概率的公式

概率的公式
概率的公式

.概率的公式、概念比较多,怎么记?

答:我们看这样一个模型,这是概率里经常见到的,从实际产品里面我们每次取一个产品,而且取后不放回去,就是日常生活中抽签抓阄的模型。现在我说四句话,大家看看有什么不同,第一句话“求一下第三次取到十件产品有七件正品三件次品,我们每次取一件,取后不放回”,下面我们来求四个类型,第一问我们求第三次取得次品的概率。第二问我们求第三次才取得次品的概率。第三问已知前两次没有取得次品第三次取到次品。第四问不超过三次取到次品。大家看到这四问的话我想是容易糊涂的,这是四个完全不同的概率,但是你看完以后可能有很多考生认为有的就是一个类型,但实际上是不一样的。

先看第一个“第三次取得次品”,这个概率与前面取得什么和后面取得什么都没有关系,所以这个我们叫绝对概率。第一个概率我想很多考生都知道,这个概率应该是等于十分之三,用古代概率公式或者全概率公式求出来都是十分之三。这个概率改成第四次、第五次取到都是十分之三,就是说这个概率与次数是没有关系的。所以在这里我们可以看出,日常生活中抽签、抓阄从数学上来说是公平的。

拿这个模型来说,第一次取到和第十次取到次品的概率都是十分之三。下面我们再看看第二个概率,第三次才取到次品的概率,这个事件描述的是绩事件,这是概率里重要的概念,改变表示同时发生的概率。但是这个与第三次的概率是容易混淆的,如果表示的可以这样表述,如果用A1表示第一次取到次品,A2表示第二次取到次品,A3是第三次取到次品。

如果A表示第一次不取到次品,B表示第二次不取到次品,C表示第三次不取到次品,求ABC 绩事件发生的概率。第三问表示条件概率,已知前两次没有取到次品,第三次取到次品P (C|AB),第三问求的就是一个条件概率。我们看第四问,不超过三次取得次品,这是一个和事件的概率,就是P(A+B+C)。从这个例子大家可以看出,概率论确实对题意的理解非常重要,要把握准确,否则就得不到准确的答案。

2.概率的数理统计要怎么复习?什么叫几何型概率?

答:几何型概率原则上只有理工科考,是数学一考察的对象,最近两年经济类的大纲也加进来了,但还没有考过,数学三、数学四的话虽然明确写在大纲里,还没有考。明年是否可能考呢?几何概率是一个考点,但不是一个考察的重点。我个人认为一是它考的可能性很小,如果考也是考一个小题,或者是选择题或者是填空题或者在大题里运用一下概率的模式,就是一个事件发生的概率是等于这个事件的度量或者整个样本空间度量的比。这个度量的话指的是面积,一维空间指的是长度,二维空间指的是面积,三维空间指的是体积。所以几何概率指的是长度的比、面积的比和体积的比。重点是面积的比,是二维的情况。

何概率其实很简单,是一个程序化的过程,按这四个步骤你肯定能做出来。第一步把样本空间和让你求概率的事件用几何表示出来。第二步既然是几何概率那就是图形,第二步把几何图形画出来。第三步你就把样本空间和让你求概率的事件所在的几何图形的度量,就是刚才所说的面积或者体积求出来。第三步代公式。以前考过的几何概率的题度量的计算都是用初等的方法做,我推测下次考的话,可能会难一点的。比如说用意项,面积可能用到定积分或者重积分计算,把概率和高等数学联系起来。

关于第二个问题,概率统计怎么复习,今年的考试分配很不正常,明年不会是这样的情况。我想明年数学一(统计)应该考一个八、九分的题是比较适中的。从今年考试中心的样题统计这一块是九分。数学三(统计)应该八分左右,统计这一块大家不要放弃,明年可能会考,分数应该是八、九分的题。至于复习,它的内容占了四分之一的样子。但是这一部分的题相对于概率题比较固定,做题的方法也比较固定,对考生来说比较好掌握,但这部分考生考得差,可能很多学校没有开这门课,或者开的话讲得比较简单,所以一些同学没有达到考试的水平。其实这部分稍微花一点时间就可以掌握了。主要就是这几块内容一是样本与抽样分布,就是三大分布搞清楚,把他们的结构搞清楚,把统计上的分布搞清楚。

然后是参数估计、矩估计、最大似然估计、区间估计、三种估计方法,三个评价标准,无偏性、有效性、一致性,重点是无偏性的考查,因为它是期望的计算,其次是有效性。一致性一般不会考,考的可能性很小。这三种估计方法重点也是前面两种,矩估计、最大似然估计,区间做了限制,考了很少,历年考试的情况也就是代代公式。

最后一部分是假设检验这部分,这一部分我个人推测明年有可能考一个概念性的小题。一是了解U检验统计量、T检验统计量、卡方检验统计量,把这三个检验统计量的分布搞清楚。另外假设检验的思想和四个步骤了解一下就可以了。我想这部分考生少花一点时间,统计这个题是没有问题的,重点就是参数估计,就是三种估计方法,三个评价标准,重点在那个地方。

3.我概率这块掌握的不够扎实,复习很困难,我应该怎样才能更好的复习概率这部分内容?

