2020年高三物理第二轮复习:专题四——电场和磁场高中物理
高考电场和磁场知识点汇总

高考电场和磁场知识点汇总电场和磁场是物理学中非常重要的概念,也是高考物理考试中常见的内容。
掌握电场和磁场的知识对于高考物理考试取得好成绩非常关键。
本文将对高考电场和磁场的知识点进行汇总和总结,帮助考生全面复习和备考。
一、电场的基本概念电场是由电荷所产生的一种物理场,它描述了电荷对周围空间中其他带电粒子的作用力。
电场以电荷为源,以电场强度表示。
电场强度在空间中的分布可以通过电场线来表示,电场线与电场强度互相垂直。
二、库仑定律库仑定律描述了电荷之间的相互作用。
它表达了两个点电荷间作用力的大小与距离的平方成反比。
库仑定律可以表示为:F=k*q1*q2/r^2,其中F为电荷间的相互作用力,q1和q2为两个电荷的电量,r为两个电荷之间的距离,k为电场常量。
三、电场的叠加原理电场的叠加原理指出,当有多个电荷存在时,它们所产生的电场强度可以叠加。
简单来说,就是将各个电场矢量相加得到总的电场矢量。
叠加原理在计算电场强度时非常有用,特别是在有多个电荷分布时。
四、电势差和电势能电势差是指单位正电荷从一个点移到另一个点时所需要的功。
它表示了电场对电荷所做的功。
电势差可以通过电场强度和电荷间距离的积分来计算。
电势能是指电荷在电场中由于位置的不同而具有的能量。
电荷在静电场中的电势能可以通过电场强度和电荷间距离的积分来计算。
五、磁场的基本概念磁场是由磁荷或电流所产生的一种物理场,它描述了磁荷或电流对周围空间中其他磁性物质或电流的作用力。
磁场以磁感应强度表示。
磁场的单位是特斯拉(T)。
六、安培定律安培定律描述了两段平行直导线的相互作用力与电流的关系。
当两段导线通过电流时,它们之间会产生相互作用力,该作用力与电流大小和导线之间的距离成正比。
安培定律可以表示为:F=B*I*l,其中F为相互作用力,B为磁感应强度,I为电流大小,l为导线之间的距离。
七、洛伦兹力和电磁感应洛伦兹力是指电荷在电磁场中受到的作用力。
当电荷在磁场中运动时,它会受到磁力的作用。
高考物理电场磁场复习

高考物理电场磁场复习
一、电场和磁场相关概念
1.电场、磁场都是特殊的物质。
电场对放入期中的电荷有电场力的作用,磁场对其中的磁体或电流有磁力作用。
2.丹麦物质学家奥斯特的奥斯特实验证明了电流周围存在着磁场。
3.磁感线是磁场中人为描绘的一些有方向的曲线,曲线每一点的切线方向都表示该点的磁场方向(静止的小磁针北极所指的方向、磁感强度的方向)
4.磁感线的密度表示磁场的强弱,越密的地方,磁感应强度越大。
在磁体周围,离磁极越近,磁感应强度越大,离磁极越远,磁感应强度越小。
5.磁感线是闭合的曲线,没有开始点和结束点,任何两条都不相交。
磁感线在磁体外部,总是由磁体北极(N极)指向磁体的南极(S极),在磁体内部,总是由磁体南极指向磁体的北极。
6.磁现象的电本质:所有磁现象都可以归结为运动电荷(电流)之间通过磁场而发生的相互作用。
7.磁体吸引铁的实质:磁体在吸引铁时,先把铁磁化,然后相吸引,所以相接触部分为异名磁极,磁化后铁的另一侧与磁化它的磁极相同。
8.B=F/(Il )是磁感应强度的定义式,但磁感应强度与F、I、l 无关,其大小决定于磁场本身。
它是矢量,其方向指向磁感线(磁场)方
向的切线方向。
推导公式F=BIl
9.当电流方向与磁感线方向平行或磁感强度为零时,磁场对电流没有作用力。
二、电场和磁场考点分析。
高中物理磁场和电场的知识点

高中物理磁场和电场的知识点高中物理磁场知识点1.磁场(1)磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质.永磁体和电流都能在空间产生磁场.变化的电场也能产生磁场.(2)磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用.(3)磁现象的电本质:一切磁现象都可归结为运动电荷(或电流)之间通过磁场而发生的相互作用.(4)安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体.(5)磁场的方向:规定在磁场中任一点小磁针N极受力的方向(或者小磁针静止时N极的指向)就是那一点的磁场方向.2.磁感线(1)在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线.(2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交.(3)几种典型磁场的磁感线的分布:①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱.②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场.③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱.④匀强磁场:磁感应强度的大小处处相等、方向处处相同.匀强磁场中的磁感线是分布均匀、方向相同的平行直线.3.磁感应强度(1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F 跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL.单位T,1T=1N/(A?m).(2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向.(3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比.(4)磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向.4.地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:(1)地磁场的N极在地球南极附近,S极在地球北极附近.(2)地磁场B的水平分量(Bx)总是从地球南极指向北极,而竖直分量(By)则南北相反,在南半球垂直地面向上,在北半球垂直地面向下.(3)在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北.5.安培力(1)安培力大小F=BIL.式中F、B、I要两两垂直,L是有效长度.