燃料电池的分类及应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
燃料电池的分类及应用
【摘要】在能源问题成为世界核心问题的今天,燃料电池作为一种新型能源应用方式得到了越来越广泛的应用。本文首先介绍了燃料电池的原理和特点,然后对燃料电池的分类进行了详细说明,最后简要介绍了其主要应用。
【关键词】燃料电池;原理;分类;应用
0.引言
时至今日,世界经济大体上仍然是化石燃料依赖型的,石油、煤和天然气占世界初级能源消费总量的85%左右,剩下的部分主要是水电和核电,真正的可再生清洁能源如风能、太阳能等所占比例不到3%。世界能源需求仍在以1.5%~2%的年率增长,而地质学家预测说,石油和天然气价格将大幅度上升,再也不会回落。
燃料电池的出现与发展,给便携式电子设备带来一场深刻的革命,并且还会波及到汽车业,住宅,以及社会各方面的集中供电系统。在21世纪中它将会把人类由集中供电带进一种分散供电的新时代。燃料电池供电,没有二氧化碳的排放,可减轻温室效应使全球气候变暖问题,它解决了火力发电使全球环境污染的问题,它是一个纯正的绿色清洁能源。
1.燃料电池的原理
1.1 燃料电池的组成和工作原理
燃料电池的基本组成:阳极、阴极、电解质和外电路。燃料电池中的电解质有不同的种类。燃料电池是靠氢氧结合成水的反应来发电的,因而不会产生氮氧化物(NOX)和碳氢化合物(HC)等易对空气造成污染的物质。它由三部分组成:阴极、阳极和电解液。
燃料电池有着几个独特的性质:
(1)燃料电池在工作时必须有能量(燃料)输入,才能产出电能。
(2)燃料电池所能够产生的电能只和燃料的供应有关,只要供给燃料就可以产生电能,其放电是连续进行的。
(3)燃料电池本体的质量和体积并不大,但需要一套燃料储存装置或燃料转换装置和附属设备才能获得氢气,而这些燃料储存装置或燃料转换装置和附属设备的质量和体积远远超过燃料电池本身。
1.2 燃料电池中的催化作用
燃料电池中的电催化作用是用来加速燃料电池化学反应中电荷转移的一种作用,一般发生在电极与电解质的分界面上。催化剂是一类可产生电催化作用的物质。电催化剂可以分别用于催化阳极和阴极反应。这种分离的催化特征,使得人们可以更好地优选不同的催化剂。
评价催化剂的主要技术指标为稳定性、电催化活性、电导率和经济性。
2.燃料电池的特点
由于燃料电池能将燃料的化学能直接转化为电能,因此,它没有像通常的火力发电机那样通过锅炉、汽轮机、发电机的能量形态变化,可以避免中间的转换的损失,达到很高的发电效率。同时还有以下一些特点:
不管是满负荷还是部分负荷均能保持高发电效率;不管装置规模大小均能保持高发电效率;具有很强的过负载能力;通过与燃料供给装置组合的可以适用的燃料广泛;用天然气和煤气等为燃料时,NOX及SOX等排出量少,环境相容
性优。
此外,燃料电池的能量转换效率高,不受卡诺效率限制;清洁、环保。燃料电池不需要锅炉、汽轮机等大型设备、没有SOx、NOx气体和固体粉尘的排放;可靠性和操作性良好,噪声低;所用燃料广泛,占地面积小,建厂具有很大灵活性。
3.燃料电池的分类
燃料电池可依据其工作温度、所用燃料的种类和电解质类型进行分类。按照工作温度,燃料电池可分为高、中、低温型三类。按燃料来源,燃料电池可分为直接式燃料电池(如直接甲醇燃料电池),间接式燃料电池(如甲醇通过重整器产生氢气,然后以氢气为燃料电池的燃料)和再生类型进行分类。依据电解质的不同,可将燃料电池分为碱性燃料电池(AFC)、直接甲醇燃料电池(DMFC)、熔融碳酸盐燃料电池(MC
