鲁奇气化炉

合集下载

鲁奇加压气化炉

鲁奇加压气化炉

2、 技术特点
采用碎煤加压式填料方式,即连接在炉体上部的煤锁将原料制成常温碎煤块,然后从进煤口经过气化炉的预热层,将温度提高至300℃左右。从气化剂入口吹进的助燃气体将煤点燃,形成燃烧层。燃烧层上方是反应层,产生的粗煤气从出口排出。炉篦上方的灰渣从底部出口排到下方连接的灰锁设备中,所以气化炉与煤锁﹑灰锁构成了一体的气化装置。
3、 典型代表产品
鲁奇炉的代表炉型即第三代MARK-IV/4型Ф3800mm加压气化炉, 炉体由内外壳组成,其间形成50mm的环形水冷夹套,是一种技术先进﹑结构更为合理的炉型。我公司为河南义马、大唐克旗等制做了多台鲁奇式气化炉。
煤气化技术是清洁利用煤炭资源的重要途径和手段。目前,国内自行开发和引进的煤气化技术种类很多,但总体上可以分为以下三大类:
鲁奇加压气化炉是由联邦德国鲁奇公司于1930年开发的,属第一代煤气化工艺,技术成熟可靠,是目前世界上建厂最多的煤气化技术。鲁奇气化炉是制取城市坑口煤气装置中的心脏设备。它适应的煤种广﹑气化强度大﹑气化效率高﹑粗煤气无需再加压即可远距离输送。
1999年 ,哈锅为河南义马制造了国内首台φ3800鲁奇技术加压气化炉。义马气化炉是国家“九五”重大技术装备科研攻关项目,该气化炉于2001年2月获科学技术部、财政部、国家计委、国家计贸委颁发的“九五”国家重点科技攻关计划优秀科技成果奖,2002年获中国机械工业科学技术三等奖。
一、移动床气化技术
以鲁奇为代表的加压块煤气化技术。鲁奇加压气化技术是由联邦德国鲁奇公司于1930年开发的,属第一代煤气化技术,技术成熟可靠,曾是世界上建厂最多的煤气化技术。鲁奇气化技术是制取城市煤气和合成气装置中的心脏设备。它适应的煤种广﹑气化强度较大﹑气化效率高。鲁奇气化技术的特点为:采用碎煤加压式供料方式,即连接在炉体上部的煤锁将煤块升压,加入气化炉的预热层,然后,下移至反应层,煤在反应层气化,反应热量取自于气化剂与燃烧形成的燃烧层。产生的粗煤气从出口排出。炉篦上方的灰渣从底部出口排到下方连接的灰锁中,所以气化炉与煤锁﹑灰锁构成了一体的气化装置。鲁奇炉的代表炉型即第三代MARK-IV型Ф3800mm加压气化炉, 炉体由内外壳组成,其间形成50mm的环形水冷夹套,用作保护炉的过热和产生蒸汽,结构更为合理的炉型。鲁奇公司为河南义马、大唐克旗等制做了多台鲁奇式气化炉。

鲁奇加压气化炉的运行与技术改造探讨

鲁奇加压气化炉的运行与技术改造探讨

鲁奇加压气化炉的运行与技术改造探讨鲁奇加压气化炉是目前常用的一种炉型,广泛应用于能源行业中,主要用于煤炭和其他可燃性物质的气化转化为合成气。

本文将对鲁奇加压气化炉的运行和技术改造进行探讨。

1. 煤炭粒度要求:对于鲁奇加压气化炉来说,煤炭粒度是一个重要的运行参数。

太细的煤炭会导致气化效率降低,太粗的煤炭会导致气化速度过慢。

在运行过程中应该控制好煤炭的粒度,以保证气化效果。

2. 气化温度控制:气化温度是指鲁奇加压气化炉内部的温度。

太低的温度会导致气化反应不完全,气化产物质量下降;太高的温度会导致过烧现象,降低气化装置的寿命。

对于鲁奇加压气化炉的运行,应该控制好气化温度,以保证气化效果和气化装置的安全运行。

3. 炉内烟气循环与净化:鲁奇加压气化炉炉内烟气循环是指气化过程中烟气的循环和净化处理。

通过烟气循环,可以提高气体产率和气化效率;通过净化处理,可以降低废气中的有害物质含量,减少环境污染。

在运行过程中需要关注炉内烟气循环和净化措施,以保证气化效果和环境安全。

1. 炉内温度控制系统改造:为了更好地控制气化温度,可以进行炉内温度控制系统的改造。

可以引入先进的自动控制技术,如PID控制算法和智能控制系统,实现对气化温度的精确控制,提高气化效率和气化装置的安全性。

2. 煤粉喷射系统改造:煤粉喷射系统是鲁奇加压气化炉中的关键部件之一,对气化效果有着重要影响。

通过改进煤粉喷射系统的设计,如增加喷射口数量和改善喷射口结构,可以提高煤粉的喷射均匀性和混合效果,增加气化效率。

3. 烟气处理系统改造:为了更好地净化废气,可以进行鲁奇加压气化炉烟气处理系统的改造。

可以引入先进的废气净化技术,如脱硫、脱硝和除尘等技术,降低废气中有害物质的排放量,减少环境污染。

4. 安全监控系统改造:为了提高鲁奇加压气化炉的安全性,可以进行安全监控系统的改造。

可以引入先进的监控设备和监控算法,实现对气化炉运行情况的实时监测和预警,及时发现并处理故障,确保气化装置的安全运行。

鲁奇加压气化炉的运行与技术改造探讨

鲁奇加压气化炉的运行与技术改造探讨

鲁奇加压气化炉的运行与技术改造探讨鲁奇加压气化炉是一种用于生产工业原料和能源的设备,它可以将固体燃料,如煤、木材等,通过加压气化的方式转化为可燃气体,从而实现能源的高效利用。

