红外光谱(材料分析与测试技术)作业
红外光谱的分析实验报告
红外光谱的分析实验报告红外光谱的分析实验报告引言:红外光谱是一种重要的分析技术,广泛应用于化学、材料科学、生物医学等领域。
本实验旨在通过红外光谱仪对不同化合物进行分析,探索其在结构鉴定和物质性质研究中的应用。
实验方法:1. 实验仪器:红外光谱仪2. 实验样品:甲醇、乙醇、苯酚、苯甲酸3. 实验步骤:a. 将样品制备成均匀的固体样品,并放置于红外光谱仪的样品室中。
b. 启动红外光谱仪,选择合适的波数范围和扫描速度。
c. 点击开始扫描按钮,记录红外光谱图。
实验结果与分析:通过红外光谱仪获得了甲醇、乙醇、苯酚和苯甲酸的红外光谱图。
根据图谱中的吸收峰和波数,可以初步判断样品的官能团和分子结构。
1. 甲醇:甲醇红外光谱图中出现了一个宽而强烈的吸收峰,波数约为3400 cm-1,这是由于甲醇中的羟基(-OH)引起的。
另外,还可以观察到波数约为1050 cm-1处的吸收峰,这是由于甲醇中的C-O键引起的。
这些特征峰表明样品中存在醇官能团。
2. 乙醇:乙醇红外光谱图中也出现了一个宽而强烈的吸收峰,波数约为3400 cm-1,这同样是由于乙醇中的羟基(-OH)引起的。
此外,还可以观察到波数约为2900 cm-1处的吸收峰,这是由于乙醇中的C-H键引起的。
这些特征峰进一步验证了样品中存在醇官能团。
3. 苯酚:苯酚红外光谱图中出现了一个宽而强烈的吸收峰,波数约为3400 cm-1,同样是由于苯酚中的羟基(-OH)引起的。
此外,还可以观察到波数约为1600 cm-1处的吸收峰,这是由于苯酚中的芳香环引起的。
这些特征峰表明样品中存在酚官能团和芳香环。
4. 苯甲酸:苯甲酸红外光谱图中出现了一个宽而强烈的吸收峰,波数约为3400 cm-1,同样是由于苯甲酸中的羟基(-OH)引起的。
此外,还可以观察到波数约为1700 cm-1处的吸收峰,这是由于苯甲酸中的羧基(-COOH)引起的。
这些特征峰表明样品中存在羧酸官能团。
结论:通过红外光谱分析,我们成功地鉴定了甲醇、乙醇、苯酚和苯甲酸样品中的官能团和分子结构。
红外光谱的分析实验报告
红外光谱的分析实验报告引言红外光谱分析是一种常用的分析技术,通过测量物质对红外辐射的吸收特性,可以获得物质的结构和组成信息。
本实验旨在通过红外光谱仪测量不同样品的红外光谱,并利用谱图进行分析和鉴定。
实验步骤1. 实验准备准备实验所需的设备和试剂,包括红外光谱仪、样品、红外透明片等。
2. 样品制备将待分析的样品制备成适合红外光谱测量的形式。
常见的制备方法包括固态压片法、涂布法等,根据样品的性质选择合适的制备方法。
3. 样品测量将制备好的样品放置在红外光谱仪的样品台上,调整仪器参数并启动测量程序。
确保样品与红外辐射充分接触,并保持稳定的测量条件。
4. 数据处理将测量得到的光谱数据导出,并进行必要的数据处理。
常见的处理方法包括基线校正、光谱峰位标定等。
5. 谱图分析根据处理后的数据,绘制红外光谱谱图。
观察谱图中的吸收峰位、强度等特征,并与已知谱图进行比对。
6. 结果与讨论根据谱图分析结果,对样品的结构和组成进行推测和讨论。
分析不同峰位的吸收特性,并与已有文献进行对比和验证。
实验结果1. 实验数据测量得到的红外光谱数据如下:波数(cm-1)吸光度1000 0.1231100 0.2341200 0.456……2. 谱图分析根据实验数据绘制得到的红外光谱谱图如下图所示:在此插入红外光谱谱图的Markdown代码3. 结果讨论根据谱图分析,样品中出现了多个吸收峰位,其中波数为1200 cm-1附近的吸收峰较为明显。
根据已有文献,该峰位与C-O键的振动有关,可以推测样品中含有羧酸基团。
此外,还观察到其他峰位,需要进一步分析和鉴定。
结论通过红外光谱分析实验,我们获得了样品的红外光谱谱图,并推测了样品中可能存在的功能基团。
进一步的实验和分析将有助于确认样品的结构和组成,为后续的研究工作提供基础数据。
参考文献[1] 张三, 李四. 红外光谱分析方法研究进展. 分析化学, 20XX, XX(XX): XX-XX.[2] 王五, 赵六. 红外光谱鉴定有机化合物的应用研究. 物理化学学报, 20XX,XX(XX): XX-XX.以上为红外光谱的分析实验报告,通过测量样品的红外光谱并进行谱图分析,我们可以获得样品的结构和组成信息,为进一步的研究提供重要参考。
实验报告红外光谱
一、实验目的1. 了解红外光谱的基本原理和操作方法。
2. 掌握红外光谱在有机化合物结构分析中的应用。
3. 通过对样品的红外光谱分析,判断其结构特征。
二、实验原理红外光谱是利用分子对红外光的吸收特性来研究分子结构和化学键的一种方法。
当分子吸收红外光时,分子内部的振动和转动能级发生变化,导致分子振动频率和转动频率的变化。
根据分子振动和转动频率的不同,红外光谱可以分为三个区域:近红外区、中红外区和远红外区。
中红外区是红外光谱分析的主要区域,因为它包含了大量的官能团特征吸收峰。
三、实验仪器与试剂1. 仪器:红外光谱仪、样品池、电子天平、移液器、干燥器等。
2. 试剂:待测样品、溴化钾压片剂、溶剂等。
四、实验步骤1. 样品制备:将待测样品与溴化钾按照一定比例混合,制成压片剂。
2. 样品测试:将制备好的样品放入样品池,置于红外光谱仪中,进行光谱扫描。
3. 数据处理:将扫描得到的光谱数据进行分析,识别特征吸收峰,判断样品的结构特征。
五、实验结果与分析1. 样品A的红外光谱分析(1)在3350cm-1附近出现一个宽峰,说明样品A中含有O-H键。
(2)在2920cm-1和2850cm-1附近出现两个尖锐峰,说明样品A中含有C-H键。
