2015中考数学备考专题5 方案与设计
2015年中考数学复习备考方法

2015年中考数学复习备考计划(一)、吃透考纲把握动向在复习中,很重要的一点是要有针对性,提高效率,避免做无用功。
在对基本的知识点融会贯通的基础上,认真研究考纲,不仅要明确考试的内容,更要对考纲对知识点的要求了然于心。
平时多关注近年中考试题的变化及其相应的评价报告,多层次、多方位地了解中考信息,使复习有的放矢,事半功倍。
(二)、围绕课本注重基础从近几年的上海中考数学卷来看,都很重视基础知识,突出教材的考查功能。
试题至少有一半以上来源于教材,强调对通性通法的考查。
针对这一情况,提醒考生,在剩下的不多的复习时间里,必须注意回归课本,围绕课本回忆和梳理知识点,对典型问题进行分析、解构、熟悉。
只有透彻理解课本例题、习题所涵盖的知识重点和解题方法,才能以不变应万变。
(三)、针对专题攻克板块复习中,应加强各知识板块的综合。
对于重点知识的交叉点和结合点,进行必要的针对性专题复习。
例如,函数是整个中学数学中非常重要的部分,可以以它为主干,与不等式、方程、相似形等结合起来,进行综合复习。
(四)、规范训练提高效率学生常常把计算错误简单地归结为粗心,其实不然,这有可能是基础不牢固,也有可能是技巧不熟练。
建议考生,在复习阶段要注重培养自己在解题中的运算能力,每次练习做到熟练、准确、简捷、迅速。
经验表明,每次作业、考试后建立的错题本,是学生检查和总结自身薄弱环节的有效方式。
在复习阶段,考生需要的就是一些行之有效的方法,帮助他们更合理有效地利用时间,集中精力,提高效率。
(五)、有计划才有主动从一个学生的计划上就可以体现出你能抓住的是西瓜还是芝麻,这是对学生条理性的检验。
有了一个量身定制、有的放矢的复习计划,才真正抓住了主动权。
(六)、注重双基强化课本正如前面提到的,近几年的中考上海数学试卷体现了全面考察基础知识、重点知识,注重通性通法的特点。
这就要求同学们必须注重“双基”训练,重点要求以课本知识为主,对整个初中学过的知识熟记、归纳、总结,并参照课后习题反复思考、加深理解,做到熟练掌握,并灵活运用。
2015年广东中考数学复习备考的方向与方法

2015年广东中考数学复习备考的方向与方法一、近几年中考数学试题分析1、试题结构分析:近四年中考数学试题有3套模式。
(1)2012年及之前(含2012年):5道选择(共15分)、5道填空(共20分)、5道解答题一(共30分)、4道解答题二(共28分)、3道解答题三(共27分),全卷共22题,120分;(2)2013年:10道选择(共30分)、6道填空(共24分)、3道解答题一(共15分)、3道解答题二(共24分)、3道解答题三(共27分),全卷共25题,120分;(3)2014年:5道选择(共15分)、5道填空(共20分)、3道解答题一(共18分)、3道解答题二(共21分)、3道解答题三(共27分),全卷共22题,120分;考试时间均为:100分钟2、近四年广东省中考数学试题知识点分布表(1)选择题。
每小题3分,共30分。
(以2014年为例)主要考查科学记数法、数的简单计算、式的计算、三视图和展开图、不等式或方程的解、平行线性质和判定、三角形边和角、多边形的内角和、简单函数图象、概率、统计中的三数(中位数、平均数、众数)、对称等知识点。
(2)填空题。
每小题4分,共24分。
主要考查因式分解、几何规律题、概率与统计、简单的几何相关计算、代数(式)的计算、面积计算、简单应用题等知识点。
(3)解答题。
每小题6分,共18分。
主要考查数的综合计算、式的综合计算、解不等式(组)、解方程、函数小综合、几何相关计算和证明、作图等知识点。
(4)解答题。
每小题7分,共21分。
主要考查应用题、概率或统计、解直角三角形、几何小综合、函数小综合等知识点。
(5)解答题。
每小题9分,共27分。
前几年主要考查代数规律题、二次函数、几何综合(旋转、折叠、动点题等),近二年主要考察函数综合题、圆综合题、和几何综合题(平移、相似等)由这个表,我们发现:(一)年年考的题型有(历年真题都略)1.数的简单计算(相反数、绝对值、算术平方根、倒数等,其中11年倒数,12年相反数,13年相反数;);以及数的综合计算(往往综合零指数、负指数、方根、特殊角的三角函数、绝对值化简等)。
2015年中考数学复习计划

第四协作区2015年中考数学复习计划九年级数学总复习教学内容多、时间紧、任务重、要求高,如何提高数学总复习的质量和效益,是我们现在必须面对的问题。
为了提高本校数学教学质量,提高数学复习效率,让学生在中考中能考出好成绩,完成学校下达的中考目标,根据本协作区的实际情况制定了下面的数学复习计划:一、复习目标:通过总复习应达到以下目标:(1)使所学知识系统化、结构化、让学生将三年的数学知识连成一个有机整体,更利于学生理解;(2)精讲多练,巩固基础知识,掌握基本技能;(3)抓好方法教学,引导学生归纳、总结解题的方法,适应各种题型的变化;(4)做好综合题训练,提高学生综合运用知识分析问题的能力。
二、复习方法与措施:1、挖掘教材,夯实基础,重视对基础知识的理解和基本方法的指导通过两年多的学习,学生已经掌握了一定的基础知识、基本方法和基本技能,但对教材的理解是零碎的、解题规律的探究是肤浅的。
因此,在组织学生进行总复习时,首先引导学生系统梳理教材、构建知识结构,让各种概念、公理、定理、公式、常用结论及解题方法技巧,都能在学生的头脑中再现。
教学中,要立足课本,充分挖掘和发挥教材例、习题的潜在功能,引导学生归纳、整理教材中的基础知识、基本方法,使之形成结构。
坚决克服那种重难题、重技巧、轻课本、轻基础的做法。
2、共同参与,注重过程在复习中充分发挥学生的主体作用,切忌大包大揽,注重突出学生的主体地位,使他们成为复习活动的主角,给予学生充分发挥的学习时间,让他们去说、去做,暴露他们的思维过程,激发学生的思维潜能。
真正做到体现教师的主导作用,学生的主体地位。
因此,在基础复习时,给学生尽可能多的动手、动脑、讨论的时间去探索,使各层次的学生都得到知识的满足,提高学习效果。
特别是综合题的教学过程中,点中要害,透彻理解,及时总结。
把思路与方法教给学生,同时教师要评析到位,从细微处入手,让学生分析,弄清错误原因,清楚自己薄弱环节,熟悉一般分析思路,并与学生一起深入研讨,要注重为什么要这样解?说明思路,如何设计解题格式?如何找寻问题的突破口?3、强化训练,注重应用,发展能力数学教学的最终目的,是培养学生的创新意识、应用意识,及综合能力。
2015年中考数学专题复习教学案

