错角、同旁内角是“两条直线被第三条直线所截”形成的八个角中,没有公共顶点的两个角的位置关系;(2)判断同位角、内错角、同旁内角时,首先要判断截线和被截线:两个角都有一边在这条直线上,那么这条直线就是被截线(公共边). 二、平行线1、 两条直线的位置关系:同一平面内,两条不重合的直线的位置关系只有两种:相交或平行.2、 平行线:在同一平面内,不相交(没有公共点)的两条直线叫做平行线. 如图:直线AB 、CD 互相平行,记作:AB ∥CD . 注意:(1)同一平面;(2)不相交是指没有交点;(3)线段、射线平行特指线段、射线所在直线平行.3、 平行线的性质(1)平行公理:经过已知直线外一点,有且只有一条直线与已知直线平行.(2)平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 4、平行线的识别(1)同位角相等,两直线平行.(∵∠1=∠5, ∴AB ∥CD ) (2)内错角相等,两直线平行.(∵∠4=∠5, ∴AB ∥CD )C DE BAFM N BD CAB DC AE F7 4 8 6 532 1(3)同旁内角互补,两直线平行.(∵∠3+∠5=180°,∴AB∥CD)(4)垂直于同一直线的两直线平行.(∵C D⊥AB,E F⊥AB,∴CD∥EF)(5)平行线的定义.(6)平行公理推论.(∵a∥b,a∥c,∴b∥c)5、平行线的性质:(1)两直线平行,同位角相等.(∵AB∥CD ∴∠2=∠6)(2)两直线平行,内错角相等.(∵AB∥CD ∴∠3=∠6)(3)两直线平行,同旁内角互补.(∵AB∥CD ∴∠4+∠6=180°)注意:判断线段或射线的垂直或平行,就是判断它们所在直线垂直或平行.※典例剖析【例1】如图,图中有对同位角,分别是.图中有对内错角,分别是.图中有对同旁内角,分别是.【例2】如图,∠1和∠2是直线和被直线所截得的角;∠2和∠3是直线和被直线所截得的角;∠4和∠A是直线和被直线所截得的角.【例3】如图,AB⊥CD,垂足为O,OE是一条射线,OF平分∠BOC,∠AOE=35°,求∠EOF的度数.【例4】如图,AB∥DE,∠B=135°,∠D=145°,求∠C的度数.【例5】如图,已知∠E=∠F,∠E=∠BAD,AD是∠BAC的平分线吗?为什么?B DC AEF7486 532 1C B1D A5342EB DCA43 12AEOCBDFEBDCAAEGFCDB※培优训练1、 如图一,∠1=65°,∠C=65°,∠ADC=115°, 则图中的平行线有 .2、 如图二,若∠1= ,则DE ∥AC ; 若∠1= , 则EF ∥BC ,若∠FED+ =180°, 则DE ∥AC ;若∠2+ =180°,则AB ∥DF.3、 如图三,若AB ∥CD ,则根据 , 可得∠2= ;若AD ∥BC ,根据 , 可得∠DAB+ =180°.4、如图,已知∠B=62°,∠3=30°,∠4=88°, AB 与CD 平行吗?AD 与BC 平行吗?说明理由.5、如图,已知AC ∥DE ,∠D =70°,CD 平分∠ACE ,求∠E 的度数.6、如图,已知:∠1=∠2,∠A=∠C ,请猜想∠E 与∠F 的关系,并说明你的理由.图二图三BA D C4 3 2 1 图一A E DBC1CB DA43 21 A C E D BB 1 2H G A F D E C※能力拓展题组一:1、如图,直线CD 、EF 、GH 交于一点P ,直线AB 交EF 、GH 于 点M 、N ,则图中共有内错角( ).A 、4对B 、8对C 、10对D 、12对2、平面内有5条直线两两相交,其中仅有3条直线经过同一点,则它们彼此截得的线段共有( ). A 、36条 B 、33条 C 、24条 D 、21条 题组二:1、如图,已知AB ∥CD ,∠B =∠C. 求证:CE ∥BF2、如图,已知AB ∥CD ,AE 平分∠BAC ,CE 平分∠ACD .求证:A E ⊥CE. 题组三:1、如图,已知AB ∥CD ,EF 交AB 、CD 于点G 、H ,点P 是为HD 上一动点, 过点P 的直线交HF 于点O. 求证:∠HOP=∠AGF -∠HPO.2、如图,已知AB ∥CD ,∠EAF=EAB ∠41,∠ECF=ECD ∠41.求证:∠AFC=AEC ∠43D ABEC FHPG MNDCEBGA F ED CB APG H ABCD O FECEFBA D。
初一的数学教案文案(通用20篇)
初一的数学教案文案(通用20篇)教案是教师教学过程中的重要依据,有助于教学的系统性和有效性。
这些初一教案范文涵盖了不同教学情境和教学目标,能够帮助你更好地指导学生学习。
初一数学教案1.重点:(1)了解多边形及其有关概念,理解正多边形及其有关概念.(2)区别凸多边形和凹多边形.2.难点:多边形定义的准确理解.一、新课讲授投影:图形见课本p84图7.3一l.你能从投影里找出几个由一些线段围成的图形吗?上面三图中让同学边看、边议.在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?(1)它们在同一平面内.(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?提问:三角形的定义.你能仿照三角形的定义给多边形定义吗?1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)2.多边形的边、顶点、内角和外角.3.多边形的对角线连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.让学生画出五边形的所有对角线.4.凸多边形与凹多边形看投影:图形见课本p85.7.3―6.5.正多边形由正方形的特征出发,得出正多边形的概念.各个角都相等,各条边都相等的多边形叫做正多边形.二、课堂练习课本p86练习1.2.三、课堂小结引导学生总结本节课的相关概念.四、课后作业课本p90第1题.备用题:一、判断题.1.由四条线段首尾顺次相接组成的图形叫四边形.()2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.()3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.()4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()二、填空题.1.连接多边形的线段,叫做多边形的对角线.2.多边形的任何整个多边形都在这条直线的,这样的多边形叫凸多边形. 3.各个角,各条边的多边形,叫正多边形.三、解答题.1.画出图(1)中的六边形abcdef的所有对角线.初一数学数轴教案掌握去分母解方程的方法,体会到转化的思想。
七年级数学培优讲义word版
目录第01讲与有理数有关的概念(2--8)第02讲有理数的加减法(3--15)第03讲有理数的乘除、乘方(16--22)第04讲整式(23--30)第05讲整式的加减(31--36)第06讲一元一次方程概念和等式性质(37--43)第07讲一元一次方程解法(44--51)第08讲实际问题与一元一次方程(52--59)第09讲多姿多彩的图形(60--68)第10讲直线、射线、线段(69--76)第11讲角(77--82)第12讲与相交有关概念及平行线的判定(83--90)第13讲平行线的性质及其应用(91--100)第14讲平面直角坐标系(一)(101--106)第15讲平面直角坐标系(二)(107--112)第16讲认识三角形(113--119)第17讲认识多边形(120--126)第18讲二元一次方程组及其解法(127--134)第19讲实际问题与二元一次方程组(135--145)第20讲三元一次方程组和一元一次不等式组(146--155)第21讲一元一次不等式(组)的应用(156--164)第22讲一元一次不等式(组)与方程(组)的结合(165--174)第23讲数据的收集与整理(175--186)模拟测试一模拟测试二模拟测试三第1讲与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量.2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作()A . -18%B . -8%C . +2%D . +8%02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A . -5吨B . +5吨C . -3吨D . +3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间l 5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数( ) A . 