答:概率这门学科与别的学科是不太一样的,首先我建议这位同学你可以看一下教育部考试中心一本杂志,专门出了一个针对研究生考试的书,这个里面请我写了一篇文章,里面我举很多例子,你看了之后有一个详细复习方法。概率这门学科与概率统计、微积分是不一样的,它要求对基本概念、基本性质的理解比较强,有个同学跟我说高等数学不存在把题看不懂的问题,但是概率统计的题尤其文字叙述的时候看不懂题,从这个意义上来说同学平常复习时候,只要针对每一个基本概念,要把它准确的理解,概念要理解准确,通过例子理解概念,通过实际物体理解概念。例如:比如我们一个盒子一共有十件产品,其中三件次品,七件正品,我们做一个实验,每次只取一件产品,取之后不再放回去,现在我提两个问题:一个是第三次取的次品是什么事件,这个事件就是积事件,第一次没有取到次品,第二次没有取到次品,第三次是取到次品,求这么一个事件的概率,但是换一个问题,我说你求前面两次没有取到次品情况下,第三次取到次品的概率,这个就不是积事件了,我第二个问题是知道了前面两次没有取到次品,这个信息已经知道了,然后问你第三次取到次品概率是多少,这是条件概率,这个信息已经知道了,另外一个事件发生的概率,这叫条件概率,这是容易混淆的。还有绝对概率,拿我们刚才举的例子来讲,如果我让你求第三次取到次品是什么概率,那是绝对事件的概率,这和前面两个又不一样。我举这个例子提醒考生复习时候把这些基本概念搞清楚了,把公式把握了,这个就比较容易了。跟微积分比较起来这里没有什么公式,公式很少。所以我们把基本概念弄清楚以后,计算的技巧比微积分少得多,所以有同学跟我说,他说概率统计这门课程要么就考高分,要么考低分,考中间分数的人很少,这就说明了这种课程的特点。

4.概率的公式非常难背,有什么好方法吗?

答:背下来是基本的要求,概率的公式并不多,但是概率的公式和高等数学的公式相比,仅仅记住它是不够的,比如给一个函数求导数,你会做,因为你知道是求导数,概率问题,比如全概率公式,考试的时候从来没有哪一年是请你用全概率公式求求某概率,所以从分析问题的层面来说概率的要求高一点,但是从计算技巧来说概率的技巧低一些,所以我建议大家结合实际的例子和模型记它。比如二向概率公式,你可以这么记它,记一个模型,把一枚硬币重复抛N次,正面冲上的概率是多少呢?这个公式哪一个符号在实际问题里面是什么东西,这样才是在理解的基础上记忆,当然就不容易忘记了。

5.关于数理统计先阶段复习应该抓哪些?

答:考试要注意,只有数学1和数学3的同学要考数理统计,按照以前考试数学1一般来说考三分之一分数的题,数学3是四分之一,但是仅仅是一个很例外的情况,2003年数学1考了16分的数理统计,但是今年没有考这部分,今年考试这个地方的命题是有一点有失偏颇,我个人的看法为了避免这样的情况,所以这个地方一定要看,一般要考8分左右的题是比较合适的,到底考什么,我可以把这个范围缩的比较小,考这么几种题型,第一个是求统计量的数字特征或者是统计量的分布,统计量大家知道就是样本的函数,样本就是X1X2-Xn,就是期望、方差、系方差,相关系数等等,求统计量的数字特征。第二个题型,统计量既然是随机变量,当然可以求统计量的分布,2001年数学3是考了,2002年数学3考了,所以这个地方也是重要的题型。其次第三种题型是参数估计,你要会求。要考你背两到三个区间估计的公式就可以了,所以为什么这个地方考的次数最多,每一种方法你都要会做。第四种题型就是对估计量的好坏进行评价,估计是无偏是有效的还是抑制的。2003年就考了一个大题。另外第五种题型就是假设间接这个地方,这么年以来只考过两次,而且从99年以来练习五年这一章是没有考,但是也正音连续五年没有考,我个人估测2004年在这个上面考一个小题的可能是非常大的,我想同学们这部分花一点点时间看一看它,可能考一个小题,考一个什么题,就是把统计量写出来,你会不会把分布写出来,以填空的方式。另外一种考法,它的只对什么进行检验,对什么参数进行检验,你把统计参数写出来。第三种方法,设计一个问题,把架设检验的十个步骤做出来,第一个步骤是提出架设,第二步写出检验统计量。这个部分也不会出一个大题,应该是以小题的形式出现。

6.会不会考极大自然估计量,我觉得那里面计算量比较大,一般不会考,不知道曹老师怎么感觉的?

答:对于数学一的考生或者数学三的考生来说,这个类型是考试的重点,每门课程重点有很多,不是每个重点都考,只要重点的地方考生不要投机取巧,比如参数估计,三种方法,那就是矩估计方法,极大似然估计方法,区间估计方法,这三种方法前两者是重点。大家记几个公式就可以了,2003年数学一考了区间估计的填空题。你对前面两者要熟练掌握,前面两种对整体没有做限制,所以命题空间比较大。如果命题空间小考的可能性有很小。你四个步骤一定要掌握,刚才有网友说那个计算量太大,考试的题计算量不会太大。第一步一定要把函数会写出来,数量函数有两种:一个是总体是离散型的一个是连续型的,你都要会写出来,离散型是指联合分布率,连续型是联合密度,因为这个联合密度和联合分布率都具有独立性,都是等于边缘密度的乘积,做任何一个,只要考这类型的题第一步少不了,你的问题属于会把L似然函数写出来,把L写出来以后下面求L关于未知参数最大值点的问题,这是

高等数学微积分里面最基本的问题,所以一般的话,我们先取对数,取对数以后令这个函数对未知参数的导数等于零,这个偏导数或者导数等于零的解就是可能的极值点。当然也可能出现这种情况,偏导数等于零的方程没有解的情况,只考过一次,这个时候找未知参数的边界点,取值范围的定义域找到它,这个2000年考过一次,这个大家要注意,有解没有解的都会做了你就不怕他考了。

7.请老师讲一下概率问题,概率重点应该放在哪里?怎样更好的得分?