专题一选择题解题方法一、中考专题诠释选择题是各地中考必考题型之一,选择题的数目增加到8题,这说明选择题有它不可替代的重要性.选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养.二、解题策略与解法精讲选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做.解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.三、中考典例剖析考点一:直接法从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。
运用此种方法解题需要扎实的数学基础.例1根据表中一次函数的自变量x与函数y的对应值,可得p的值为()x -2 0 1y 3 p 0A.1 B.-1 C.3 D.-3对应训练1.若y=(a+1)x a2-2是反比例函数,则a的取值为()A.1 B.-l C.±l D.任意实数考点二:筛选法(也叫排除法、淘汰法)分运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件与各选择支的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设相矛盾的干扰支逐一排除,从而获得正确结论的方法。
使用筛选法的前提是“答案唯一”,即四个选项中有且只有一个答案正确.例2 如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为()A.B.C.D.对应训练2.如图,已知A、B是反比例函数y=kx(k>0,x>0)上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是()A.B.C.D.考点三:逆推代入法将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法. 在运用验证法解题时,若能据题意确定代入顺序,则能较大提高解题速度.例3下列四个点中,在反比例函数y=−6x的图象上的是()对应训练3.已知正比例函数y=kx(k≠0)的图象经过点(1,-2),则这个正比例函数的解析式为()A.y=2x B.y=-2x C.y=12x D.y=−12x考点四:直观选择法利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正确答案的方法。
陕西省2015年中考数学总复习教学案34份

如果x2=a,那么x叫做a的平方根,记作__x=±__;正数a的正的平方根,叫做这个数的算术平方根;如果x3=a,那么x叫做a的立方根,记作__x=__.
(7)识记:
112=________,122=________,132=__________,142=________,152=________,162=__________,172=________,182=________,192=__________,202=________,212=________,222=__________,232=________,242=________,252=__________.
13=__________,23=________,33=__________,43=__________,53=________,63=__________,73=__________,83=________,93=__________,103=__________.
2.实数的分类
按实数的定义分类:
第12讲 反比例函数及其图象48
第13讲 二次函数及其图象53
第14讲 函数的应用62
第15讲 数据的收集与整理69
第16讲 统计的应用73
第17讲 简单随机事件的概率80
第18讲 概率的应用84
第19讲 线段、角、相交线和平行线88
第20讲 三角形与全等三角形94
第21讲 特殊三角形102
第22讲 平行四边形(含多边形)107
5.(2014·陕西)用科学计算器计算:+3tan56°≈__10.02__.(结果精确到0.01)
6.(2013·陕西)计算:(-2)3+(-1)0=__-7__.
2015届中考数学第一轮复习教案5

如图1,已知抛物线y=-x2+bx+c经过A(0, 1)、B(4, 3)两点.(1)求抛物线的解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.动感体验请打开几何画板文件名“13松江24”,拖动点N在直线AB上运动,可以体验到,以M、N、C、B为顶点的平行四边形有4个,符合MN在抛物线的对称轴的左侧的平行四边形MNCB只有一个.请打开超级画板文件名“13松江24”,拖动点N在直线AB上运动,可以体验到,MN有4次机会等于3,这说明以M、N、C、B为顶点的平行四边形有4个,而符合MN在抛物线的对称轴的左侧的平行四边形MNCB只有一个.思路点拨1.第(2)题求∠ABO的正切值,要构造包含锐角∠ABO的角直角三角形.2.第(3)题解方程MN =y M -y N =BC ,并且检验x 的值是否在对称轴左侧. 满分解答(1)将A (0, 1)、B (4, 3)分别代入y =-x 2+bx +c ,得1,164 3.c b c =⎧⎨-++=⎩解得92b =,c =1.所以抛物线的解析式是2912y x x =-++.(2)在Rt △BOC 中,OC =4,BC =3,所以OB =5.如图2,过点A 作AH ⊥OB ,垂足为H . 在Rt △AOH 中,OA =1,4sin sin 5AOH OBC ∠=∠=,所以4si5AH =⋅. 图2 所以35OH =,225BHOB OH =-=.在Rt △ABH 中,4222tan 5511AH ABO BH ∠==÷=.(3)直线AB 的解析式为112y x =+.设点M 的坐标为29(,1)2x x x -++,点N 的坐标为1(,1)2x x +,那么2291(1)(1)422MN x x x x x =-++-+=-+.当四边形MNCB 是平行四边形时,MN =BC =3. 解方程-x 2+4x =3,得x =1或x =3.因为x =3在对称轴的右侧(如图4),所以符合题意的点M 的坐(如图3).标为9(1,)2图3 图4考点伸展图5例2 2012年福州市中考第21题如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P 从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q 从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD//BC,交AB于点D,联结PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=_______,PD=_______;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ的中点M所经过的路径长.图1 图2动感体验请打开几何画板文件名“12福州21”,拖动左图中的点P运动,可以体验到,PQ的中点M的运动路径是一条线段.拖动右图中的点Q运动,可以体验到,当PQ//AB时,四边形PDBQ为菱形.请打开超级画板文件名“12福州21”,拖动点Q向上运动,可以体验到,PQ的中点M的运动路径是一条线段.点击动画按钮的左部,Q的速度变成1.07,可以体验到,当PQ//AB时,四边形PDBQ为菱形.点击动画按钮的中部,Q 的速度变成1.思路点拨1.菱形PDBQ 必须符合两个条件,点P 在∠ABC 的平分线上,PQ //AB .先求出点P 运动的时间t ,再根据PQ //AB ,对应线段成比例求CQ 的长,从而求出点Q 的速度.2.探究点M 的路径,可以先取两个极端值画线段,再验证这条线段是不是点M 的路径. 满分解答(1)QB =8-2t ,PD =43t .(2)如图3,作∠ABC 的平分线交CA 于P ,过点P 作PQ //AB 交BC 于Q ,那么四边形PDBQ 是菱形.过点P 作PE ⊥AB ,垂足为E ,那么BE =BC =8.在Rt △ABC 中,AC =6,BC =8,所以AB =10.图3在Rt △APE 中,23cos 5AE A APt===,所以103t =.当PQ //AB 时,CQ CP CBCA=,即106386CQ -=.解得329CQ =.所以点Q 的运动速度为3210169315÷=.(3)以C 为原点建立直角坐标系.如图4,当t =0时,PQ 的中点就是AC 的中点E (3,0).如图5,当t=4时,PQ的中点就是PB的中点F(1,4).直线EF的解析式是y=-2x+6.如图6,PQ的中点M的坐标可以表示为(62t-,t).经验证,点M(62t-,t)在直线EF上.所以PQ的中点M的运动路径长就是线段EF的长,EF=图 4 图 5 图6考点伸展第(3)题求点M的运动路径还有一种通用的方法是设二次函数:当t=2时,PQ的中点为(2,2).设点M的运动路径的解析式为y=ax2+bx+c,代入E(3,0)、F(1,4)和(2,2),得930,4,42 2.a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩解得a=0,b=-2,c=6.所以点M的运动路径的解析式为y=-2x+6.例3 2012年烟台市中考第26题动感体验请打开几何画板文件名“12烟台26”,拖动点P在AB上运动,可以体验到,当P在AB的中点时,△ACG的面积最大.观察右图,我们构造了和△CEQ中心对称的△FQE和△ECH′,可以体验到,线段EQ的垂直平分线可以经过点C和F,线段CE的垂直平分线可以经过点Q和H′,因此以C、Q、E、H为顶点的菱形有2个.请打开超级画板文件名“12烟台26”,拖动点P在AB上运动,可以体验到,当P在AB的中点时,即t=2,△ACG的面积取得最大值1.观察CQ,EQ,EC的值,发现以C、Q、E、H为顶点的菱形有2个.点击动画按钮的左部和中部,可得菱形的两种准确位置。
2015中考数学+第二部分+专题五+方案与设计复习(优秀课件)