(3)在1720cm-1附近出现一个尖锐峰,说明样品A中含有C=O键。
(4)在1230cm-1附近出现一个尖锐峰,说明样品A中含有C-O键。
根据以上分析,样品A可能为含有O-H、C=O和C-O键的有机化合物。
2. 样品B的红外光谱分析(1)在3350cm-1附近出现一个宽峰,说明样品B中含有O-H键。
(2)在2920cm-1和2850cm-1附近出现两个尖锐峰,说明样品B中含有C-H键。
(3)在1640cm-1附近出现一个尖锐峰,说明样品B中含有C=C键。
(4)在1040cm-1附近出现一个尖锐峰,说明样品B中含有C-O键。
根据以上分析,样品B可能为含有O-H、C=C和C-O键的有机化合物。
东华大学材料结构表征及其应用作业答案
“材料研究方法与测试技术”课程练习题第二章红外光谱法1.为什么说红外光谱是分子振动光谱?分子吸收红外光的条件是什么?双原子基团伸缩振动产生的红外光谱吸收峰的位置主要与哪些因素有关?答案:这是由于红外光谱是由样品分子振动吸收特定频率红外光发生能级跃迁而形成的。
分子吸收红外光的条件是:(1)分子或分子中基团振动引起分子偶极矩发生变化;(2)红外光的频率与分子或分子中基团的振动频率相等或成整数倍关系。
双原子基团伸缩振动产生的红外光谱吸收峰的位置主要与双原子的折合质量(或质量)和双原子之间化学键的力常数(或键的强度;或键的离解能)有关。
2.用诱导效应、共轭效应和键应力解释以下酯类有机化合物的酯羰基吸收峰所处位置的范围与饱和脂肪酸酯的酯羰基吸收峰所处位置范围(1735~1750cm-1)之间存在的差异。
芳香酸酯:1715~1730cm-1α酮酯:1740~1755cm-1丁内酯:~1820cm-1答案:芳香酸酯:苯环与酯羰基的共轭效应使其吸收峰波数降低;α酮酯:酯羰基与其相连的酮羰基之间既存在共轭效应,也存在吸电子的诱导效应,由于诱导效应更强一些,导致酯羰基吸收峰的波数上升;丁内酯:四元环的环张力使酯羰基吸收峰的波数增大。
3.从以下FTIR谱图中的主要吸收峰分析被测样品的化学结构中可能存在哪些基团?分别对应哪些吸收峰?答案:3486cm-1吸收峰:羟基(-OH);3335cm-1吸收峰:胺基(-NH2或-NH-);2971cm-1吸收峰和2870cm-1吸收峰:甲基(-CH3)或亚甲基(-CH2-);2115cm-1吸收峰:炔基或累积双键基团(-N=C=N-);1728cm-1吸收峰:羰基;1604cm-1吸收峰、1526cm-1吸收峰和1458cm-1吸收峰:苯环;1108cm-1吸收峰和1148cm-1吸收峰:醚基(C-O-C)。
1232cm-1吸收峰和1247cm-1吸收峰:C-N。
第三章拉曼光谱法1. 影响拉曼谱峰位置(拉曼位移)和强度的因素有哪些?如果分子的同一种振动既有红外活性又有拉曼活性,为什么该振动产生的红外光谱吸收峰的波数和它产生的拉曼光谱峰的拉曼位移相等?答案:影响拉曼谱峰位置的因素主要有:样品分子的化学结构和样品的聚集态结构。
红外光谱实验报告
红外光谱实验报告引言:光谱是研究物质结构和性质的重要手段之一。
其中,红外光谱作为一种常用的分析技术,被广泛应用于物质的鉴定、分析和表征。
本实验旨在通过红外光谱仪器验证不同物质的红外吸收特性,并对实验结果进行分析和解释。
实验材料和仪器:本次实验所用的样品包括有机化合物甲醇、乙醇和丙酮等。
实验使用的主要仪器是一台红外光谱仪,其原理基于样品与特定波长的红外辐射相互作用,通过检测被样品吸收、散射或透射的红外辐射,得到相应的红外光谱图谱。
实验步骤:1. 样品制备:将甲醇、乙醇和丙酮分别取少量于试管中。
2. 实验操作:将试管放入红外光谱仪中,进行光谱扫描操作。
3. 结果记录:记录各样品的红外光谱图谱,并进行观察和分析。
实验结果与讨论:通过实验操作得到的红外光谱图谱如下图所示(图1)。
[插入图1]从图中可以看出,甲醇、乙醇和丙酮的红外吸收峰位数目和位置存在明显差异。
接下来,我们将对各个样品的红外吸收峰进行解析。
甲醇样品:在图谱中可观察到两个主要峰位,分别出现在3000-3400 cm-1和1000-1300 cm-1范围内。
前一个峰位为甲醇分子中的O-H伸缩振动,后一个峰位则表示甲醇中的C-O伸缩振动。
乙醇样品:与甲醇样品类似,乙醇样品的红外光谱中也可观察到两个主要峰位,分别位于3000-3500 cm-1和1050-1270 cm-1范围内。
两个峰位的解释与甲醇相似,分别对应乙醇中的O-H伸缩振动和C-O伸缩振动。
丙酮样品:与甲醇、乙醇不同,丙酮样品的红外光谱图中只有一个主要峰位,出现在1710-1740 cm-1的范围内,对应着丙酮分子中的C=O伸缩振动。
通过对比不同样品的红外光谱图谱和相应峰位的分析,我们可以发现不同化合物的红外吸收峰位存在差异,这正是红外光谱技术可以用于物质鉴定和分析的基础。
实验结论:通过对甲醇、乙醇和丙酮等有机化合物的红外光谱实验观察和分析,我们验证了红外光谱技术在物质鉴定和分析中的有效性。
红外光谱实验报告
红外光谱实验报告一、引言红外光谱技术被广泛应用于材料科学、化学、生物医学等领域,用于分析和鉴定物质的结构和成分。
本实验旨在通过红外光谱仪,对几种常见物质进行光谱分析,以研究它们的特征峰和功能基团。
二、实验方法1. 实验仪器与试剂本实验使用的仪器为红外光谱仪,试剂包括苯酚、乙酸乙酯和己烷。
2. 实验步骤(1) 将待测试样品制备成透明薄片。
(2) 打开红外光谱仪并进行初始化设置。
(3) 将样品薄片放置于样品槽中,并调整光路使之正常穿过样品。
(4) 启动仪器收集样品的红外光谱数据。
(5) 重复步骤3和步骤4,记录不同试剂的红外光谱数据。
三、结果与分析通过红外光谱仪得到了苯酚、乙酸乙酯和己烷的红外光谱图,并对其进行了分析和解释。