答:这个可以看作我们概率一个基础,我不知道这个网友是考数学几,随机变量分布这是一大块内容,基本每都年考一点,还有一个就是数理特征和数理统计基本考一个大题,概率和数理统计这部分如果从复习角度来看我们首先要理解概念,我认为这里面有三个典型途径:第一古典概率,一个概率的公式的推算,第二个途径就是利用我们的分布信息来求概率,我们涉及到一维的也可以是二维的,即可以是离散型的也可以是连续型的,都有求概率的方法,我们讨论概率统计里的问题,比如分布函数问题,本身就是求概率,你只要知道求概率统计三个途径,所以我讨论分布函数,由分布函数可以讨论概率分布函数,源头是分布函数,分布函数基础是求概率,通过这个角度把握我认为概率统计发现不是你想象的那么复杂了。这里面重点的是二两者,第一种古典概率考的是排列组合,这个是初中内容,稍微难一点古典概率的题,同学没有过多关心,不会从这个角度考的,而是根据我刚才的分析。所以把握这种思路以后,实际上概率统计知识应该把线性代数,特别比高等数学更好拿分。另外稍微应该注意一下概率统计里面随机事件和随机变量之间的转换关系。我们可以通过随机事件引进随机变量,反过来也可以,所以大家复习时候。讨论随机事件之间关系问题也可以借用随机变量之间关系分析,这是概率统计方面大家应该注意几个比较典型的知识点。

8.数学一概率和统计一般是怎样的分值比例?重点分别是什么?

答:我们1997年实行新大纲以后,除了1997年没有考,数学一从1998年到今年每一年都考到数理统计这块内容,也可以更多的情况下通过大题形式考,这里头大家复习时候应该稍微注意一下,数理统计它的公式特别多,但是本质上全部概括起来,三个动态总体的抽样分布,当总体方向是未知的时候,我们这几年考题表面上考数理统计的问题,有相当一部分考数理统计它在具体计算过程里头的期望和方差的计算问题。所以经常把数理统计和我们数字特征结合起来考,这种情况我认为没有必要过于区分数理统计占怎样的分值比例,本身都是紧密相连的。

9.老师能讲讲今年概率论重点是什么?今年可能要考的知识点是什么?

答:这个问题不好说,这个问题比较大,要是我预测一下的话,这么几个知识点你可以把握一下,平常我们讲课当中的重点当然要复习。比如事件的关系和概率的性质,我认为这个地方会考一个小题,这个地方要熟练掌握。另外一个需要注意的是BERMOULLI(贝努利),因为这个里面涉及到一个重要的分布,我统计一下历年考试,这几种分布考查过,考的最多排在前面三位的是正态分布、贝努利分布,指数分布,BERMOULLI排第二位,这里面一个重要的问题这几年一直在考。再就是求分布函数的题一定要多看两个例子,这个基本得考。去年我在这个地方讲一个题,考的题比我讲的简单一些,就是一个13分求分布函数的题。这是碰上的,不是押上的,求分布函数这个地方是一个问题。另外二维求联合分布率,另外一个

问题是求数学期望,求数字特征。统计这部分最可能考的应该还是参数估计还有估计的评价标准,评价标准主要是无偏性和有效性的考查,特别提醒2004年考生,这是大纲里面规定的一章内容,连续五年没有考了,我感觉2004年会考一个小题,考一个什么小题我可以说的差不多,那就是三种考法,一种把统计写出来,另外一种考法要考生写出统计,他说出是哪一种类型的检验,要有什么检验统计量你要会做出来,另外就是给出假设统计量,把你的结论写出来,这四个步骤要掌握,这个地方考大题可能性不大,可能会考一个小题。2004年考生要看一下这部分内容,虽然不是考试重点,但是可能会考,是最基本要求的考查。

10.每年都考点估计,今年会不会考矩估计?

答:三种估计方法前面这两者是重点,都叫做点估计,矩估计是点估计一种,矩估计2002年考了,2002年数学三、数学一都考了,数学三考连续性总体,数学一考离散型总体,其实矩估计这个题同学应该好好复习,如果只有一个参数的话就是把数学期望求出来,总体就是随机变量,只要会求期望就会求一个参数矩估计,两个参数矩估计就多求一个,两个参数的矩估计多求一下期望就可以了,两个方程解一个方程组,两个参数的矩方程从来没有考过,不妨看看,因为没有考过两个参数的矩估计。

11.假设检验会有几分题?

答:这个不是重点,数学一1998年考过一次,数学三也只考过一次,我个人认为1997年把统计加进来,连续五年没有考假设检验,我想要是考也是考一个4分的小题。而且是最低要求的考查,不会考太难,难了大家都做不出来等于没有考,不是考查的重点内容。

12.数理统计中考试重点是什么?参数估计占多大比重?

答:参数估计这部分它占数理统计的一多半内容,参数估计这块应该是最重要的。统计里面第一章就是关于样本还有统计量分布这部分,这部分就是求统计量的数字特征,统计量是随机变量。统计里面有什么题型?一个参数估计,一个求统计量数字特征或者求统计量的分布,统计量是随机变量,任何随机变量都有分布。自然会有这样的题型。求统计量的数字特征,求统计量的分布,然后参数估计,然后估计的标准。统计这个内容对大家来说应该是比较好掌握的,题型比较少,你比较好把这个题做好。

13.数三概率与数理统计会占总分百分之几?大概有几道?