随着能源需求的不断增加和环境保护意识的提高,对加压气化炉的运行和技术改造的探讨变得愈发重要。

本文将从加压气化炉的基本原理、运行情况以及技术改造方面展开讨论。

一、加压气化炉的基本原理鲁奇加压气化炉是一种通过给固体燃料施加高压,使其在高温下与氧气发生气化反应的设备。

其基本原理是将固体燃料加热至一定温度后,通过给予一定的高压使其与氧气发生气化反应,生成可燃气体和灰渣。

这种气化反应产生的可燃气体可以作为燃料供给燃烧设备,从而实现能源的利用。

二、加压气化炉的运行情况1. 原料选择:加压气化炉可以使用各种固体燃料,包括煤、木材、秸秆等。

在实际运行中,不同的原料会对气化反应的速度和产物的成分产生影响,因此在选择原料时需要进行综合考虑。

2. 气化反应:气化反应是加压气化炉的核心部分,其速度和效果对设备的运行效率和产物的质量有重要影响。

在实际操作中,需要控制气化反应的温度、压力和气体流速等参数,以保证气化反应的稳定和高效进行。

3. 清灰处理:加压气化炉在运行过程中会产生大量的灰渣,这些灰渣会对设备的正常运行产生影响。

需要定期进行清灰处理,确保设备的正常运行。

4. 安全管理:加压气化炉是一种高温高压设备,其运行安全至关重要。

在运行中需要加强对设备的监控和维护,确保设备的安全运行。

三、加压气化炉的技术改造随着科技的进步和能源需求的变化,对加压气化炉的技术改造变得愈发重要。

以下是一些可能的技术改造方向:1. 节能改造:通过提高设备的热效率和气化反应的效率,减少能源的消耗,从而实现节能降耗。

2. 环保改造:通过改进气化反应的参数控制和气体净化系统,降低气化过程中产生的有害气体排放,实现环保目标。

3. 自动化改造:通过引入自动控制系统,提高设备的稳定性和可靠性,减少人为操作的误差,提高生产效率。

鲁奇加压气化炉

鲁奇加压气化炉

鲁奇加压气化炉一、Lurgi(鲁奇)加压气化炉鲁奇碎煤加压气化技术是20世纪30年代由联邦德国鲁奇公司开发的,属第一代煤气化工艺,技术成熟可靠,是目前世界上建厂数量最多的煤气化技术。

正在运行中的气化炉达数百台,主要用于生产城市煤气和合成原料气。

德国Lurgi加压气化炉压力 2.5~4.0MPa,气化反应温度800~900℃,固态排渣,一小块煤(对入炉煤粒度要求是6mm以上,其中13mm以上占87%,6~13mm占13%)原料、蒸汽-氧连续送风制取中热值煤气。

气化床层自上而下分干燥、干馏、还原、氧化和灰渣等层,产品煤气经热回收和除油,含有约10%~12%的甲烷和不饱和烃,适宜作城市煤气。

粗煤气经烃类分离和蒸汽转化后可作合成气,但流程长,技术经济指标差,对低温焦油及含酚废水的处理难度较大,环保问题不易解决。

鲁奇炉的技术特点有以下几个方面:①鲁奇碎煤气化技术系固定床气化,固态排渣,适宜弱粘结性碎煤(5~50mm)。

②生产能力大。

自工业化以来,单炉生产能力持续增长。

例如,1954年在南非沙索尔建立的10台内径为3.72m的气化炉,其产气能力为1.53×104m3/(h·台);而1966年建设的3台,产气能力为2.36×104m3/(h·台);到1977年所建的13台气化炉,平均产气能力则达2.8×104m3/(h·台)。

这种持续增长,主要是靠操作的不断改进。

③气化炉结构复杂,炉内设有破黏和煤分布器、炉篦等转动设备,制造和维修费用大。

④入炉煤必须是块煤,原料来源受一定限制。

⑤出炉煤气中含焦油、酚等,污水处理和煤气净化工艺复杂、流程长、设备多,炉渣含碳5%左右。

至今世界上共建有107台炉子,通过扩大炉径和增设破黏装置后,提高了气化强度和煤种适应性。

煤种涉及到次烟煤、褐煤、贫煤,用途为F-T合成、天然气、城市煤气、合成氨,气化能力8000~100000m3/h,气化内径最大 5.0m,装置总规模1100~11600t/d。

鲁奇炉工作原理

鲁奇炉工作原理

鲁奇炉(Lurgi Gasifier)是一种用于煤炭气化的加压移动床反应器,它的主要工作原理可以概括如下:1.物料输入与预处理:o煤炭首先经过破碎和干燥处理,然后通过煤锁(Coal Lock)按批次定量送入炉体内部。

煤锁通过充气加压与炉内压力保持一致,防止气体泄漏。

2.炉体结构与过程分区:o鲁奇炉为立式圆筒形结构,炉体内壁有水夹套,可利用高温煤气产生的热量生产蒸汽。

煤炭自上而下通过炉膛,依次经过干燥区、干馏区、气化区、部分氧化区和燃烧区。

3.气化过程:o在炉内的不同高度,煤炭与气化剂(通常包括氧气、水蒸气以及其他可能的还原气体)逆流接触。

o干燥区去除煤炭中的水分;干馏区发生热解作用,释放挥发分;气化区煤炭在一定的温度和压力下与气化剂反应生成合成气(主要成分为氢气H2、一氧化碳CO以及其他烃类和惰性气体)。

o部分氧化区煤炭与氧气进一步反应,提供热量维持气化反应所需的高温条件;燃烧区则是剩余未完全反应的煤炭和气体被充分燃烧。

4.排渣过程:o固态排渣鲁奇炉中,煤灰在气化完成后形成固态灰渣,通过炉底的炉箅排出到灰斗。

o液态排渣鲁奇炉在下部增设了喷嘴,高速喷入氧气和蒸汽,使煤灰在高温下熔融形成液态渣,通过调整急冷室与炉缸的压力差,控制液态渣以适宜的速度排出,避免排渣口堵塞。

5.能量回收与环境保护:o鲁奇炉的设计考虑了能源的高效利用和环保要求,炉壁夹套产生的蒸汽可用于发电或者作为工艺蒸汽循环使用。

o产生的煤气经过冷却、净化处理,分离出的产品包括清洁煤气、硫磺等,同时对废水和废气进行处理,以达到环保排放标准。

总的来说,鲁奇炉通过一系列复杂的化学反应将固体煤炭转化为便于运输和使用的合成气,实现了煤炭资源的有效转化和利用,同时也是洁净煤技术的重要组成部分,在煤化工产业中具有重要地位。