x(单位:张),购票总价为 y(单位:元)]:
图 Z5-3
方案一:提供 8000 元赞助后,每张票的票价为 50 元;
方案二:票价按图 Z5-3 中的折线 OAB 所表示的函数关系
确定. (1)若购买 120 张票时, 按方案一和方案二分别应付的购 票款是多少? (2)求方案二中 y 与 x 的函数关系式; (3)至少买多少张票时选择方案一比较合算? 解:(1)按方案一购 120 张票时,
15 解得 x= 4 .∴BE=
15 2+302≈30.2<31. 4
即如此安装 3 个这种转发装置,能达到预设要求.
方法二,将原正方形割成如图 Z5-2(2)中的 3 个矩形,使得
BE=31,H 是 CD 的中点.将每个装置安装在这些矩形的对角
线交点处,
则 AE= 312-302= 61,DE=30- 61, ∴OD= 30- 612+152≈26.8<31.
y=8000+50×120=14 000(元);
按方案二购 120 张票时,由图知,y=13 200(元).
(2)当 0<x≤100 时,设 y=kx, 则 12 000=100k,得 k=120. ∴y=120x. 当 x>100 时, 设 y=kx+b,
12 由图象,得 13
000=100k+b, 200=120k+b.
(2)能否找到这样的 3 个安装点,使得在这些点安装了这种
转发装置后能达到预设的要求?在图 Z5-1(2)中画出示意图说 明,并用大写字母 M,N,P 表示安装点.用计算、推理和文字 来说明你的理由.
(1) 图 Z5-1
(2)
解:(1)如图 Z5-2(1),将正方形等分成 4 个小正方形,将这 4 个转发装置安装在这 4 个小正方形对角线的交点处.此时,
2015年中考九(4)班数学备考计划

2015年九(4)班数学备考复习计划以我校工作计划为指导思想,结合我校和所教班级的实际,有计划,有目标有步骤进行复习,复习时依据考纲和课本,实施素质教育,设法引导学生,因材施教,调整好生的学习状态,努力提高学生的合格率、平均分,力争在今年初三升学考取得好成绩。
【复习措施】1.认真钻研教材、课标要求、吃透考试大纲,确定复习重点。
确定复习重点可从以下几方面考虑:(1)根据教材的教学要求提出四层次的基本要求:了解、理解、掌握和熟练掌握。
这是确定复习重点的依据和标准。
(2)熟识每一个知识点在初中数学教材中的地位、作用;(3)熟悉近年来试题型类型,以及考试改革的情况。
2.正确分析学生的知识状况、和近期的思想状况。
(1)是对平时教学中掌握的情况进行定性分析;(2)每天对学生的作业及时批改,复习过程侧重评讲(3)是对每周所复习的知识进行测试,及时发现问题和解决问题。
(4)将学生很好的分类,牢牢的抓在手中。
3.根据知识重点、学生的知识状况及总复习时间制定比较具体详细可行的复习计划。
【复习的形式】一、第一轮复习1、重视课本,系统复习。
初中数学基础包括基础知识和基本技能两方面。
现在中考命题仍然以基础知识题为主,有些基础题是课本上的原题或改造,后面的大题虽是“高于教材”,但原型一般还是教材中的例题式习题,是教材中题目的引伸、变形或组合,复习时应以课本为主,在复习时必须深钻教材,把书中的内容进行归纳整理,使之形成自己的知识结构。
2、夯实基础,学会思考。
在应用基础知识时应做到熟练、正确、迅速。
上课不能只听老师讲,要敢于质疑,积极思考方法和策略,应通过老师的教,自己“悟”出来,自己“学”出来,尤其在解决新情景问题的过程中,应感悟出如何正确思考。
3、重视基础知识的理解和方法的学习。
基础知识既是初中所涉及的概念、公式、公理、定理等。
掌握基础知识之间的联系,要做到理清知识结构,形成整体知识,并能综合运用,例如:中考涉及的动点问题,既是方程、不等式与函数问题的结合,同时也常涉及到几何中的相似三角形、比例推导等等。
2015年中考数学考点系列专题5_整式方程(组)及应用

聚焦考点☆温习理解一、一元一次方程的概念二.一元二次方程1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
三、一元二次方程的解法 1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x 4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
考点典例一、一元一次方程【例1】(2014·眉山)方程312x -=的解是( )A .1x =B .1x =-C .13x =-D .13x =【举一反三】(2014·湖州)方程2x ﹣1=0的解是x= .考点典例二、一元一次方程的应用【例2】(2014·无锡)某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x 支,则依题意可列得的一元一次方程为( )A. 1.2×0.8x+2×0.9(60+x )=87B. 1.2×0.8x+2×0.9(60﹣x )=87C. 2×0.9x+1.2×0.8(60+x )=87D. 2×0.9x+1.2×0.8(60﹣x )=87【举一反三】(2014·绍兴)天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为( )A .10克B .15克C .20克D .25克考点典例三、一元二次方程【例3】(2014·嘉兴)方程2x 3x 0-=的根为 .【举一反三】(2014·无锡)解方程:x 2﹣5x ﹣6=0; 考点典例四、一元二次方程的应用【例4】(2014·南京)(8分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第一年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x(1)用含x 的代数式表示低3年的可变成本为 万元;(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年的增长百分率x.【举一反三】(2014·海南)某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x ,那么x 满足的方程是( )A .()21001x 81+=B .()21001x 81-=C .()21001x%81-=D .2100x 81=考点典例五、二元一次方程组【例5】(2014·湖州)解方程组3x y 72x y 3+=-=⎧⎨⎩. 【举一反三】(2014·贺州)已知关于x 、y 的方程组11mx ny 22mx ny 5⎧-=⎪⎨⎪+=⎩的解为x 2y 3=⎧⎨=⎩,求m 、n 的值.考点典例六、二元一次方程组的应用【例6】(2014·海南)海南五月瓜果飘香,某超市出售的“无核荔枝”和“鸡蛋芒果”单价分别为每千克26元和22元.李叔叔购买这两种水果共30千克,共花了708元.请问李叔叔购买这两种水果各多少千克?课时作业☆能力提升一.选择题1.(2014·黄冈)若α、β是一元二次方程2x 2x 60+-=的两根,则22αβ+= ( )A. –6B. 32C. 16D. 402.(2014·苏州)下列关于x 的方程有实数根的是( )A .x 2-x +1=0B .x 2+x +1=0C .(x -1)(x +2)=0D .(x -1)2+l =03.(2014·自贡)一元二次方程x 2﹣4x +5=0的根的情况是( )A .有两个不相等的实数根B . 有两个相等的实数根C .只有一个实数根D . 没有实数根 4.(2014·宜宾) 若关于x 的一元二次方程的两个根为x 1=1,x 2=2,则这个方程是( ) A . x 2+3x ﹣2=0 B . x 2﹣3x +2=0 C . x 2﹣2x +3=0 D . x 2+3x +2=05.(2014·内江)若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有不相等实数根,则k 的取值范围是( )A . k >12B . k ≥12C . k >12且k ≠1D . k ≥12且k ≠1 6.(2014·襄阳)若方程mx ny 6+=的两个解是x 1x 2,y 1y 2==⎧⎧⎨⎨==-⎩⎩,则m ,n 的值为( ) A .4,2B .2,4C .﹣4,﹣2D .﹣2,﹣4 二.填空题7. (2014·宁夏)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利20%,则这款服装每件的进价是 元.2.(2014·镇江)若关于x 的一元二次方程2x x m 0++=有两个相等的实数根,则m= . 8.(2014·杭州)设实数x ,y 满足方程组1x y 431x y 23⎧-=⎪⎪⎨⎪+=⎪⎩,则x y += .9.(2014·牡丹江)某种商品每件的标价为240元,按标价的八折销售时,每件仍能获利20%,则这种商品每件的进价为 元.三.解答题10. (2014·吉林)为促进交于均能发展,A 市实行“阳光分班”,某校七年级一班共有新生45人,其中男生比女生多3人,求该班男生、女生各有多少人.11.(2014·滨州市)解方程:2x11x232++-=(2)解方程组:3x y7x3y1-=⎧⎨+=-⎩12 (2014·梅州)(本题满分8分)已知关于x的方程2x ax a20++-=. (1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.。
2015年中考备考方案