答:38分,占25%。大题两道,13分一道,数学里面最高分数的题就是13分。

14.数一中假设检验怎么考?参数估计中区间估计的公式是否都要记住?也就是统计量及其分布这些公式很复杂如何更好记忆,历年考试出现的好象不是特别多,今年是否会有变化?

答:区间估计不是考试重点,属于最低层次的,你只要知道两到三个区间公式就可以了,以前只考过前面两个,你多记一个留有一些余地,这个地方要求比较低,复杂的公式你不一定非得记住。

概率计算方法

概率计算方法

概率计算方法 在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)=的结果数 随机事件所有可能出现果数 随机事件可能出现的结.其中P(必然事件)=1,P (不可能事件)=0;0

摸一个球,请用画树状图法,求两次摸到都是白球的概率. 解析:⑴设蓝球个数为x 个 . 由题意得2 1 1 22=++x ∴x=1 答:蓝球有1个 (2)树状图如下: ∴ 两次摸到都是白球的概率 =6 1 122=. 说明:解有关的概率问题首先弄清:①需要关注的是发生哪个或哪些结果.②无论哪种都是机会均等的. 本题是考查用树状图来求概率的方法,这种方法比较直观,把所有可能的结果都一一罗列出来,便于计算结果. 黄 白2白1蓝 黄白1蓝黄白2

四.列表法 例4 (07山西)如图3,有四张编号为1,2,3,4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上. (1)从中随机抽取一 张,抽到的卡片是眼睛的概率是多少? (2)从四张卡片中随机抽取一张贴在如图4所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率. 1 2 3 图 图3

概率计算公式(精选课件)

概率计算公式 加法法则 P(A∪B)=P(A)+P(B)-P(AB 条件概率 当P(A)>0,P(B|A)=P(AB)/P(A) 乘法公式 P(AB)=P(A)×P(B|A)=P(B)×P(A|B) 计算方法 “排列组合”的方法计算 记法 P(A)=A 加法法则 定理:设A、B是互不相容事件(AB=φ),P(AB)=0。则P(A∪B)=P(A)+P(B)-P(AB)=p(A)+P(B) 推论1:设A1、A2、…、An互不相容,则:P(A1+A2+.。.+An)= P(A1) +P(A2) +…+ P(An) ...文档交流仅供参考... 推论2:设A1、 A2、…、 An构成完备事件组,则:P (A1+A2+。..+An)=1 推论3:P(A)=1—P(A') 推论4:若B包含A,则P(B—A)= P(B)—P(A) 推论5(广义加法公式):

对任意两个事件A与B,有P(A∪B)=P(A)+P(B)—P(AB) 折叠条件概率 条件概率:已知事件B出现的条件下A出现的概率,称为条件概率,记作:P(A|B) 条件概率计算公式: 当P(A)>0,P(B|A)=P(AB)/P(A) 当P(B)>0,P(A|B)=P(AB)/P(B) 折叠乘法公式 P(AB)=P(A)×P(B|A)=P(B)×P(A|B) 推广:P(ABC)=P(A)P(B|A)P(C|AB) 折叠全概率公式 设:若事件A1,A2,…,An互不相容,且A1+A2+…+An=Ω,则称A1,A2,…,An构成一个完备事件组....文档交流仅供参考... 全概率公式的形式如下: 以上公式就被称为全概率公式。

概率及其计算

第十三章概率与统计本章知识结构图 统计 随机抽样 抽签法 随机数表法 简单随机抽样 系统抽样 分层抽样 共同特点:抽样 过程中每个个体 被抽到的可能性 (概率)相等用样本估计总体 样本频率分布 估计总体 总体密度曲线 频率分布表和频率分布直方图 茎叶图 样本数字特征 估计总体 众数、中位数、平均数 方差、标准差 变量间的相关关系 两个变量的 线性相关 散点图回归直线 正态分布 列联表(2×2)独立性分析 概率 概率的基本性质互斥事件对立事件 古典概型 几何概型 条件概率 事件的独立性 用随机模拟法求概率 常用的分布及 期望、方差 随机变量 两点分布 X~B(1,p) E(X)=p,D(X)=p(1-p) 二项分布 X~B(n,p) E(X)=np,D(X)=np(1-p) X~H(N,M,n) E(X)=n M N D(X)= nM N? ? ? ? 1- M N N-n N-1 n次独立重复试验恰好 发生k次的概率为 P n(k)=C k n p k(1-p)n-k 超几何分布 若Y=aX+b,则 E(Y)=aE(X)+b D(Y)=a2D(X) P(A+B)=P(A)+P(B) P(?A)=1-P(A) P(A B)=P(A)·P(B) P(B | A)= P(A B) P(A)