1个 B . 2个 C . 3个 D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0.1 5,-12,-301.31.25,-18,100.l ,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,0.1.-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14.-15,16,…,找规律到第2007个数是 . 【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007. 【变式题组】01.(湖北宜宾)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四十数是17=9+8…观察并精想第六个数是 . 02.(毕节)毕选哥拉斯学派发明了一种“馨折形”填数法,如图则?填____. 03.(茂名)有一组数l ,2,5,10,17,26…请观察规律,则第8个数为____.【例4】(2008年河北张家口)若l +m 2的相反数是-3,则m 的相反数是____. 【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题m 2=-4,m =-8 【变式题组】01.(四川宜宾)-5的相反数是( )A .5B . 15C . -5D . -1502.已知a 与b 互为相反数,c 与d 互为倒数,则a +b +cd =______03.如图为一个正方体纸盒的展开图,若在其中的三个正方形A 、B 、C 内分别填人适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填人正方形A 、B 、C 内的三个数依次为( )A . - 1 ,2,0B . 0,-2,1C . -2,0,1D . 2,1,0【例5】(湖北)a 、b 为有理数,且a >0,b <0,|b |>a ,则a ,b 、-a ,-b 的大小顺序是( )A . b <-a <a <-bB . –a <b <a <-bC . –b <a <-a <bD . –a <a <-b <b【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a 的点到原点的距离,即|a |,用式子表示为|a |=0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩(.本题注意数形结合思想,画一条数轴标出a 、b ,依相反数的意义标出-b ,-a ,故选A .【变式题组】01.推理①若a =b ,则|a |=|b |;②若|a |=|b |,则a =b ;③若a ≠b ,则|a |≠|b |;④若|a |≠|b |,则a ≠b ,其中正确的个数为( )A . 4个B . 3个C . 2个D . 1个02.a 、b 、c 三个数在数轴上的位置如图,则|a |a +|b |b +|c |c= . 03.a 、b 、c 为不等于O 的有理散,则a |a |+b |b |+c |c |的值可能是____. 【例6】(江西课改)已知|a -4|+|b -8|=0,则a +b ab的值. 【解法指导】本题主要考查绝对值概念的运用,因为任何有理数a 的绝对值都是非负数,即|a |≥0.所以|a -4|≥0,|b -8|≥0.而两个非负数之和为0,则两数均为0.解:因为|a -4|≥0,|b -8|≥0,又|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a -4=0,b -8=0,a =4,b =8.故a +b ab =1232=38【变式题组】01.已知|a |=1,|b |=2,|c |=3,且a >b >c ,求a +b +C .02.(毕节)若|m -3|+|n +2|=0,则m +2n 的值为( )A . -4B . -1C . 0D . 403.已知|a |=8,|b |=2,且|a -b |=b -a ,求a 和b 的值【例7】(第l 8届迎春杯)已知(m +n )2+|m |=m ,且|2m -n -2|=0.求mn 的值.【解法指导】本例关键是通过分析(m +n )2+|m |的符号,挖掘出m 的符号特征,从而把问题转化为(m +n )2=0,|2m -n -2|=0,找到解题途径.解:∵(m +n )2≥0,|m |≥O∴(m +n )2+|m |≥0,而(m +n )2+|m |=m∴ m ≥0,∴(m +n )2+m =m ,即(m +n )2=0∴m +n =O ①又∵|2m -n -2|=0∴2m -n -2=0 ②由①②得m =23,n =-23,∴ mn =-49 【变式题组】01.已知(a +b )2+|b +5|=b +5且|2a -b –l |=0,求a -B .02.(第16届迎春杯)已知y =|x -a |+|x +19|+|x -a -96|,如果19<a <96.a ≤x ≤96,求y 的最大值.演练巩固·反馈提高01.观察下列有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( ) A . 156 B . 172 C . 190 D . 111002.(芜湖)-6的绝对值是( )A . 6B . -6C . 16D . -1603.在-227,π,8..0.3四个数中,有理数的个数为( ) A . 1个 B . 2个 C . 3个 D . 4个04.若一个数的相反数为a +b ,则这个数是( )A . a -bB . b -aC . –a +bD . –a -b05.数轴上表示互为相反数的两点之间距离是6,这两个数是( )A . 0和6B . 0和-6C . 3和-3D . 0和306.若-a 不是负数,则a ( )A . 是正数B . 不是负数C . 是负数D . 不是正数07.下列结论中,正确的是( )①若a =b ,则|a |=|b | ②若a =-b ,则|a |=|b |③若|a |=|b |,则a =-b ④若|a |=|b |,则a =bA . ①②B . ③④C . ①④D . ②③08.有理数a 、b 在数轴上的对应点的位置如图所示,则a 、b ,-a ,|b |的大小关系正确的是( )A . |b |>a >-a >bB . |b | >b >a >-aC . a >|b |>b >-aD . a >|b |>-a >b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____.10.已知|x +2|+|y +2|=0,则xy =____.11.a 、b 、c 三个数在数轴上的位置如图,求|a |a +|b |b +|abc |abc +|c |c12.若三个不相等的有理数可以表示为1、a 、a +b 也可以表示成0、b 、b a的形式,试求a 、b 的值.13.已知|a |=4,|b |=5,|c |=6,且a >b >c ,求a +b -C .14.|a |具有非负性,也有最小值为0,试讨论:当x 为有理数时,|x -l |+|x -3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为|AB |.当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,|AB |=|OB |=|b |=|a -b | 当A 、B 两点都不在原点时有以下三种情况:①如图2,点A 、B 都在原点的右边|AB |=|OB |-|OA |=|b |-|a |=b -a =|a -b |; ②如图3,点A 、B 都在原点的左边,|AB |=|OB |-|OA |=|b |-|a |=-b -(-a )=|a -b |;③如图4,点A 、B 在原点的两边,|AB |=|OB |-|OA |=|b |-|a |=-b -(-a )=|a -b |;综上,数轴上A 、B 两点之间的距离|AB |=|a -b |.回答下列问题:⑴数轴上表示2和5的两点之间的距离是 , 数轴上表示-2和-5的两点之间的距离是 , ,数轴上表示1和-3的两点之间的距离是 ;⑵数轴上表示x 和-1的两点分别是点A 和B ,则A 、B 之间的距离是 ,如果|AB |=2,那么x = ;⑶当代数式|x +1|+|x -2|取最小值时,相应的x 的取值范围是 .培优升级·奥赛检测01.(重庆市竞赛题)在数轴上任取一条长度为199919的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A . 