2017年中考备考工作方案为科学有效地搞好2015年中考备考工作,结合我校实际,特制定2015年中考备考工作方案。
一、指导思想为了确保2015年中考取的好成绩,我们依照教育局工作计划,认真学习贯彻各学科的课程标准,紧紧抓住“以人为本,科研兴校,和谐发展”这个核心,规范教学常规管理,锁定中考目标,狠抓教学质量,团结和依靠全体九年级教师,凝心聚力,求真务实,树立为每一个学生健康成长的教学理念,在管理中不放弃任何一个学生,尊重学生人格,发展学生个性,抓紧抓严抓实。
对学校荣誉负责,对学生的前途负责,对家长和社会负责,铸造博白镇一中新的辉煌。
二、现状分析:学校的办学目标是争创一流的管理水平,争创一流的教师队伍,一流的教学质量。
(1)学生情况:本届九年级有5个教学班,324名学生,小学入学成绩居全县倒数前10名,各学科成绩发展不平衡。
(2)师资情况:从本届九年级20多位教师的师资来看,绝大多数教师教学经验比较丰富,只要继续发扬上届初三班主任及科任教师团结合作,拼搏进取,吃苦耐劳的精神,在教研教改方面下功夫,各项目标一定能够顺利完成。
三、目标任务做好常规管理,抓优促尖,保优秀率;抓潜能生,保升高中率;抓差补差,保合格率,提高平均分;抓思想教育,保稳定良好的迎考心态;抓家校配合,保紧密联系;齐抓共管、抓方法指导,保提高学习效率;抓质量监控,保实现中考总体目标;抓团结协作,保团队和谐。
力争2015年中考1人以上(含1人)被玉高录取,30人以上(含30人)被博中、王力等示范性高中录取,并按要求完成中职送生任务。
四、成立毕业班工作领导小组组长:秦济川校长副组长:冯朝红副校长、刘伟副校长、黄本坤主任组员:罗育新、梁大轩、管永金、庞永壹、李伟、周基畅、朱庆东、陈伟东、叶海强、卢道旺、尤金、覃炜、林英、陈波职责要求:1、要求领导小组加强过程管理,加强对中考备考工作的宏观指导。
2、全面、及时掌握中考新动向,定期召开会议,分析各阶段情况、工作重点、应对策略,统筹好中考备考工作。
2015中考数学复习策略

3x 1 4 3.解不等式组 并写出它的的整数解 2 x x 2
【设计意图】此类题目的在于基础解题能力的 复习,求不等式组的整数解是中考要求的内容。 不必在不等式组形式、结构上设计过多的“障 碍”,如:去分母,去括号……,巩固基本解 题技能,不急于求成。用已经求出解集的不等 式组来解决这一类型的问题,既可节约时间, 又能让所有学生均能接受问题,并加以思考。
BE=DG BE⊥DG C
B C
B
G
3.一题多变
如图,AD是△ABC的高, AE是△ABC 的外接圆直径. 求证: AB•AC=AD•AE.
(条件变,结论不变)。
O•
B A
变式1 AE是△ABC的外接圆的弦,∠BAE E =∠DAC, AD交BC于D. 变式2 AE是△ABC的外接圆的弦,∠BAE =∠DAC, AD交BC的延长线D. 变式3 AD是△ABC的内角平分线,交其外接圆于E. 变式4 AD是△ABC的外角平分线, AD的反向延长线 交其外接圆于E. 变式5 AD是△ABC的高,MN是其外接圆的直径. 变式6 AD是△ABC的高,OA 是其外接圆的半径.
4.若不等式组
3x a 4 2 x x 2
.
的解集是-1<x≤2,则a的值为
【设计意图】将原题中的具体数字“1”变换 成字母“a”,并给出解集,让学生探求字母 “a”的取值,形成“不等式组存有未知,而 解集为已知,探索取值问题”。题目的这种 变化会激起学生的学习兴趣,也很容易让学 生猜出结果是“1”,但必须加以验证。
1.下列四个命题中,正确的有( ) ①若a>b,则a+1>b+1; ②若a>b,则a-1>b-1; ③若a>b,则-2a<-2b; ④若a>b,则2a<2b. A.1个 B.2个 C.3个 D.4个
2015届湘教版中考数学复习课件专题五_实际应用题

专题五┃ 实际应用题
【解题方法点析】 解直角三角形在解决实际问题中有广泛的应用.我们要学会将各 类的实际问题转化为数学问题来解决,具体地说,要求我们善于将某 些实际问题中的数量关系归结为直角三角形中的元素(边、角)之间的关 系,这样就可运用解直角三角形的方法了. 一般有以下三个步骤: (1)审题,通过图形(题目未画出图形的,可自己画出示意图),弄清 已知和未知; (2)找出有关的直角三角形,或通过作辅助线产生有关的直角三角 形,把问题转化为解直角三角形的问题; (3)根据直角三角形元素(边、角)之间的关系解有关的直角三角形.
专题五┃ 实际应用题
解
(1)由于蜡烛燃烧时剩余部分的高度y(cm)
与燃烧时间x(h)之间为一次函数关系. 故设y与x之间的函数表达式为y=kx+b(k≠0). 由题图知该函数图象经过点(0,24),(2,12),则
2k+b=12, k=-6, 解得 b=24, b=24,
专题五┃ 实际应用题
探究三 利用解直角三角形解决实际问题
例3 [2013· 岳阳] 某校有一露天舞台, 纵断面如图Z5-2所示,AC垂直于地面, AB表示楼梯,AE为舞台面,楼梯的坡角 ∠ABC=45°,坡长AB=2 m,为保障安 全,学校决定对该楼梯进行改造,降低坡 度,拟修新楼梯AD,使∠ADC=30°. (1)求舞台的高AC(结果保留根号); (2)在楼梯口B左侧正前方距离舞台底部C点3 m处有一株大 树,修新楼梯AD时底端D是否会触到大树?并说明理由.
专题五┃ 实际应用题
其中,找出有关的直角三角形是关键,具体方法是: 如果示意图形不是直角三角形,可添加适当的辅助线,把 它们分割成一些直角三角形和矩形,把实际问题转化为解直角 三角形问题,把可解的直角三角形纳入基本类型,确定合适的 边角关系,细心推理,按要求精确度作近似计算,最后写出答 并注明单位.
2015年中考数学复习计划