若载流导体是弯曲导线,且导线所在平面与磁感强度方向垂直,则L指弯曲导线中始端指向末端的直线长度.(2)安培力的方向由左手定则判定.(3)安培力做功与路径有关,绕闭合回路一周,安培力做的功可以为正,可以为负,也可以为零,而不像重力和电场力那样做功总为零.6.洛伦兹力(1)洛伦兹力的大小f=qvB,条件:v⊥B.当v⊥B时,f=0.(2)洛伦兹力的特性:洛伦兹力始终垂直于v的方向,所以洛伦兹力一定不做功.(3)洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现.所以洛伦兹力的方向与安培力的方向一样也由左手定则判定.(4)在磁场中静止的电荷不受洛伦兹力作用.7.带电粒子在磁场中的运动规律在带电粒子只受洛伦兹力作用的条件下(电子、质子、α粒子等微观粒子的重力通常忽略不计),(1)若带电粒子的速度方向与磁场方向平行(相同或相反),带电粒子以入射速度v做匀速直线运动.(2)若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内,以入射速率v做匀速圆周运动.①轨道半径公式:r=mv/qB②周期公式:T=2πm/qB8.带电粒子在复合场中运动(1)带电粒子在复合场中做直线运动①带电粒子所受合外力为零时,做匀速直线运动,处理这类问题,应根据受力平衡列方程求解.②带电粒子所受合外力恒定,且与初速度在一条直线上,粒子将作匀变速直线运动,处理这类问题,根据洛伦兹力不做功的特点,选用牛顿第二定律、动量定理、动能定理、能量守恒等规律列方程求解.(2)带电粒子在复合场中做曲线运动①当带电粒子在所受的重力与电场力等值反向时,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动.处理这类问题,往往同时应用牛顿第二定律、动能定理列方程求解.②当带电粒子所受的合外力是变力,与初速度方向不在同一直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,一般处理这类问题,选用动能定理或能量守恒列方程求解.③由于带电粒子在复合场中受力情况复杂运动情况多变,往往出现临界问题,这时应以题目中“最大、“最高“至少等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解.(3)单位:法拉(F),1F=106μF,1μF=106pF.十、稳恒电流1.电流---(1)定义:电荷的定向移动形成电流.(2)电流的方向:规定正电荷定向移动的方向为电流的方向.在外电路中电流由高电势点流向低电势点,在电源的内部电流由低电势点流向高电势点(由负极流向正极).2.电流强度:------(1)定义:通过导体横截面的电量跟通过这些电量所用时间的比值,I=q/t(2)在国际单位制中电流的单位是安.1mA=10-3A,1μA=10-6A(3)电流强度的定义式中,如果是正、负离子同时定向移动,q应为正负离子的电荷量和.2.电阻--(1)定义:导体两端的电压与通过导体中的电流的比值叫导体的电阻.(2)定义式:R=U/I,单位:Ω(3)电阻是导体本身的属性,跟导体两端的电压及通过电流无关.3.电阻定律(1)内容:在温度不变时,导体的电阻R与它的长度L成正比,与它的横截面积S成反比.(2)公式:R=ρL/S.(3)适用条件:①粗细均匀的导线;②浓度均匀的电解液.4.电阻率:反映了材料对电流的阻碍作用.(1)有些材料的电阻率随温度升高而增大(如金属);有些材料的电阻率随温度升高而减小(如半导体和绝缘体);有些材料的电阻率几乎不受温度影响(如锰铜和康铜).(2)半导体:导电性能介于导体和绝缘体之间,而且电阻随温度的增加而减小,这种材料称为半导体,半导体有热敏特性,光敏特性,掺入微量杂质特性.(3)超导现象:当温度降低到绝对零度附近时,某些材料的电阻率突然减小到零,这种现象叫超导现象,处于这种状态的物体叫超导体.猜你感兴趣:1.高二物理磁场中的安培力知识点2.高中物理磁场公式大全3.高中物理电场公式大全4.高三物理电场知识点梳理5.高中物理磁场知识点归纳。
高考物理知识点总结电场与磁场

高考物理知识点总结电场与磁场高考物理知识点总结电场与磁场电磁场在电磁学里,电磁场是一种由带电物体产生的一种物理场。
电磁学在高考物理是一种常考题型,下面由店铺为整理有关高考物理知识点总结电场与磁场的资料,希望对大家有所帮助!高考物理知识点总结电场与磁场1.电磁场在电磁学里,电磁场是一种由带电物体产生的一种物理场。
处于电磁场的带电物体会感受到电磁场的作用力。
电磁场与带电物体(电荷或电流)之间的相互作用可以用麦克斯韦方程和洛伦兹力定律来描述。
2.电磁场与电磁波电磁波是电磁场的一种运动形态。
电与磁可说是一体两面,变动的电场会产生磁场,变动的磁场则会产生电场。
变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。
3.电磁场理论研究电磁场中各物理量之间的关系及其空间分布和时间变化的理论。
人们注意到电磁现象首先是从它们的力学效应开始的。
库仑定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。
A.-M.安培等人又发现电流元之间的作用力也符合平方反比关系,提出了安培环路定律。
1、电磁场理论的核心之一:变化的磁场产生电场在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)◎理解:(1)均匀变化的磁场产生稳定电场(2)非均匀变化的磁场产生变化电场2、电磁场理论的核心之二:变化的电场产生磁场麦克斯韦假设:变化的'电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场高考电场知识点归纳1.电荷电荷守恒定律点电荷⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相互作用力就是通过电场发生的。
电荷的多少叫电量。
基本电荷。
带电体电荷量等于元电荷的整数倍(Q=ne)⑵使物体带电也叫起电。
使物体带电的方法有三种:①摩擦起电②接触带电③感应起电。
⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。
高三物理第二轮复习专题四电场和磁场