1998B . 1999C . 2000D . 200102.(第l 8届希望杯邀请赛试题)在数轴上和有理数a 、b 、c 对应的点的位置如图所示,有下列四个结论:①abc <0;②|a -b |+|b -c |=|a -c |;③(a -b )(b -c )(c -a )>0;④|a |<1-bc .其中正确的结论有( )A . 4个B . 3个C . 2个D . 1个03.如果a 、b 、c 是非零有理数,且a +b +c =0.那么a |a |+b |b |+c |c |+abc |abc |的所有可能的值为( )A . -1B . 1或-1C . 2或-2D . 0或-204.已知|m |=-m ,化简|m -l |-|m -2|所得结果( )A . -1B . 1C . 2m -3D . 3- 2m05.如果0<p <15,那么代数式|x -p |+|x -15|+|x -p -15|在p ≤x ≤15的最小值( )A . 30B . 0C . 15D . 一个与p 有关的代数式06.|x +1|+|x -2|+|x -3|的最小值为 .07.若a >0,b <0,使|x -a |+|x -b |=a -b 成立的x 取值范围 .08.(武汉市选拔赛试题)非零整数m 、n 满足|m |+|n |-5=0所有这样的整数组(m ,n )共有 组09.若非零有理数m 、n 、p 满足|m |m +|n |n +|p |p =1.则2mnp |3mnp |= . 10.(19届希望杯试题)试求|x -1|+|x -2|+|x -3|+…+|x -1997|的最小值.11.已知(|x +l |+|x -2|)(|y -2|+|y +1|)(|z -3|+|z +l |)=36,求x +2y +3的最大值和最小值.12.电子跳蚤落在数轴上的某点k 0,第一步从k 0向左跳1个单位得k 1,第二步由k 1向右跳2个单位到k 2,第三步由k 2向左跳3个单位到k 3,第四步由k 3向右跳4个单位到k 4…按以上规律跳100步时,电子跳蚤落在数轴上的点k 100新表示的数恰好19.94,试求k 0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、1l 台、3台,14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数.第02讲 有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】(河北唐山)某天股票A 开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A 这天的收盘价为( )A .0.3元B .16.2元C .16.8元D .18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(-1.5)+(0.3)=16.8,故选C .【变式题组】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低( )A .8℃B .-8℃C .6℃D .2℃02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________03.(浙江)珠穆朗玛峰海拔8848m ,吐鲁番海拔高度为-155 m ,则它们的平均海拔高度为__________【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【变式题组】01.(-2.5)+(-312)+(-134)+(-114)02.(-13.6)+0.26+(-2.7)+(-1.06)03.0.125+314+(-318)+1123+(-0.25) 【例3】计算111112233420082009++++⨯⨯⨯⨯L 【解法指导】依111(1)1n n n n =-++进行裂项,然后邻项相消进行化简求和. 解:原式=1111111(1)()()()2233420082009-+-+-++-L =111111112233420082009-+-+-++-L =112009-=20082009 【变式题组】01.计算1+(-2)+3+(-4)+ … +99+(-100) 02.如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111248163264128256+++++++=__________. 【例4】如果a <0,b >0,a +b <0A .a >b >-b >-a B .a >-a >b >-bC .b >a >-b >-aD .-a >b >-b >a【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论.解:∵a <0,b >0,∴a +b 是异号两数之和又a +b <0,∴a 、b 中负数的绝对值较大,∴| a |>| b |将a 、b 、-a 、-b 表示在同一数轴上,如图,则它们的大小关系是-a >b >-b >a【变式题组】01.若m >0,n <0,且| m |>| n |,则m +n ________ 0.(填>、<号)02.若m <0,n >0,且| m |>| n |,则m +n ________ 0.(填>、<号)03.已知a <0,b >0,c <0,且| c |>| b |>| a |,试比较a 、b 、c 、a +b 、a +c 的大小【例5】425-(-33311)-(-1.6)-(-21811) 【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法则进行运算.解:425-(-33311)-(-1.6)-(-21811)=425+33311+1.6+21811=4.4+1.6+(33311+21811)=6+55=61 【变式题组】01.21511 ()()()()(1) 32632 --+---+-+02.434-(+3.85)-(-314)+(-3.15)03.178-87.21-(-43221)+1531921-12.79【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜想第10个数是多少?第n个数是多少?⑵这列数中有多少个数是正数?从第几个数开始是负数?⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜想出第n个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n个数为25-2(n-1)⑵∵n=13时,25-2(13-1)=1,n=14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开始就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【变式题组】01.(杭州)观察下列等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答下列问题.⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少?02.观察下列等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n(n≥1的自然数)的等式表示这个规律;⑵当这个等式的右边等于2008时求n.【例7】(第十届希望杯竞赛试题)求12+(13+23)+(14+24+34)+(15+25+3 5+45)+…+(150+250+…+4850+4950)【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S=12+(13+23)+(14+24+34)+…+(150+250+…+4850+4950)则有S=12+(23+13)+(34+24+14)+…+(4950+4850+…+250+150)将原式和倒序再相加得2S=12+12+(13+23+23+13)+(14+24+34+34+24+14)+…+(150+2 50+…+4850+4950+4950+4850+…+250+150)即2S=1+2+3+4+ (49)49(491)2⨯+=1225 ∴S=12252【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.(第8届希望杯试题)计算(1-12-13-…-12003)(12+13+14+…+12003+1 2004)-(1-12-13-…-12004)(12+13+14+…+12003)演练巩固·反馈提高01.m是有理数,则m+|m|()A.