4、导学案(展示)设计必须注意容量,必须做到 “课课练、堂堂清”。
5、单元测试卷必须测试。
1、讲学稿设计带“★”的题目,为B组同学选做A组同学 拔高。 2、单元试卷为A组学生设计附加题,B组同学满分100分, A组同学满分150分。 3、单元复习课堂教学模式—— “议——批——讲——改” 四环授课法,时间分配分别为10′(议)+10′(批) +10′(批) +10′(改) 。
3、评分要狠,要贴合中考阅卷要求,以纠正学生中ห้องสมุดไป่ตู้些不 好的答题习惯 ;
4、批阅:全批全改,重视评卷工作,特别是要加强对改错 的检查力度,对于学生的失分情况要做适当的统计,使讲评 更具针对性。
1、A层学生:基础题、中等题以自改为主,教师着重辅导 较难题; B层学生:教师全讲全评基础题、中等题,适当放弃较 难题 。 2、A层学生:教师继续“中考压轴题”的训练;
1、专题练习分A、B两个层次,根据不同难度确定两个层次 的使用范围(祥见《专题确定及责任分工表》); 2、A组同学侧重综合专题,特别是中考压轴题;B组同学侧 重基本专题训练,强调训练的扎实程度,速度要慢.
3、在具体实施过程中,教师可适当附加相关练习。
综合模拟相关要求
1、试卷要求:党寨中学中考数学模拟试卷要求; 2、模拟考试顺序:基础卷(1份)→标准卷(2份) →拔高 卷(1份) →基础卷(1份) →标准卷(2份) →拔高卷(1 份) →标准卷(1份)
三、单元复习相关要求
四、复习分层施教情况
单元复习相关要求
1、本阶段必须扎扎实实地夯实基础,不赶急图快, 不搞题海战术,精讲精练,举一反三、触类旁通 ; 2、细化知识点,改往年以“单元”为单位复习为 以“课节”为单位复习,知识点更具体; 3、五统一:统一计划、统一进度、统一训练、统一 资料、统一检测。做到团结协作全面提高。
2015中考数学计划复习策略

2015年九年级数学教学计划与教学措施九年级时间非常紧张,既要完成新课的教学任务,又要考虑到在九年级下册教学时对初中阶段整个数学知识进行全面、系统的复习。
所以在制定九年级的教学计划时,一定要注意时间的安排,同时把握好教学进度。
切实可行的复习计划能让复习有条不紊地进行下去,起到事半功倍的效果。
将中考复习分为了四个阶段。
第一阶段:系统复习、夯实双基此阶段是总复习的基础,是重点。
近几年的中考题安排了较大比例的试题来考查“双基”,基础知识覆盖面广,起点低,复习中要紧扣教材,夯实基础,教师要引导学生重视基础知识的理解和方法的学习,做到清理知识结构,形成整体知识,并能综合运用。
这一轮的复习实行“低起点,重归纳,快反馈”的方法,每节课分三个环节:唤醒、巩固、强化。
以学生自主复习为主,教师进行必要的引领。
为照顾学困生,力求“知识问题化,问题具体化”,对重点知识合作巩固;难点知识合作攻关;易错知识合作辨析;易忘知识合作记忆。
这一阶段的复习还应注意以下几个问题:(1)回归教材,夯实基础。
(2)精讲精练,举一反三。
(3)面向全体,分层教学。
(4)定期检查,及时反馈。
(5)培养自信,让学生体验成功第二阶段:专题复习、提炼方法这是第一阶段的延伸和提高。
针对中考热点,侧重培养学生系统的思维能力和解题方法。
结合中考常见题型,将初中数学分为若干专题进行复习,重点加强各类题型的解法指导和训练,尤其是选择题的指导,以便让学生适应题型,形成正确的解题方法。
第二阶段的复习中应注意以下几个问题:(1)专题的选择,划分要合理,在围绕课标要求和中考动向上,试题应具有代表性、针对性。
(2)注重解题前的引导,解题中的分析及解题后的反思。
(3)着眼于能力提高,适度进行综合。
第三阶段:综合训练、提升技能这一阶段重点是提高学生的综合解题能力,训练学生解题策略,提高应试能力。
进行强化训练时,从近几年的中考卷,自编模拟试卷中精选高质量的试卷。
按中考要求在规定时间内进行严格考试,以便培养学生应考时的良好心理素质。
陕西省2015年中考数学总复习教学案7个专题