鲁奇式气化炉

鲁奇式气化炉

鲁奇式气化炉
3.0MPa气化炉
煤槽——流槽——煤锁————
煤槽和流槽为常压;煤锁为2个,是上下阀,采用亚纲控制。

从煤锁加煤料,受压3MPa;从流槽加煤料,为常压。

整体组成分为3部分:煤槽、炉槽、废热锅炉
加煤料一次操作10-15min。

BGL碎煤熔渣气化炉
根据鲁奇式气化炉改进,气化温度变高,在外又加一层耐火材料,可达到1600~1800℃,气化区温度1300℃。

其荒煤气中水蒸气含量很少,蒸汽含量为鲁奇式的五分之一。

煤槽——过渡仓——炉体(无炉壁)——熔渣池(保持其稳定性)——出渣口(要小,保持通畅)——急冷室(含冷水,废渣变成玻璃状碎渣)——渣锁
炉体:喷口:斜喷路(朝下,16—19°)
托渣板:独立的
BGL碎煤熔渣气化炉技术是在鲁奇式固定床加压气化炉技术基础上,由英国燃气公司开发出来的新型煤气化技术。

该产品由中国化学工业第二设计院设计,太原重工煤化工设备分公司生产制造。

BGL气化炉包括炉体、煤锁、渣锁、中间短节、过
渡仓、激冷室六个部件,其炉体是核心设备,设备总重184.652吨,属我国第一次生产制造。

鲁奇加压气化炉

鲁奇加压气化炉

鲁奇加压气化炉1、第三代鲁奇加压气化炉第三代加压气化炉为例,该炉子的内径为3.8m,最大外径为4.128m,高为12.5m,工艺操作压力为3MPa。

主要部分有炉体、夹套、布煤器和搅拌器、炉算、灰锁和煤锁等,现分述如下。

①炉体加压鲁奇炉的炉体由双层钢板制成,外壁按3.6MPa的压力设计,内壁仅能承受比气化炉内高O.25MPa的压力。

两个简体(水夹套)之间装软化水借以吸收炉膛所散失的一些热量产生工艺蒸汽,蒸汽经过液滴分离器分离液滴后送入气化剂系统,配成蒸汽/氧气混合物喷入气化炉内一水夹套内软化水的压力3MPa,这样筒内外两两侧的压力相同,因而受力小。

夹套内的给水由夹套水循环泵进行强制循环。

同时夹套给水流过煤分布器和搅拌器内的通道,以防止这些部件超温损坏。

第三代鲁奇炉取消了早期鲁奇炉的内衬砖.燃料直接与水夹套内壁相接触,避免了在较高温度下衬砖壁挂渣现象,造成煤层下移困难等异常现象,另一方面,取消衬砖后,炉膛截面可以增大5%~10%左右,生产能力相应提高。

②布煤器和搅拌器如果气化黏结性较强的煤,可以加设搅拌器。

布煤器和搅拌嚣安装在同一转轴上,速度为15r/h左右。

从煤箱降下的煤通过转动布煤器上的两个扇形孔,均匀下落在炉内,平均每转可以在炉内加煤150~200mm厚。

搅拌器是一个壳体结构,由锥体和双桨叶组成,壳体内通软化水循环冷却。

搅拌器深入到煤层里的位置与煤的结焦性有关,煤一般在400~500℃结焦,桨叶要深入煤层约l.3m。

③炉算炉箅分四层,相互叠合固定在底座上,顶盖呈锥体。

材质选用耐热的铬钢铸造,并在其表面加焊灰筋。

炉箅上安装刮刀,刮刀的数量取决于下灰量。

灰分低,装1~2把;对于灰分较高的煤可装3~4把。

炉箅各层上开有气孔,气化剂由此进入煤层中均匀分布。

各层开孔数不太一样,例如某厂使用的炉算开孔数从上至下为:第一层6个、第二层16个、第三层16个、第四层28个。

炉箅的转动采用液压传动装置,也有用电动机传动机构来驱动,液压传动机构有调速方便、结构简单、工作平稳等优点。

鲁奇气化炉工艺流程

鲁奇气化炉工艺流程

鲁奇气化炉工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!《鲁奇气化炉工艺流程》一、气化炉介绍气化炉是煤化工的关键设备之一,用于将煤炭转化为合成气。

鲁奇气化炉

鲁奇气化炉

鲁奇气化炉鲁奇加压气化炉1、第三代鲁奇加压气化炉第三代加压气化炉为例,该炉子的内径为3.8m,最大外径为4.128m,高为12.5m,工艺操作压力为3MPa。

主要部分有炉体、夹套、布煤器和搅拌器、炉算、灰锁和煤锁等,现分述如下。

①炉体加压鲁奇炉的炉体由双层钢板制成,外壁按3.6MPa的压力设计,内壁仅能承受比气化炉内高O.25MPa的压力。

两个简体(水夹套)之间装软化水借以吸收炉膛所散失的一些热量产生工艺蒸汽,蒸汽经过液滴分离器分离液滴后送入气化剂系统,配成蒸汽/氧气混合物喷入气化炉内一水夹套内软化水的压力3MPa,这样筒内外两两侧的压力相同,因而受力小。

夹套内的给水由夹套水循环泵进行强制循环。

同时夹套给水流过煤分布器和搅拌器内的通道,以防止这些部件超温损坏。

第三代鲁奇炉取消了早期鲁奇炉的内衬砖.燃料直接与水夹套内壁相接触,避免了在较高温度下衬砖壁挂渣现象,造成煤层下移困难等异常现象,另一方面,取消衬砖后,炉膛截面可以增大5%~10%左右,生产能力相应提高。