可能是负数B.不可能是负数C.比是正数D.可能是正数,也可能是负数02.如果|a|=3,|b|=2,那么|a+b|为()A. 5 B.1 C.1或5 D.±1或±503.在1,-1,-2这三个数中,任意两数之和的最大值是()A. 1 B.0 C.-1 D.-304.两个有理数的和是正数,下面说法中正确的是()A.两数一定都是正数B.两数都不为0C.至少有一个为负数D.至少有一个为正数05.下列等式一定成立的是()A.|x|-x=0 B.-x-x=0 C.|x|+|-x|=0 D.|x|-|x|=0 06.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,则午夜气温是()A.-4℃B.4℃C.-3℃D.-5℃07.若a<0,则|a-(-a)|等于()A.-a B.0 C.2a D.-2a08.设x是不等于0的有理数,则||||2x xx值为()A.0或1 B.0或2 C.0或-1 D.0或-2 09.(济南)2+(-2)的值为__________10.用含绝对值的式子表示下列各式:⑴若a<0,b>0,则b-a=__________,a-b=__________⑵若a>b>0,则|a-b|=__________⑶若a<b<0,则a-b=__________11.计算下列各题:⑴23+(-27)+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-314+2.75-712⑷33.1-10.7-(-22.9)-|-2310|12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线(单位:千米)为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收工时距离A地多远?⑵若每千米耗油0.2千克,问从A地出发到收工时共耗油多少千克?14.将1997减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少?15.独特的埃及分数:埃及同中国一样,也是世界著名的文明古国,古代埃及人处理分数与5343332313众不同,他们一般只使用分子为1的分数,例如13+115来表示25,用14+17+128表示37等等.现有90个埃及分数:12,13,14,15,…190,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗?培优升级·奥赛检测01.(第16届希望杯邀请赛试题)1234141524682830-+-+-+-+-+-+-L L 等于( ) A .14 B .14- C .12 D .12- 02.自然数a 、b 、c 、d 满足21a +21b +21c +21d =1,则31a +41b +51c +61d等于( ) A .18 B .316 C .732 D .1564 03.(第17届希望杯邀请赛试题)a 、b 、c 、d 是互不相等的正整数,且abcd =441,则a +b +c +d 值是( )A .30B .32C .34D .3604.(第7届希望杯试题)若a =1995199519961996,b =1996199619971997,c =1997199719981998,则a 、b 、c 大小关系是( ) A .a <b <c B .b <c <aC .c <b <aD .a <c <b 05.11111(1)(1)(1)(1)(1)1324351998200019992001+++++⨯⨯⨯⨯⨯L 的值得整数部分为( )A .1B .2C .3D .406.(-2)2004+3×(-2)2003的值为( )A .-22003B .22003C .-22004D .2200407.(希望杯邀请赛试题)若|m |=m +1,则(4m +1)2004=__________08.12+(13+23)+(14+24+34)+ … +(160+260+…+5960)=__________ 09.19191976767676761919-=__________ 10.1+2-22-23-24-25-26-27-28-29+210=__________11.求32001×72002×132003所得数的末位数字为__________12.已知(a +b )2+|b +5|=b +5,且|2a -b -1|=0,求aB .13.计算(11998-1)(11997-1) (11996-1) … (11001-1) (11000-1) 14.请你从下表归纳出13+23+33+43+...+n 3的公式并计算出13+23+33+43+ (1003)值.第03讲 有理数的乘除、乘方 考点·方法·破译 1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算. 4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算.经典·考题·赏析【例1】计算⑴11()24⨯- ⑵1124⨯ ⑶11()()24-⨯- ⑷25000⨯⑸3713()()(1)()5697-⨯-⨯⨯-【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积.解:⑴11111()()24248⨯-=-⨯=- ⑵11111()24248⨯=⨯= ⑶11111()()()24248-⨯-=+⨯=⑷250000⨯=⑸3713371031()()(1)()()569756973-⨯-⨯⨯-=-⨯⨯⨯=-【变式题组】01.⑴(5)(6)-⨯- ⑵11()124-⨯ ⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯- ⑸111112(2111)42612-⨯-+- 02.24(9)5025-⨯ 3.1111(2345)()2345⨯⨯⨯⨯---04.111(5)323(6)3333-⨯+⨯+-⨯【例2】已知两个有理数a 、b ,如果ab <0,且a +b <0,那么( )A .a >0,b <0B .a <0,b >0C .a 、b 异号D .a 、b 异号且负数的绝对值较大 【解法指导】依有理数乘法法则,异号为负,故a 、b 异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab <0知a 、b 异号,又由a +b <0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D .【变式题组】01.若a +b +c =0,且b <c <0,则下列各式中,错误的是( )A .a +b >0B .b +c <0C .ab +ac >0D .a +bc >0 02.已知a +b >0,a -b <0,ab <0,则a___________0,b___________0,|a|___________|b|. 03.(山东烟台)如果a +b <0,0ba>,则下列结论成立的是( ) A .a >0,b >0 B .a <0,b <0 C .a >0,b <0 D .a <0,b >004.(广州)下列命题正确的是( )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若ab =0,则a =0或b =0D .若ab =0,则a =0且b =0 【例3】计算⑴(72)(18)-÷- ⑵11(2)3÷- ⑶13()()1025-÷ ⑷0(7)÷- 【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184-÷-=÷=⑵17331(2)1()1()3377÷-=÷-=⨯-=-⑶131255()()()()10251036-÷=-⨯=-⑷0(7)0÷-= 【变式题组】01.⑴(32)(8)-÷- ⑵112(1)36÷- ⑶10(2)3÷- ⑷13()(1)78÷-02.⑴12933÷⨯ ⑵311()(3)(1)3524-⨯-÷-÷ ⑶530()35÷-⨯03.113()(10.2)(3)245÷-+-÷⨯-【例4】(茂名)若实数a 、b 满足0a ba b+=,则ab ab =___________. 【解法指导】依绝对值意义进行分类讨论,得出a 、b 的取值范围,进一步代入结论得出结果.解:当ab >0,2(0,0)2(0,0)a b a b a b a b >>⎧+=⎨-<<⎩; 当ab <0,0a ba b+=,∴ab <0,从而ab ab =-1. 【变式题组】01.若k 是有理数,则(|k|+k )÷k 的结果是( )A .正数B .0C .