FC)、固体氧化物燃料电池(SOFC)及质子交换膜燃料电池(PEMFC)等。
3.1直接甲醇燃料电池
直接甲醇燃料电池是以甲醇为燃料,通过与氧结合产生电流的,优点是直接使用甲醇,省去了氢的生产与存储。其电化学转化过程又可分为两种方式,一种是直接燃料电池,另一种是间接燃料电池。直接燃料电池主要是甲醇在阳极被电解为氢和二氧化碳,氢通过质子膜到阴极与氧气反应并同时产生电流。间接燃料电池是先将甲醇进行炼解或重整得到氢,然后再由氢和氧通过质子膜电解槽反应而获得供给汽车动力的电能。这种燃料电池以甲醇为能量来源,手机,笔记本电脑将不再用充电。
3.2固体氧化物燃料电池
固体氧化物燃料电池采用固体氧化物作为电解质,除了高效,环境友好的特点外,它无材料腐蚀和电解液腐蚀等问题;在高的工作温度下电池排出的高质量余热可以充分利用,使其综合效率可由50%提高到70%以上;它的燃料适用范围广,不仅能用H2,还可直接用CO、天然气(甲烷)、煤汽化气,碳氢化合物、NH3、H2S等作燃料。这类电池最适合于分散和集中发电。
3.3碱性燃料电池
再生氢氧燃料电池将水电解技术(电能+2H2O→2H2+O2)与氢氧燃料电池技术(2H2+O2→H2O+电能)相结合,氢氧燃料电池的燃料H2、氧化剂O2可通过水电解过程得以“再生”, 起到蓄能作用。可以用作空间站电源。采用氢氧化钾溶液作为电解液。这种电解液效率很高(可达60-90%),但对影响纯度的杂质,如二氧化碳很敏感。因而运行中需采用纯态氢气和氧气。这一点限制了将其应用于宇宙飞行及国际工程等领域。
3.4质子交换膜燃料电池
燃料电池工程中心研究双效催化剂和双效氧电极的制备方法,研制薄层电极并制备膜电极三合一组件,降低电极铂担量。目前电极的铂担量已降至0.02mg/cm2。同时进行固体电解质的水电解技术开发,已掌握水电解用膜电极的制备技术。
3.5熔融碳酸盐燃料电池
熔融碳酸盐燃料电池是一种高温电池(600~700℃),具有效率高(高于40%)、噪音低、无污染、燃料多样化(氢气、煤气、天然气和生物燃料等)、余热利用价值高和电池构造材料价廉等诸多优点,是下一世纪的绿色电站。
4.燃料电池的应用
燃料电池技术因具备低污染、高能源转换效率的特性,更能满足人类高效、环保的需求。它具有更高的能源密度。紧急备用发电机、住宅用热电共生系统、UPS、分布式发电系统、军事国防、太空与运输工具领域、机器人、笔记型计算机、PDA、手机等便携电子产品、便携电源、搬运工具、电动辅助/代步车等。采用极薄的塑料薄膜作为其电解质。这种电解质具有高功率一重量比和低工作温度。是适用于固定和移动装置的理想材料。
质子交换膜燃料电池以磺酸型质子交换膜为固体电解质,无电解质腐蚀问题,能量转换效率高,无污染,可室温快速启动。质子交换膜燃料电池在固定电站、电动车、军用特种电源、可移动电源等方面都有广阔的应用前景,尤其是电动车的最佳驱动电源。它已成功地用于载人的公共汽车和奔驰轿车上。
5.小结
高效、洁净的燃料电池必将在未来的高效、清洁发电技术中占有一席之地。但是,资金、技术、观念、基础设施上还有许多需要克服的困难。油价飙升、电价太贵,燃料电池成为未来家庭能源供应相对便宜的选择,也是目前最令人满意的解决方案。在固定电站、电动车、军用特种电源、可移动电源等方面都有广阔的应用前景。[科]
【参考文献】
[1]石新军.燃料电池的应用和发展.现代物理知识,2006,1.
[2]储海虹,屠一锋,曹洋.燃料电池研究现状.电池工业,2003,5(8).
[3]薛琳,丁信伟.新型能源—燃料电池概述.中国科技论文在线.