②布煤器和搅拌器如果气化黏结性较强的煤,可以加设搅拌器。

布煤器和搅拌嚣安装在同一转轴上,速度为15r/h左右。

从煤箱降下的煤通过转动布煤器上的两个扇形孔,均匀下落在炉内,平均每转可以在炉内加煤150~200mm厚。

搅拌器是一个壳体结构,由锥体和双桨叶组成,壳体内通软化水循环冷却。

搅拌器深入到煤层里的位置与煤的结焦性有关,煤一般在400~500℃结焦,桨叶要深入煤层约l.3m。

③炉算炉箅分四层,相互叠合固定在底座上,顶盖呈锥体。

材质选用耐热的铬钢铸造,并在其表面加焊灰筋。

炉箅上安装刮刀,刮刀的数量取决于下灰量。

灰分低,装1~2把;对于灰分较高的煤可装3~4把。

炉箅各层上开有气孔,气化剂由此进入煤层中均匀分布。

各层开孔数不太一样,例如某厂使用的炉算开孔数从上至下为:第一层6个、第二层16个、第三层16个、第四层28个。

炉箅的转动采用液压传动装置,也有用电动机传动机构来驱动,液压传动机构有调速方便、结构简单、工作平稳等优点。

鲁奇气化炉设备的构造

鲁奇气化炉设备的构造
安装好的刮刀与气化炉内壁波形段的间隙为30~60mm,间隙 过小,受热膨胀后将会出现卡塞现象。刮刀的数量是依据煤的灰 分大小而决定。一般采用两把刮刀,刮刀是用耳块及销钉与炉篦 下刮刀座连接的,其厚度为30~40mm,选用材料为:GX25CrNiSi2014
支撑炉篦的是圆盘的止推盘(止推轴承),其接触面为平板。 下止推盘与底板采用两个键固定,上止推盘 与大齿轮连接采用 键和螺栓固定。止推盘接触面高温极压润滑脂(铁霸红涂抹)。 止推轴承选用材料为铸钢Gx165CrMoV12,经机械加工后淬火处 理,其硬度达Rc=50~70.
15~20m/s.
气化炉生产的粗煤气由煤气出 口管导入喷冷器,由煤气水处 理装置来的净煤气水入口进入 喷冷器,煤气水通过文丘里洗 涤器洗涤使温度降低,冷凝气 态。
上部水平是带有水夹套的管 段,其水夹套与气化炉夹套相 通.材质为15Mo3,水平管内设 有往复运动的圆盘形刮刀,其
用于刮掉煤气出口管内积聚的
炉篦的总高度为1200mm,气化剂在各层炉篦通道进入炉内的
气量分布大致为:I——10%,II——20%,III——30%,IV—— 40%。炉篦共有五层,为便于从炉顶上孔放入炉内进行安装,除 一、二层是整体一块外,其它层均是有几块组成:第三层2块, 第四层4块,第五层4块。各块之间采用12.9级螺栓连接。各层炉 篦均固定在中心托板上,采用插入式咬合连接,中心托板上有档 块带动各层炉篦转动。
气化炉内外壳体生产期间 温度不同,热膨胀量不同,为 降低温度差应力,在内套下部 设计制造成波形膨胀节,用于 吸收热膨胀量。
正常生产期间,波形膨胀 节不但可吸收大约25~35mm
波形膨胀区
的内壳热膨胀量,而且在此还可以起到支撑灰渣的作用,这样可 使灰渣在刮刀的作用下均匀地排到灰锁中去。

鲁奇炉的介绍

鲁奇炉的介绍

Mark-IV型气化炉宝塔炉篦 型气化炉宝塔炉篦
容器,直径为φ3000mm,总 高3800mm,设计温度为200℃, 材质为st37.2。 灰斗与灰锁是靠一个由填 料函密封的伸缩节(套筒)联 在一起的,次伸缩节便于拆卸, 给检修灰锁下阀提供了方便, 另其还可吸收气化炉向下的热 膨胀量。 3、煤锁 煤锁是用于向气化炉内间歇加 煤的煤锁容器,其结构如右图 所示。 煤锁上、下为园锥型封头, 中间为园筒形,上部半锥角为 450,下部半角为400,中间圆 筒部分直径为φ3000mm,
煤锁圆筒阀结构图
打开时,圆筒与上阀头一同落入煤锁,当煤加满时,圆筒以外的 煤锁空间流不到煤,当上阀提起关闭时,圆筒内的煤流入煤锁。 这样这要溜煤槽在一个加煤循环时开一次,煤锁就不会加煤过满, 从而避免了仪表失误造成的煤锁过满而停炉。 4、灰锁 灰锁是用来将炉篦刮下的灰间歇排出炉外的灰容器,其上部 是气化炉体,下部与灰斗相连,其外径为φ2200mm,总高 4000mm,容积为10,1M3,有效容积6.4M3。灰锁结构如下图所 其中间为圆柱形筒体, 示。其中间为圆柱形筒体,上部为凸形封 下部为锥形封头,锥形半锥角为40 头,下部为锥形封头,锥形半锥角为 0, 侧向有接管与膨胀冷凝器相通。 侧向有接管与膨胀冷凝器相通。其设计压 力为3.6MPa,设计温度为 力为 ,设计温度为470℃,操作压 ℃ 力为3.0MPa,材质选用 力为 ,材质选用15Mo3。由于灰锁 。 内壁接触物料为灰渣,为延长其使用寿命, 内壁接触物料为灰渣,为延长其使用寿命, 在灰锁内增置有耐磨护板。 在灰锁内增置有耐磨护板。 (1)灰锁上阀 ) 灰锁上阀结构及材质如同煤锁下阀。 灰锁上阀结构及材质如同煤锁下阀。
鲁奇炉设备的构造
Mark-IV型气化炉 型气化炉

鲁奇_型与PKM气化炉简介

鲁奇_型与PKM气化炉简介
! 10 !
煤气与热力
1998 年 1 月
鲁奇- 型与 PKM 气化炉简介
樊宏原 王光彪 ( 山西化肥厂, 潞城 047507)
随着煤加压气化工业的发展, 我国在使用鲁奇 炉方面已由原来的一代炉进展到三代炉, 形成了多 种炉型共存的局面。目前已建成投产的第三代鲁奇 加压气化炉有山西化肥厂四台鲁奇- 型炉与哈尔 滨煤气厂五台 PKM 型炉, 其气化原理虽然 都是碎 煤移动床加压气化, 但在选用煤种、炉体结构、流程 布置等方面有不少差异。
表 2 两厂的主要煤气成份



设计值 实际值 设计值
CO2/ V % CO/ V%
26. 59 23. 46
25. 90 25. 10
27. 4 20. 0
H2/ V%
39. 45
39. 42
41. 5
CH 4/ V %
8. 00
8. 61
9. 0
气 实际值 29. 84 21. 60 37. 73
两厂的气化炉出口均设有煤气 洗涤冷却器, 不 同之处是哈气该设备较山化厂的大得多, 洗涤后的 水从洗涤器底部排出, 气体送入废热锅炉, 而山化则 不然, 洗涤后的水与气体混合进入废热锅炉。
进洗涤冷却器, 在此喷淋大量的洗涤水使煤气达到 饱和状态。煤 气进入废 热锅炉进 一步冷却 回收热 量, 约 180 的粗煤气送出气化装置。不同的是:
哈气厂气化炉排出的灰渣松散, 无琉璃态渣, 强 度较低; 炉篦结构很简单, 无碎渣环, 设计五把灰刮 刀( 实际只装四把) , 转动扭矩小; 布气环与炉篦为一 体, 布气孔径为 30mm, 共三层, 孔数分别为: 14、36、 96( 布气按 9. 59% 、24. 66% 、65. 75% ) 。