负数D .非负数02.若A .b 都是非零有理数,那么aba b a b ab++的值是多少?03.如果x yx y+=,试比较x y -与xy 的大小. 【例5】已知223(2),1x y =-=-⑴求2008xy的值; ⑵求32008x y的值.【解法指导】n a 表示n 个a 相乘,根据乘方的符号法则,如果a 为正数,正数的任何次幂都是正数,如果a 是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1x y =-=- ⑴当2,1x y ==-时,200820082(1)2xy =-=当2,1x y =-=-时,20082008(2)(1)2xy=-⨯-=-⑵当2,1x y ==-时,332008200828(1)x y ==- 当2,1x y =-=-时,3320082008(2)8(1)x y -==-- 【变式题组】01.(北京)若2(2)0m n m -+-=,则nm 的值是___________.02.已知x 、y 互为倒数,且绝对值相等,求()nnx y --的值,这里n 是正整数.【例6】(安徽)2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为( )A .0.135×106B .1.35×106C .0.135×107D .1.35×107【解法指导】将一个数表示为科学记数法的a×10n 的形式,其中a 的整数位数是1位.故答案选B .【变式题组】 01.(武汉)武汉市今年约有103000名学生参加中考,103000用科学记数法表示为( )A .1.03×105B .0.103×105C .10.3×104D .103×10302.(沈阳)沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( )A .25.3×105亩B .2.53×106亩C .253×104亩D .2.53×107亩 【例7】(上海竞赛)222222221299110050002200500010050009999005000k k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+【解法指导】找出21005000k k -+的通项公式=22(50)50k -+原式=2222222222221299(150)50(250)50(50)50(9950)50k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ =222222222222199298[][](150)50(9950)50(250)50(9850)50++++⋅⋅⋅+-+-+-+-+222222222495150[](4950)50(5150)50(5050)50++-+-+-+ =49222+1++⋅⋅⋅+1442443个=99【变式题组】3333+++=( )2+4+6++10042+4+6++10062+4+6++10082+4+6++2006⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅A .31003 B .31004 C .1334 D .1100002.(第10届希望杯试题)已知111111111.2581120411101640+++++++=求111111112581120411101640---+--++的值. 演练巩固·反馈提高01.三个有理数相乘,积为负数,则负因数的个数为( )A .1个B .2个C .3个D .1个或3个 02.两个有理数的和是负数,积也是负数,那么这两个数( )A .互为相反数B .其中绝对值大的数是正数,另一个是负数C .都是负数D .其中绝对值大的数是负数,另一个是正数 03.已知abc >0,a >0,ac <0,则下列结论正确的是( )A .b <0,c >0B .b >0,c <0C .b <0,c <0D .b >0,c >0 04.若|ab |=ab ,则( )A .ab >0B .ab ≥0C .a <0,b <0D .ab <0 05.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式a bm cd m+-+的值为( )A .-3B .1C .±3D .-3或1 06.若a >1a,则a 的取值范围( ) A .a >1 B .0<a <1 C .a >-1 D .-1<a <0或a >1 07.已知a 、b 为有理数,给出下列条件:①a +b =0;②a -b =0;③ab <0;④1ab=-,其中能判断a 、b 互为相反数的个数是( )A .1个B .2个C .3个D .4个08.若ab≠0,则a ba b+的取值不可能为( ) A .0 B .1 C .2 D .-2 09.1110(2)(2)-+-的值为( )A .-2B .(-2)21C .0D .-21010.(安徽)2010年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的是( )A .2.89×107B .2.89×106C .2.89×105D .2.89×10411.已知4个不相等的整数a 、b 、c 、d ,它们的积abcd =9,则a +b +c +d =___________. 12.21221(1)(1)(1)n n n +--+-+-(n 为自然数)=___________.13.如果2x yxy +=,试比较x y-与xy 的大小. 14.若a 、b 、c 为有理数且1a b c a b c ++=-,求abcabc的值.15.若a 、b 、c 均为整数,且321a b c a -+-=.求a c c b b a -+-+-的值.培优升级·奥赛检测01.已知有理数x 、y 、z 两两不相等,则,,x y y z z xy z z x x y------中负数的个数是( ) A .1个 B .2个 C .3个 D .0个或2个 02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是( )A .1B .3C .7D .5 03.已知23450ab c d e <,下列判断正确的是( )A .abcde <0B .ab 2cd 4e <0 C .ab 2cde <0 D .abcd 4e <0 04.若有理数x 、y 使得,,,xx y x y xy y+-这四个数中的三个数相等,则|y |-|x |的值是( ) A .12-B .0C .12D .3205.若A =248163264(21)(21)(21)(21)(21)(21)(21)+++++++,则A -1996的末位数字是( )A .0B .1C .7D .9 06.如果20012002()1,()1a b a b +=--=,则20032003a b +的值是( )A .2B .1C .0D .-1 07.已知5544332222,33,55,66a b c d ====,则a 、b 、c 、d 大小关系是( )A .a >b >c >dB .a >b >d >cC .b >a >c >dD .a >d >b >c 08.已知a 、b 、c 都不等于0,且a b c abc a b c abc+++的最大值为m ,最小值为n ,则2005()m n +=___________. 09.(第13届“华杯赛”试题)从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753- 第二组:112,315-第三组:52.25,,412-10.一本书的页码从1记到n ,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少? 11.(湖北省竞赛试题)观察按下列规律排成一列数:11,12,21,13,22,31,14,23,32,41,15,24,23,42,51,16,…(*),在(*)中左起第m 个数记为F(m),当F(m)=12001时,求m 的值和这m 个数的积.12.图中显示的填数“魔方”只填了一部分,将下列9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x 的值.32 x6413.(第12届“华杯赛”试题)已知m 、n 都是正整数,并且111111(1)(1)(1)(1)(1)(1);2233A m m =-+-+⋅⋅⋅-+ 111111(1)(1)(1)(1)(1)(1).2233B n n=-+-+⋅⋅⋅-+证明:⑴11,;22m n A B m n ++== ⑵126A B -=,求m 、n 的值.第04讲 整式考点·方法·破译1.