第一节 概率及其计算 考纲解读 1.了解随机事件发生的不确定性、频率的稳定性、概率的意义、频率与概率的区别。 2.了解两个互斥事件的概率的加法公式。 3.掌握古典概型及其概率计算公式。 4.了解随机数的意义,能运用模拟方法估计概率。 5.了解几何概型的意义。 命题趋势探究 1.本部分为高考必考内容,在选择题、填空题和解答题中都有渗透。 2.命题设置以两种概型的概率计算及运用互斥、对立事件的概率公式为核心内容,题型及分值稳定,难度中等或中等以下。 知识点精讲 一、必然事件、不可能事件、随机事件 在一定条件下: ①必然要发生的事件叫必然事件; ②一定不发生的事件叫不可能事件; ③可能发生也可能不发生的事件叫随机事件。 二、概率 在相同条件下,做次重复实验,事件A 发生次,测得A 发生的频率为,当很大时,A 发生的频率总是在某个常数附近摆动,随着的增加,摆动幅度越来越小,这时就把这个常数叫做A 的概率,记作。对于必然事件A ,;对于不可能事件A ,=0. 三、基本事件和基本事件空间 在一次实验中,不可能再分的事件称为基本事件,所有基本事件组成的集合称为基本事件空间。 四、两个基本概型的概率公式 1、古典概型 条件:1、基本事件空间含有限个基本事件 2、每个基本事件发生的可能性相同 ()(A) = ()A card P A card = Ω包含基本事件数基本事件总数 2、几何概型 条件:每个事件都可以看作某几何区域Ω的子集A ,A 的几何度量(长度、面积、体积或时间)记为 A μ.

概率计算方法全攻略

概率计算方法全攻略 在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)= 的结果数 随机事件所有可能出现果数 随机事件可能出现的结.其中P(必然事件)=1,P (不可能事件) =0;0

概率计算方法全攻略

概率计算方法全攻略

概率计算方法全攻略 在新课标实施以来,中考数学试题中加大了 统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)=的结果数 随机事件所有可能出现果数随机事件可能出现的结.其中P(必然事件)=1,P (不可能事件)=0;0

解析:⑴设蓝球个数为x 个 . 由题意得2 1122=++x ∴x=1 答:蓝球有1个 (2)树状图 如下: ∴ 两次摸到都是白球的概率 =6 112 2=. 说明:解有关的概率问题首先弄清:①需要关注的是发生哪个或哪些结果. ②无论哪种都是机会均等的 . 本题是考查用树状图来求概率的方法,这种方法比较直观,把所有可能的结果都一一罗列出来,便于计算结果. 四.列表法 例4 (07山西)如图3,有四张编号为1,2,3,4的卡 片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上. (1)从中随机抽取一张,抽到的卡片是眼睛的黄白2蓝白2白1蓝黄白1蓝黄白2

概率公式总结

一、随机事件和概率 1、随机事件及其概率 运算律名称 表达式 交换律 结合律 分配律 德摩根律 2、概率的定义及其计算 公式名称 公式表达式 求逆公式 加法公式 条件概率公式 乘法公式 全概率公式 贝叶斯公式 (逆概率公式) 伯努力概型公式 两件事件相互独立相应 公式 )()()(B P A P AB P =;)()(B P A B P =;)()(A B P A B P =;1)()(=+A B P A B P ; 1)()(=+A B P A B P 二、随机变量及其分布 1、分布函数性质 2、散型随机变量 分布名称 分布律 0–1分布),1(p B 二项分布),(p n B 泊松分布)(λP 几何分布)(p G 超几何分布),,(n M N H 3、续型随机变量 分布名称 密度函数 分布函数 均匀分布),(b a U 指数分布)(λE 正态分布),(2 σμN 标准正态分布)1,0(N 三、多维随机变量及其分布 1、离散型二维随机变量边缘分布 2、离散型二维随机变量条件分布

3、连续型二维随机变量( X ,Y )的分布函数?? ∞-∞ -= x y dvdu v u f y x F ),(),( 4、连续型二维随机变量边缘分布函数与边缘密度函数 分布函数:?? ∞-+∞ ∞ -= x X dvdu v u f x F ),()( 密度函数:? +∞ ∞ -= dv v x f x f X ),()( 5、二维随机变量的条件分布 四、随机变量的数字特征 1、数学期望 离散型随机变量:∑ +∞ ==1 )(k k k p x X E 连续型随机变量:? +∞ ∞ -= dx x xf X E )()( 2、数学期望的性质 (1)为常数C ,)(C C E = )()]([X E X E E = )()(X CE CX E = (2))()()(Y E X E Y X E ±=± b X aE b aX E ±=±)()( )()()(1111n n n n X E C X E C X C X C E +=+ (3)若XY 相互独立则:)()()(Y E X E XY E = (4))()()]([222Y E X E XY E ≤ 3、方差:)()()(22X E X E X D -= 4、方差的性质 (1)0)(=C D 0)]([=X D D )()(2X D a b aX D =± 2)()(C X E X D -< (2)),(2)()()(Y X Cov Y D X D Y X D ±+=± 若XY 相互独立则:)()()(Y D X D Y X D +=± 5、协方差:)()(),(),(Y E X E Y X E Y X Cov -= 若XY 相互独立则:0),(=Y X Cov 6、相关系数:) ()(),(),(Y D X D Y X Cov Y X XY ==ρρ 若XY 相互独立则:0=XY ρ即XY 不相关 7、协方差和相关系数的性质 (1))(),(X D X X Cov = ),(),(X Y C o v Y X C o v = (2)),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+ ),(),(Y X a b C o v d bY c aX Cov =++ 8、常见数学分布的期望和方差 分布 数学期望 方差 0-1分布),1(p B 二行分布),(p n B 泊松分布)(λP 几何分布)(p G 超几何分布),,(n M N H 均匀分布),(b a U

概率计算方法

概率计算方法 在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)= 的结果数 随机事件所有可能出现果数 随机事件可能出现的结.其中P(必然事件)=1,P (不可能事件) =0;0

概率论公式总结

概率论公式总结 This manuscript was revised by the office on December 10, 2020.