鲁奇炉介绍及附属设备简介

鲁奇炉介绍及附属设备简介

气流床:粉煤与气化剂( O2 、水蒸 气)一起从喷嘴高速吹入炉内,快速 气化。特点是不副产焦油,生成气中 甲烷含量少。主要以德士古气化炉和 壳牌气化炉为代表;
二、3种先进的煤气化工艺
我国引进并被广泛采用的三种先进煤气化
工艺分别是:壳牌气化炉、德士古气化炉、鲁 奇气化炉。
壳牌气化炉(结构见图 2 )属于气流床气
气化炉内外壳生产期间温度不同,热膨胀量不同, 为降低温度差应力,在内套下部设计制造了波形膨胀节 如图13所示,用于吸收热膨胀量。正常生产期间,波形 膨胀节不但可吸收大约25-35mm的内壳热膨胀量,而且在 此还可以起到支撑灰渣的作用,这样可使灰渣在刮刀的 作用下均匀地排到灰锁中去。
2. 鲁奇第二代加压气化炉
在综合了第一 ④取消了衬砖, ①在炉内部设臵了传动 代气化炉的运行情 提高了气化炉的 的搅拌装臵和布煤器, ③入炉气 况后,鲁奇公司于 生产能力,也避 搅拌装臵有两个搅拌桨 免了由于在内衬 20化剂管与 世纪50年代推出 叶,其高度在炉内的干 ⑤灰锁设臵在炉底 传动轴分 上挂渣给生产操 了 φ2.6m,中间除 馏层,随着叶片的转动, 正中位臵,气化后 开,单独 作带来的不利影 灰的第二代气化炉, 在干馏层的煤焦受到了 产生的灰渣从炉篦 固定在炉 响; ②炉篦由单层平型改为 底侧壁上; 如图 8所示。 搅动,破坏了煤的黏结, 的周边环隙落下落 多层塔节型结构,气化
涡轮蜗杆 减速器
第一代鲁奇气化炉的结构改进
第一代鲁奇加压气化炉由 于以上几个方面的影响,单炉 生产量一般为4500-5000m3/h。 许多厂家对第一代鲁奇炉进行 了改进,主要有: ⑴ 取消炉内的耐火衬,扩大炉 内空间,增加了气化炉横截面 积,从而使单炉产气量增加; ⑵ 将平盘型风帽炉篦改为宝塔 型炉篦(如图7所示),改善炉 篦的布气效果,使炉内反应层 较为均匀,使气化强度提高。 通过改进,第一代气化炉 的 生产能力较改进前提高了 50﹪以上。

固定床加压气化

固定床加压气化
a、提高压力,有利于甲烷的生成,可提高煤气的热值 b、提高气化反应温度,有利于碳与二氧化碳生成一氧化碳;也有 利于水煤气反应,提高煤气中有效成分,但不利于甲烷生成。
自热式反应炉主要通过碳与氧燃烧生成二氧化碳反应放出 大量的热,热量用途: •气化层生成煤气的各还原反应所需的热量
•煤的干馏与干燥所需热量,气化剂的预热
C、煤中灰分及灰熔点对气化过程影响 •灰分含量对气化反应影响不大。鲁奇炉可气化灰 分达50%的煤 •灰熔点越高越好 但灰分增加,热损失高, 原因: 各项消耗指标增加,一般 灰熔点低,氧化层形成灰结渣,导致床层透气性 加压气化用煤灰分在19%以 差,气化剂分布不均。 下较经济。 灰结渣包裹未反应的碳,灰渣中含碳量增加,燃 料损失增加。 为维持氧化层反应温度低于灰熔点,增加了水蒸 气的消耗。 d、其它因素 煤的黏结性:越弱越好 煤的机械强度:加压气化要求强度高
•生成煤气与排出灰渣带出的显热 •煤气带出物显热及气化炉设备散失的热量
2、鲁奇加压气化炉操作工艺条件
净煤气热值 随压力提高 而增加 净煤气除去二氧化碳 等物质,同时气化压 力提高,甲烷含量增 加,气体总体积减小。
随着压力增加, 粗煤气中甲烷 和二氧化碳含 量增加,氢气 和一氧化碳含 氧气主要用来提供甲烷化所需氢气由 量减少 热量,压力增加甲水蒸气分解产生, 烷含量增加,氧耗但加压情况水蒸气 分解率降低 量减少。
30mm
这种内、外筒结构的 气化炉内外壳体生产期间温度 目的在于尽管炉内各 不同,热膨胀量不同,为降低 层的温度不一,但内 温度差应力,在内套下部设计 筒体由于有锅炉水的 冷却,基本保持在锅 制造成波形膨胀节,用于吸收 热膨胀量。 炉水在该操作压力下 的蒸发温度,不会因 过热而损坏。(b)外置汽包 (a)内置汽包

鲁奇加压气化炉和BGL加压化炉的比较

鲁奇加压气化炉和BGL加压化炉的比较

鲁奇加压气化炉和BGL加压化炉的比较鲁奇炉和BGL炉同属于移动床碎煤煤气化炉;煤在炉内均经过干燥、干馏、还原、氧化四个阶段;气化产物均为:粗煤气、煤焦油、中油等,煤气水中含有较多的酚、氨类物质;加煤系统、汽化炉本体、水夹套等结构基本相同。

现将其不同点比较如下:一、结构比较鲁奇炉和BGL炉主体结构基本相同,均由煤斗、煤锁、炉体、夹套、排灰系统等构成。

结构的主要不同点在于:鲁奇炉的蒸汽、氧气进气位置在炉箅子下部的布气块和炉箅子共同构成的四个半径依次缩小的布气上,而BGL炉则是通过四个对置的喷嘴进气;BGL炉在进气喷嘴附近可以加装粉煤进料喷嘴,可以直接喷入占总进料量30%左右的粉煤,而鲁奇炉无此结构,基本上不能气化粉煤;BGL炉的排灰系统为液态排渣,排灰系统由排渣口、激冷室、灰锁构成,在拍渣口附近有空气进口,以保证液态排渣,鲁奇炉的排灰系统由炉箅子和灰锁构成。