掌握单项式及单项式的系数、次数的概念.2.掌握多项式及多项式的项、常数项及次数等概念. 3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值.经典·考题·赏析【例1】判断下列各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数.【解法指导】 理解单项式的概念:由数与字母的积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,是常数,单项式中所有字母指数和叫单项式次数.解:⑴不是,因为代数式中出现了加法运算;⑵不是,因为代数式是与x的商;⑶是,它的系数为π,次数为2;⑷是,它的系数为32,次数为3.【变式题组】01.判断下列代数式是否是单项式02.说出下列单项式的系数与次数【例2】如果与都是关于x、y的六次单项式,且系数相等,求m、n的值.【解法指导】单项式的次数要弄清针对什么字母而言,是针对x或y或x、y等是有区别的,该题是针对x与y而言的,因此单项式的次数指x、y的指数之和,与字母m无关,此时将m看成一个要求的已知数.解:由题意得【变式题组】01.一个含有x、y的五次单项式,x的指数为3.且当x=2,y=-1时,这个单项式的值为32,求这个单项式.02.(毕节)写出含有字母x、y的五次单项式______________________.【例3】已知多项式⑴这个多项式是几次几项式?⑵这个多项式最高次项是多少?二次项系数是什么?常数项是什么?【解法指导】n个单项式的和叫多项式,每个单项式叫多项式的项,多项式里次数最高项的次数叫多项式的次数.解:⑴这个多项式是七次四项式;(2)最高次项是,二次项系数为-1,常数项是1.【变式题组】01.指出下列多项式的项和次数⑴ (2)02.指出下列多项式的二次项、二次项系数和常数项⑴ (2)【例4】多项式是关于x的三次三项式,并且一次项系数为-7.求m+n-k的值【解法指导】多项式的次数是单项式中次数最高的次数,单项式的系数是数字与字母乘积中的数字因数.解:因为是关于x的三次三项式,依三次知m=3,而一次项系数为-7,即-(3n+1)=-7,故n=2.已有三次项为,一次项为-7x,常数项为5,又原多项式为三次三项式,故二次项的系数k=0,故m+n-k=3+2-0=5.【变式题组】01.多项式是四次三项式,则m的值为()A.2 B.-2 C.±2 D.±102.已知关于x、y的多项式不含二次项,求5a-8b的值. 03.已知多项式是六次四项式,单项式的次数与这个多项式的次数相同,求n的值.【例5】已知代数式的值是8,求的值.【解法指导】由,现阶段还不能求出x的具体值,所以联想到整体代入法.解:由得由(3【变式题组】01.(贵州)如果代数式-2a+3b+8的值为18,那么代数式9b-6a+2的值等于()A.28 B.-28 C.32 D.-3202.(同山)若,则的值为_______________.03.(潍坊)代数式的值为9,则的值为______________.【例6】证明代数式的值与m的取值无关.【解法指导】欲证代数式的值与m的取值无关,只需证明代数式的化简结果不出现字母即可.证明:原式=∴无论m的值为何,原式值都为4.∴原式的值与m的取值无关.【变式题组】01.已知,且的值与x无关,求a的值. 02.若代数式的值与字母x的取值无关,求a、b的值.【例7】(北京市选拔赛)同时都含有a、b、c,且系数为1的七次单项式共有()个A.4 B.12 C.15 D.25【解法指导】首先写出符合题意的单项式,x、y、z都是正整数,再依x+y+z=7来确定x、y、z的值.解:为所求的单项式,则x、y、z都是正整数,且x+y+z=7.当x=1时,y=1,2,3,4,5,z=5,4,3,2,1.当x=2时,y=1,2,3,4,z=4,3,2,1. 当x=3时,y=1,2,3,z=3,2,1.当x=4时,y=1,2,z=2,1.当x=5时,y=z=1.所以所求的单项式的个数为5+4+3+2+1=15,故选C.【变式题组】01.已知m、n是自然数,是八次三项式,求m、n 值.02.整数n=___________时,多项式是三次三项式.演练巩固·反馈提高01.下列说法正确的是()A.是单项式B.的次数为5C.单项式系数为0D.是四次二项式02.a表示一个两位数,b表示一个一位数,如果把b放在a的右边组成一个三位数.则这个三位数是()A.100b+a B.10a+b C.a+b D.100a+b03.若多项式的值为1,则多项式的值是()A.2 B.17 C.-7 D.704.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑原售价为n元,降低m 元后,又降低20%,那么该电脑的现售价为()A.B.C.D.05.若多项式是关于x的一次多项式,则k的值是()A.0 B.1 C.0或1 D.不能确定06.若是关于x、y的五次单项式,则它的系数是____________.07.电影院里第1排有a个座位,后面每排都比前排多3个座位,则第10排有_______个座位.08.若,则代数式xy+mn值为________.09.一项工作,甲单独做需a天完成,乙单独做需b天完成,如果甲、乙合做7天完成工作量是____________.10.(河北)有一串单项式(1)请你写出第100个单项式;⑵请你写出第n个单项式.11.(安徽)一个含有x、y的五次单项式,x的指数为3,且当x=2,y=-1时,这个单项式值为32,求这个单项式.12.(天津)已知x=3时多项式的值为-1,则当x=-3时这个多项式的值为多少?13.若关于x、y的多项式与多项式的系数相同,并且最高次项的系数也相同,求a-b的值.14.某地电话拨号入网有两种方式,用户可任取其一.A:计时制:0.05元/分B:包月制:50元/月(只限一部宅电上网).此外,每种上网方式都得加收通行费0.02元/分.⑴某用户某月上网时间为x小时,请你写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网时间为20小时,你认为采用哪种方式更合算.培优升级·奥赛检测01.(扬州)有一列数,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差.若,则为()A.2007 B.2 C.D.-102.(华师一附高招生)设记号*表示求a、b算术平均数的运算,即,则下列等式中对于任意实数a、b、c都成立的是()①②③④A.①②③B.①②④C.①③④D.②④。
七年级数学培优辅导十三
七年级数学培优辅导十三-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN49第十三讲 相交线、平行线※ 知识纵横一、相交线1、 垂直的定义:互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足. 示,如图,直线AB 、CD 互相垂直,记作“AB ⊥CD 于点O ”.注意:(1(2)线段、射线的垂直特指它们所在的直线垂直. 垂直的判定:∵∠BOC=90°,∴AB ⊥CD ; 垂直的性质:∵AB ⊥CD ,∴∠AOC=90°2、 垂线段的定义:过直线外一点作已知直线的垂线,这一点与垂足连接而成的线段叫垂线段.3、 点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离.4、 垂线的性质:(1)在同一平面内,经过直线外或直线上一点有且只有一条直线与已知直线垂直.(2)直线外一点与直线上各点的连线中,垂线段最短. 5、 垂线的画法:用三角板(一靠二过三画)、量角器、尺规作图6、 两条直线被第三条直线所截,构成了八个角,简称“三线八角”.如图:直线AB 、CD 被直线EF 所截或直线EF 截直线AB 、CD 于点 M 、N . 直线EF 就是第三条直线叫做截线,AB 、CD 叫做被截线.7、 同位角、内错角、同旁内角同位角:在截线同侧,在被截线同方向;内错角:在截线两侧,在被截线的内部;同旁内角:在截线同侧,在被截线的内部.注意:(1)同位角、内错角、同旁内角是“两条直线被第三条直线所截”形成的八个角中,没有公共顶点的两个角的位置关系;(2)判断同位角、内错角、同旁内角时,首先要判断截线和被截线:两个角都有一边在这条直线上,那么这条直线就是被截线(公共边). 二、平行线1、 两条直线的位置关系:同一平面内,两条不重合的直线的位置关系只有两种:相交或平行.2、 平行线:在同一平面内,不相交(没有公共点)的两条直线叫做平行线. 如图:直线AB 、CD 互相平行,记作:AB ∥CD . 