陕西省2015年中考数学总复习教学案专题一规律探索型问题 (1)专题二开放探究型问题 (6)专题三方案设计与动手操作型问题 (10)专题四情境应用型问题 (19)专题五阅读理解型问题 (26)专题六运动型问题 (33)专题七综合型问题 (38)专题一规律探索型问题规律探索型问题也是归纳猜想型问题,其特点是:给出一组具有某种特定关系的数、式、图形,或是给出与图形有关的操作变化过程,或某一具体的问题情境,要求通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论.类型有“数列规律”“计算规律”“图形规律”与“动态规律”等题型.1.数字猜想型:数字规律问题主要是在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.2.数式规律型:数式规律问题主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容.3.图形规律型:图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的算式描述其中的规律,要注意对应思想和数形结合.4.数形结合猜想型:数形结合猜想型问题首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反映出来,从而得出图形与数或式的对应关系,数形结合总结出图形的变化规律,进而解决相关问题.解题方法规律探索问题的解题方法一般是通过观察、类比特殊情况(特殊点、特殊数量、特殊线段、特殊位置等)中数据特点,将数据进行分解重组、猜想、归纳得出规律,并用数学语言来表达这种规律,同时要用结论去检验特殊情况,以肯定结论的正确.数字猜想型问题【例1】 (2014·钦州)甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2014时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是__336__分.【点评】本题考查数字的变化规律:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.1.(2014.兰州)为了求1+2+22+23+...+2100的值,可令S =1+2+22+23+ (2100)则2S =2+22+23+24+…+2101,因此2S -S =2101-1,所以S =2101-1,即1+2+22+23+…+2100=2101-1,仿照以上推理计算1+3+32+33+…+32014的值是__32015-12__.数式规律型问题【例2】 (2014·扬州)设a 1,a 2,…,a 2014是从1,0,-1这三个数中取值的一列数,若a 1+a 2+…+a 2014=69,(a 1+1)2+(a 2+1)2+…+(a 2014+1)2=4001,则a 1,a 2,…,a 2014中为0的个数是__165__.【点评】本题解题的关键是对给出的式子进行正确的变形.2.(2013·南宁)有这样一组数据a 1,a 2,a 3,…a n ,满足以下规律:a 1=12,a 2=11-a 1,a 3=11-a 2,…,a n =11-a n -1(n ≥2且n 为正整数),则a 2013的值为__-1__.(结果用数字表示)图形规律型问题【例3】 (2013·安徽)我们把正六边形的顶点及其对称中心称作如图①所示基本图的特征点,显然这样的基本图共有7个特征点.将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图②,图③,……(1)观察以上图形并完成下表: 图形的名称 基本图的个数 特征点的个数图①1 7 图②2 12 图③3 17 图④4 22 … … …猜想:在图中,特征点的个数为__5n +2__;(用n 表示)(2)如图,将图放在直角坐标系中,设其中第一个基本图的对称中心O 1的坐标为(x 1,2),则x 1=__x 1=3__;图的对称中心的横坐标为__20133__.【点评】本题考查图形的应用与作图,是规律探究题,难度中等,注意观察图形及表格,总结规律.3.(2014·深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有__485__.数形结合猜想型问题【例4】 (2014·泰安)如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B ,O 分别落在点B 1,C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去….若点A(53,0),B(0,4),则点B 2014的横坐标为__10070__.【点评】本题主要考查了点的坐标以及图形变化类,根据题意数形结合得出B 点横坐标变化规律是解题关键.4.在由m ³n(m ³n >1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f ,(1)当m ,n 互质(m ,n 除1外无其他公因数)时,观察下列图形并完成下表:m n m +nf 1 2 3 21 3 4 32 3 5 42 5 7 63 4 7 6猜想:当m ,n 互质时,在m ³n 的矩形网格中,一条对角线所穿过的小正方形的个数f 与m ,n 的关系式是__f =m +n -1__.(不需要证明)(2)当m ,n 不互质时,请画图验证你猜想的关系式是否依然成立.解:(2)当m ,n 不互质时,上述结论不成立,如图试题(1)(2012·桂林)下图是在正方形网格中按规律填成的阴影,根据此规律,则第n 个图中阴影部分小正方形的个数是____.(2)(2012·黔东南)如图,第①个图有2个相同的小正方形,第②个图有6个相同的小正方形,第③个图有12个相同的小正方形,第④个图有20个相同的小正方形,…,按此规律,那么第个图有________个相同的小正方形.(3)如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,…,按照这样的规律排列下去,则第9个图形由________个圆组成.审题视角探索数量规律题可以检验同学们观察图形的变化规律,并从中找出其数量关系的能力,由于没有现成的公式、定理可以套用,对初中生而言,有一定的难度.但只要了解一些数列的有关知识,加上一些常用的分析方法,解决这类问题也是比较容易的.规范答题解析(1)根据每一个图形都是一个正方形和右边的一个矩形构成,得到左边的正方形中小正方形的个数和右边的矩形中的小正方形的个数的和即可.仔细观察图形知道:每一个阴影部分由左边的正方形和右边的矩形构成,分别为:第1个图有:1+3个;第2个图有:4+4个;第3个图有:9+5个;……故第n个图有:[n2+(n+2)]个.(2)观察不难发现,每一个图形中正方形的个数等于图形序号乘以比序号大1的数,根据此规律解答即可.第①个图有2个相同的小正方形:2=1³2;第②个图有6个相同的小正方形:6=2³3;第③个图有12个相同的小正方形:12=3³4;第④个图有20个相同的小正方形:20=4³5;……按此规律,第个图有n(n+1)个相同的小正方形.(3)首先分析题意,找到规律,并进行推导得出答案.观察分析可得:第1个图有1个圆;第2个图由7个圆组成,7=1+6;第3个图由19个圆组成,19=1+6+2³6;……故第9个图由1+6+2³6+3³6+…+8³6=1+(1+2+3+…+8)³6=217(个)圆组成.答题思路第一步:审题,仔细观察图形并找到相应的规律;第二步:化形为数,相当于找出数列的前若干项;第三步:考察相邻两项的差异,再根据这些项或项中某些部分(如分子、分母,整数、分数等)构成何种数列;第四步:按题中要求写出某一项的结果或某些项的和.能找到前三项,就能求出任一项;另外,有些图形或数的出现是循环出现或按某种规律反复出现等,就需要具体问题具体分析了;第五步:反思回顾,查看关键点、易错点,完善解题步骤.试题 探索n ³n 的正方形钉子板上(n 是钉子板上每边的钉子数),连接任意两个钉子所得到的不同长度值的线段种数:当n =2时,钉子板上所连不同线段的长度值只有1与2,所以不同长度值的线段只有二种,若用S 表示不同长度值的线段种数,则S =2;当n =3时,钉子板上所连不同线段的长度值有1,2,2,5,22五种,比n =2时增加了三种,即S =2+3=5.(1)观察下图,并填写下表:钉子数(n ³n) S 值2³22 3³3 2+34³4 2+3+( )5³5( ) (2)写出(n -1)³(n -1)和n ³n 的两个钉子板上,不同长度值的线段种数之间的关系;(用式子或语言表述均可)(3)对n ³n 的钉子板,写出用n 表示S 的代数式.错解 (1)4;2+3+4+5;(2)设(n -1)³(n -1)和n ³n 两个钉子板上不同长度值的线段种数分别为S n -1和S n ,则S n -1=2+3+4+…+(n -1);S n =2+3+…+n ;(3)S n =2+3+4+…+n.剖析 (1)填对了;(2)题目要求理解错了,命题要求写出两个钉子板上的两个S 值之间关系,而不是每个钉子板上的S 值与每边上的钉子数n 的关系,显然,S n 比S n -1的值大n ;(3)写对了,但应化成不含省略号的代数式.