鲁奇炉结构图如下:BGL炉结构如下图:二、气化温度主要的不同点在于:气化温度不同,BGL炉气化温度高,一般1200-14000C(鲁奇900-1200 0C);气化效率是鲁奇炉的2-4倍;液态排渣(鲁奇为固态排渣);蒸汽分解率是鲁奇炉的3倍,废水产量约为鲁奇炉的25%。

具体比较如下:鲁奇炉要求气化温度低于煤的灰熔点,不能使灰渣熔化,否则会产生大块的灰渣堵塞排灰通道,因此、气化温度多选择在1000度左右;BGL汽化炉要求气化温度高于煤的灰熔点,以便使灰渣以液态排出,因此,气化温度多选择在1300度左右。

三、处理能力由于BGL汽化炉提高了气化温度,所以反应速度大大加快,使得单炉处理能力大大提高,一般情况是鲁奇炉的2-3倍左右,如:同样为3.8米内径的汽化炉,鲁奇炉日投煤量约900吨左右,BGL炉可达到2000吨以上。

四、蒸汽、氧气消耗BGL汽化炉蒸汽分解率高,蒸汽耗量约为鲁奇炉的30%,氧气耗量略高于鲁奇炉。

五、废水产量移动床气化工艺因经过了煤的干燥、干馏阶段,因此都要产生含油、酚、氨等物质,这些物质随未分解的水蒸气进入粗煤气,冷却分离后产生含油废水,BGL工艺由于提高了气化温度,提高了蒸汽利用率,所以废水产量大大降低,仅为鲁奇炉的25%左右。

鲁奇加压气化炉的运行与技术改造探讨

鲁奇加压气化炉的运行与技术改造探讨

鲁奇加压气化炉的运行与技术改造探讨鲁奇加压气化炉是一种常用于工业生产中的关键设备,其主要作用是将固体燃料在高温下进行氧化反应,产生可燃性气体,用于提供热能或者直接用于生产过程。

随着工业技术的发展,鲁奇加压气化炉也在不断进行技术改造,以提高其运行效率和减少对环境的影响。

本文将从鲁奇加压气化炉的基本运行原理、存在的问题以及技术改造等方面展开探讨。

一、鲁奇加压气化炉的基本运行原理鲁奇加压气化炉是一种通过高温和高压条件下使固体燃料发生气化反应的设备。

其基本运行原理是利用气化剂(通常是空气或者氧气)和高温条件使固体燃料(比如煤、木材等)发生气化反应,产生一氧化碳、氢气等可燃性气体。

这些气体可以直接用于提供热能,也可以作为化工生产中的原料。

鲁奇加压气化炉一般由气化炉本体、气体净化系统、残渣处理系统等部分组成。

二、鲁奇加压气化炉存在的问题虽然鲁奇加压气化炉在工业生产中起到重要作用,但是在实际运行中也存在一些问题。

首先是能源利用率不高,由于气化反应过程中热能的损失比较大,导致实际能源利用率偏低。

其次是气体净化系统效率低下,气化过程中会产生大量的粉尘、灰渣、焦油等副产品,如果不能有效地处理会对环境和健康造成影响。

鲁奇加压气化炉还存在操作复杂、易产生安全隐患等问题,这都需要进行技术改造。

三、鲁奇加压气化炉的技术改造为了解决鲁奇加压气化炉存在的问题,需要进行一系列的技术改造。

首先是提高能源利用率,可以采用先进的燃烧技术,比如采用预热空气、燃料气化等方式提高燃料的燃烧效率。

其次是改进气体净化系统,可以采用先进的净化设备,比如静电除尘器、布袋除尘器等,对气体中的固体颗粒和有害气体进行有效处理。

对于鲁奇加压气化炉的操作系统也可以进行智能化改造,使用先进的控制系统和传感器,提高设备的自动化程度和安全性。

四、鲁奇加压气化炉技术改造的意义鲁奇加压气化炉技术改造不仅可以提高设备运行效率,减少能源消耗,减轻对环境的影响,也可以提高设备的安全性和稳定性,降低操作成本,提高生产效率,这对于企业的可持续发展具有重要意义。

鲁奇炉介绍及附属设备简介

鲁奇炉介绍及附属设备简介

2、煤气化制原料气方法分类 煤气化制原料气方法多种多样,按操作压力煤气化可分
为常压气化和加压气化。在煤加压气化工艺中已经成熟并 工业化的便是壳牌气化炉、德士古煤浆制气和鲁奇加压气 化。
按固体和气体接触方式分为固定床、流化床、气化床和 熔融床。
固定床、流化床、气化床和熔融床简介
固定床:固定床气化炉是最早开 发出的气化炉,炉子下部为炉排, 用以支撑上面的煤层。通常,煤 从气化炉的顶部加入,而气化剂 (氧或空气和水蒸气)则从炉子 的下部供入,因而气固间是逆向 流动的。主要有鲁奇气化炉和 BGL气化炉两种 ;
涡轮蜗杆 减速器
第一代鲁奇气化炉的结构改进
第一代鲁奇加压气化炉由 于以上几个方面的影响,单炉 生产量一般为4500-5000m3/h。 许多厂家对第一代鲁奇炉进行 了改进,主要有:
⑴ 取消炉内的耐火衬,扩大炉 内空间,增加了气化炉横截面 积,从而使单炉产气量增加;
⑵ 将平盘型风帽炉篦改为宝塔 型炉篦(如图7所示),改善炉 篦的布气效果,使炉内反应层 较为均匀,使气化强度提高。
鲁奇气化炉(结构见左图)属于固 定床气化炉的一种。鲁奇气化炉是1939 年由德国鲁奇公司设计,经不断的研究 改进已推出了第五代炉型,目前在各种 气化炉中实绩最好。我国在20世纪60年 代就引进了捷克制造的早期鲁奇炉并在 云南投产。1987年建成投产的天脊煤化 工集团公司从德国引进的4台直径 3800mm的Ⅳ型鲁奇炉,先后采用阳泉 煤、晋城煤和西山官地煤等煤种进行试 验,经过10多年的探索,基本掌握了鲁 奇炉气化贫瘦煤生产合成氨的技术,国 内鲁奇炉在用厂家有云南解放军化肥厂、 哈尔滨煤机厂和河南义马煤气厂等。
通过改进,第一代气化炉 的 生产能力较改进前提高了 50﹪以上。
2. 鲁奇第二代加压气化炉