专题四 电场和磁场一、电场和磁场中的带电粒子1、知识网络2、方法点拨:分析带电粒子在电场、磁场中运动,主要是两条线索:(1)力和运动的关系。
根据带电粒子所受的力,运用牛顿第二定律并结合运动学规律求解。
(2)功能关系。
根据场力及其它外力对带电粒子做功引起的能量变化或全过程中的功能关系,从而可确定带电粒子的运动情况,这条线索不但适用于均匀场,也适用于非均匀场。
因此要熟悉各种力做功的特点。
处理带电粒子在场中的运动问题应注意是否考虑带电粒子的重力。
这要依据具体情况而定,质子、α粒子、离子等微观粒子,一般不考虑重力;液滴、尘埃、小球等宏观带电粒子由题设条件决定,一般把装置在空间的方位介绍的很明确的,都应考虑重力,有时还应根据题目的隐含条件来判断。
处理带电粒子在电场、磁场中的运动,还应画好示意图,在画图的基础上特别注意运用几何知识寻找关系。
3、典型例题【例题1】如图1所示,图中虚线MN 是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B 的匀强磁场,方向垂直纸面向外。
O 是MN 上的一点,从O 点可以向磁场区域发射电量为+q 、质量为m 、速率为v 的粒子,粒子射入磁场时的速度可在纸面内各个方向。
已知先后射入的两个粒子恰好在磁场中给定的P 点相遇,P 到O 的距离为L ,不计重力及粒子间的相互作用。
(1)求所考察的粒子在磁场中的轨道半径;(2)求这两个粒子从O 点射入磁场的时间间隔。
半径公式:qB mvR =周期公式:qB m T π2= 带电粒子在电场磁场中的运动带电粒子在电场中的运动带电粒子在磁场中的运动 带电粒子在复合场中的运动直线运动:如用电场加速或减速粒子偏转:类似平抛运动,一般分解成两个分运动求解 圆周运动:以点电荷为圆心运动或受装置约束运动直线运动(当带电粒子的速度与磁场平行时) 圆周运动(当带电粒子的速度与磁场垂直时)直线运动:垂直运动方向的力必定平衡 圆周运动:重力与电场力一定平衡,由洛伦兹力提供向心力 一般的曲线运动【点拨解疑】(1)设粒子在磁场中做圆周运动的轨道半径为R ,由牛顿第二定律得Rv m qvB 2=,则qB mvR =(2)如图2所示,以OP 为弦可以画两个半径相同的圆,分别表示在P 点相遇的两个粒子的轨迹。
高考高考物理二轮复习专题训练:电场与磁场的理解

电场与磁场的理解一、选择题1.某平面区域内一静电场的等势线分布如图中虚线所示,相邻的等势线电势差相等,一负电荷仅在静电力作用下由a 运动至b ,设粒子在a 、b 两点的加速度分别为a a 、b a ,电势分别为a ϕ、b ϕ,该电荷在a 、b 两点的速度分别为a v 、b v ,电势能分别为p a E 、p b E ,则( )A .a b a a >B .b a v v >C .p p a b E E >D .a b ϕϕ>2.某静电场方向平行于x 轴,x 轴上各点电场强度随位置的变化关系如图所示,规定x 轴正方向为电场强度正方向。
若取x 0处为电势零点,则x 轴上各点电势随位置的变化关系可能为( )A .B .C .D .3.一匀强电场的方向平行于xOy 平面,平面内a 、b 、c 三点的位置如图所示,三点的电势分别为10V 、17V 、26V 。
下列说法正确的是( ) A .电场强度的大小为2.5V/cmB .坐标原点处的电势为2VC .电子在a 点的电势能比在b 点的小7eVD .电子从b 点运动到O 点,电场力做功为16eV4.如图,空间中存在着水平向右的匀强电场,现将一个质量为m ,带电量为q +的小球在A 点以一定的初动能k E 竖直向上抛出,小球运动到竖直方向最高点C 时的沿场强方向位移是0x ,动能变为原来的一半(重力加速度为g ),下列说法正确的是( )A .场强大小为22mgqB .A 、C 竖直方向的距离为0x 的2倍C .小球从C 点再次落回到与A 点等高的B 点时,水平位移是02xD .小球从C 点落回到与A 点等高的B 点时,电场力做功大小为2k E5.如图,圆心为O 的圆处于匀强电场中,电场方向与圆平面平行,ab 和cd 为圆的两条直径,60aOc ∠=︒。
将一电荷量为q 的正点电荷从a 点移到b 点,电场力做功为W (0W >);若将该电荷从d 点移到c 点,电场力做功也为W 。
高中物理-专题四第1课时 电场和磁场基本问题

专题四电场和磁场第1课时电场和磁场基本问题1.电场强度的三个公式(1)E=Fq是电场强度的定义式,适用于任何电场。
电场中某点的场强是确定值,其大小和方向与试探电荷q无关,试探电荷q充当“测量工具”的作用。
(2)E=k Qr2是真空中点电荷所形成的电场场强的决定式,E由场源电荷Q和场源电荷到某点的距离r决定。
(3)E=Ud是场强与电势差的关系式,只适用于匀强电场。
注意:式中d为两点间沿电场方向的距离。
2.电场能的性质(1)电势与电势能:φ=E p q。
(2)电势差与电场力做功:U AB=W ABq=φA-φB。
(3)电场力做功与电势能的变化:W=-ΔE p。
3.等势面与电场线的关系(1)电场线总是与等势面垂直,且从电势高的等势面指向电势低的等势面。
(2)电场线越密的地方,等差等势面也越密。
(3)沿等势面移动电荷,电场力不做功,沿电场线移动电荷,电场力一定做功。
4.带电粒子在磁场中的受力情况(1)磁场只对运动的电荷有力的作用,对静止的电荷无力的作用。
(2)洛伦兹力的大小和方向:F洛=q v B sin θ。
注意:θ为v与B的夹角。
F的方向由左手定则判定,四指的指向应为正电荷运动的方向或负电荷运动方向的反方向。
5.洛伦兹力做功的特点由于洛伦兹力始终和速度方向垂直,所以洛伦兹力永不做功。
1.主要研究方法(1)理想化模型法。
如点电荷。
(2)比值定义法。
如电场强度、电势的定义方法,是定义物理量的一种重要方法。
(3)类比的方法。
如电场和重力场的类比;电场力做功与重力做功的类比;带电粒子在匀强电场中的运动和平抛运动的类比。
2.静电力做功的求解方法(1)由功的定义式W=Fl cos α来求。
(2)利用结论“电场力做功等于电荷电势能变化量的负值”来求,即W=-ΔE p。
(3)利用W AB=qU AB来求。
3.电场中的曲线运动的分析采用运动合成与分解的思想方法。
4.匀强磁场中的圆周运动解题关键找圆心:若已知进场点的速度和出场点,可以作进场点速度的垂线,依据是F洛⊥v,与进出场点连线的垂直平分线的交点即为圆心;若只知道进场位置,则要利用圆周运动的对称性定性画出轨迹,找圆心,利用平面几何知识求解问题。