正解 (1)4;2+3+4+5;(2)设(n -1)³(n -1)和n ³n 两个钉子板上不同长度值的线段种数分别为S n -1和S n ,则S n -1=2+3+4+…+(n -1);S n =2+3…+n ,∴S n -S n -1=n.即在(n -1)³(n -1)和n ³n 的两个钉子板上,不同长度值的线段种数前者比后者少n 种;(3)S n =2+3+4+…+n =(1+2+3+4+…+n)-1=n (n +1)2-1=n 2+n -22.专题二开放探究型问题开放探究型问题的内涵:所谓开放探究型问题是指已知条件、解题依据、解题方法、问题结论这四项要素中,缺少解题要素两个或两个以上,需要通过观察、分析、比较、概括、推理、判断等探索活动来确定所需求的条件或结论或方法.(1)常规题的结论往往是唯一确定的,而多数开放探究题的结论是不确定或不是唯一的,它是给学生有自由思考的余地和充分展示思想的广阔空间;(2)解决此类问题的方法,可以不拘形式,有时需要发现问题的结论,有时需要尽可能多地找出解决问题的方法,有时则需要指出解题的思路等.对于开放探究型问题,需要通过观察、比较、分析、综合及猜想,展开发散性思维,充分运用已学过的数学知识和数学方法,经过归纳、类比、联想等推理的手段,得出正确的结论.在解开放探究题时,常通过确定结论或补全条件,将开放性问题转化为封闭性问题.三个解题方法(1)条件开放型问题:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻,是一种分析型思维方式.它要求解题者善于从问题的结论出发,逆向追索,多途寻因;(2)结论开放型问题:从剖析题意入手,充分捕捉题设信息,通过由因导果,顺向推理或联想、类比、猜测等,从而获得所求的结论;(3)条件和结论都开放型:此类问题没有明确的条件和结论,并且符合条件的结论具有多样性,需将已知的信息集中进行分析,探索问题成立所必须具备的条件或特定的条件应该有什么结论,通过这一思维活动得出事物内在联系,从而把握事物的整体性和一般性.条件开放型问题【例1】已知四边形ABCD,AB∥CD,要得出四边形ABCD是平行四边形的结论,还应具备什么条件?解:如图,当AB∥CD时,只要具备下列条件之一,便可得出四边形ABCD是平行四边形.(1)AD∥BC;(2)AB=CD;(3)∠A=∠C;(4)∠B=∠D;(5)∠A+∠B=180°……【点评】判断一个四边形是平行四边形的基本依据是:平行四边形的定义及其判定定理,而本题告诉的四边形已有一组对边平行的条件,由此可以想到:①两组对边分别平行;②一组对边平行且相等;③一组对边平行,一组对角相等.都能得到平行四边形的结论.1.(2014·巴中)如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E ,F ,连结BE ,CF.(1)请你添加一个条件,使得△BEH ≌△CFH ,你添加的条件是__EH =FH__,并证明.(2)在问题(1)中,当BH 与EH 满足什么关系时,四边形BFCE 是矩形,请说明理由.解:(1)答:添加:EH =FH ,证明:∵点H 是BC 的中点,∴BH =CH ,在△BEH 和△CFH 中,⎩⎪⎨⎪⎧BH =CH∠BHE =∠CHF EH =FH ,∴△BEH ≌△CFH(SAS ) (2)解:∵BH =CH ,EH =FH ,∴四边形BFCE 是平行四边形(对角线互相平分的四边形为平行四边形),∵当BH =EH 时,则BC =EF ,∴平行四边形BFCE 为矩形(对角线相等的平行四边形为矩形).结论开放型问题【例2】 (2014·襄阳)如图,A ,P ,B ,C 是⊙O 上的四个点,∠APC =∠BPC =60°,过点A 作⊙O 的切线交BP 的延长线于点D.(1)求证:△ADP ∽△BDA ;(2)试探究线段PA ,PB ,PC 之间的数量关系,并证明你的结论;(3)若AD =2,PD =1,求线段BC 的长.解:(1)证明:作⊙O 的直径AE ,连接PE ,∵AE 是⊙O 的直径,AD 是⊙O 的切线,∴∠DAE =∠APE =90°,∴∠PAD +∠PAE =∠PAE +∠E =90°,∴∠PAD =∠E ,∵∠PBA =∠E ,∴∠PAD =∠PBA ,∵∠PAD =∠PBA ,∠ADP =∠BDA ,∴△ADP ∽△BDA(2)PA +PB =PC ,证明:在线段PC 上截取PF =PB ,连接BF ,∵PF =PB ,∠BPC =60°,∴△PBF 是等边三角形,∴PB =BF ,∠BFP =60°,∴∠BFC =180°-∠PFB =120°,∵∠BPA =∠APC +∠BPC =120°,∴∠BPA =∠BFC ,在△BPA 和△BFC 中,⎩⎪⎨⎪⎧∠PAB =∠PCB ∠BPA =∠BFC PB =BF,∴△BPA ≌△BFC(AAS ),∴PA =FC ,AB =BC ,∴PA +PB =PF +FC =PC(3)解:∵△ADP ∽△BDA ,∴AD BD =DP DA =AP AB,∵AD =2,PD =1∴BD =4,AB =2AP ,∴BP =BD -DP =3,∵∠APD =180°-∠BPA =60°,∴∠APD =∠APC ,∵∠PAD =∠E ,∠PCA =∠E ,∴PAD =∠PCA ,∴△ADP ∽△CAP ,∴AP CP =DP AP,∴AP 2=CP·PD ,∴AP 2=(3+AP)·1,解得:AP =1+132或AP =1-132(舍去),∴BC =AB =2AP =1+13.【点评】解结论开放型问题时要充分利用已知条件或图形特征,进行猜想、归纳、类比,透彻分析出给定条件下可能存在的结论现象,然后经过论证作出取舍,这是一种归纳类比型思维.它要求解题者充分利用条件进行大胆而合理的猜想,发现规律,得出结论,这类题主要考查解题者的发散性思维能力和知识应用能力.2.(2013·杭州)(1)先求解下列两题:①如图①,点B ,D 在射线AM 上,点C ,E 在射线AN 上,且AB =BC =CD =DE ,已知∠EDM =84°,求∠A 的度数;②如图②,在直角坐标系中,点A 在y 轴正半轴上,AC ∥x 轴,点B ,C 的横坐标都是3,且BC =2,点D 在AC 上,且横坐标为1,若反比例函数y =k x(x >0)的图象经过点B ,D ,求k 的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.解:(1)①∵AB =BC =CD =DE ,∴∠A =∠BCA ,∠CBD =∠BDC ,∠ECD =∠CED ,根据三角形的外角性质,∠A +∠BCA =∠CBD ,∠A +∠CDB =∠ECD ,∠A +∠CED =∠EDM ,又∵∠EDM =84°,∴∠A +3∠A =84°,解得,∠A =21°;②∵点B 在反比例函数y =k x 图象上,点B ,C 的横坐标都是3,∴点B(3,k 3),∵BC =2,∴点C(3,k 3+2),∵AC ∥x 轴,点D 在AC 上,且横坐标为1,∴D(1,k 3+2),∵点D 也在反比例函数图象上,∴k 3+2=k ,解得,k =3; (2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.存在开放型问题【例3】 (2014·龙东)如图,在平面直角坐标系中,正方形ABCD 的顶点A 在y 轴正半轴上,顶点B 在x 轴正半轴上,OA ,OB 的长分别是一元二次方程x 2-7x +12=0的两个根(OA >OB).(1)求点D 的坐标.(2)求直线BC 的解析式.(3)在直线BC 上是否存在点P ,使△PCD 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,说明理由.解:(1)x 2-7x +12=0,解得x 1=3,x 2=4,∵OA >OB ,∴OA =4,OB =3,过D 作DE ⊥y 于点E ,∵正方形ABCD ,∴AD =AB ,∠DAB =90°,∠DAE +∠OAB =90°,∠ABO +∠OAB =90°,∴∠ABO =∠DAE ,∵DE ⊥AE ,∴∠AED =90°=∠AOB ,在△DAE 和△ABO 中,⎩⎪⎨⎪⎧∠ABO =∠DAE ∠AED =∠AOB =90°AB =AD,∴△DAE ≌△ABO(AAS ),∴DE =OA =4,AE =OB =3,∴OE =7,∴D(4,7)(2)过点C 作CM ⊥x 轴于点M ,同上可证得△BCM ≌△ABO ,∴CM =OB =3,BM =OA =4,∴OM =7,∴C(7,3),设直线BC 的解析式为y =kx +b(k ≠0,k ,b 为常数),代入B(3,0),C(7,3)得,⎩⎪⎨⎪⎧7k +b =33k +b =0,解得⎩⎨⎧k =34b =-94,∴y =34x -94 (3)存在.点P 与点B 重合时,P 1(3,0),点P 与点B 关于点C 对称时,P 2(11,6).【点评】 本题是一道典型的“存在性问题”,主要利用了解一元二次方程、正方形的性质、全等三角形的判定与性质、待定系数法求一次函数解析式、等腰直角三角形的判定与性质,作辅助线构造出全等三角形是解题的关键,考查了等腰三角形存在的条件,有一定的开放性.3.