鲁奇加压气化炉的开停车操作课件

鲁奇加压气化炉的开停车操作课件
高温、高压反应条件:提 供高效的煤转化率。
燃料适应性强:可处理不 同种类的煤炭。
环保性能好:废气处理系 统可以有效降低污染物排 放。
02
开车前的准备
检查气化炉的各部件
01 炉体
检查炉体是否有裂缝、变形或 严重磨损,确保炉体完整无损 。
02 燃烧器
检查燃烧器是否正常,包括燃 烧器头、点火器和燃料管路等 ,确保燃烧器工作正常。
对培训效果进行评估和反馈, 不断优化培训计划和内容。
谢谢您的聆听
THANKS
停车后的检查与维护
检查气化炉内部状况
停车后应检查气化炉内部是否有异常 情况,如裂缝、磨损等。
清理和维护
对气化炉进行清理和维护,确保其保 持良好的工作状态。
05
常见问题及处理方法
气化炉运行不稳定
总结词
原料质量不稳定
气化炉运行不稳定可能是由于多种原因引 起的,如原料质量不佳、气化炉操作参数 不当等。
反应条件不当
检查气化炉内的反应条件,如温度、压力 等是否合适。如果条件不当,应调整条件 至合适范围。
气化炉温度异常升高
总结词
气化炉温度异常升高可能是由 于多种原因引起的,如气化剂 流量不足、原料质量不佳等。
气化剂流量不足
检查气化剂流量是否足够,如 果流量不足,应增加气化剂流 量。
原料质量不佳
检查原料的化学成分和粒度是 否符合要求,如果原料质量不 佳,应更换原料或调整原料预 处理工艺。
废热回收系统
用于回收燃烧产生的热量,转化为蒸汽或 热水。
气化剂入口
将气化剂(通常是空气或氧气)送入炉内 。
鲁奇加压气化炉的工作原理
燃料与气化剂在高温、高压条件下进行燃 烧反应,释放出化学能。 燃烧产生的高温气体与原料煤反应,将其 转化为气体产品。

鲁奇气化炉运行与维护

鲁奇气化炉运行与维护

三、鲁奇煤气化主要操作条件及影响因素
(2)压力对煤气产率的影响
随着气化压力的升 高,煤气组成中,大分 子物质CH4和CO2比例 增多,小分子物质CO 和H2减少,从而使得煤 气总体积减少,煤气的 产率降低。
三、鲁奇煤气化主要操作条件及影响因素 (3)压力对氧气和水蒸汽消耗量的影响 随着压力升高,甲烷化反应增多,放出的热量增 多,供给整个气化炉热量需求,从而可降低碳燃烧反 应的热量供给,使得氧气的消耗量降低。 随着压力升高,甲烷化反应增多,甲烷中的氢主 要来自于气化剂水蒸汽,因而,水蒸汽的绝对消耗量 增多,但加压却抑制了反应 向正反应方向进行,从而 降低了水蒸汽的绝对分解率。 (4)压力对气化炉生产能力的影响 随着压力的升高,气体的扩散速度和反应速率均 加快,使得气化炉的生产能力提高,通常,加压气化 的生产能力是常压气化生产能力的 倍。

四、煤种及煤的性质对鲁奇气化的影响
5.煤的黏结性对气化过程的影响
煤的黏结性是指煤在高温干馏时的粘结性能。黏结 性煤在气化炉内进入干馏层时会产生胶体,这种胶体黏 度较高,它将较小的煤块黏结成大块,这使得干馏层的 透气性变差,从而导致床层气流分布不均和阻碍料层的 下移,使气化过程恶化。因此,鲁奇气化炉不适合气化 黏结性较强的煤。
四、煤种及煤的性质对鲁奇气化的影响 2.水分对加压气化的影响 鲁奇加压气化中,煤中的水 分在干燥层中被蒸发出来成为水 蒸汽进入气化炉顶部空间。因此, 煤中水分如果过高,会增加干燥 所需要的热量,从而增加了氧气 消耗,降低了气化效率;水分过 高,还会增加燃料层中干燥层厚 度,使得其他各料层变薄,影响 各层中气化反应的正常进行;此 外,水分过多,还会增大后续煤 气水分离负荷。
三、Shell煤气化主要操作条件及影响因素 3.汽氧比 汽氧比是指气化剂中水蒸汽与氧气的组成比例,改变 汽氧比的过程实际是调整和控制气化温度的过程。在鲁奇 气化炉中,氧气的用量会影响燃烧层厚度,一般应根据气 化炉的生产负荷进行调整。而汽氧比的调整主要是调整气 化剂中水蒸汽的用量。在气化过程中,水蒸汽的用量是过 量的,一方面,可以促进水蒸汽分解反应向正反应方向进 行;另一方面,水蒸汽的温度比气化层温度低的多,加入 过量的水蒸汽相当于加入了“冷却剂”。因此,汽氧比提 高,气化温度降低;反之,则上升。 汽氧比过大会使得气化温度降低,从而使得碳转化率、 有效气体产率、气化强度等气化指标都下降,而且,过多 的蒸汽不能分解,会使得煤气中蒸汽含量增加,增加了后 续煤气水分离的负荷,因此,应保证燃烧层最高温度低于 灰熔点的前提下,维持较低的汽氧比。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鲁奇加压气化炉
1、第三代鲁奇加压气化炉
第三代加压气化炉为例,该炉子的内径为3.8m,最大外径为4.128m,高为12.5m,工艺操作压力为3MPa。

主要部分有炉体、夹套、布煤器和搅拌器、炉算、灰锁和煤锁等,现分述如下。

①炉体
加压鲁奇炉的炉体由双层钢板制成,外壁按3.6MPa的压力设计,内壁仅能承受比气化炉内高O.25MPa的压力。

两个简体(水夹套)之间装软化水借以吸收炉膛所散失的一些热量产生工艺蒸汽,蒸汽经过液滴分离器分离液滴后送入气化剂系统,配成蒸汽/氧气混合物喷入气化炉内一水夹套内软化水的压力3MPa,这样筒内外两两侧的压力相同,因而受力小。

夹套内的给水由夹套水循环泵进行强制循环。

同时夹套给水流过煤分布器和搅拌器内的通道,以防止这些部件超温损坏。

第三代鲁奇炉取消了早期鲁奇炉的内衬砖.燃料直接与水夹套内壁相接触,避免了在较高温度下衬砖壁挂渣现象,造成煤层下移困难等异常现象,另一方面,取消衬砖后,炉膛截面可以增大5%~10%左右,生产能力相应提高。