第一章 P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式 概率的乘法公式 全概率公式:从原因计算结果 Bayes 公式:从结果找原因 第二章 二项分布(Bernoulli 分布)——X~B(n,p) 泊松分布——X~P(λ) 概率密度函数 怎样计算概率 均匀分布X~U(a,b) 指数分布X~Exp (θ) 分布函数 对离散型随机 变量 对连续型随机变量 分布函数与密度函数的重要关系: 二元随机变量及其边缘分布 分布规律的描述方法 联合密度 函数 联合分布函数 联合密度与边缘密度 )(b X a P ≤≤∑≤==≤=x k k X P x X P x F )()()(?∞-=≤=x dt t f x X P x F )()()(),(y x f ),(y x F 1),(0≤≤y x F

离散型随机变量的独立性 连续型随机变量的独立性 第三章 数学期望 离散型随机变量,数学期望定义 连续型随机变量,数学期望定义 E(a)=a ,其中a 为常数 E(a+bX)=a+bE(X),其中a 、b 为常数 E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量 随机变量g(X)的数学期望 常用公式 方差 定义式 常用计算 式 常用公式 当X 、Y 相互独立时: 方差的性质 D(a)=0,其中a 为常数 D(a+bX)=b2D(X),其中a 、b 为常数 当X 、Y 相互独立时,D(X+Y)=D(X)+D(Y) 协方差与相关系数 协方差的性质 独立与相关 独立必定不相关 ∑+∞-∞=?=k k k P x X E )([]22)()()(X E X E X D -=

(完整版)概率论公式总结

第一章 P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式 概率的乘法公式 全概率公式:从原因计算结果 Bayes 公式:从结果找原因 第二章 二项分布(Bernoulli 分布)——X~B(n,p) 泊松分布——X~P(λ) ) ()()|(B P AB P B A P = )|()()(B A P B P AB P =)|()(A B P A P =∑==n k k k B A P B P A P 1) |()()(∑== n k k k i i k B A P B P B A P B P A B P 1 ) |()() |()()|(),...,1,0()1()(n k p p C k X P k n k k n =-==-,,...) 1,0(! )(== =-k e k k X P k ,λλ∑≤==≤=x k k X P x X P x F ) ()()(

概率密度函数 怎样计算概 率 均匀分布X~U(a,b) 指数分布X~Exp () 对连续型随机变量 分布函数与密度函数的重要关系: 二元随机变量及其边缘分布 分布规律的描述方法 联合密度函数 联合分布函数 1)(=? +∞ ∞ -dx x f ) (b X a P ≤≤?=≤≤b a dx x f b X a P )()(?∞-=≤=x dt t f x X P x F )()()(? ∞ -=≤=x dt t f x X P x F )()()() ,(y x f ) ,(y x F 0 ),(≥y x f 1 ),(=?? +∞∞-+∞ ∞ -dxdy y x f )(1)(b x a a b x f ≤≤-=

高中生物 遗传概率的计算方法

遗传概率的计算方法(高中生物) 概率是对某一可能发生事件的估计,是指总事件与特定事件的比例,其范围介于0和1之间。相关概率计算方法介绍如下: 一、某一事件出现的概率计算法 例题1:杂合子(Aa)自交,求自交后代某一个体是杂合体的概率。 解析:对此问题首先必须明确该个体是已知表现型还是未知表现型。(1)若该个体表现型为显性性状,它的基因型有两种可能:AA和Aa。且比例为1∶2,所以它为杂合子的概率为2/3。(2)若该个体为未知表现型,那么该个体基因型为AA、Aa和aa,且比例为1∶2∶1,因此它为杂合子的概率为1/2。正确答案:2/3或1/2 二、亲代的基因型在未肯定的情况下,其后代某一性状发生的概率计算法 例题2:一对夫妇均正常,且他们的双亲也都正常,但双方都有一白化病的兄弟,求他们婚后生白化病孩子的概率是多少? 解析:(1)首先确定该夫妇的基因型及其概率?由前面例题1的分析可推知该夫妇均为Aa的概率为2/3,AA的概率为1/3。(2)假设该夫妇为Aa,后代患病的概率为1/4。(3)最后将该夫妇均为Aa的概率(2/3×2/3)与假设该夫妇均为Aa情况下生白化病患者的概率1/4相乘,其乘积1/9,即为该夫妇后代中出现白化病患者的概率。正确答案:1/9 三、利用不完全数学归纳法 例题3:自交系第一代基因型为Aa的玉米,自花传粉,逐代自交,到自交系第n代时,其杂合子的几率为。 解析:第一代 Aa 第二代 1AA 2Aa 1aa 杂合体几率为 1/2 n-1 第三代纯 1AA 2Aa 1aa 纯杂合体几率为(1/2)2 第n代杂合体几率为(1/2)正确答案:杂合体几率为(1/2)n-1 四、利用棋盘法 例题4:人类多指基因(T)是正常指(t)的显性,白化基因(a)是正常(A)的隐性,都在常染色体上,而且都是独立遗传。一个家庭中,父亲是多指,母亲正常,他们有一个白化病和正常指的的孩子,则生下一个孩子只患有一种病和患有两种病以及患病的概率分别是() A.1/2、1/8、5/8 B.3/4、1/4、5/8 C.1/4、1/4、1/2 D.1/4,1/8,1/2 解析:据题意分析,先推导出双亲的基因型为TtAa(父),ttAa(母)。然后画棋盘如下:

概率的加法公式

《概率的加法公式》教学设计 1、教学目标: (1)知识与技能目标:通过探究式教学,使学生正确理解“互斥事件”,“彼此互斥”和“对立事件”的概念,理解并掌握当A,B互斥时“事件AUB”的含义,了解两个互斥事件的概率加法公式,并会利用两个对立事件的概率和为1的关系,简化一些概率的运算,同时,会应用所学知识解决一些简单的实际问题。 (2)过程与方法目标:在本节教学中,通过日常生活中的大量实例,鼓励学生动手试验,引导学生学会如何观察、推理、归纳、类比、引申、反思和评价,注重培养学生的数学交流表达的能力,知识间纵横迁移的视角转换能力,提高直觉思维能力。 (3)情感态度与价值观目标:增强学生合作学习交流的机会,感受与他人合作的重要性,同时养成手、口、眼、耳、脑五官并用的良好习惯。 2、教学重点、难点: 本节的教学重点是互斥事件和对立事件的概念以及互斥事件的加法公式,教学难点是 互斥事件与对立事件的区别和联系。 3、教学过程: 新授课之前的准备工作:(1)将全班学生分成若干组,每组8人,原则是自愿组合,老师适当调整,使每个小组尽可能具备讨论问题的氛围基础。(2)精选出9个合适的题目制成思考题单,课前发到各个小组,各小组就自己感兴趣的问题分析思考,以奠定上课时各组之间研究问题的基础。(3)做好相应的多媒体演示课件,根据教学情况之需适时演示。 师:1个盒内放有10个大小相同的乒乓球,其中5个红球,3个绿球,2个黄球,若从中任取一个球,得到红球记为“事件A”,从中任取一个球,得到绿球记为“事件B”,从中任取一个球,得到黄球记为“事件C”,则事件A、B、C之间存在什么关系? (学生暂时还不能解决这个问题。) 师:请同学们首先思考这样一个问题:如果从盒中摸出一个球是红球,则说明事件A 怎样? 生:事件A发生。 师:很好,那么如果从盒中摸出一个球是绿球,即事件B发生,则说明事件A又怎样? 生:事件A没有发生。

概率期望与方差的计算和性质

概率与统计 知识点一:常见的概率类型与概率计算公式;类型一:古典概型; 1、古典概型的基本特点: (1)基本事件数有限多个; (2)每个基本事件之间互斥且等可能;2、概率计算公式: A事件发生的概率 () A P A= 事件所包含的基本事件数 总的基本事件数。 类型二:几何概型; 1、几何概型的基本特点: (1)基本事件数有无限多个; (2)每个基本事件之间互斥且等可能; 2、概率计算公式: A事件发生的概率 () A P A= 构成事件的区域长度(或面积或体积或角度)总的区域长度(或面积或体积或角度); 注意: 究竟是长度比还是面积比还是体积比,关键是看表达该概率问题需要几个变量,如果需要一个变量,则应该是长度比或者角度比;若需要两个变量则应该是面积比;当然如果是必须要三个变量则必为体积比;b5E2RGbCAP (2)如果是用一个变量,到底是角度问题还是长度问题,关键是看谁是变化的主体,哪一个是等可能的;

例如:等腰ABC ?中,角C=23π ,则: (1) 若点M 是线段AB 上一点,求使得AM AC ≤的概率; (2) 若射线CA 绕着点C 向射线CB 旋转,且射线CA 与线段AB 始终相交且交点是M ,求使得AM AC ≤的概率; 解读:第一问中明确M 为AB 上动点,即点M 是在AB 上均匀分布, 所以这一问应该是长度之比,所求概率: 13P = 。 而第二问中真正变化的主体是射线的转动,所以角度的变化是均匀的,所以这一问应该是角度之比的问题,所以所求的概率: 2755 = = 1208P ?;p1EanqFDPw 知识点二:常见的概率计算性质; 类型一:事件间的关系与运算; A+B<和事件):表示A 、B 两个事件至少有一个发生; A B ?<积事件):表示A 、B 两个事件同时发生; A <对立事件):表示事件A 的对立事件; 类型二:复杂事件的概率计算公式; 1、 和事件的概率: ()=()()()P A B P A P B P A B ++-? <1)特别的,若A 与B 为互斥事件,则: ()=()()P A B P A P B ++ <2)对立事件的概率公式: ()1()P A P A =-

正态分布概率公式(部分)

图 6-2 正态分布概率密度函数的曲线 正态曲线可用方程式表示。当n→∞时,可由二项分布概率函数方程推导出正态分布曲线的方程: f(x)= (6.16 ) 式中: x —所研究的变数; f(x) —某一定值 x 出现的函数值,一般称为概率密度函数(由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某一区间的概率,不能计算变量取某一值,即某一点时的概率,所以用“概率密度”一词以与概率相区分),相当于曲线 x 值的纵轴高度; p —常数,等于 3.14 159 ……; e —常数,等于 2.71828 ……;μ为总体参数,是所研究总体的平均数,不同的正态总体具有不同的μ,但对某一定总体的μ是一个常数;δ也为总体参数,表示所研究总体的标准差,不同的正态总体具有不同的δ,但对某一定总体的δ是一个常数。 上述公式表示随机变数 x 的分布叫作正态分布,记作 N( μ , δ2 ) ,读作“具平均数为μ,方差为δ 2 的正态分布”。正态分布概率密度函数的曲线叫正态曲线,形状见图 6-2 。 (二)正态分布的特性 1 、正态分布曲线是以 x= μ为对称轴,向左右两侧作对称分布。因的数值无论正负,只要其绝对值相等,代入公式( 6.16 )所得的 f(x) 是相等的,即在平均数μ的左方或右方,只要距离相等,其 f(x) 就相等,因此其分布是对称的。在正态分布下,算术平均数、中位数、众数三者合一位于μ点上。

