矩阵键盘原理与结构
51单片机矩阵键盘原理
51单片机矩阵键盘原理51单片机矩阵键盘原理矩阵键盘是一种常用的输入设备,可以通过少量的I/O口控制多个按键。
51单片机作为嵌入式系统中常用的控制器,也可以通过控制矩阵键盘来实现输入功能。
1. 矩阵键盘的结构矩阵键盘由多个按键组成,每个按键都有一个引脚与其他按键共用,形成了一个按键矩阵。
例如,4x4的矩阵键盘有16个按键,其中每行和每列各有4个引脚。
2. 矩阵键盘的工作原理当用户按下某一个按键时,该按键所在行和列之间会形成一个电路通路。
这时,51单片机可以通过扫描所有行和列的电路状态来检测到用户所按下的具体按键。
具体实现过程如下:(1)将每一行引脚设置为输出状态,并将其输出高电平;(2)将每一列引脚设置为输入状态,并开启上拉电阻;(3)逐一扫描每一行引脚,当发现某一行被拉低时,则表示该行对应的某一个按键被按下;(4)记录下该行号,并将该行引脚设置为输入状态,其余行引脚设置为输出状态;(5)逐一扫描每一列引脚,当发现某一列被拉低时,则表示该列对应的是刚才所记录下的行号及其对应的按键;(6)通过行号和列号确定具体按键,并进行相应的处理。
3. 代码实现下面是一个简单的51单片机矩阵键盘扫描程序:```c#include <reg52.h> //头文件sbit row1 = P1^0; //定义引脚sbit row2 = P1^1;sbit row3 = P1^2;sbit row4 = P1^3;sbit col1 = P1^4;sbit col2 = P1^5;sbit col3 = P1^6;sbit col4 = P1^7;unsigned char keyscan(void) //函数定义{unsigned char keyvalue; //定义变量while(1) //循环扫描{row1=0;row2=row3=row4=1; //设置行状态 if(col1==0){keyvalue='7';break;} //读取按键值 if(col2==0){keyvalue='8';break;}if(col3==0){keyvalue='9';break;}if(col4==0){keyvalue='/';break;}row2=0;row1=row3=row4=1;if(col1==0){keyvalue='4';break;}if(col2==0){keyvalue='5';break;}if(col3==0){keyvalue='6';break;} if(col4==0){keyvalue='*';break;}row3=0;row1=row2=row4=1; if(col1==0){keyvalue='1';break;} if(col2==0){keyvalue='2';break;} if(col3==0){keyvalue='3';break;} if(col4==0){keyvalue='-';break;}row4=0;row1=row2=row3=1; if(col1==0){keyvalue='C';break;} if(col2==0){keyvalue='0';break;} if(col3==0){keyvalue='=';break;} if(col4==0){keyvalue='+';break;}}return keyvalue; //返回按键值}void main() //主函数{unsigned char key;while(1) //循环读取{key = keyscan(); //调用函数}}```以上代码实现了一个简单的矩阵键盘扫描程序,可以通过调用`keyscan()`函数来获取用户所按下的具体按键值。
stm32矩阵键盘原理
STM32矩阵键盘原理详解引言矩阵键盘是一种常见的输入设备,广泛应用于电子产品中。
在STM32微控制器中,利用GPIO引脚实现矩阵键盘控制相对简单,本文将详细介绍STM32矩阵键盘的基本原理。
基本原理矩阵键盘由多个按键组成,通常采用行列式排列。
每个按键都由一个触点和一个按键外壳组成,触点一般为弹簧式结构,按下按键时触点接通,释放按键时触点断开。
矩阵键盘的连接方式矩阵键盘的每个按键都被分配一个行号和列号,通过行线和列线来连接按键和控制芯片。
STM32通过GPIO来控制行线和列线的电平,实现按键的扫描和检测。
在STM32中,行线和列线可以连接到不同的GPIO引脚上。
行线连接到输出引脚,列线连接到输入引脚。
这样,通过对行线的输出和对列线的输入,可以实现对矩阵键盘的扫描和检测。
矩阵键盘的扫描原理矩阵键盘的扫描原理可以简单描述为以下几个步骤:1.将所有行线设置为高电平,所有列线设置为输入模式。
2.逐个将行线设置为低电平,并同时检测列线引脚的电平状态。
3.如果某一列的输入引脚检测到低电平,表示该列对应的按键被按下。
4.通过行线和列线的对应关系,确定被按下的按键的行号和列号。
矩阵键盘的按键映射通过扫描后,可以得到被按下的按键的行号和列号,STM32可以根据行列号的映射关系将按键信息转化为相应的按键值。
通常,矩阵键盘的按键映射是通过二维数组来实现的。
数组的行号对应行线,列号对应列线。
数组中的元素对应按键的键值。
例如,要实现一个4x4的矩阵键盘,可以通过以下数组表示按键的映射关系:uint8_t keyMap[4][4] = {{ '1', '2', '3', 'A' },{ '4', '5', '6', 'B' },{ '7', '8', '9', 'C' },{ '*', '0', '#', 'D' }};通过行列号可以确定数组中的元素,从而得到按键的键值。
矩阵键盘的原理及应用
矩阵键盘的原理及应用1. 矩阵键盘的原理矩阵键盘是一种常见的输入设备,由多个按键组成,可以同时检测多个按键的状态。
它采用了行列交叉的按键排列方式,通过按键的组合来实现多个输入选项。