高三物理第二轮知识点汇总

高三物理第二轮知识点汇总物理是一门重要而广泛应用的科学,它研究的是自然界中的物质、能量、力和运动规律。
高三阶段是学习物理的关键时期,学生需要系统地复习并掌握各个知识点。
本文将对高三物理第二轮知识点进行汇总,帮助同学们更好地进行复习和备考。
1. 磁场与电磁感应这一部分主要包括磁感线、磁感应强度和磁场强度、磁场中带电粒子的运动等内容。
学生需要了解磁感线的特点和表示方法,磁感应强度与磁场强度之间的关系,以及带电粒子在磁场中的轨迹。
2. 电场与电势电场与电势是电学的基础概念,也是理解电学现象的重要工具。
学生需要了解电场的定义和性质,如电场力和电场强度的概念,并且要能够进行电场强度的计算。
此外,还需要理解电势的定义和计算方法,以及电势差和电势能的关系。
3. 电磁波与光学这一部分包括电磁波的产生、传播和检测等内容。
学生需要了解电磁波的基本特性,如频率、波长和速度,并能够进行电磁波的计算。
此外,还需要了解光的传播特性,如折射、反射、干涉和衍射等现象。
4. 原子与核能这一部分主要包括原子结构、原子核的组成和放射性等内容。
学生需要了解原子的基本结构和组成,包括电子、质子和中子,以及它们之间的相互作用。
同时,还需要了解放射性衰变的过程,包括α衰变、β衰变和γ衰变等。
5. 电路与电流电路与电流是物理学中的基本概念,也是应用最为广泛的知识点之一。
学生需要了解电流的定义和电路元件的基本特性,如电阻、电压和电流强度,并在实践中能够进行电路的分析和计算。
6. 能量与动量守恒能量与动量守恒是物理学中的两个基本定律,它们在力学、热学和光学等领域都有广泛的应用。
学生需要了解能量守恒和动量守恒的概念和条件,并能够在实际问题中进行能量和动量的计算。
以上是高三物理第二轮的主要知识点汇总,通过对这些知识点的系统复习和掌握,学生将能够更好地理解物理现象和解决复杂问题。
在备考过程中,同学们要灵活运用各种学习方法和技巧,如制定合理的学习计划、积极参与课堂讨论、合理运用教材和参考书等。
高考物理二轮复习 专题四 电场和磁场 4.9 磁场及带电粒子在磁场中的运动课件

由题意知,第 1 次调节电压到 U1,使原本打在 Q 点的离子打
在 N 点,5L = 6L
U1 U0
5
此时,原本半径为 r1 的打在 Q1 的离子打在 Q 上6rL1 =
U1 U0
测得 r1=652L
第 2 次调节电压到 U2,使原本打在 Q1 的离子打在 N 点,原本 半径为 r2 的打在 Q2 的离子打在 Q 上,则
三、洛伦兹力:
1.计算公式:F=_____q_v_B__s_in_θ_____,其中 θ 为 B 与 v 的夹角. (1)v∥B 时,F=_____0_______. (2)v⊥B 时,F=___q_v_B_______. (3)v=0 时,F=_____0_______. 2.方向判定:用_____左__手__定__则_______,注意“四指”指向 __正__电__荷__的__运__动__方__向____,与____负__电__荷______的运动方向相反.
A.指南针可以仅具有一个磁极 B.指南针能够指向南北,说明地球具有磁场 C.指南针的指向会受到附近铁块的干扰 D.在指南针正上方附近沿指针方向放置一直导线,导线通电 时指南针不偏转
解析:任何磁体均具有两个磁极,故 A 错.指南针之所以能指 向南北,是因为指南针的两个磁极受到磁场力的作用,这说明地球 具有磁场,即 B 正确.放在指南针附近的铁块被磁化后,反过来会 影响指南针的指向,即 C 正确.通电直导线产生的磁场对其正下方 的指南针有磁场力的作用,会使指南针发生偏转,故 D 错.
(1)求原本打在 MN 中点 P 的离子质量 m; (2)为使原本打在 P 的离子能打在 QN 区域,求加速电压 U 的调节范围; (3)为了在 QN 区域将原本打在 MQ 区域的所有离子检测完整,求需要调 节 U 的最少次数.(取 lg2=0.301,lg3=0.477,lg5=0.699)
高考物理电场磁场知识点总结归纳

高考物理电场磁场知识点总结归纳电场和磁场是物理中非常重要的概念和研究方向,它们在我们日常生活中有着广泛的应用。
在高考物理中,电场和磁场的知识点也占据了重要的篇幅。
本文将对高考物理电场和磁场的知识点进行总结和归纳,帮助大家更好地复习和理解这些知识。
一、电场知识点总结1. 电场的概念:电场是指带电粒子或带电体所围成的区域内,存在电荷间的相互作用力的一种物理场。
通常用电场强度来描述电场。
2. 电场的性质:2.1 电场是矢量场,具有方向和大小。
2.2 电场是超距作用力,它是通过空气、真空等介质传递的。
2.3 电场是相对的,电场的强度与电荷之间的相对位置有关。
2.4 电场具有叠加原理,多个电荷的电场可以叠加。
3. 电场的表示方法:3.1 电场线:用于表示电场的强度和方向,电场线的密度越大,表示电场的强度越大。
3.2 电场力线:用于表示带电粒子在电场中所受到的力的方向。
4. 库仑定律:描述两个点电荷之间的相互作用力,具体公式为F=K(q1*q2/r^2),其中F为两个点电荷之间的作用力,q1和q2分别为两个电荷的电量,r为两个电荷之间的距离,K为电磁力常数。
5. 电场强度:电场强度E= F/q,其中F为电荷所受的力,q为电荷的大小。
电场强度是标量,用于描述电场的强弱和方向。
6. 电势能和电势差:6.1 电势能:表示带电粒子在电场中由于自身位置而具有的能量。
电势能U与电荷q的关系为U=qV,其中V为电势。
6.2 电势差:指单位正电荷由A点移动到B点所做的功与电荷q之比。
电势差ΔV= W/q,其中W为单位正电荷由A点移动至B点的功。
7. 电容器:电容器是一种能够存储电荷和电能的装置。
常见的电容器有平行板电容器和球形电容器等。
二、磁场知识点总结1. 磁场的概念:磁场是指磁体或电流所产生的磁力所围成的区域,是一种物理场。
通常用磁感应强度来描述磁场。
2. 磁场的性质:2.1 磁场是矢量场,具有方向和大小。
2.2 磁场是超距作用力,它是通过空气、真空等介质传递的。
湖南省新宁县高考物理二轮复习 专题4 电场与磁场课件

1.如所示,一半径为 R 的绝缘
环上,均匀地带有电荷量为 Q 的电荷,
在垂直于圆环平面的对称轴上有一点
P,它与圆环中心 O 的距离 OP=L.