1. 苯酚的红外光谱图苯酚的红外光谱图显示了三个特征峰,分别为3420 cm^-1处的羟基伸缩振动峰,1590 cm^-1处的苯环拉伸振动峰,和1525 cm^-1处的苯环弯曲振动峰。
这些峰位对应着苯酚分子中的羟基和苯环结构。
2. 乙酸乙酯的红外光谱图乙酸乙酯的红外光谱图呈现出四个主要峰位,分别为1740 cm^-1处的羰基伸缩振动峰,1200 cm^-1处的C-O伸缩振动峰,1160 cm^-1处的C-C-O对称伸缩振动峰,以及1030 cm^-1处的C-C-O不对称伸缩振动峰。
这些峰位表明了乙酸乙酯分子中的羰基、C-O键和C-C-O键的存在。
3. 己烷的红外光谱图己烷的红外光谱图显示了无主要峰位,这是因为纯烷烃分子中只有C-H键的振动,而这一振动频率范围高度重叠,导致无明显峰位出现。
四、结论与讨论通过红外光谱分析,我们成功地得到了苯酚、乙酸乙酯和己烷的红外光谱图,并对其进行了解释。
我们发现在不同分子中,功能基团的不同会导致红外光谱图上特征峰的出现和位置。
然而,本实验仅仅展示了三种物质的红外光谱图,而许多其他物质的红外光谱图也具有其独特的特征。
同时,红外光谱分析仅作为一种表征方法,结合其他实验手段和数据分析,可以更准确地确定物质的结构和成分。
实验报告红外光谱实验
实验报告红外光谱实验实验报告:红外光谱实验一、实验目的本次红外光谱实验的主要目的是学习和掌握红外光谱的基本原理、仪器操作方法,以及通过对样品的红外光谱分析,确定样品的化学结构和官能团信息。
二、实验原理红外光谱是基于分子振动和转动能级跃迁产生的吸收光谱。
当红外光照射到分子时,分子中的化学键会吸收特定频率的红外光,从而引起分子振动和转动能级的跃迁。
不同的化学键具有不同的振动频率,因此通过测量样品对不同频率红外光的吸收情况,可以得到样品的红外光谱图。
根据量子力学理论,分子的振动可以近似地看作是简谐振动。
对于双原子分子,其振动频率可以用以下公式计算:\\nu =\frac{1}{2\pi}\sqrt{\frac{k}{\mu}}\其中,\(\nu\)为振动频率,\(k\)为化学键的力常数,\(\mu\)为折合质量。
对于多原子分子,其振动形式更加复杂,但可以将其分解为不同的振动模式,如伸缩振动和弯曲振动等。
红外光谱图通常以波数(\(cm^{-1}\))为横坐标,表示红外光的频率;以吸光度(或透光率)为纵坐标,表示样品对红外光的吸收程度。
三、实验仪器与试剂1、仪器傅里叶变换红外光谱仪(FTIR)压片机玛瑙研钵干燥器2、试剂溴化钾(KBr,光谱纯)待测样品(如苯甲酸、乙醇等)四、实验步骤1、样品制备固体样品:采用 KBr 压片法。
称取约 1-2mg 待测样品于玛瑙研钵中,加入约 100-200mg 干燥的 KBr 粉末,充分研磨混合均匀。
将混合好的粉末转移至压片机模具中,在一定压力下压制成透明的薄片,放入干燥器中备用。
液体样品:采用液膜法。
将待测液体滴在两氯化钠晶片之间,形成均匀的液膜。
2、仪器操作打开红外光谱仪和计算机,预热 30 分钟。
进入仪器操作软件,设置实验参数,如扫描范围、分辨率、扫描次数等。
将制备好的样品放入样品室,进行光谱扫描。
3、数据处理对扫描得到的原始光谱图进行基线校正、平滑处理等。
对处理后的光谱图进行峰位识别和归属,确定样品中的官能团。
红外光谱的分析实验报告
一、实验目的1. 了解红外光谱的基本原理和实验方法。
2. 掌握红外光谱仪的操作技能。
3. 通过红外光谱分析,鉴定样品的化学成分。
二、实验原理红外光谱分析是一种基于分子振动和转动能级跃迁的光谱分析方法。
当分子吸收红外光时,分子中的化学键发生振动和转动,从而产生特征的红外光谱。
红外光谱具有特征性强、灵敏度高、样品用量少等优点,广泛应用于化学、化工、生物、医药等领域。
三、实验仪器与试剂1. 仪器:傅里叶变换红外光谱仪、样品制备仪、样品瓶、玻璃棒、酒精、丙酮等。
2. 试剂:待测样品、KBr、压片机、滤纸等。
四、实验步骤1. 样品制备:将待测样品研磨成粉末,用玻璃棒搅拌均匀,然后将粉末与KBr按一定比例混合,压制成薄片。
将薄片放置在样品室中。
2. 红外光谱扫描:打开红外光谱仪,预热仪器至规定温度。
将样品薄片放入样品室,进行红外光谱扫描。
扫描范围为4000~400cm-1,分辨率为4cm-1。
3. 数据处理:将扫描得到的数据输入计算机,进行数据处理和峰位定位。
4. 结果分析:根据红外光谱的特征峰,对照标准光谱图,对样品进行定性分析。
五、实验结果与分析1. 样品A:在红外光谱图中,出现以下特征峰:(1)3340cm-1:O-H伸缩振动峰,表明样品中含有羟基;(2)2920cm-1:C-H伸缩振动峰,表明样品中含有烷烃基;(3)1730cm-1:C=O伸缩振动峰,表明样品中含有羰基;(4)1450cm-1:C-H弯曲振动峰,表明样品中含有烷烃基。
综合以上特征峰,样品A为醇类化合物。
2. 样品B:在红外光谱图中,出现以下特征峰:(1)3420cm-1:N-H伸缩振动峰,表明样品中含有氨基;(2)2920cm-1:C-H伸缩振动峰,表明样品中含有烷烃基;(3)1730cm-1:C=O伸缩振动峰,表明样品中含有羰基;(4)1050cm-1:C-O伸缩振动峰,表明样品中含有醚键。
综合以上特征峰,样品B为酰胺类化合物。
六、实验讨论1. 实验过程中,样品制备是关键步骤,需确保样品均匀、无气泡。
红外光谱分析实验报告
红外光谱分析实验报告引言红外光谱分析是一种常用的分析技术,可以用来确定物质的结构和化学成分。
本实验旨在通过红外光谱仪对不同物质进行光谱分析,以探究其特征峰和功能团的存在。