其原理主要包括以下几个方面:1.1. 电路结构矩阵键盘的电路结构也称为“行列式键盘”,主要由行线(Row)和列线(Column)组成。
行线和列线通过导线互相交叉连接形成一个矩阵,每个按键都对应矩阵中的一个交叉点。
按键按下时,会导通对应的行线和列线,从而实现按键的状态检测。
1.2. 矩阵扫描矩阵键盘的工作原理是通过矩阵扫描来检测按键状态。
扫描过程由控制器完成,控制器通过逐行扫描的方式检测按键状态。
具体流程如下:1.所有行线置为高电平,所有列线设置为输入模式。
2.逐行将某一行设置为低电平,同时读取列线上的状态。
3.根据读取到的列线状态,确定按下的按键。
4.更新按键的状态,并记录下来。
5.重复以上步骤,直到扫描结束。
1.3. 按键编码矩阵键盘检测到按键状态后,需要进行按键编码,将按键状态转化为数字或字符。
常见的按键编码方式有两种:•行列编码:将矩阵键盘的行和列对应关系转化为一个唯一的值,通常使用二进制编码来表示。
•状态编码:通过按键的状态(按下或释放)来表示,通常使用两个状态位来编码。
2. 矩阵键盘的应用矩阵键盘由于其结构简单、使用方便等特点,在多个领域都得到了广泛的应用。
以下是矩阵键盘的一些常见应用场景:2.1. 电子产品矩阵键盘在电子产品中被广泛应用,比如手机、电视遥控器、计算器等。
它可以提供多个输入选项,方便用户进行操作。
矩阵键盘的结构紧凑,可与其他电路板集成,节省空间,适用于小型电子产品。
2.2. 工业控制矩阵键盘在工业控制领域也有重要应用。
比如工控终端设备、仪表仪器等,可以利用矩阵键盘实现数据输入和操作控制。
由于矩阵键盘可以同时检测多个按键的状态,因此非常适合于工业环境中需要同时输入多个信号的场合。
2.3. 家用电器矩阵键盘在家用电器中也有广泛应用,如洗衣机、微波炉、冰箱等。
4×5矩阵键盘驱动程序
4×5矩阵键盘驱动程序一、工作原理及接口电路4×5矩阵键盘有4条列线,5条行线共20个按键。
每个按键对应不同键值,键盘扫描采用外部中断扫描方式,本系统中键盘为无源结构,键盘工作时不依靠任何外部电源。
4×5矩阵键盘结构图如图2-10 所示。
图2-10 4×5矩阵键盘结构图1)4×5矩阵键盘结构及按键抖动消除当键盘中按键数量较多时为减少I/O口的占用,通常将按键排列成矩阵形式,如图2-12所示。
在矩阵式键盘中,每条行线和列线在交叉处不直接连通,而是通过一个机械弹性开关加以连接。
这样5条列线(R0~R4)和4条行线(L0~L3)就可以构成20个按键的矩阵键盘。
键盘采用了无源结构,工作是不依靠任何外部电源。
由于机械弹性开关的机械触点的弹性作用,一个按键开关在闭合时并不会马上稳定的闭合,在断开时也不会马上断开,因而机械开关在闭合及断开瞬间均伴有一连串的抖动,如图2-11所示。
图2-11 按键时的抖动抖动的时间长短由按键开关机械特性及按键的人为因素决定,一般为5ms~20ms。
按键抖动如果处理不当会引起一次按键被误处理多次,所以消除抖动是必要的。
消除抖动的有硬件处理和软件处理两种方法。
当按键较多一般采用软件消抖方式。
软件消抖原理为当检测出按键闭合后执行一个延时程序(产生5ms~20ms的延时),待前沿抖动消失后再次检测按键的状态,如果按键仍保持闭合状态则可确认为有键按下。
当检测到按键释放并执行延时程序,待后沿抖动消失后才转入按键的处理程序。
1)矩阵键盘的工作原理从4×5矩阵键盘的4条列线和5条行线分别引出9条端线接于单片机的9个I/O口,由于键盘采用了无源结构所以行列线的电平由单片机I/O口的电平决定。
进入按键处理程序后先使4条列线全为低电平,5条行线全为高电平,为读行线状态做准备,没有按键时这种状态不会被改变。
当键盘上的某个按键闭合时,则该键所对应的行线和列线被短路。
《矩阵键盘》课件
游戏机按键通常配备震动反馈 功能,提供触觉反馈,增强游 戏体验的真实感。
工业控制设备
工业控制设备如自动 化仪表、数控机床等 也采用矩阵键盘布局 。
工业控制设备的矩阵 键盘通常防水、防尘 ,适应恶劣的工业环 境。
矩阵键盘的设计使得 工业控制设备能够实 现快速、准确的输入 控制指令。
06
矩阵键盘的未来展望
。
扫描程序
按照一定的规则逐行逐列扫描键盘 ,检测按键状态变化。
识别程序
根据按键电路的状态变化,判断具 体哪个按键被按下,并执行相应的 操作。
接口通信方式
并行通信
通过数据线将按键信号直接传输 到微控制器,数据传输速度快,
但需要较多的数据线。
串行通信
通过串行数据线将按键信号传输 到微控制器,数据传输速度较慢
键。
矩阵键盘的设计使得电子琴能够 模拟传统钢琴的触感,提供逼真
的演奏体验。
电子琴的矩阵键盘通常配备力度 感应功能,根据按下琴键的力度
来调整音符的音量和音质。
游戏机按键
游戏机按键通常采用矩阵键盘 布局,以适应游戏过程中快速 输入指令的需求。
矩阵键盘的设计使得游戏机按 键能够实现多键同时按下,提 高游戏操作的准确性和速度。
THANKS
感谢观看
03
矩阵键盘的电路设计
硬件电路设计
电源电路
为矩阵键盘提供稳定的电 源,确保按键的正常工作 。
按键电路
每个按键对应一个或多个 行列交叉点,通过检测行 和列的状态变化来确定按 键的按下状态。
输出电路
将按键信号输出到微控制 器或其他处理设备进行处 理。
软件编程设计
初始化程序
对矩阵键盘进行初始化设置,包 括设置扫描频率、去抖动时间等
矩阵式键盘工作原理
矩阵式键盘工作原理矩阵式键盘通常由多个按键组成一个矩阵结构。
每个按键都与矩阵的特定位置相对应,并且每个按键都有一个唯一的标识符。
矩阵式键盘通常由行和列构成,行与列之间通过导线相连。
矩阵式键盘的工作原理基于按键的位置,并且利用行与列之间的连线来检测按键是否被按下。
当按键未被按下时,矩阵式键盘的每个按键都将断开。
当按下一些按键时,按键的金属接点会触碰到与之相对应的导线,导致行与列之间形成电连接。
这导致通过电流流过,形成一个闭合电路。