设静电力常量为 k,P 点的电场强度
为 E,则 E 等于( )
kQ A.R2+L2
kQL B.R2+L2
kQR
kQL
C. (R2+L2)3 D. (R2+L2)3
【答案】ACD
【方法总结】 1.电场强度大小判断 ①根据电场线的疏密程度判断:在同一幅图中, 电场线密处电场强度大,电场线稀处电场强度小. ②根据等差等势面的疏密程度判断:在同一幅图 中,等差等势面越密处电场强度越大. ③根据相应公式直接计算出电场强度的大小,从 而比较电场强度的大小. ④空间存在两个以上的电场时,利用平行四边形 定则求其合电场强度. 2.E-x 图象中,曲线与坐标轴所围图形的“面 积”表示两点间的电势差. 3.计算电场强度的特殊方法有: 微元法、对称 法、割补法、等效法、极限思维法等.
C.质子在 a 点的加速度一定大于在 b 点的加速 度
D.a 点的电势一定高于 b 点的电势
【解析】若虚线是电场线,由质子轨迹可知质子 所受电场力方向沿电场线向左,由 a 点运动到 b 点, 电场力做负功,电势能增大,动能减小,A 错;若虚 线是等势线,则质子所受电场力垂直等势线向下,由 a 点运动到 b 点,电场力做正功,电势能减小,动能 增大,B 对;因电场线和等差等势线的疏密程度均可 表示电场强度大小,而 a 点处于密集区,所以 Ea>Eb,
2kQ 5 2kQ A. 4R2 B. 16R2
3 2kQ
2kQ
C. 16R2 D. 2R2
【解析】在带电圆环上取一长为Δl 的 微小段圆弧,则其所带电荷量为Δq= Q2π·ΔRl,Δq 在 B 点产生的电场强度为
高三物理电场磁场知识点复习-精选教学文档

高三物理电场磁场知识点复习
高三物理电场磁场知识点复习:电场和磁场相关概念
1.电场、磁场都是特殊的物质。
电场对放入期中的电荷有电场力的作用,磁场对其中的磁体或电流有磁力作用。
2.丹麦物质学家奥斯特的奥斯特实验证明了电流周围
存在着磁场。
3.磁感线是磁场中人为描绘的一些有方向的曲线,曲线每一点的切线方向都表示该点的磁场方向(静止的小磁针北极所指的方向、磁感强度的方向)
4.磁感线的密度表示磁场的强弱,越密的地方,磁感应强度越大。
在磁体周围,离磁极越近,磁感应强度越大,离磁极越远,磁感应强度越小。
5.磁感线是闭合的曲线,没有开始点和结束点,任何两条都不相交。
磁感线在磁体外部,总是由磁体北极(N极)指向磁体的南极(S极),在磁体内部,总是由磁体南极指向磁体的北极。
6.磁现象的电本质:所有磁现象都可以归结为运动电荷(电流)之间通过磁场而发生的相互作用。
7.磁体吸引铁的实质:磁体在吸引铁时,先把铁磁化,然后相吸引,所以相接触部分为异名磁极,磁化后铁的另一侧与磁化它的磁极相同。
8.B=F/(Il )是磁感应强度的定义式,但磁感应强度与F、
I、l 无关,其大小决定于磁场本身。
它是矢量,其方向指向磁感线(磁场)方向的切线方向。
推导公式 F=BIl
9.当电流方向与磁感线方向平行或磁感强度为零时,磁场对电流没有作用力。
高三物理电场磁场知识点复习:电场和磁场考点分析。
2020届高三物理第二轮复习近四年全国高考卷电场和磁场综合练习含答案

电场和磁场综合练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.一匀强电场的方向平行于xOy 平面,平面内a 、b 、c 三点的位置如图所示,三点的电势分别为10 V 、17 V 、26 V . 下列说法不正确的是( ) A .电场强度的大小为2. 5 V/cm B .坐标原点处的电势为1 VC .电子在a 点的电势能比在b 点的低7 eVD .电子从b 点运动到c 点,电场力做功为9 eV2.真空中有一半径为r 0的带电金属球,以球心O 为坐标原点沿某一半径方向为正方向建立x 轴,x 轴上各点的电势φ随x 的分布如图所示,其中x 1、x 2、x 3分别是x 轴上A 、B 、C 三点的位置坐标.根据φ-x 图象,下列说法正确的是 A .该金属球带负电B .A 点的电场强度大于C 点的电场强度 C .B 点的电场强度大小为2332x x φφ--D .电量为q 的负电荷在B 点的电势能比在C 点的电势能低|q (φ2-φ3)|3.一圆筒处于磁感应强度大小为B 的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示.图中直径MN 的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M 射入筒内,射入时的运动与MN 成30°角.当筒转过90°时,该粒子恰好从小孔N 飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为( )A .3BωB .2BωC .BωD .2Bω4.现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定.质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场.若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍.此离子和质子的质量比约为( )A .11B .12C .121D .1445.如图所示,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c ,已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动,下列选项正确的是( )A .m a >m b >m cB .m b >m a >m cC .m c >m a >m bD .m c >m b >m a二、多选题6.