注意:(1)同一平面;(2)不相交是指没有交点;(3)线段、射线平行特指线段、射线所在直线平行.3、 平行线的性质(1)平行公理:经过已知直线外一点,有且只有一条直线与已知直线平行.(2)平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 4、平行线的识别C DE BA FM N B D CAB DCA E 7 4 86 532 1(1)同位角相等,两直线平行.(∵∠1=∠5,∴AB∥CD)(2)内错角相等,两直线平行.(∵∠4=∠5,∴AB∥CD)(3)同旁内角互补,两直线平行.(∵∠3+∠5=180°,∴AB∥CD)(4)垂直于同一直线的两直线平行.(∵C D⊥AB,E F⊥AB,∴CD∥EF)(5)平行线的定义.(6)平行公理推论.(∵a∥b,a∥c,∴b∥c)5、平行线的性质:(1)两直线平行,同位角相等.(∵AB∥CD ∴∠2=∠6)(2)两直线平行,内错角相等.(∵AB∥CD ∴∠3=∠6)(3)两直线平行,同旁内角互补.(∵AB∥CD ∴∠4+∠6=180°)注意:判断线段或射线的垂直或平行,就是判断它们所在直线垂直或平行. ※典例剖析【例1】如图,图中有对同位角,分别是.图中有对内错角,分别是.图中有对同旁内角,分别是.【例2】如图,∠1和∠2是直线和被直线所截得的角;∠2和∠3是直线和被直线所截得的角;∠4和∠A是直线和被直线所截得的角.【例3】如图,AB⊥CD,垂足为O,OE是一条射线,OF平分∠BOC,∠AOE=35°,求∠EOF的度数.【例4】如图,AB∥DE,∠B=135°,∠D=145°,求∠C的度数.B DC AEF7486 532 1C B1D A5342EB DCA43 12AEOCBDFEBDCA5051【例5】如图,已知∠E =∠F ,∠E =∠BAD ,AD 是∠BAC 的平分线吗为什么※培优训练1、 如图一,∠1=65°,∠C=65°,∠ADC=115°, 则图中的平行线有 .2、 如图二,若∠1= ,则DE ∥AC ; 若∠1= , 则EF ∥BC ,若∠FED+ =180°, 则DE ∥AC ;若∠2+ =180°,则AB ∥DF.3、 如图三,若AB ∥CD ,则根据 , 可得∠2= ;若AD ∥BC ,根据 , 可得∠DAB+ =180°.4、如图,已知∠B=62°,∠3=30°,∠4=88°, AB 与CD 平行吗AD 与BC 平行吗说明理由.图图BA DC4 3 2 1 图AE DB C1CBDA 4 321A EG FC D B525、如图,已知AC ∥DE ,∠D =70°,CD 平分∠ACE ,求∠E 的度数.6、如图,已知:∠1=∠2,∠A=∠C ,请猜想∠E 与∠F 的关系,并说明你的理由.※能力拓展题组一:1、如图,直线CD 、EF 、GH 交于一点P ,直线AB 交EF 、GH 于 点M 、N ,则图中共有内错角( ). A 、4对 B 、8对 C 、10对 D 、12对2、平面内有5条直线两两相交,其中仅有3条直线经过同一点,则它们彼此截得的线段共有( ).A 、36条B 、33条C 、24条D 、21条题组二:1、如图,已知AB ∥CD ,∠B =∠C. 求证:CE ∥BFA CED B B 12HGAFD E CDABE CF HPG M N D C EBGAF532、如图,已知AB ∥CD ,AE 平分∠BAC ,CE 平分∠ACD .求证:A E ⊥CE. 题组三:1、如图,已知AB ∥CD ,EF 交AB 、CD 于点G 、H ,点P 是为HD 上一动点, 过点P 的直线交HF 于点O. 求证:∠HOP=∠AGF -∠HPO.2、如图,已知AB ∥CD ,∠EAF=EAB ∠41,∠ECF=ECD ∠41.求证:∠AFC=AEC ∠43ED CB A PGH A B C DO FEEFBA D。
七年级培优讲义第十三讲
七年级培优讲义第十三讲第13讲—元一次方程的应用知识导航列方程解应用题的一般步骤:点燃2:①审:审题,分析题中已知是什么、求什么,明确各数量之间的关系;②找:找出能够表示应用题全部含义的一个相等关系;③设:设未知数(一般求什么,就设什么为某〉;④列:根据这个相等关系列出所需要的代数式,从而列出方程;⑤解:解所列出的方程,求出未知数的值;⑥答:检验所求得的解是否符合题意,写出答案(包括单位名称)点燃3:重点:列方程解应用题的一般步骤的理解与应用,难点:找出能够表示应用题全部含义的一个相等关系..点燃思维点燃1:节约水资源,人人有责,针对居民用水浪费现象,某市制淀居民用水标准,规定三口之家每月标准用水量,超标部分则加价收费,俏设不超标部分每立方米水费1.3元,超标部分每立方米水费2,9元,某三口之家某月用水量12立方米,交水费22元.求该市规定三口之家每月标准用水量为多少立方米?卓尔教育七年级数学秋季班培优教材第十三讲第1页竞赛知识导航与赛题精讲精讲1:精讲2:中考考点热点直击与中考真题欣赏精讲3:真题1:星海批发商场某种商品的数量与价格如下表所示:甲、乙两人一起到该商场购物,要购买上述商品共100多件,其中购买的件数不足50件,乙购买的件数超过50件,但不足100件;如男人分别购买这种商品一共应付780元,如果两人联合购买一共只需付525元,问甲、乙两人分别购买这种商品各多少件?精讲4:卓尔教育七年级数学秋季班培优教材第十三讲第2页真题2:创新思维与赛题探究探究1:探究2:真题3:有一个允许单向通过的窄道口,通常情况下,每分钟可以通过9人.一天,王老师到达道口时,发现由于拥挤,每分钟只能3人通过道口,此时,自己前面还有36人等待通过(假定先到先过,王老师过道口的时间忽略不计〉,通过道口后,还需7分钟到达学校,(1)此时,若绕道而行,要15分钟到达学校,从节省时间考虑,王老师应选择绕道去学校,还是选择通过拥挤的道口去学校?(2)若在王老师等人的维持下,几分钟后,秩序恢复正常(维持秩序期间,每分钟仍有3人能过道口、结果王老师比拥挤情况下提前了6分钟通过道口,问维持秩序的时间是多少?卓尔教育七年级数学秋季班培优教材第十三讲第3页探究3:竞赛实战训练与能力培养探究4:卓尔教育七年级数学秋季班培优教材第十三讲第4页卓尔教育七年级数学秋季班培优教材第十三讲第5页家长意见(签字):卓尔教育七年级数学秋季班培优教材第十三讲第6页。
七年级上学期数学培优辅差计划 3
七年级上学期数学科培优辅差计划拟定人:一、指导思想本班的学生相互之间学习及纪律情况参差不齐,在上课过程中自然而然地产生一系列的问题,针对这些现象,为提高优生的自主和自觉学习的能力,进一步巩固并提高中等生的学习成绩,帮助差生取得适当进步,让差生在教师的辅导和优生的帮助下,逐步提高学习成绩,并培养较好的学习生活习惯,并逐步提高纪律意识和思想道德水平,形成良好的自身素质,为了让培辅计划要到实处,发掘并培养一批尖子,挖掘他们的潜能,从培养能力入手,培养良好的习惯,从而形成较扎实的基础,并能协助老师进行辅差活动,提高整个班的素养和成绩,特制定本学期培优辅差具体计划。
二、对象及情况分析(一)培优1、优生对象:张周涵、李周龙、许李莹2、优生情况分析:数学底子好,上课认真听讲,作业按时按成,学习能力强、反应快、头脑灵活、学习成绩优秀。
(二)、辅差1、差生对象:晁周曼、刘周翔、杨李涛2、差生情况分析:上课容易分心走神,不喜欢学习数学,对数学有厌学的情节,数学成绩严重拖后腿。
三、措施与方法(一)、培优措施与方法1、通过培优,使优等生的数学成绩更加拔尖、稳定。
2、进一步激发优等生浓厚的学习兴趣,强烈的求知欲望及自信。
3、进一步拓宽优等生的学习空间,使其积极主动地学习课内课外的知识,努力培养其实践能力与创新精神,为新世纪的优秀人才打下坚实的基础。
4、培优前精心备课,精心选择内容,符合学生的学习层次与需要。
5、课堂上注意分层教学,设计些有坡度、深度的问题启发优等生的思维,激发其浓厚的学习兴趣。
6、经常为他们搭建展示技能水平的平台,激发其浓厚的学习兴趣,促使他们持之以恒,再接再厉。
(二)、辅差措施与方法1、课外辅导,利用课余时间。
2、采用一优生带一差生的一帮一行动。
3、请优生介绍学习经验,差生加以学习。
4、课堂上创造机会,用优生学习思维、方法来影响差生。
5、对差生实施多做多练措施,优生适当增加题目难度。
6、采用激励机制,对差生的每一点进步都给予肯定,并鼓励其继续进取,在优生中树立榜样,给机会表现,调动他们的学习积极性和成功感。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学培优辅导
十三
仅供学习与交流,如有侵权请联系网站删除 谢谢49
第十三讲 相交线、平行线
※ 知识纵横
一、相交线
1、 垂直的定义:
互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足. 示,如图,直线AB 、CD 互相垂直,记作“AB ⊥CD 于点O ”.