这一电路可以被接收器感应到,并识别为一些按键被按下。
典型的矩阵式键盘电路由一个控制器和一个扫描矩阵组成。
控制器对行和列的导线进行扫描,确定按键是否被按下。
扫描矩阵是键盘上每个按键的布线结构,它允许控制器独立地访问每个按键。
控制器在扫描矩阵中的每个行导线上施加高电平信号,然后依次扫描每个列导线,以检测每一行上是否有按键被按下。
当控制器检测到一个按键被按下时,它将相应的行和列组合起来,以确定按下的按键的位置。
为了准确识别按键,矩阵式键盘电路通常采用消除键盘“反弹”的技术。
按键反弹是指按键被按下后,金属接点可能会在一段时间内反弹,导致多次电连接。
为了避免这种情况,电路通常会在检测到按键按下之后,延时一段时间再次检测。
矩阵式键盘的工作原理不仅适用于小型键盘,还适用于更大的键盘布局,如标准计算机键盘。
在这种情况下,矩阵式键盘可由多个矩阵组成,每个矩阵对应一个键盘的一部分。
整个键盘上的按键被编码为多个矩阵上的位置,并通过相应的扫描和检测进行识别。
总结起来,矩阵式键盘通过行和列之间的电连接来检测按键是否被按下。
控制器和扫描矩阵的结合使用,可以实现对键盘上多个按键的检测。
通过消除按键的反弹并进行适当的延时,矩阵式键盘可以提供准确和可靠的按键输入。
这使得它成为广泛应用于各种电子设备中的一种常见输入方式。
矩阵键盘
FPGA学习心得——矩阵键盘1、行列式键盘概述为了减少键盘与单片机接口时所占用I/O口线的数目,在键数较多时,通常都将键盘排列成行列矩阵式,行列式键盘又叫矩阵式键盘。
用带有I/O口的线组成行列结构,按键设置在行列的交点上。
例如用2*2的行列结构可以构成4个键的键盘,4*4的行列结构可以构成有16个键的键盘。
这样,当按键数量平方增长时,I/O口线只是线性增长,这样就可以节省I/O口线。
2、行列式键盘原理教研室已有薄膜矩阵键盘,其实物图如图所示。
其电路原理图如下图所示。
由行列式键盘的原理可以知道,要正确地完成按键输入工作必须有按键扫描电路产生keydrv3~keydrv0信号。
同时还必须有按键译码电路从keydrv3~keydrv0信号和keyin3~keyin0信号中译码出按键的键值。
此外,一般还需要一个按键发生标志信号用于和其他模块接口,通知其它模块键盘上有按键动作发生,并可以从键盘模块中读取按键键值。
由于各个模块需要的时钟频率是不一样的,因此时钟产生模块就是用于产生各个模块需要的时钟信号。
因此得到键盘接口电路的结构如图2所示。
图2 键盘接口电路结构图行列式键盘电路的FPGA实现主要解决三个问题,一是如何检测是否有按键按下并防止采集到干扰信号;二是在按键闭合时如何防止抖动;三是如何判断为哪一个按键位动作,并对其进行译码。
因此,为了解决这些问题,程序中使用不同的进程分别实现键盘扫描信号的产生、键盘去抖以及键盘的译码。
3、源程序[plain]view plaincopy1.----------------------------------------------------------------------------------2.-- Company:3.-- Engineer:4.--5.-- Create Date: 08:46:57 07/31/20126.-- Design Name:7.-- Module Name: MatrixKeyboard - Behavioral8.-- Project Name:9.-- Target Devices:10.-- Tool versions:11.-- Description:12.--13.-- Dependencies:14.--15.-- Revision:16.-- Revision 0.01 - File Created17.-- Additional Comments:18.--19.----------------------------------------------------------------------------------20.library IEEE;e IEEE.STD_LOGIC_1164.ALL;e IEEE.STD_LOGIC_ARITH.ALL;e IEEE.STD_LOGIC_UNSIGNED.ALL;24.25.---- Uncomment the following library declaration if instantiating26.---- any Xilinx primitives in this code.27.--library UNISIM;28.--use UNISIM.VComponents.all;29.30.entity MatrixKeyboard is31. Port ( Clk : in STD_LOGIC;32. Reset : in STD_LOGIC;33. KeyIn : in STD_LOGIC_VECTOR (3 downto 0);34. KeyScan : out STD_LOGIC_VECTOR (3 downto 0);35. LED : out STD_LOGIC_VECTOR (3 downto 0)36. );37.end MatrixKeyboard;38.39.architecture Behavioral of MatrixKeyboard is40.41.Signal Clk_scan : STD_LOGIC := '0';42.Signal Clk_5ms : STD_LOGIC := '0';43.Signal Clk_2ms : STD_LOGIC := '0';44.Signal Key_Scan : STD_LOGIC_VECTOR(3 downto 0);45.Signal Key_Decode : STD_LOGIC_VECTOR(7 downto 0);46.47.Type State_Key