如图所示,在点电荷Q 产生的电场中,实线MN 是一条方向未标出的电场线,虚线AB 是一个电子只在静电力作用下的运动轨迹.设电子在A 、B 两点的加速度大小分别为A a 、B a ,电势能分别为PA E 、PB E .下列说法正确的是( )A .电子一定从A 向B 运动B .若A a >B a ,则Q 靠近M 端且为正电荷C .无论Q 为正电荷还是负电荷一定有PA E <PB ED .B 点电势可能高于A 点电势7.如图所示,空间存在水平向右、电场强度大小为E 的匀强电场,一个质量为m 、电荷量为+q 的小球,从A 点以初速度v 0竖直向上抛出,经过一段时间落回到与A 点等高的位置B 点(图中未画出),重力加速度为g .下列说法正确的是A .小球运动到最高点时距离A 点的高度为20v gB .小球运动到最高点时速度大小为qEv mgC .小球运动过程中最小动能为()222022mq E v mg qE +D .AB 两点之间的电势差为22022qE v mg三、解答题8.一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy 平面内的截面如图所示:中间是磁场区域,其边界与y 轴垂直,宽度为l ,磁感应强度的大小为B ,方向垂直于xOy 平面;磁场的上、下两侧为电场区域,宽度均为l ´,电场强度的大小均为E ,方向均沿x 轴正方向;M 、N 为条状区域边界上的两点,它们的连线与y 轴平行,一带正电的粒子以某一速度从M 点沿y 轴正方向射入电场,经过一段时间后恰好以从M 点入射的速度从N 点沿y 轴正方向射出,不计重力. (1)定性画出该粒子在电磁场中运动的轨迹; (2)求该粒子从M 点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x 轴正方向的夹角为6π,求该粒子的比荷及其从M 点运动到N 点的时间.9.如图,在y >0的区域存在方向沿y 轴负方向的匀强电场,场强大小为E ;在y <0的区域存在方向垂直于xOy 平面向外的匀强磁场.一个氕核11H 和一个氘核21H 先后从y 轴上y =h 点以相同的动能射出,速度方向沿x 轴正方向.已知11H 进入磁场时,速度方向与x 轴正方向的夹角为45︒,并从坐标原点O 处第一次射出磁场. 氕核11H 的质量为m ,电荷量为q . 氘核21H 的质量为2m ,电荷量为q ,不计重力.求: (1)11H 第一次进入磁场的位置到原点O 的距离; (2)磁场的磁感应强度大小;(3)21H 第一次进入磁场到第一次离开磁场的运动时间.10.如图,空间存在方向垂直于纸面(xOy 平面)向里的磁场.在0x ≥区域,磁感应强度的大小为0B ;<0x 区域,磁感应强度的大小为0B λ(常数>1λ).一质量为m 、电荷量为q (q >0)的带电粒子以速度0v 从坐标原点O 沿x 轴正向射入磁场,此时开始计时,不计粒子重力,当粒子的速度方向再次沿x 轴正向时,求: (1)粒子运动的时间; (2)粒子与O 点间的距离.参考答案1.C 【解析】 【详解】A .如图所示,在ac 连线上,确定一b ′点,电势为17V ,将bb ′连线,即为等势线,那么垂直bb ′连线,则为电场线,再依据沿着电场线方向,电势降低,则电场线方向如下图,因为匀强电场,则有:cb U E d =,由比例关系可知:'26178cm 4.5cm 2610b c -=⨯=- 依据几何关系,则有:3.6cm b c bcd bb '⨯==='因此电场强度大小为:2617 2.5V/cm 3.6cb U E d -=== 故A 正确,不符合题意;B .根据φc -φa =φb -φo ,因a 、b 、c 三点电势分别为:φa =10V 、φb =17V 、φc =26V ,解得原点处的电势为φ0=1 V .故B 正确,不符合题意;C .因U ab =φa -φb =10-17=-7V ,电子从a 点到b 点电场力做功为:W =qU ab =-e×(-7V )=7 eV因电场力做正功,则电势能减小,那么电子在a 点的电势能比在b 点的高7eV ,故C 错误,符合题意。
高考物理电场与磁场知识点总结

高考物理电场与磁场知识点总结一、电场1、库仑定律真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上。
其表达式为:$F = k\frac{q_1q_2}{r^2}$,其中$k$为静电力常量,$k = 90×10^9 N·m^2/C^2$。
需要注意的是,库仑定律只适用于真空中的点电荷。
当两个电荷间的距离远远大于电荷本身的大小时,电荷可以看作点电荷。
2、电场强度电场强度是描述电场强弱和方向的物理量。
放入电场中某点的电荷所受的电场力$F$跟它的电荷量$q$的比值,叫做该点的电场强度,简称场强。
用$E$表示,其定义式为:$E =\frac{F}{q}$。
电场强度是矢量,其方向与正电荷在该点所受电场力的方向相同。
3、电场线电场线是为了形象地描述电场而引入的假想曲线。
电场线上每一点的切线方向都跟该点的场强方向一致。
电场线的疏密程度表示电场强度的大小,电场线越密的地方,场强越大;电场线越疏的地方,场强越小。
常见的电场线分布要牢记,比如正点电荷的电场线是发散的,负点电荷的电场线是汇聚的。
4、匀强电场在某个区域内,如果电场强度的大小和方向都相同,这个区域的电场就叫做匀强电场。
匀强电场的电场线是间距相等的平行直线。
5、电势能电荷在电场中由于受到电场力的作用而具有的与其位置有关的能量叫做电势能。
电场力做正功,电势能减小;电场力做负功,电势能增加。