②布煤器和搅拌器
如果气化黏结性较强的煤,可以加设搅拌器。

布煤器和搅拌嚣安装在同一转轴上,速度为15r/h左右。

从煤箱降下的煤通过转动布煤器上的两个扇形孔,均匀下落在炉内,平均每转可以在炉内加煤150~200mm厚。

搅拌器是一个壳体结构,由锥体和双桨叶组成,壳体内通软化水循环冷却。

搅拌器深入到煤层里的位置与煤的结焦性有关,煤一般在400~500℃结焦,桨叶要深入煤层约l.3m。

③炉算
炉箅分四层,相互叠合固定在底座上,顶盖呈锥体。

材质选用耐热的铬钢铸造,并在其表面加焊灰筋。

炉箅上安装刮刀,刮刀的数量取决于下灰量。

灰分低,装1~2把;对于灰分较高的煤可装3~4把。

炉箅各层上开有气孔,气化剂由此进入煤层中均匀分布。

各层开孔数不太一样,例如某厂使用的炉算开孔数从上至下为:第一层6个、第二层16个、第三层16个、第四层28个。

炉箅的转动采用液压传动装置,也有用电动机传动机构来驱动,液压传动机构有
调速方便、结构简单、工作平稳等优点。

由于气化炉炉径较大,为使炉箅受力均匀,采用两台液压马达对称布置。

④煤锁
煤锁是一个容积为12m3的压力容器,它通过上下阀定期定量地将煤加入到气化炉内。

根据负荷和煤质的情况,每小时加煤3~5次。

加煤过程简述如下。

a.煤锁在大气压下(此时煤锁下阀关,煤锁上阀开),煤从煤斗经过给煤溜槽流入煤锁。

b.煤锁充满后,关闭煤锁上阀。

煤锁用煤气充压到和炉内压力相同。

c.充压完毕,煤锁下阀开启,煤开始落入炉内,当煤锁空后,煤锁下阀关闭。

d.煤锁卸压,煤锁中的煤气送入煤锁气柜,残余的煤气由煤锁喷射器抽出,经过除尘后排入大气。

煤锁上阀开启,新循环开始。

⑤灰锁
灰锁是一个可以装灰6m3的压力容器,和煤锁一样,采用液压操作系统,以驱动底部和顶部锥形阀和充、卸压阀。

灰锁控制系统为自动可控电子程序装置,可以实现自动、半自动和手动操作,该循环过程如下。

a.连续转动的炉箅将灰排出气化炉,通过顶部锥形阀进入灰锁。

此时灰锁底部锥形阔关闭,灰锁与气化炉压力相等。

b.当需要卸灰时,停止炉箅转动,灰锁顶部锥形阎关闭,再重新启动炉箅。

c.灰锁降压到大气压后,打开底部锥形阀,灰从灰锁进入灰斗,在此灰被急冷后去处理。

d.关闭底部锥形阀,用过热蒸汽对灰锁充压,然后炉算运行一段时间后,再打开顶部锥形阀,新循环开始。

2、液态排渣加压气化炉
液态排渣加压气化炉的基本原理是,仅向气化炉内通入适量的水蒸气,控制炉温在灰熔点以上,灰渣要以熔融状态从炉底排出。

气化层的温度较高,一般在1100~1500℃之间,气化反应速度大,设备的生产能力大,灰渣中几乎无残碳。

液态排渣气化炉的主要特点是炉子下部的排灰机构特殊,取消了固态排渣炉的转动炉箅。

在炉体的下部设有熔渣池。

在渣箱的上部有一液渣急冷箱,用循环熄渣水冷却,箱内充满70%左右的急冷水。

由排渣口下落在急冷箱内淬冷形成渣粒,在急冷箱内达到一定量后,卸
入渣箱内并定时排出炉外。

由于灰箱中充满水,和固态排渣炉相比,灰箱的充、卸压就简单多了。

在熔渣池上方有8个均匀分布、按径向对称安装并稍向下倾斜、带水冷套的钛钢气化剂喷嘴。

气化剂和煤粉及部分焦油由此喷入炉内,在熔渣池中心管的排渣口上部汇集,使得该区域的温度可达1500℃左右,使熔渣呈流动状态。

为避免回火,气化剂喷嘴口的气流喷入速度应不低于100m/s。

如果要降低生产负荷,可以关闭一定数量的喷嘴来调节,因此它比一般气化炉调节生产负荷的灵活性大。

高温液态排渣,气化反应的速度大大提高,是熔渣气化炉的主要优点。

所气化的煤中的灰分是以液态形式存在,熔渣池的结构与材料是这种气化方法的关键。

为了适应炉膛内的高温,炉体以耐高温的碳化硅耐火材料作内衬。

该炉型装上布煤器和搅拌器后,可以用来气化强黏结性的烟煤。

与固态排渣炉相比,可以用来气化低灰熔点和低活性的无烟煤。

在实际生产中,气化剂喷嘴可以携带部分粉煤和焦油进入炉膛内,因此可以直接用来气化煤矿开采的原煤,为粉煤和焦油的利用提供了一条较好的途径。

液态排渣气化炉有以下特点。

(1)由于液态排渣气化剂的汽氧比远低于固态排渣,所以气化层的反应温度高,碳的转化率增大,煤气中的可燃成分增加,气化效率高。

煤气中CO含量较高,有利于生成合成气。

(2)水蒸气耗量大为降低,且配入的水蒸气仅满足于气化反应,蒸汽分解率高,煤气中的剩余水蒸气很少,故而产生的废水远小于固态排渣。

(3)气化强度大。

由于液态排渣气化煤气中的水蒸气量很少,气化单位质量的煤所生成的湿粗煤气体积远小于固态排渣,因而煤气气流速度低,带出物减少,因此在相同带出物条件下,液态排渣气化强度可以有较大提高。

(4)液态排渣的氧气消耗较固态排渣要高,生成煤气中的甲烷含量少,不利于生产城市煤气,但有利于生产化工原料气。

(5)液态排渣气化炉体材料在高温下的耐磨、耐腐蚀性能要求高。

在高温、高压下如何有效地控制熔渣的排出等问题是液态排渣的技术关键,尚需进一步研究。

相关文档
最新文档