is(st_key1,st_key2,st_key3,st_key4);48.Signal Current_Key : State_Key := st_key1;49.50.Type State_Scan is(st_scan1,st_scan2,st_scan3,st_scan4);51.Signal Current_Scan : State_Scan := st_scan1;52.53.begin54.55. Proc_Clk_5ms : process(Clk)56. variable cnt_clk : integer range 0 to 250000 := 0;57. begin58. if(rising_edge(Clk)) then59. if(cnt_clk < 125000) then60. cnt_clk := cnt_clk + 1;61. Clk_scan <= '0';62. elsif(cnt_clk < 249999) then63. cnt_clk := cnt_clk + 1;64. Clk_scan <= '1';65. else66. cnt_clk := 0;67. end if;68. Clk_5ms <= Clk_scan;69. end if;70. end process Proc_Clk_5ms;71.72. Proc_Clk_2ms : process(Clk)73. variable cnt_clk : integer range 0 to 100000 := 0;74. begin75. if(rising_edge(Clk)) then76. if(cnt_clk < 50000) then77. cnt_clk := cnt_clk + 1;78. Clk_2ms <= '0';79. elsif(cnt_clk < 99999) then80. cnt_clk := cnt_clk + 1;81. Clk_2ms <= '1';82. else83. cnt_clk := 0;84. end if;85. end if;86. end process Proc_Clk_2ms;87.88.89. Proc_Scan:process(Clk_5ms)90. begin91. if(rising_edge(Clk_5ms)) then92. case Current_Scan is93. when st_scan1 =>94. Key_Scan <= "1110";95. Current_Scan <= st_scan2;96. when st_scan2 =>97. Key_Scan <= "1101";98. Current_Scan <= st_scan3;99. when st_scan3 =>100. Key_Scan <= "1011";101. Current_Scan <= st_scan4;102. when st_scan4 =>103. Key_Scan <= "0111";104. Current_Scan <= st_scan1;105. end case;106. end if;107.108. end process Proc_Scan;109.110. KeyScan <= Key_Scan;111. Key_Decode <= Key_Scan & Keyin;112.113. Proc_Keyboard:process(Clk_2ms,Reset)114. variable cnt_btn : integer range 0 to 50000 := 0;115. begin116. if(Reset = '1') then117. LED <= x"1";118. Current_Key <= st_key1;119. elsif(falling_edge(Clk_2ms)) then120. case Current_Key is121. when st_key1 => --Check whether any keys are p ressed122. if((Keyin and "1111") = "1111") then123. Current_Key <= st_key1;124. else125. Current_Key <= st_key2;126. end if;127. when st_key2 => --keys debouncing128. if((Keyin and "1111") = "1111") then129. Current_Key <= st_key1;130. else131. case Key_Decode is132. when "11101110" => LED <= "0001";133. when "11101101" => LED <= "0010";134. when "11101011" => LED <= "0011";135. when "11100111" => LED <= "1010";136. when "11011110" => LED <= "0100";137. when "11011101" => LED <= "0101";138. when "11011011" => LED <= "0110";139. when "11010111" => LED <= "1011";140. when "10111110" => LED <= "0111";141. when "10111101" => LED <= "1000";142. when "10111011" => LED <= "1001";143. when "10110111" => LED <= "1100";144. when "01111110" => LED <= "1110";145. when "01111101" => LED <= "0000";146. when "01111011" => LED <= "1111";147. when "01110111" => LED <= "1101";when others => null;148. end case;149. end if;150. Current_Key <= st_key3;151. when st_key3 => --Check whether the pressed keys a re released152. if((Keyin and "1111") /= "1111") then153. Current_Key <= st_key3;154. else155. Current_Key <= st_key4;156. end if;157. when st_key4 => --keys debouncing158. if((Keyin and "1111") /= "1111") then159. Current_Key <= st_key3;160. else161. LED <= x"0";162. Current_Key <= st_key1;163. end if;164. end case;165. end if;166. end process Proc_Keyboard;167.168.end Behavioral;169.薄膜键盘矩阵键盘4x4 ,单片机开发配件,机械手按键。
44 矩阵键盘工作原理
44 矩阵键盘工作原理
矩阵键盘是一种常见的输入设备,它可以用于电子设备、计算机等系统中。
它的工作原理是基于一个由多行多列的按键组成的矩阵。
矩阵键盘的按键布局类似于一个矩阵,其中按键的行和列被编号。
每个按键都有一个独特的行列地址。
按下一个按键时,矩阵键盘会通过行和列的触点之间的闭合来检测到按键的操作。
在工作时,矩阵键盘会周期性地轮询每个行和列的触点状态。
它会先闭合一个行(即将该行的输出信号置为高电平),然后依次检测每一列,看哪些按键的该列的触点闭合。
如果某个按键被按下,那么它所对应的行和列的触点就会闭合。
矩阵键盘通常采用编码器来记录按键信息。
在触发了某个按键后,编码器会将按键的行列地址转换成一个特定的二进制码。
这个二进制码可以被连接的设备(如计算机)所识别,从而得知哪个按键被按下了。
通过矩阵键盘的工作原理,我们可以实现对多个按键的监测和输入。
无论是在计算机上打字,还是在其他电子设备上进行输入,矩阵键盘都可以提供一个简单有效的解决方案。
矩阵式键盘工作原理
矩阵式键盘的结构及工作原理矩阵式键盘的结构与工作原理:在键盘中按键数量较多时,为了减少I/O口的占用,通常将按键排列成矩阵形式,如图1所示。
在矩阵式键盘中,每条水平线和垂直线在交叉处不直接连通,而是通过一个按键加以连接。
这样,一个端口(如P1口)就可以构成4*4=16个按键,比之直接将端口线用于键盘多出了一倍,而且线数越多,区别越明显,比如再多加一条线就可以构成20键的键盘,而直接用端口线则只能多出一键(9键)。
由此可见,在需要的键数比较多时,采用矩阵法来做键盘是合理的。
矩阵式结构的键盘显然比直接法要复杂一些,识别也要复杂一些,上图中,列线通过电阻接正电源,并将行线所接的单片机的I/O口作为输出端,而列线所接的I/O口则作为输入。
这样,当按键没有按下时,所有的输出端都是高电平,代表无键按下。
行线输出是低电平,一旦有键按下,则输入线就会被拉低,这样,通过读入输入线的状态就可得知是否有键按下了。
具体的识别及编程方法如下所述。
矩阵式键盘的按键识别方法确定矩阵式键盘上何键被按下介绍一种“行扫描法”。
行扫描法行扫描法又称为逐行(或列)扫描查询法,是一种最常用的按键识别方法,如上图所示键盘,介绍过程如下。
判断键盘中有无键按下将全部行线Y0-Y3置低电平,然后检测列线的状态。
只要有一列的电平为低,则表示键盘中有键被按下,而且闭合的键位于低电平线与4根行线相交叉的4个按键之中。
若所有列线均为高电平,则键盘中无键按下。
判断闭合键所在的位置在确认有键按下后,即可进入确定具体闭合键的过程。
其方法是:依次将行线置为低电平,即在置某根行线为低电平时,其它线为高电平。
在确定某根行线位置为低电平后,再逐行检测各列线的电平状态。
若某列为低,则该列线与置为低电平的行线交叉处的按键就是闭合的按键。
下面给出一个具体的例子:图仍如上所示。
8031单片机的P1口用作键盘I/O口,键盘的列线接到P1口的低4位,键盘的行线接到P1口的高4位。
矩阵键盘电路
知识点目录
1
矩阵键盘电路结构与工作原理
矩阵键盘的编码
矩阵式键盘按键识别
键盘的工作方式
1.矩阵键盘电路结构与工作原理
2
矩阵式键盘又称为行列式键盘。用I/O接口线组成行和列结构,键位设置在行和 列的交叉点上。如图1所示,8个I/O口实现了16个按键。
图1 矩阵键盘电路结构
1.矩阵键盘电路结构与工作原理
3
工作原理:以第一组键盘为例。设置KeyOut1输出一个低电平,相当于KeyOut1接 地,电路相当于4个独立按键电路,此时KeyIn1-KeyIn4四个输入端为高电平;当 键盘K1按下时,由于电路导通,此时KeyIn1变为低电平。同理,哪个按键按下, 相对应的输入端为低电平,单片机通过读输入端的状态,判断是否有按键按下。 对应图1四组按键,当KeyOut1输出为低电平时,KeyOut2-KeyOut4输出必须为高 电平,才能避免相互间的干扰。
2.矩阵键盘的编码
பைடு நூலகம்
4
对于矩阵式键盘,按键的位置由行号 和列号唯一确定,因此可分别对行号 和列号进行二进制编码,然后将两值 合成一个字节,高4位是行号,低4位 是列号。
3.矩阵式键盘按键识别
5
扫描法:
1) 判断有无键按下。
2) 如果有键按下,识别是哪一个键按下,键盘扫描取得闭合键的行、列值。
3) 用计算法或查表法得到键值。