6、电势电场中某点的电势,等于单位正电荷由该点移动到参考点(零电势点)时电场力所做的功。
电势是标量,只有大小,没有方向,但有正负之分。
7、等势面电场中电势相等的点构成的面叫做等势面。
等势面与电场线垂直,并且电场线总是由电势高的等势面指向电势低的等势面。
8、电势差电场中两点间电势的差值叫做电势差,也叫电压。
其表达式为:$U_{AB} =\varphi_A \varphi_B$。
9、电容电容器所带电荷量$Q$与电容器两极板间的电势差$U$的比值,叫做电容器的电容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高三物理第二轮复习:专题四——电场和磁场高中物理一、电场和磁场中的带电粒子1、知识网络2、方法点拨:分析带电粒子在电场、磁场中运动,要紧是两条线索:〔1〕力和运动的关系。
依照带电粒子所受的力,运用牛顿第二定律并结合运动学规律求解。
〔2〕功能关系。
依照场力及其它外力对带电粒子做功引起的能量变化或全过程中的功能关系,从而可确定带电粒子的运动情形,这条线索不但适用于平均场,也适用于非平均场。
因此要熟悉各种力做功的特点。
处理带电粒子在场中的运动咨询题应注意是否考虑带电粒子的重力。
这要依据具体情形而定,质子、α粒子、离子等微观粒子,一样不考虑重力;液滴、尘埃、小球等宏观带电粒子由题设条件决定,一样把装置在空间的方位介绍的专门明确的,都应考虑重力,有时还应依照题目的隐含条件来判定。
处理带电粒子在电场、磁场中的运动,还应画好示意图,在画图的基础上专门注意运用几何知识查找关系。
3、典型例题【例题1】如图1所示,图中虚线MN 是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B 的匀强磁场,方向垂直纸面向外。
O 是MN 上的一点,从O 点能够向磁场区域发射电量为+q 、质量为m 、速率为v 的粒子,粒子射入磁场时的速度可在纸面内各个方向。
先后射入的两个粒子恰好在磁场中给定的P 点相遇,P 到O 的距离为L ,不计重力及粒子间的相互作用。
〔1〕求所考察的粒子在磁场中的轨道半径;〔2〕求这两个粒子从O 点射入磁场的时刻间隔。
半径公式:qB mvR =周期公式:qB m T π2= 带电粒子在电场磁场中的运动带电粒子在电场中的运动带电粒子在磁场中的运动 带电粒子在复合场中的运动直线运动:如用电场加速或减速粒子偏转:类似平抛运动,一样分解成两个分运动求解 圆周运动:以点电荷为圆心运动或受装置约束运动直线运动〔当带电粒子的速度与磁场平行时〕 圆周运动〔当带电粒子的速度与磁场垂直时〕直线运动:垂直运动方向的力必定平稳 圆周运动:重力与电场力一定平稳,由洛伦兹力提供向心力 一样的曲线运动【点拨解疑】〔1〕设粒子在磁场中做圆周运动的轨道半径为R ,由牛顿第二定律得Rv m qvB 2=,那么qB mvR =〔2〕如图2所示,以OP 为弦能够画两个半径相同的圆,分不表示在P 点相遇的两个粒子的轨迹。
圆心分不为O 1、O 2,过O 点的直径分不为OO 1Q 1、OO 2Q 2,在O 点处两个圆的切线分不表示两个粒子的射入方向,用θ表示它们之间的夹角。
由几何关系可知,θ=∠=∠2211Q PO Q PO ,从O 点射入到相遇,粒子1的路程为半个圆周加弧长Q 1P =R θ,粒子2的路程为半个圆周减弧长PQ 2=R θ粒子1的运动时刻为 v R T t θ+=211,其中T 为圆周运动的周期。
粒子2运动的时刻为 vR T t θ-=212两粒子射入的时刻间隔为 vR t t t θ221=-=∆因为 22cos L R =θ 因此 RL2arccos2=θ有上述算式可解得 )2arccos(4mvLqBqB m t =∆点评:解带电粒子在磁场中运动的题,除了运用常规的解题思路〔画草图、找〝圆心〞、定〝半径〞〕之外,更应侧重于运用数学知识进行分析。
此题在众多的物理量和数学量中,角度是最关键的量,它既是建立几何量与物理量之间关系式的一个纽带,又是沟通几何图形与物理模型的桥梁。
【例题2】如图3所示,在直角坐标系的第一、二象限内有垂直于纸面的匀强磁场,第三象限有沿Y 轴负方向的匀强电场,第四象限内无电场和磁场。
质量为m 、带电量为q 的粒子从M 点以速度v 0沿x 轴负方向进入电场,不计粒子的重力,粒子经N 、P 最后又回到M 点。
设OM =L ,ON =2L ,那么:关于电场强度E 的大小,以下结论正确的选项是 〔 〕A .qL mv 204B .qL mv 20C .qL mv 2420D .qLmv 202〔2〕匀强磁场的方向是 。
〔3〕磁感应强度B 的大小是多少?【点拨解疑】 〔1〕由带电粒子在电场中做类平抛运动,易知221t mqE L =,且t v L 02=那么E =qL mv 202 应选C〔2〕由左手定那么,匀强磁场的方向为垂直纸面向里。
〔3〕依照粒子在电场中运动的情形可知,粒子带负电。
粒子在电场中做类平抛运动,设到达N 点的速度为v ,运动方向与x 轴负方向的夹角为θ,如图4所示。
由动能定理得2022121mv mv qEL -=将〔1〕式中的E 代入可得02v v =因此θ=45°粒子在磁场中做匀速圆周运动,通过P 点时速度方向也与x 轴负方向成45°角。
那么OP =OM =L NP =NO +OP =3L粒子在磁场中的轨道半径为R =Np cos45°=23 又qBmvR =解得 qLmv B 320=点评:带电粒子的复杂运动常常是由一些差不多运动组合而成的。
把握差不多运动的特点是解决这类咨询题的关键所在。
该题中,粒子在匀强磁场中运动轨迹的圆心不在y 轴上,注意到这一点是专门关键的。