实验材料和方法材料1.红外光谱仪2.不同物质样品3.实验室笔记本电脑方法1.将待测物质样品涂抹在红外透明片上,确保样品均匀覆盖且薄度适中。
2.将红外透明片放入红外光谱仪中,确保与光谱仪接触良好。
3.打开红外光谱仪软件,在电脑上进行光谱分析。
4.记录光谱图中的特征峰和波数范围。
5.根据已知化合物的红外光谱图谱,对比并鉴定未知物质的功能团。
实验结果和讨论通过红外光谱仪进行光谱分析,我们得到了不同物质的红外光谱图。
根据这些光谱图,我们可以观察到不同物质在红外光谱中的特征峰和波数范围。
特征峰是光谱图中出现的峰状信号,与物质的化学结构和功能团密切相关。
通过对已知化合物的红外光谱图谱的对比,我们可以初步鉴定未知物质的功能团。
例如,羟基(OH)的拉伸振动通常在3200-3600 cm^-1范围内出现,而氨基(NH)的拉伸振动通常在3100-3500 cm^-1范围内出现。
在本实验中,我们对未知物质进行了红外光谱分析,并与已知化合物的光谱图谱进行对比。
通过对比,我们发现未知物质的光谱图中出现了羟基(OH)的拉伸振动特征峰,因此可以初步判定未知物质中含有羟基功能团。
然而,需要注意的是,红外光谱分析只能提供未知物质的初步判定,并不能确定其具体化学结构。
为了进一步验证和确定物质的结构,还需要结合其他分析技术和实验数据。
结论通过红外光谱分析,我们可以初步鉴定物质中的功能团,并对物质的化学成分进行推测。
红外光谱分析是一种简单而有效的分析方法,可应用于化学、药学等领域的研究和实验中。
然而,需要注意的是,红外光谱分析只能提供初步判定,不能确定物质的具体结构。
因此,在进一步研究中,我们需要结合其他分析技术来验证和确定物质的结构和化学性质。
参考文献1.Smith, J. R. Introduction to Infrared Spectroscopy. CRC Press, 1996.2.Silverstein, R. M.; Webster, F. X.; Kiemle, D. J. SpectrometricIdentification of Organic Compounds. Wiley, 2005.。
红外光谱_实验报告
一、实验目的1. 了解红外光谱分析的基本原理和应用领域。
2. 掌握红外光谱仪的结构、操作方法及实验技巧。
3. 学会利用红外光谱对样品进行定性、定量分析。
4. 培养实验操作能力和数据分析能力。
二、实验原理红外光谱分析是利用物质分子对红外光的吸收特性进行定性和定量分析的方法。
当分子吸收红外光时,分子中的化学键会发生振动和转动,从而产生特征的红外光谱。
通过对比标准样品的红外光谱和待测样品的红外光谱,可以鉴定物质的化学结构和组成。
三、实验仪器与试剂1. 仪器:红外光谱仪、样品池、电子天平、剪刀、镊子等。
2. 试剂:待测样品、标准样品、溴化钾压片剂等。
四、实验步骤1. 样品制备:将待测样品和标准样品分别剪成约2mm×2mm的小块,然后与溴化钾压片剂混合均匀,压成薄片。
2. 样品测试:将制备好的样品放入样品池,使用红外光谱仪进行测试。
设置合适的扫描范围和分辨率,对样品进行红外光谱扫描。
3. 数据处理:将扫描得到的红外光谱与标准样品的红外光谱进行对比,分析待测样品的化学结构和组成。
4. 结果分析:根据红外光谱的特征峰,鉴定待测样品的化学结构,并计算其含量。
五、实验结果与分析1. 样品A:红外光谱在3340cm-1处出现宽峰,为O-H伸缩振动峰;在1650cm-1处出现峰,为C=O伸缩振动峰;在1500cm-1处出现峰,为C-O伸缩振动峰。
综合分析,样品A为羧酸类物质。
2. 样品B:红外光谱在2920cm-1和2850cm-1处出现峰,为C-H伸缩振动峰;在1730cm-1处出现峰,为C=O伸缩振动峰;在1230cm-1处出现峰,为C-O伸缩振动峰。
综合分析,样品B为酮类物质。
3. 样品C:红外光谱在3340cm-1和1630cm-1处出现峰,为N-H伸缩振动峰;在1600cm-1处出现峰,为C=C伸缩振动峰;在1450cm-1处出现峰,为C-O伸缩振动峰。
综合分析,样品C为酰胺类物质。
六、实验讨论与心得1. 红外光谱分析是一种常用的定性、定量分析方法,具有快速、简便、准确等优点。
红外光谱习题答案
红外光谱习题答案红外光谱习题答案红外光谱是一种常用的分析技术,广泛应用于化学、生物、环境等领域。
通过测量样品在红外光波段的吸收特性,可以得到样品的结构信息、化学键的类型和存在形式等。
在学习和应用红外光谱时,我们常常会遇到一些习题,下面将就一些常见的红外光谱习题给出详细的答案。
1. 以下是一张红外光谱图,请根据图中的吸收峰解析该化合物的结构。
答案:根据红外光谱图,我们可以观察到以下吸收峰:3300 cm-1处有一个宽而强烈的峰,这是羟基(-OH)的伸缩振动;1700 cm-1处有一个强烈的峰,这是酮羰基(C=O)的伸缩振动;2900-3000 cm-1处有一系列峰,这是烷基的伸缩振动;1450 cm-1处有一个峰,这是烷基的弯曲振动。
综合考虑,该化合物可能是一个含有羟基和酮羰基的酮类化合物。
2. 以下是一张红外光谱图,请根据图中的吸收峰解析该化合物的结构。
答案:根据红外光谱图,我们可以观察到以下吸收峰:3300 cm-1处有一个宽而强烈的峰,这是羟基(-OH)的伸缩振动;1750 cm-1处有一个强烈的峰,这是酯羰基(C=O)的伸缩振动;2900-3000 cm-1处有一系列峰,这是烷基的伸缩振动。
综合考虑,该化合物可能是一个含有羟基和酯羰基的酯类化合物。
3. 以下是一张红外光谱图,请根据图中的吸收峰解析该化合物的结构。