4) 判断闭合键是否释放,如没释放则继续等待。
5) 将闭合键键号保存,同时转去执行该闭合键的功能。
4.键盘的工作方式
6
(1)编程扫描方式
利用CPU在完成其它工作的空余时间,调用键盘扫描子程序来响应键盘输入 的要求。
(2)定时扫描工作方式
史上最详细矩阵键盘原理
case(0Xd0): KeyValue=KeyValue+8;break;
case(0Xe0): KeyValue=KeyValue+12;break;
}
while((a<50)&&(GPIO_KEY!=0xf0)) //检测按键松手检测
{
delay(1000);
a++;
//a 的作用是用于去抖动,重复检测 50 次//
}
}
}
}
void main()
{
LSA=0; //给一个数码管提供位选//
LSB=0; //给一个数码管提供位选//
LSC=0; //给一个数码管提供位选//
while(1)
//无限循环//
{
KeyDown();
//调用按键判断函数//
GPIO_DIG=smgduan[KeyValue]; //将按键数值赋给 P0 口,控制锁存器//
当接收到的数据低四位不全为高电平时说明有按键按下然后通过接收的数据值判断是哪一列有按键按下然后再反过来高四位输出高电平低四位输出低电平然后根据接收到的高四位的值判断是那一行有按键按下这样就能够确定是哪一个按键按下了
史上最详细单片机矩阵键盘原理 广东阳西福达名苑梁智钧 20180131 一、矩阵按键扫描原理 方法一: 逐行扫描:我们可以通过高四位轮流输出低电平来对矩阵键盘进行逐行扫描,当低四位接收到的数据不全为 1 的 时候,说明有按键按下,然后通过接收到的数据是哪一位为 0 来判断是哪一个按键被按下。 方法二: 行列扫描:我们可以通过高四位全部输出低电平,低四位输出高电平。当接收到的数据,低四位不全为高电平时, 说明有按键按下,然后通过接收的数据值,判断是哪一列有按键按下,然后再反过来,高四位输出高电平,低四位输 出低电平,然后根据接收到的高四位的值判断是那一行有按键按下,这样就能够确定是哪一个按键按下了。 二、原理图:
矩阵键盘原理
矩阵键盘原理
矩阵键盘是一种常见的电子设备输入方式,它采用了特殊的矩阵排列方式来实现按键的检测和输入功能。
矩阵键盘由一组按键(通常是按钮或开关)和一个矩阵电路组成。
按键按下时,通过矩阵电路将相应的信号发送到微控制器或其它输入设备,从而完成按键输入的操作。
矩阵键盘使用了行、列的交叉排列方式,将多个按键组织成一个矩阵状的结构。
每一行和每一列都连接到矩阵电路中的引脚。
当按键按下时,通过按下的行和列所在的引脚的连接,电流可以流过相应的按键,使得微控制器能够检测到按键按下的信号。
矩阵键盘的原理是利用了按键形成的矩阵结构的特点,通过行和列的扫描方式,实现简明高效的按键检测。
常用的实现方式是使用多路开关电路来连接按键和引脚,使得每个按键的状态可以被准确地检测到。
在矩阵键盘的工作过程中,微控制器通过逐行或逐列扫描的方式检测按键的状态。
当检测到按键按下时,微控制器会在相应的引脚上读取到低电平信号,从而确定按键被按下的位置。
矩阵键盘常用于计算机、电子设备以及各种控制系统中,它在输入效率和使用成本方面都有一定的优势。
通过合理设计矩阵的大小和按键的布局,可以满足不同应用场景的需求。
总体来说,矩阵键盘是一种可靠、经济且比较常见的输入方式。
矩阵键盘工作原理
矩阵键盘工作原理1.按键扫描:矩阵键盘是由多个按键组成的,这些按键被排列成一个矩阵的形式。
在进行按键扫描时,会依次逐行或逐列地检测按键的状态,看是否有按键被按下。
通常,每行和每列都会有一个针脚来连接按键。
当按下一个按键时,该按键所在的行和列之间就会出现电性连通,形成一个按键矩阵电路。
2.按键编码:在按键扫描中,通过检测按键的行列连通状态可以确定哪个具体的按键被按下。
然而,矩阵键盘的针脚数量有限,无法通过直接连接给每一个按键独立编码的方式来实现,因此需要对按键信号进行编码。
一种常用的编码方式是使用行列编码器。
行列编码器通过感知具体的按键被按下的行和列连通状态来判断该按键的位置,并将该按键位置信息转化为一个对应的码值。
这个码值可以被传递给设备控制器或处理器,进而被进一步处理。
行列编码器通常通过矩阵按键的行列针脚输入来判断按键连通状态,然后将结果输出给设备控制器或处理器。
在实际应用中,矩阵键盘一般采用扫描式工作方式,即按键的行和列依次进行扫描。
具体工作步骤如下:1.首先,设备控制器或处理器会向矩阵键盘的行线输出一个低电平信号,同时将列线设置为输入状态。
2.然后,设备控制器或处理器会逐列检测按键的状态。
当有按键被按下时,该行和列之间会有电性连通,此时检测到的列的状态会改变。
设备控制器或处理器会将该连通的行列位置信息传递给行列编码器进行编码。
3.接下来,设备控制器或处理器会依次递增行的编号,重复上述步骤进行按键扫描,并实时更新按键状态信息,直到按键扫描完成。
总结起来,矩阵键盘的工作原理即通过扫描按键的行和列连通状态来检测按键是否被按下,然后通过行列编码器将按键位置信息编码为一个码值,最后将该码值传递给设备控制器或处理器进行处理。
通过这样的工作原理,矩阵键盘可以实现多个按键的同时检测和编码,为用户提供方便、高效的输入方式。
矩阵按键原理
矩阵按键原理
矩阵按键是一种常用的电子元件,它采用了矩阵排列的方式,可以实现多个按键的连接和控制。
其原理是利用了行与列的交叉点来表示一个按键的状态。
通常,矩阵按键由行连接和列连接组成。
行连接将多个按键的一端连接起来,而列连接将多个按键的另一端连接起来。
当按下某个按键时,会导致行和列的交叉点形成电路通路,从而产生一个电信号。
为了实现多个按键的输入和输出,矩阵按键通常会使用多路复用的方式。
具体地说,通过控制行和列的扫描,可以在任意时刻判断出是否有按键被按下,并确定被按下的按键是哪一个。