【例题3】 如图5所示,在水平正交的匀强电场和匀强磁场中,半径为R 的光滑绝缘竖直圆环上,套有一个带正电的小球,小球所受电场力与重力相等,小球在环顶端A 点由静止开释,当小球运动的圆弧为周长的几分之几时,所受磁场力最大?【点拨解疑】 小球下滑的过程中,要使磁场力最大,那么需要速度最大。
OC 为与小球受到的重力、电场力的合力平行的半径。
由功能关系查找速度最大的点,因为洛伦兹力不做功,因此不考虑磁场的作用,从图中A 到C ,上述合力有切向分力,且与速度同向,因此做正功,小球动能增加;在C 点时,该合力为径向,没有切向分力;此后切向分力与线速度反向,动能将减小;故在C 点时速度最大,所受磁场力也最大。
由受力分析知mg =qE mg =qE tan α 得α= 45°由图知θ=α+90°=135°故小球运动的弧长与周长之比为83360135360==︒θ,因此运动的弧长为周长的83。
点评:讨论带电粒子的运动,必须熟悉各种力做功的特点。
该题也可用等效法处理。
把电场和重力场合起来当作一个新的重力场,那个重力场的竖直方向与原水平方向成45°角斜向下,如此就专门容易确定速度最大的点。
【例题4 】 从阴极K 发射的电子经电势差U 0=5000V的阳极加速后,沿平行于板面的方向从中央射入两块长L 1=10cm 、间距d =4cm 的平行金属板A 、B 之间,在离金属板边缘L 2=75cm 处放置一个直径D =20cm 、带有纪录纸的圆筒。
整个装置放在真空内,电子发射时的初速度不计,如图6所示,假设在金属板上加一U =1000cos2πt V 的交流电压,并使圆筒绕中心轴按图示方向以n=2r/s 匀速转动,分析电子在纪录纸上的轨迹形状并画出从t =0开始的1s 内所纪录到的图形。
【点拨解疑】 对电子的加速过程,由动能定理得:eU 0=21mv 02得电子加速后的速度 v 0=meU 02=4.2×107m/s电子进入偏转电场后,由于在其中运动的时刻极短,能够忽略运图6 图7动期间偏转电压的变化,认为电场是稳固的,因此电子做类平抛的运动。
如图7所示。
交流电压在A 、B 两板间产生的电场强度 t dUE π2cos 105.24⨯==V/m 电子飞离金属板时的偏转距离 201211)(2121v L m eE at y ==电子飞离金属板时的竖直速度 )(011v L m eE at v y ==电子从飞离金属板到到达圆筒时的偏转距离 020122v L v L m eE t v y y ==因此在纸筒上的落点对入射方向的总偏转距离为t dU U L L L mv eEL L L y y y π2cos 20.02)2()2(021212012121=+=+=+=m 可见,在纪录纸上的点在竖直方向上以振幅0.20m 、周期T =1s 做简谐运动。
因为圆筒每秒转2周,故转一周在纸上留下的是前半个余弦图形,接着的一周中,留下后半个图形,合起来,1s 内,在纸上的图形如图8所示。
点评:偏转电场假如不稳固,电子在其中的运动将专门复杂,因此理想化处理是解答此题的关键。
示波器是常用的电子仪器,其原理与该题的情形有相似之处。
二、电场、磁场中的能量转化1、知识网络能量及其相互转化是贯穿整个高中物理的一条主线,在电场、磁场中,也是分析解决咨询题的重要物理原理。
在电场、磁场的咨询题中,既会涉及其他领域中的功和能,又会涉及电场、磁场本身的功和能,相关知识如下表:2、方法技巧:假如带电粒子仅受电场力和磁场力作用,那么运动过程中,带电粒子的动能和电势能之间相互转化,总量守恒;假如带电粒子受电场力、磁场力之外,还受重力、弹簧弹力等,但没有摩擦力做功,带电粒子的电势能和机械能的总量守恒;更为一样的情形,除了电场力做功外,还有重力、摩擦力等做功,如选用动能定理,那么要分清有哪些力做功?做的是图8电、磁场中的功和能 电场中的功和能电势能由电荷间的相对位置决定,数值具有相对性,常取无电场力的功 与路径无关,仅与电荷移动的始末位置有关:W =qU 电场力的功和电势能的变化 电场力做正功 电势能 → 其他能 电场力做负功 其他能 → 电势能 转化转化磁场中的功和能洛伦兹力不做功 安培力的功 做正功:电能 → 机械能,如电动机 做负功:机械能 → 电能,如发电机转化 转化正功依旧负功?是恒力功依旧变力功?还要确定初态动能和末态动能;如选用能量守恒定律,那么要分清有哪种形式的能在增加,那种形式的能在减少?发生了如何样的能量转化?能量守恒的表达式能够是:①初态和末态的总能量相等,即E 初=E 末;②某些形势的能量的减少量等于其他形式的能量的增加量,即ΔE 减=ΔE 增;③各种形式的能量的增量〔ΔE =E 末-E 初〕的代数和为零,即ΔE 1+ΔE 2+…ΔE n =0。
电磁感应现象中,其他能向电能转化是通过安培力的功来量度的,感应电流在磁场中受到的安培力作了多少功就有多少电能产生,而这些电能又通过电流做功转变成其他能,如电阻上产生的内能、电动机产生的机械能等。
从能量的角度看,楞次定律确实是能量转化和守恒定律在电磁感应现象中的具体表现。
电磁感应过程往往涉及多种能量形势的转化,因此从功和能的观点入手,分析清晰能量转化的关系,往往是解决电磁感应咨询题的重要途径;在运用功能关系解决咨询题时,应注意能量转化的来龙去脉,顺着受力分析、做功分析、能量分析的思路严格进行,并注意功和能的对应关系。
3、典型例题【例题5】如图1所示,一个质量为m ,电量为-q 的小物体,可在水平轨道x 上运动,O 端有一与轨道垂直的固定墙,轨道处在场强大小为E ,方向沿Ox 轴正向的匀强磁场中,小物体以初速度v 0从点x 0沿Ox 轨道运动,运动中受到大小不变的摩擦力f 作用,且f <qE ,小物体与墙壁碰撞时不缺失机械能,求它在停止前所通过的总路程?【点拨解疑】 第一要认真分析小物体的运动过程,建立物理图景。