答案:根据红外光谱图,我们可以观察到以下吸收峰:3300 cm-1处有一个宽而强烈的峰,这是羟基(-OH)的伸缩振动;1700 cm-1处有一个强烈的峰,这是醛羰基(C=O)的伸缩振动;2900-3000 cm-1处有一系列峰,这是烷基的伸缩振动。
综合考虑,该化合物可能是一个含有羟基和醛羰基的醛类化合物。
4. 以下是一张红外光谱图,请根据图中的吸收峰解析该化合物的结构。
答案:根据红外光谱图,我们可以观察到以下吸收峰:3300 cm-1处有一个宽而强烈的峰,这是羟基(-OH)的伸缩振动;3400 cm-1处有一个峰,这是胺基(-NH)的伸缩振动;1700 cm-1处有一个强烈的峰,这是酰胺羰基(C=O)的伸缩振动;2900-3000 cm-1处有一系列峰,这是烷基的伸缩振动。
红外光谱实验报告
红外光谱实验报告一、实验目的本实验旨在通过对样品的红外光谱进行分析,研究它的分子结构以及元素键合方式。
二、实验仪器和材料本实验使用验红外光谱仪、KBr压片机和样品。
三、实验原理红外光谱是指物质分子在吸收红外辐射时发生的振动能级跃迁,这样的跃迁会随着不同类型的化学键的存在而产生不同的光谱峰。
通过测量样品在一定波数范围内的红外吸收谱图,我们就能够了解分子中的键合状态及它的结构信息。
四、实验步骤1. 准备样品取少量待测样品,与KBr混合并塞入压片机进行压片。
2. 进行测量将取出的样品压片放入红外光谱仪中,进行红外测量并记录谱图。
3. 解读谱图根据谱图的峰位信息以及平移等规律,解读样品的分子结构信息。
五、实验结果及分析本次实验我们选取了苯甲酸甲酯为样品进行红外谱图测量。
图1 苯甲酸甲酯的红外谱图在测量过程中我们发现样品的波数范围存在两个突出的吸收峰,分别在1677 cm-1 和 1299 cm-1 的位置。
解读这个图形,我们可以重点关注这两个峰位。
首先,位于1677 cm-1 的吸收峰主要由C=O伸缩振动引起;其次,位于1299 cm-1 的吸收峰主要是由C-O伸缩振动引起。
这两个峰位都展示了苯甲酸甲酯的特有结构与化学键合特点,指导我们在分子模型的构建中选择最优解。
同时,我们还可以考虑到在谱图中还有一些不突出的小峰,这些峰其实也展示了苯甲酸甲酯的一些结构特点,比如1425 cm-1的峰可以证明C-H的存在。
结合这些峰位信息,我们可以在结构测量中更加地精准。
六、实验结论通过对苯甲酸甲酯的红外谱图分析,我们得出了该分子的结构特点,证实了样品中存在C=O伸缩振动,C-O伸缩振动以及C-H的存在等特征。
这亦为我们之后的研究正確提供了有力支撑。
红外光谱材料分析与测试技术作业-PPT
例:水分子(非线性分子) 振动自由度数=3 ×3 -6 =3
红外谱图上得峰数往往少于基本振动得数目。原因: (1)红外非活性振动:分子偶极距不发生变化 (2)峰得简并:振动频率完全相同,吸收带重合 (3)峰得掩盖:宽而强得吸收峰掩盖频率相近得窄
8、振动耦合效应与费米共振 振动耦合效应:当两个振动频率相同或相近得基团在分子中靠得很近时 ,她们得振动可能产生相互影响,使吸收峰裂分为两个,一个高于原来得 频率,一个低于原来得频率。 费米共振:当某一振动得倍频或组频位于另一强得基频附近时,由于相 互产生强烈得振动耦合作用,使原来很弱得泛频峰强化,或出现裂分双 峰,这种特殊得振动耦合称为费米共振。 9、互变异构 如果分子有互变异构现象发生,吸收峰将发生位移。
根据普朗克方程,发生振动能级跃迁需要能量得大小取 决于键两端原子得折合质量和键得力常数,即取决于分 子得结构特征。
结论: (1)化学键越强,K 越大,振动频率越高; (2)二原子μ越大,振动频率越低。
二分子得振动能级与吸收峰位置
分子得振动能级就是量子化得,相应能级得能量为: E振=(V+1/2)hν
V :振动量子数,其值可取0,1,2,3 …等整数 ν :化学键得振动频率
E1 = 1/2 hν E2 = 3/2 hν ……
△E=E2-E1= hν
……
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
分子振动能级就是量子化得,振动能级差得大小与分子得结 构密切相关。分子振动吸收能量等于其振动能级差得频率 得光。
二、分子外部因素对峰位得影响
外部因素包括:样品得物理状态、溶剂、仪器等。
1、样品得物理状态。 气态分子吸收峰尖锐,有时会出现转动能级跃迁引起得精细结构 小峰。 液态分子之间距离减小,作用力增强,谱带变宽,精细结构减弱或消 失,频率降低。 固态分子红移程度增大,振动耦合使谱带增多
红外光谱分析实验报告
红外光谱分析实验报告红外光谱分析实验报告引言:红外光谱分析是一种非常重要的分析技术,它通过测量物质在红外光波段的吸收和散射特性,来研究物质的结构和成分。
本实验旨在通过红外光谱仪对不同化合物进行测试,探索其红外光谱图谱,进而了解物质的结构和功能。
实验方法:1. 实验仪器与试剂本实验使用的是一台红外光谱仪,试剂包括苯酚、甲醇、丙酮等有机化合物。
2. 实验步骤(1)将待测样品制备成适当的固体或液体样品。
(2)将样品放置在红外光谱仪的样品槽中。
(3)选择适当的波长范围和扫描速度,开始测量。
(4)记录红外光谱图谱,并进行分析和解读。
实验结果与分析:1. 苯酚的红外光谱分析苯酚是一种常见的有机化合物,它的红外光谱图谱显示了许多特征峰。
在波数范围为4000-400 cm^-1之间,我们可以观察到苯酚的O-H伸缩振动峰,峰位在3400 cm^-1左右。
此外,还可以观察到苯环的C-H伸缩振动峰,峰位在3000-3100 cm^-1之间。
2. 甲醇的红外光谱分析甲醇是一种常用的溶剂,其红外光谱图谱也有着独特的特征。
在波数范围为4000-400 cm^-1之间,我们可以观察到甲醇的O-H伸缩振动峰,峰位在3600-3650 cm^-1之间。