2 、正态分布曲线有一个高峰。随机变数 x 的取值范围为( - ∞,+ ∞ ),在( - ∞ ,μ)正态曲线随 x 的增大而上升,;当 x= μ时, f(x) 最大;在(μ,+ ∞ )曲线随 x 的增大而下降。 3 、正态曲线在︱x-μ︱=1 δ处有拐点。曲线向左右两侧伸展,当x →± ∞ 时,f(x) →0 ,但 f(x) 值恒不等于零,曲线是以 x 轴为渐进线,所以曲线全距从 -∞到+ ∞。 4 、正态曲线是由μ和δ两个参数来确定的,其中μ确定曲线在 x 轴上的位置 [ 图 6-3] ,δ确定它的变异程度 [ 图 6-4] 。μ和δ不同时,就会有不同的曲线位置和变异程度。所以,正态分布曲线不只是一条曲线,而是一系列曲线。任何一条特定的正态曲线只有在其μ和δ确定以后才能确定。 5 、正态分布曲线是二项分布的极限曲线,二项分布的总概率等于 1 ,正态分布与 x 轴之间的总概率(所研究总体的全部变量出现的概率总和)或总面积也应该是等于 1 。而变量 x 出现在任两个定值 x1到x2(x1≠x2)之间的概率,等于这两个定值之间的面积占总面积的成数或百分比。正态曲线的任何两个定值间的概率或面积,完全由曲线的μ和δ确定。常用的理论面积或概率如下: 区间μ ± 1 δ面积或概率 =0.6826 μ ± 2 δ =0.9545 μ ± 3 δ=0.9973 μ± 1.960δ=0.9500 μ ±2.576 δ =0.9900

概率公式大全

概率公式整理 1.随机事件及其概率 吸收律:A AB A A A A =?=??Ω =Ω?)(A B A A A A A =??? =??=Ω?)( 反演律:B A B A =?B A AB ?= 2.概率的定义及其计算 若B A ?)()()(A P B P A B P -=-? 对任意两个事件A ,B ,有)()()(AB P B P A B P -=- 加法公式:对任意两个事件A ,B ,有 )()1()() ()()(2 1 1 111 1 n n n n k j i k j i n j i j i n i i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++ - =∑∑∑3.条件概率()= A B P ) () (A P AB P 乘法公式 ()() )0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式 Bayes 公式 4.随机变量及其分布 分布函数计算 5.离散型随机变量 (1)0–1分布 (2)二项分布),(p n B 若P (A )=p *Possion 定理 有 ,2,1,0!)1(lim ==---∞ →k k e p p C k k n n k n k n n λ λ (3)Poisson 分布)(λP 6.连续型随机变量 (1)均匀分布),(b a U (2)指数分布)(λE (3)正态分布N (?,?2) *N (0,1)—标准正态分布 7.多维随机变量及其分布 二维随机变量(X,Y )的分布函数 边缘分布函数与边缘密度函数 8.连续型二维随机变量 (1) 区域G 上的均匀分布,U (G ) (2)二维正态分布 +∞<<-∞+∞<<∞-?-= ?????? ? ???????-+------y x e y x f y y x x ,121),(2 222212121212) ())((2)()1(212 21σμσσμμρσμρρ σπσ9.二维随机变量的条件分布 10.随机变量的数字特征 数学期望 随机变量函数的数学期望 X 的k 阶原点矩)(k X E X 的k 阶绝对原点矩)|(|k X E X 的k 阶中心矩)))(((k X E X E - X 的方差)()))(((2X D X E X E =- X,Y 的k+l 阶混合原点矩)(l k Y X E X,Y 的k+l 阶混合中心矩 X,Y 的二阶混合原点矩)(XY E

概率论与数理统计公式总结

第一章 P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式 概率的乘法公式 全概率公式:从原因计算结果 Bayes 公式:从结果找原因 第二章 二项分布(Bernoulli 分布)——X~B(n,p) 泊松分布——X~P(λ) 概率密度函数 怎样计算 概率 均匀分布X~U(a,b) 指数分布X~Exp (θ) 分布函数 对离散型随机变量 对连续型随机 变量 分布函数与密度函 数的重要关系: 二元随机变量及其边缘分布 分布规律的描述方法 联合密度函数 联合分布函数 联合密度与边缘密度 ) () ()|(B P AB P B A P = )|()()(B A P B P AB P =) |()(A B P A P =∑==n k k k B A P B P A P 1 ) |()()(∑== n k k k i i k B A P B P B A P B P A B P 1 ) |()() |()()|() ,...,1,0()1()(n k p p C k X P k n k k n =-==-,,...) 1,0(! )(== =-k e k k X P k ,λλ1)(=? +∞ ∞ -dx x f )(b X a P ≤≤?=≤≤b a dx x f b X a P )()() 0(1 )(/≥= -x e x f x θ θ ∑≤==≤=x k k X P x X P x F ) ()()(? ∞ -=≤=x dt t f x X P x F )()()(? ∞ -=≤=x dt t f x X P x F )()()(),(y x f ) ,(y x F 0 ),(≥y x f 1),(=?? +∞ ∞ -+∞ ∞ -dxdy y x f 1 ),(0≤≤y x F } ,{),(y Y x X P y x F ≤≤=?+∞ ∞ -=dy y x f x f X ),()() (1 )(b x a a b x f ≤≤-= ) ()('x f x F =

相关文档
最新文档