当进行按键扫描时,首先会将所有的行连接设置为高电平状态,而将所有的列连接设置为输入状态。
然后,逐个扫描每一行,将该行设置为低电平状态,并读取每一列的输入状态。
如果某一列检测到低电平状态,就说明该列与扫描的行相交的位置上有按键按下。
通过不断扫描行和列,可以得到所有按键的状态。
在使用矩阵按键时,可以通过处理被按下的按键信息,来实现不同的功能,例如控制开关、调节音量等。
总而言之,矩阵按键通过矩阵排列的方式,利用行与列的交叉点来表示按键状态,通过行和列的扫描,可以实现多个按键的输入和输出,并通过处理按键信息来实现不同的功能。
44矩阵键盘工作原理
44矩阵键盘工作原理
矩阵键盘是一种常见的电子设备输入装置,其工作原理基于按键与电路连接的方式。
它包含多个横向和纵向排列的按键,通过矩阵形式的电路连接来实现按键的识别和输入信号的传输。
具体而言,矩阵键盘由电路板、导线和按键组成。
电路板通常有两层,上层是横向导线,下层则是纵向导线。
按键则与这两层导线连接,形成一个矩阵。
每个按键分别对应一个顶点,横向导线连接所有按键的顶点,纵向导线连接所有按键的底座。
当按下一个按键时,该按键的顶点导线和底座导线会通过接触互相连接,形成通路。
这个通路的信息会被传入一个专门处理输入信号的控制芯片中。
控制芯片会分析这个通路,并根据通路位置的特定编码来确定被按下的按键。
工作原理的关键是通过行列的矩阵连接来检测按键的状态。
当不按下按键时,控制芯片会通过扫描横向导线和纵向导线上的电流是否闭合的方式来判断按键的位置。
由于按键上的导线并未连接,电流无法通过并被控制芯片检测到。
而当按下某个按键时,与该按键对应的行和列导线就会连接,形成闭合的电路,电流开始流动。
控制芯片通过检测到电流的存在来判断按键的位置。
总的来说,矩阵键盘通过按键与电路的连接来实现输入信号的传输和按键状态的识别。
它的工作原理主要基于按键通路形成和电流检测等原理。
这种设计使得矩阵键盘在电子设备中应用广泛,如计算机、手机等。
4x4矩阵键盘工作原理
4x4矩阵键盘工作原理
4x4矩阵键盘是一种常见的输入设备,常用于电脑、手机等设备上。
它由4行4列的按键组成,可以输入数字、字母、符号等字符。
它的工作原理是基于键盘按键的电路原理,通过行列扫描的方式来检测按键的状态。
当用户按下键盘上的某个按键时,按键会和矩阵中的某个交叉点相连通,此时该交叉点的电路就会发生变化。
为了检测到按键的状态,需要通过行列扫描的方式来扫描整个矩阵,以确定哪个按键被按下。
具体的工作过程如下:
1. 在未按下任何按键时,所有的行和列都会保持在高电平状态。
2. 当用户按下某个按键时,该按键所在的行和列就会短接,导致该行的电压降低,该列的电压升高。
3. 将行设置为低电平,列设置为高电平,然后逐行扫描矩阵,检测各行的状态。
4. 如果某行的电压降低,说明该行和某列短接,即某个按键被按下。
5. 此时可以通过查找该按键所在的行和列,确定按下的是哪个按键。
通过上述过程,就可以检测到用户输入的按键,并将其转换成对应的字符输出。
4x4矩阵键盘工作原理简单、可靠,是一种常用的输入设备。
- 1 -。
4-1 矩阵键盘
Page 4
矩阵键盘的识别
键扫描就是要判断有无键按下,当扫描到有键
按下时再进行下一步处理,否则退出键盘处理程序。 独立式键盘扫描只需读取IO口状态,而矩阵式键盘 描通常有两种实现方法:逐行扫描法和线反转法。
Page 5
逐行扫描法
逐行扫描法 依次从第一至最末行线上发出低电平信号, 如果 该行线所连接的键没有按下的话, 则列线所接的端
0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
Page 8
键盘接口的控制方式
在单片机的运行过程中,何时进行键盘扫描和处理, 可有下列三种情况: 1.查询方式:单片机通过调用键盘扫描子程序,查询
有无键按下。
2.定时扫描方式:每隔一定时间执行一次键盘扫描子 程序。 3.中断方式:每当有键闭合时才向CPU发出中断请求, 中断服务时进行键盘扫描和处理。
Page 12
合肥宏晶信息科技有限公司 ITek-Training Co.,Ltd.
Web: Add: 安徽省合肥市高新区中国科学技术大学先进技术研究院未来中心4楼
Thanks
Page 6
1 1 1 1
1 1
0 1 1 1
闭合键的一种常用方法, 该法比行扫描速度快, 但 在硬件上要求行线与列线外接上拉电阻。 先将行线作为输出线, 列线作为输入线, 行线输出全“0”信号, 读入列 线的值, 那么在闭合键所在的列线上的值必为0;然后从列线输出全“0” 信号,再读取行线的输入值,闭合键所在的行线值必为 0。这样,当一个 设第2行第 键被按下时, 必定可读到一对唯一的行列值。再由这一对行列值可以求 4列键按下 出闭合键所在的位置。
Page 9
短按及长按
短按:轻触一次,立即弹开。软件判断完成一项功能。 长按:按住不放,持续一段时间。软件判断完成另一项功能。
矩阵键盘键值的计算方法
矩阵键盘键值的计算方法矩阵键盘是一种常见的输入设备,广泛应用于计算机、手机、电子器件等。
它通过将按下的键映射为一个特定的键值,实现对应用程序的输入控制。
本文将介绍矩阵键盘键值的计算方法,帮助读者了解矩阵键盘的工作原理和键值计算的方法。
一、矩阵键盘的基本原理矩阵键盘由多个行和列的按键构成,这些按键被排列成一个矩阵,行与列之间形成交叉点。
按下某个按键时,会使得对应行和列之间形成闭合电路。
矩阵键盘通过扫描行和列,检测到闭合电路,从而确定所按下的按键。
二、矩阵键盘键值计算的方法1. 扫描行和列矩阵键盘首先需要扫描行和列,以检测闭合电路。
这个过程可以通过控制行和列的输入输出来实现。
首先将所有行设置为高电平输出状态,然后逐行将其设置为低电平状态,同时检测列的输入状态。
如果某一列为低电平,则说明该行和列之间的按键闭合,即键盘检测到按键按下的动作。