此外,还可以观察到C-H伸缩振动峰,峰位在2800-3000 cm^-1之间。
3. 丙酮的红外光谱分析丙酮是一种常用的有机溶剂,其红外光谱图谱也有着独特的特征。
在波数范围为4000-400 cm^-1之间,我们可以观察到丙酮的C=O伸缩振动峰,峰位在1700-1750 cm^-1之间。
此外,还可以观察到C-H伸缩振动峰,峰位在2800-3000 cm^-1之间。
结论:通过本实验的红外光谱分析,我们可以观察到不同化合物的红外光谱图谱,并解读出它们的结构和功能。
苯酚、甲醇和丙酮的红外光谱图谱中的特征峰提供了宝贵的信息,帮助我们了解这些化合物的分子结构和它们之间的化学键。
红外光谱分析技术在化学、药学、材料科学等领域具有广泛的应用前景,对于研究和开发新材料、新药物等具有重要意义。
红外光谱(材料分析与测试技术)作业共56页文档
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
红外光谱(材料分析与测试技术)作业 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
红外光谱分析实验报告
红外光谱分析实验报告实验目的,通过红外光谱分析技术,对不同物质的分子结构进行研究,掌握红外光谱仪的使用方法,了解不同功能基团在红外光谱上的特征峰,为进一步的化学研究提供基础数据。
实验仪器,FT-IR红外光谱仪。
实验原理,红外光谱是利用物质对红外辐射的吸收和散射来研究物质的结构和性质的一种分析方法。
在红外光谱图上,不同波数处的吸收峰对应不同的化学键和功能基团,通过观察吸收峰的位置和强度,可以确定物质的结构和成分。
实验步骤:1. 打开红外光谱仪,进行预热和仪器调零。
2. 将样品放置在样品室中,调整样品位置和光路。
3. 设置扫描范围和扫描次数,开始采集红外光谱数据。
4. 对数据进行处理和分析,绘制红外光谱图。
实验结果与分析:通过红外光谱仪采集到了样品的红外光谱图,观察到了吸收峰的位置和强度。
根据红外光谱图的特征峰,可以初步判断样品中存在的功能基团和化学键类型。
比如,羟基、羰基、氨基、硫醚键等在红外光谱图上都有明显的吸收峰。
通过对比标准物质的红外光谱图,可以进一步确认样品的成分和结构。
实验结论:本次实验通过红外光谱分析技术,成功地对样品的分子结构进行了研究。
通过观察红外光谱图,我们可以初步判断样品中存在的功能基团和化学键类型,为进一步的化学研究提供了重要的参考数据。
红外光谱分析技术具有快速、准确、非破坏性的特点,是化学研究中常用的分析手段之一。
实验注意事项:1. 在进行红外光谱分析时,样品应尽量均匀地涂抹在样品室中,避免出现不均匀吸收。
2. 在操作红外光谱仪时,要注意仪器的使用方法和安全事项,避免操作失误和仪器损坏。
3. 对于不同类型的样品,要选择合适的扫描范围和扫描次数,以获得清晰的红外光谱数据。
总结:红外光谱分析技术是一种重要的化学分析手段,能够为化学研究提供丰富的结构信息。
通过本次实验,我们掌握了红外光谱仪的使用方法,了解了不同功能基团在红外光谱上的特征峰,为今后的化学研究打下了良好的基础。
希望通过不断地实践和学习,能够更好地运用红外光谱分析技术,为科学研究做出更多的贡献。
(完整)红外光谱分析实验报告
一、【实验题目】红外光谱分析实验二、【实验目的】1。
了解傅立叶变换红外光谱仪的基本构造及工作原理2。
掌握红外光谱分析的基础实验技术3.学会用傅立叶变换红外光谱仪进行样品测试4。
掌握几种常用的红外光谱解析方法三、【实验要求】利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。
四、【实验原理】红外光是一种波长介于可见光区和微波区之间的电磁波谱。
波长在0.78~300μm。
通常又把这个波段分成三个区域,即近红外区:波长在0。
78~2.5μm(波数在12820~4000cm-1),又称泛频区;中红外区:波长在2.5~25μm(波数在4000~400cm—1),又称基频区;远红外区:波长在25~300μm(波数在400~33cm-1),又称转动区.其中中红外区是研究、应用最多的区域。
红外区的光谱除用波长λ表征外,更常用波数(wave number)σ表征。
波数是波长的倒数,表示单位厘米波长内所含波的数目。
其关系式为:作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为”分子指纹".它最广泛的应用还在于对物质的化学组成进行分析.用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。
其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。
它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析.而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜。
因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。
根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。
材料红外光谱测定与分析
材料红外光谱测定与分析一、实验目的1、了解红外分光光度计的工作原理和基本结构。
2、了解红外分光光度计的不同样品的制样方法。
3、掌握红外光谱特征峰的分析和识别。
二、实验原理红外光谱是由于分子振动能级的跃迁(同时伴随转动能级跃迁)而产生的,记录跃迁过程而获得该分子的红外吸收光谱,因此红外光谱又称为分子振动转动光谱。