注意:(1(2)线段、射线的垂直特指它们所在的直线垂直. 垂直的判定:∵∠BOC=90°,∴AB ⊥CD ; 垂直的性质:∵AB ⊥CD ,∴∠AOC=90°
2、 垂线段的定义:过直线外一点作已知直线的垂线,这一点与垂足连接而成的线段叫垂线段.
3、 点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离.
4、 垂线的性质:
(1)在同一平面内,经过直线外或直线上一点有且只有一条直线与已知直线垂直.
(2)直线外一点与直线上各点的连线中,垂线段最短. 5、 垂线的画法:用三角板(一靠二过三画)、量角器、尺规作图
6、 两条直线被第三条直线所截,构成了八个角,简称“三线八角”.
如图:直线AB 、CD 被直线EF 所截或直线EF 截直线AB 、CD 于点 M 、N . 直线EF 就是第三条直线叫做截线,AB 、CD 叫做被截线.
7、 同位角、内错角、同旁内角
同位角:在截线同侧,在被截线同方向;
内错角:在截线两侧,在被截线的内部;
同旁内角:在截线同侧,在被截线的内部.
注意:(1)同位角、内错角、同旁内角是“两条直线被第三条直线所截”形成的八个角中,没有公共顶点的两个角的位置关系;(2)判断同位角、内错角、同旁内角时,首先要判断截线和被截线:两个角都有一边在这条直线上,那么这条直线就是被截线(公共边). 二、平行线
1、 两条直线的位置关系:同一平面内,两条不重合的直线的位置关系只有两种:相交或平行.
2、 平行线:在同一平面内,不相交(没有公共点)的两条直线叫做平行线. 如图:直线AB 、CD 互相平行,记作:AB ∥CD . 注意:(1)同一平面;(2)不相交是指没有交点;(3)线段、射线平行特指线段、射线所在直线平行.
3、 平行线的性质
(1)平行公理:经过已知直线外一点,有且只有一条直线与已知直线平行.
(2)平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 4、平行线的识别
C D
E B
A F
M N B D C
A
B D
C
A E 7 4 8
6 5
3
2 1
(1)同位角相等,两直线平行.(∵∠1=∠5,∴AB∥CD)
(2)内错角相等,两直线平行.(∵∠4=∠5,∴AB∥CD)
(3)同旁内角互补,两直线平行.(∵∠3+∠5=180°,∴AB∥CD)
(4)垂直于同一直线的两直线平行.(∵C D⊥AB,E F⊥AB,∴CD∥EF)
(5)平行线的定义.
(6)平行公理推论.(∵a∥b,a∥c,∴b∥c)
5、平行线的性质:
(1)两直线平行,同位角相等.(∵AB∥CD ∴∠2=∠6)
(2)两直线平行,内错角相等.(∵AB∥CD ∴∠3=∠6)
(3)两直线平行,同旁内角互补.(∵AB∥CD ∴∠4+∠6=180°)
注意:判断线段或射线的垂直或平行,就是判断它们所在直线垂直或平行. ※典例剖析
【例1】如图,图中有对同位角,分别是.
图中有对内错角,分别是.
图中有对同旁内角,分别是.
【例2】如图,∠1和∠2是直线和被直线所截得的角;
∠2和∠3是直线和被直线所截得的角;
∠4和∠A是直线和被直线所截得的角.
【例3】如图,AB⊥CD,垂足为O,OE是一条射线,OF平分∠BOC,∠AOE=35°,求∠EOF的度数.
【例4】如图,AB∥DE,∠B=135°,∠D=145°,
求∠C的度数.
B D
C A
E
F
7
4
8
6 5
3
2 1
C B
1
D A
5
3
4
2
E
B D
C
A
4
3 1
2
A
E
O
C
B
D
F
E
B
D
C
A
仅供学习与交流,如有侵权请联系网站删除谢谢50
仅供学习与交流,如有侵权请联系网站删除 谢谢51
【例5】如图,已知∠E =∠F ,∠E =∠BAD ,AD 是∠BAC 的平分线吗?为什么?
※培优训练
1、 如图一,∠1=65°,∠C=65°,∠ADC=115°, 则图中的平行线有 .
2、 如图二,若∠1= ,则DE ∥AC ; 若∠1= , 则EF ∥BC ,若∠FED+ =180°, 则DE ∥AC ;若∠2+ =180°,则AB ∥DF.
3、 如图三,若AB ∥CD ,则根据 , 可得∠2= ;若AD ∥BC ,根据 , 可得∠DAB+ =180°.
4、如图,已知∠B=62°,∠3=30°,∠4=88°, AB 与CD 平行吗?AD 与BC 平行吗?说明理由.
图图
B
A D
C
4 3 2 1 图
A
E D
B C
1
C
B
D
A 4 3
2
1 A E
G F
C D B
仅供学习与交流,如有侵权请联系网站删除 谢谢52
5、如图,已知AC ∥DE ,∠D =70°
,CD 平分∠ACE ,求∠E 的度数.
6、如图,已知:∠1=∠2,∠A=∠C ,请猜想∠E 与∠F 的关系,并说明你的理由.
※能力拓展
题组一:
1、如图,直线CD 、EF 、GH 交于一点P ,直线AB 交EF 、GH 于 点M 、N ,则图中共有内错角( ). A 、4对 B 、8对 C 、10对 D 、12对
2、平面内有5条直线两两相交,其中仅有3条直线经过同一点,则它们彼此截得的线段共有( ).
A 、36条
B 、33条
C 、24条
D 、21条
题组二:
1、如图,已知AB ∥CD ,∠B =∠C. 求证:CE ∥BF
A C
E
D B B 1
2
H
G
A
F
D E C
D A
B
E C F
H
P
G M
N D
C
E
B
G A
F
仅供学习与交流,如有侵权请联系网站删除 谢谢53
2、如图,已知AB ∥CD ,AE 平分∠BAC ,CE 平分∠ACD .求证:A E ⊥CE. 题组三:
1、如图,已知AB ∥CD ,EF 交AB 、CD 于点G 、H ,点P 是为HD 上一动点, 过点P 的直线交HF 于点O. 求证:∠HOP=∠AGF -∠HPO.
2、如图,已知AB ∥CD ,∠EAF=EAB ∠41,∠ECF=ECD ∠41.求证:∠AFC=AEC ∠4
3
E
D C
B A P
G
H A B C D
O F
E
C
E
F
B
A D。