2. 确定键值在检测到按键闭合后,需要进一步确定对应的键值。
这个过程需要根据键盘的布局和键盘的编码规则来实现。
一般情况下,我们可以以行列号的方式对键盘按键进行编码。
假设有N 行M 列的键盘,按下的按键位于第i 行第j 列,则键值可表示为(i-1)*M + j。
通过这种方式,我们可以根据按下的行和列号计算出对应按键的键值。
假设有一个4 行4 列的矩阵键盘,按下的按键位于第3 行第2 列。
按照上述计算方法,我们可以得到键值为(3-1)*4 + 2 = 10。
因此,按下的按键对应的键值为10。
3. 键值的应用计算出按键的键值后,我们可以将其应用于对应的应用程序中。
键值可以作为输入信号传递给应用程序,根据键值的不同,应用程序可以执行相应的操作。
例如,将键值与预先定义的按键映射表进行匹配,可以实现不同按键对应的功能,如快捷键、功能键等。
矩阵键盘键值的计算方法涉及到扫描行和列,确定键值等关键步骤。
通过扫描行和列,可以检测到按键的闭合电路;通过确定键值,可以识别所按下的按键。
这种计算方法可以广泛应用于矩阵键盘的设计和开发中,帮助我们理解矩阵键盘的工作原理和键值计算的方法,并将其应用到实际的应用程序中。
矩阵键盘工作原理
矩阵键盘工作原理
矩阵键盘是一种常见的电子键盘结构,主要由键盘矩阵、控制电路和键盘驱动器组成。
键盘矩阵是由若干个按键组成的矩阵状排列。
通常情况下,键盘的输入信号是通过行和列的交叉点来确定的。
每个按键都位于一个特定的位置,通过按下按键使行与列连接,从而形成一个通路。
控制电路负责处理键盘的输入信号。
它会扫描键盘的矩阵,检测按键的状态变化,并将按键的输入状态转化为对应的键码或信号输出。
键盘驱动器则负责将控制电路的输出信号传递给计算机或其他设备。
它将按键的键码信息进行编码,并通过某种通信协议传输给计算机,以实现对键盘输入的识别和响应。
在实际使用时,当按下某个按键时,键盘矩阵会相应地闭合对应的行和列之间的电路,从而使行与列之间的交叉点形成一个闭合的电路。
这个闭合的电路会被控制电路检测到,并输出相应的信号。
键盘驱动器接收到信号后,会进行相应的处理和传输。
计算机或其他设备通过接收到的键码信息来识别用户的输入,并根据键码信息执行相应的操作。
总的来说,矩阵键盘工作原理是通过检测按键闭合电路的状态变化,并将其转换为键码信号,实现键盘输入的识别和响应。
这种结构设计有效地减少了键盘的复杂性,提高了键盘的可靠性和可用性。
矩阵式键盘控制数码管显
为了避免按键抖动造成的误判,微 控制器会对检测到的按键状态进行 去抖动处理,确保按键状态的准确 性。
键盘编码方式
行码与列码组合
01
每个按键都有一个唯一的行码和列码组合,用于标识按键的位
置。
编码表
02
建立一个包含所有按键行码和列码组合的编码表,用于将按键
位置映射到对应的编码值。
编码输出
03
键盘扫描程序
根据矩阵式键盘的原理,编写键盘扫描程序,实 现按键的检测与识别。
数码管显示程序
根据数码管的显示原理,编写数码管显示程序, 实现数码管的显示和控制。
主程序
主程序负责调用键盘扫描程序和数码管显示程序, 实现整个系统的控制逻辑。
系统调试与测试
硬件调试
检查硬件电路连接是否正确,确保各模块工作正常。
矩阵式键盘控制数码管显示系 统
目录
CONTENTS
• 矩阵式键盘控制原理 • 数码管显示技术 • 矩阵式键盘控制数码管显示系统设计 • 系统性能优化与改进 • 应用前景与发展趋势
01 矩阵式键盘控制原理
CHAPTER
矩阵式键盘结构
4x4矩阵式键盘结构
由16个按键组成的矩阵,行线和列线 交叉连接,每个按键位于行线和列线 的交叉点上。
根据按键位置在编码表中找到对应的编码值,通过微控制器输
出相应的编码信号,控制数码管显示相应的字符或数字。
02 数码管显示技术
CHAPTER
数码管工作原理
数码管由多个LED段组成,通过控制各段的亮灭来显示数字或字符。
数码管内部有8个LED段,通过电流的通断控制每个段的亮灭,从而显示不同的数字 或字符。
数码管驱动方式
点驱动方式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵键盘原理与结构
矩阵式结构的键盘识别要复杂一些,列线通过电阻接正电源,并将行线所接的单片机的I/O口作为输出端,而列线所接的I/O口则作为输入。
这样,当按键没有按下时,所有的输入端都是高电平,代表无键按下。
行线输出是低电平,一旦有键按下,则输入线就会被拉低,这样,通过读入输入线的状态就可得知是否有键按下了。
在矩阵式键盘中,每条水平线和垂直线在交叉处不直接连通,而是通过一个按键加以连接。
这样,一个端口(如P1口)就可以构成4*4=16个按键,比之直接将端口线用于键盘多出了一倍,而且线数越多,区别越明显,比如再多加一条线就可以构成20键的键盘,而直接用端口线则只能多出一键(9键)。
由此可见,在需要的键数比较多时,采用矩阵法来做键盘是合理的。
1确定矩阵式键盘上何键被按下介绍一种行扫描法。
行扫描法行扫描法又称为逐行(或列)扫描查询法,是一种最常用的按键识别方法,如上图所示键盘,介绍过程如下。
1、判断键盘中有无键按下将全部行线Y0-Y3置低电平,然后检测列线的状态。
只要有一列的电平为低,则表示键盘中有键被按下,而且闭合的键位于低电平线与4根行线相交叉的4个按键之中。
若所有列线均为高电平,则键盘中无键按下。
2、判断闭合键所在的位置在确认有键按下后,即可进入确定具体闭合键的过程。
其方法是:依次将行线置为低电平,即在置某根行线为低电平时,其它线为高电平。
在确定某根行线位置为低电平后,再逐行检测各列线的电平状态。
若某列为低,则该列线与置为低电平的行线交叉处的按键就是闭合的按键。
2确定矩阵式键盘上何键被按下介绍一种高低电平翻转法。
首先让P1口高四位为1,低四位为0,。
若有按键按下,则高四位中会有一个1翻转为0,低四位不会变,此时即可确定被按下的键的行位置。