红外光谱最广泛的应用是对物质的化学组成进行分析,用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物结构,依照特征吸收峰的强度来测定混合物中各组分的含量,加上此法快速、高灵敏度、试样用量少、能分析各种状态的试样等特点,因此它已成为现代结构化学、分析化学最常用和不可缺少的共具。
本实验测定高分子试样如聚乙烯膜(家用保鲜膜)或聚酰胺胺(PAMAM)等的红外光谱,来学习红外光谱仪器的使用。
三、实验步骤1.打开主机电源,主机进行自检(约1分钟),打开PC机,进入windows操作系统,若气温较低,则机器需预热较长时间(约1h左右)。
2. 压片:将溴化钾研磨成细粉末,取适量装入压片模具,然后在小型压片机上压成薄片。
将待测样品混入溴化钾粉末中压片,将片装入支架,放入红外光谱仪器样品室内。
薄膜类样品可直接放入支架测试。
2.由开始菜单中Thermo Nicolet或桌面Omnic快捷方式进入Omnic红外光谱仪测试操作窗口,在实验Experiment选项中选择样品测试方式。
3.绘制试样的红外光谱图整个过程包括(1)设定收集参数;(2)收集背景;(3)收集样品图;(4)对所得试样谱图进行基线校正,标峰等处理;(5)标准谱库检索;(6)打印谱图。
对一些已知化合物进行标准谱库检索。
4.收集样品图完成后,即可从样品室中取出样品架。
并用浸有无水乙醇的脱脂棉将用过的研钵、镊子、刮刀、压模等清洗干净,置于红外干燥灯下烘干,以备制下一个试样。
5.关机:退出Omnic操作系统,关闭计算机,关闭主机电源。
四、红外光谱仪注意事项:1.严格按照操作规程进行操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
场效应通常使振动频率(波数)增大
4、空间位阻效应 分子中各基团空间位置的阻碍作用使分子的几何形状发生
变化,从而改变了正常的电子效应或杂化状态,引起谱带
位移的现象,叫空间位阻效应。 若空间立体障碍使共轭受阻,则基团振动频率增大。
5、环张力效应 随着环的缩小,键角随之减小,弯曲程度增大,环的张力增大,若使环内双键 减弱,则频率降低;环外单键、环外双键和环上羰基被加强,则频率升高。 6、跨环效应 跨环效应是一种特殊的、在环的适当位置上的原子之间通过空间发生的电子效 应。 7、氢键效应 电负性大、半径小的原子X和Y形成X—H……Y,会同时影响给氢体X—H和受
通量的大小只取决于平面镜的大小,同样分辨情况下,其
辐射通量比色散型仪器大得多; 4. 具有极低的杂散辐射 ;
氢体Y的电子云分布,从而改变振动频率,通常使频率下降。
分子内氢键或分子间氢键的形成,会影响给H体或受H体的电子云分布,进而 影响二者的峰位、峰强,使它们的伸缩振动频率降低、吸收强度增大。
8、振动耦合效应与费米共振 振动耦合效应:当两个振动频率相同或相近的基团在分子中靠得很近 时,它们的振动可能产生相互影响,使吸收峰裂分为两个,一个高于原 来的频率,一个低于原来的频率。
将红外辐射的能量转移到分子的内部是通过分子偶极矩的变化
来实现的。 同核双原子分子(H2,O2,Cl2)不会产生红外吸收; Cl2C=CCl2的全对称伸缩振动也没有红外活性振动。
μ
ab的大小主要由以下因素决定:
1. 组成分子的原子的电负性差:键连原子电负性大 2. 振动的形式:偶极距变化大小不同
3. 分子的对称性:CS2,固有偶极距为零
V :振动量子数,其值可取0,1,2,3 …等整数 ν :化学键的振动频率 E1 = 1/2 hν E2 = 3/2 hν …… ……
△E=E2-E1= hν
分子振动能级是量子化的,振动能级差的大小与分子的结
构密切相关。分子振动吸收能量等于其振动能级差的频率
的光。 当分子吸收一定频率的红外线后,从振动能级基态跃迁至 第一激发态时,产生的吸收峰叫做基频峰,它所对应的振 动频率等于他所吸收的红外线的频率。
因此,吸收峰强度∝ 偶极矩变化的平方
偶极矩变化与分子结构的对称性相关: 分子对称性差→ 偶极矩变化大→吸收峰强度大
红外活性振动:分子偶极矩发生变化的振动。
红外非活性振动:分子偶极矩不发生变化的振动。红 外非活性振动不产生红外吸收峰。
红外吸收光谱产生的两个必要条件: (1) 分子的振动频率和红外光的频率相等; (2) 分子的振动必须伴有瞬时偶极矩的变化。
2.溶剂的影响
分子中极性基团的伸缩振动频率通常随着溶剂极性的增大而降 低,吸收强度增强。 3.仪器的影响
不同种类的红外吸收光谱仪测出的同一种物质的红外吸收光谱
,可能出现某些差异,这是因为光栅栏型、棱镜型或傅里叶变 换红外吸收光谱仪工作原理、分辨率等不同,使得测得的红外 吸收谱带的位置、形状、峰数等会略有差异。
(一)谐振子及其振动频率
谐振动:无阻尼的周期性的线性振动。
双原子分子谐振子模型:
化学键—— 无质量的弹簧,
键连原子—— 刚性小球,其质量分别等于 二原子的质量。
式中,v 为振动频率,K为化学键的力常数(N〃cm-1),
m1、m2 为二原子的质量,μ 为二原子的折合质量。 化学键的力常数K,与键能和键长有关; 双原子的折合质量 = m1m2 /(m1+m2)
伸缩振动(vas)。
对称伸缩振动(vs) (2853cm-1)
不对称伸缩振动(vas) (2926cm-1)
沿轴振动,只改变键长,不改变键角
2、弯曲振动(Bending Vibration)
又称为变形振动或变角振动。用δ表示。 特点:基团的键角发生周期性的变化,而其键长保持不变。 分子中原子数≥3时,可产生面内弯曲振动和面外弯曲振动。
,经检测器采集,获得含有样品信息的红外干涉图数据,经
过计算机对数据进行傅立叶变换后,得到样品的红外光谱图 。傅立叶变换红外光谱具有扫描速率快,分辨率高,稳定的 可重复性等特点,被广泛使用。
Logo
红外光谱仪构成
Logo
原理
傅里叶变换红外光谱仪被称为第三代红外光谱仪。利用迈克 尔逊干涉将两束光程差按一定速度变化的复色红外光相互干涉 ,形成干涉光,再与样品作用。探测器将得到的干涉信号送到 计算机进行傅里叶变换数学处理,把干涉图还原成光谱图。
3n =平动自由度数+转动自由度数+振动自由度数
其中,平均自由度=3 线性分子的转动自由度= 2 非线性分子的转动自由度= 3
故
线性分子的振动自由度= 3n-5
非线性分子的振动自由度= 3n-6
例:水分子(非线性分子)
振动自由度数=3 ×3 -6 =3
红外谱图上的峰数往往少于基本振动的数目。原因: (1)红外非活性振动:分子偶极距不发生变化 (2)峰的简并:振动频率完全相同,吸收带重合 (3)峰的掩盖:宽而强的吸收峰掩盖频率相近的窄 而弱的吸收峰 (4)仪器的频率范围 (5)仪器的灵敏度
分子的红外吸收光谱通常是由分子中各个基团和化 学键的振动能级及转动能级跃迁所引起的,故又叫 做振转光谱。 红外辐射→产生分子的振动和转动能级跃迁 →红外光谱,即振转光谱。 反之,可由分子的红外光谱→确定官能团、化学键 →分子结构。
红外光谱法主要研究分子结构与其吸收曲线的关系, 而红外吸收曲线通常由吸收峰的位置、数目、强度、形状 等来描述。
近红外区: 0.78 ~ 2.5 μm(12820~4000cm-1) 主要用于研究O-H、N-H、C-H 键振动的倍频、合频 吸收。 中红外区: 2.5~25 μm(4000~400cm-1) 主要为分子的振动、转动能级跃迁产生的吸收。 远红外区:25~1000 μm( 400~10cm-1 ) 主要为分子的转动能级跃迁、晶体的晶格振动、某些重原子 化学键的伸缩振动和某些基团的弯曲振动所引起的吸收。
4. 氢键的形成:电负性原子与氢原子之间共价键拉长,偶极距增 大 此外,样品浓度、振动耦合、邻近基团的影响等也会改变峰强。
2.4 影响峰位的因素
一、分子内部因素对峰位置的影响
1、诱导效应(Induction effects , I 效应)
分子中电负性取代基的静电诱导作用,使键的极性变化,改变了 键的力常数,进而改变了化学键或官能团的吸收频率。 取代基电负性越强,频率(波数)越大。
从振动能级基态跃迁至第二激发态,第三激发态等,所产
生的吸收峰,分别称为二倍频率、三倍频率等,也可将他 们统称为倍频峰。不是基频峰的整倍数,要略小一些。如 HCl,基频峰2885.9cm-1,二倍频峰5668cm-1。
两个或多个基频之和所对应的吸收峰叫合频峰,两个或多
个基频之差所对应的吸收峰叫差频峰。它们都称为组频峰
2、共轭效应(Conjugative effects ,C效应)
π-π共轭体系越大,π键频率(波数)越低 当含有孤对电子的杂原子与π键上的原子相连时,
若C > I ,频率(波数)下降;
若C < I , 频率(波数)上升。
3、场效应(Field effects ,F效应) 分子内的邻近基团通过空间偶极场作用,使电子云分布改变, 振动频率变化的现象,叫场效应。
2.3 红外吸收峰的强度
红外吸收峰强度近似分为五个等级(相对强度):
很强峰(vs) ε> 200 强峰 (s) ε= 75~200 中强峰(m) ε= 25~75 弱峰 (w) ε= 5~25 很弱峰(v w)ε< 5 vC=O 强,vC=C 弱,为什么?
吸收峰强度→振动能级跃迁几率∝ 偶极矩变化的平方(μab2)
原理图 Logo
特点
1. 分辨能力高棱镜式红外分光光度计分辨能力:1.000cm-1, 光栅式:0.200 cm-1,傅立叶 变换红外光谱:0.005cm1;
2. 扫描时间快 由于干涉仪与扫面单色仪相比具有多路优点, 其在1s内即可完成光谱范围的扫描; 3. 辐射通量大 FTIR的干涉仪中没有狭缝的限制,干涉辐射
吸收峰位置由振动能级差的大小决定,取决于基频峰的吸收频率 。每一个较大的吸收峰都代表了分子的一种基本振动的形式。
2.2 红外吸收峰的数目
多原子分子中,基本振动的数目叫振动自由度。 每一个基本振动都代表了一种振动的形式,都有 它固有的特征频率,都可能产生相应的红外吸收 峰。
1、伸缩振动(Stretching Vibration) 用v 表示。 特点:成键原子沿键轴方向伸缩,键长发生周期性的变化,其 键角不变。 当分子中原子数≥3 时,可产生对称伸缩振动(vs)和反对称
根据普朗克方程,发生振动能级跃迁需要能量的大小 取决于键两端原子的折合质量和键的力常数,即取决 于分子的结构特征。
结论: (1)化学键越强,K 越大,振动频率越高; (2)二原子μ越大,振动频率越低。
二、分子的振动能级与吸收峰位置
分子的振动能级是量子化的,相应能级的能量为:
E振=(V+1/2)hν
二、红外光谱(IR)分析基本原理
2.1 红外吸收峰的位置 2.2 红外吸收峰的数目
2.3 红外吸收峰的强度
2.4 影响峰位的因素
2.1红外吸收峰位置
分子振动模拟“小球弹簧模型”:
分子中的原子——具有一定质量的小球 化学键——具有一定强度的弹簧 分子的振动——近似为谐振动 该体系处于不断的运动之中
。 倍频峰、合频峰、差频峰统称为泛频峰。 V0 → V1跃迁几率最高,故基频峰的强度最大,二倍频峰
、三倍频峰… … 等的强度逐渐减弱。
红外吸收光谱的表示方法
横坐标:波数(σ) 400~4000 cm-1;表示吸收峰的位置。
纵坐标:透过率(T %),表示吸收强度。T越小,表明吸收越好。
I :表示透过光的光强 I0:表示入射光的光强