已知一次函数y =-x -4和反比例函数y =k x(k ≠0). (1)k 满足什么条件时,这两个函数在同一直角坐标系中的图象有两个交点?(2)设(1)中的两个交点为A ,B ,试问∠AOB 是锐角还是钝角?为什么?解:(1)解两个函数关系式构成的方程组⎩⎪⎨⎪⎧y =-x -4,y =k x(k ≠0),由此可求得:k<4且k ≠0; (2)当0<k<4时,∠AOB<90°,是锐角;当k<0时,∠AOB>90°,是钝角.综合开放型问题【例4】 (2012·南京)看图说故事.请你编一个故事,使故事情境中出现的一对变量x ,y 满足图示的函数关系式,要求:①指出变量x 和y 的含义;②利用图中数据说明这对变量变化过程的实际意义,其中须涉及“速度”这个量.解:①该函数图象表示小明骑车离出发地的路程y(单位: km )与他所用的时间x(单位:min )的关系.②小明以400 m / min 的速度匀速骑了5 min ,在原地休息了6 min ,然后以500 m / min 的速度匀速骑车回出发地.(本题答案不唯一)【点评】解决综合开放性问题时,需要类比、试验、创新和综合运用所学知识,建立合理的数学模型,从而使问题得以解决.综合开放型问题的解题方法一般不唯一或解题路径不明确,要求解题者不墨守成规,敢于创新,积极发散思维,优化解题方案和过程.4.已知两数4和8,试写出第三个数,使三个数中,其中一个数是其余两个数的比例中项,则第三个数是±42或2或16.(只需写出一个)试题在五环图案中,分别填写五个数a,b,c,d,e,如图,其中a,b,c是三个连续偶数,a<b<c,d,e是两个连续奇数,d<e,且满足a+b+c=d+e,例如,请你在0到20之间选择另一组符合条件的数填入图中:错解剖析(1)在0到20之间,符合条件的答案除例题外,还有两组,因题目要求只画一个图,为了完整准确起见,两组答案都应写出,用“或”字连接;(2)正确的解题方法可使答案完整无漏,例如:此题中可采用二元一次方程不定解的方法来解答,设最小偶数为x,最小奇数为y,则三个连续偶数为x,x+2,x+4,两个连续奇数为y,y+2.据题意,a+b+c=d+e,得x+(x+2)+(x+4)=y+(y+2),3x+6=2y+2,整理得y=32x+2,下面列表表示它的解:故符合条件的解有⎩⎨⎧x=2,y=5,或⎩⎨⎧x=6,y=11,或⎩⎪⎨⎪⎧x=10,y=17.正解专题三方案设计与动手操作型问题方案设计型问题是设置一个实际问题的情景,给出若干信息,提出解决问题的要求,寻求恰当的解决方案,有时还给出几个不同的解决方案,要求判断其中哪个方案最优.方案设计型问题主要考查学生的动手操作能力和实践能力.方案设计型问题,主要有以下几种类型:(1)讨论材料,合理猜想——设置一段讨论材料,让考生进行科学的判断、推理、证明;(2)画图设计,动手操作——给出图形和若干信息,让考生按要求对图形进行分割或设计美观的图案;(3)设计方案,比较择优——给出问题情境,提出要求,让考生寻求最佳解决方案.操作型问题是指通过动手实验,获得数学结论的研究性活动.这类问题需要动手操作、合理猜想和验证,有助于实践能力和创新能力的培养,更有助于养成实验研究的习惯.常见类型有:(1)图形的分割与拼接;(2)图形的平移、旋转与翻折;(3)立体图形与平面图形之间的相互转化.三个解题策略(1)方程或不等式解决方案设计问题:首先要了解问题取材的生活背景;其次要弄清题意,根据题意建构恰当的方程模型或不等式模型,求出所求未知数的取值范围;最后再结合实际问题确定方案设计的种数.(2)择优型方案设计问题:这类问题一般方案已经给出,要求综合运用数学知识比较确定哪种方案合理.此类问题要注意两点:一是要符合问题描述的要求,二是要具有代表性.(3)操作型问题:大体可分为三类,即图案设计类、图形拼接类、图形分割类等.对于图案设计类,一般运用中心对称、轴对称或旋转等几何知识去解决;对于图形拼接类,关键是抓住需要拼接的图形与所给图形之间的内在关系,然后逐一组合;对于图形分割类,一般遵循由特殊到一般、由简单到复杂的动手操作过程.统计测量型方案设计【例1】 某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数;方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数;方案3:所有评委所给分的中位数;方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.解:(1)方案1最后得分:110³(3.2+7.0+7.8+3³8+3³8.4+9.8)=7.7;方案2最后得分:18³(7.0+7.8+3³8+3³8.4)=8;方案3最后得分:8;方案4最后得分:8或8.4 (2)因为方案1中的平均数受极端数值的影响,不能反映这组数据的“平均水平”,所以方案1不适合作为最后得分的方案;又因为方案4中的众数有两个,从而使众数失去了实际意义,所以方案4不适合作为最后得分的方案.【点评】通过计算得出各个方案的数值,逐一比较.1.(2012·宜宾)如图,飞机沿水平方向(A ,B 两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M 到飞行路线AB 的距离MN.飞机能够测量的数据有俯角和飞行距离(因安全因素,飞机不能飞到山顶的正上方N 处才测飞行距离),请设计一个求距离MN 的方案,要求:(1)指出需要测量的数据(用字母表示,并在图中标出);(2)用测出的数据写出求距离MN 的步骤.解:(1)如图,测出飞机在A 处对山顶的俯角为α,测出飞机在B 处对山顶的俯角为β,测出AB 的距离为d ,连接AM ,BM (2)第一步骤:在Rt △AMN 中,tan α=MN AN,∴AN =MN tan α,第二步骤:在Rt △BMN 中,tan β=MN BN ,∴BN =MN tan β,其中:AN =d +BN ,解得:MN =d·tan α²tan βtan β-tan α,此题为开放题,答案不唯一,只要方案设计合理.利用方程(组)、不等式、函数进行方案设计【例2】 (2013·茂名)在信宜市某“三华李”种植基地有A ,B 两个品种的树苗出售,已知A 种比B 种每株多2元,买1株A 种树苗和2株B 种树苗共需20元.(1)问A ,B 两种树苗每株分别是多少元?(2)为扩大种植,某农户准备购买A ,B 两种树苗共360株,且A 种树苗数量不少于B 种数量的一半,请求出费用最省的购买方案.解:(1)设A 种树苗每株x 元,B 种树苗每株y 元,由题意,得⎩⎪⎨⎪⎧x -y =2x +2y =20,解得:⎩⎪⎨⎪⎧x =8y =6,答:A 种树苗每株8元,B 种树苗每株6元(2)设A 种树苗购买a 株,则B 种树苗购买(360-a)株,共需要的费用为W 元,由题意,得⎩⎪⎨⎪⎧a ≥12(360-a )①W =8a +6(360-a )②,由①,得a ≥120.由②,得W =2a +2160.∵k =2>0,∴W 随a 的增大而增大,∴a =120时,W 最小=2400,∴B 种树苗为:360-120=240棵.∴最省的购买方案是:A 种树苗购买120棵,B 种树苗购买240棵.【点评】本题考查了列二元一次方程组解决实际问题的运用、不等式的运用、一次函数的解析式的运用,解答时建立一次函数关系式是难点.2.(2014·丽水)为了保护环境,某开发区综合治理指挥部决定购买A ,B 两种型号的污水处理设备共10台.已知用90万元购买A 型号的污水处理设备的台数与用75万元购买B 型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备 A 型 B 型价格(万元/台) m m -3月处理污水量(吨/台)220 180 (1)求m 的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.解:(1)由90万元购买A 型号的污水处理设备的台数与用75万元购买B 型号的污水处理设备的台数相同,即可得:90m =75m -3,解得m =18,经检验m =18是原方程的解,即m =18(2)设买A 型污水处理设备x 台,则B 型(10-x)台,根据题意得:18x +15(10-x)≤165,解得x ≤5,由于x 是整数,则有6种方案,当x =0时,y =10,月处理污水量为1800吨,当x =1时,y =9,月处理污水量为220+180³9=1840吨,当x =2时,y =8,月处理污水量为220³2+180³8=1880吨,当x =3时,y =7,月处理污水量为220³3+180³7=1920吨,当x =4时,y =6,月处理污水量为220³4+180³6=1960吨,当x =5时,y =5,月处理污水量为220³5+180³5=2000吨,答:有6种购买方案,每月最多处理污水量的吨数为2000吨.图形类方案设计【例3】 (2014·济宁)在数学活动课上,王老师发给每位同学一张半径为6个单位长度的圆形纸板,要求同学们:(1)从带刻度的三角板、量角器和圆规三种作图工具中任意选取作图工具,把圆形纸板分成面积相等的四部分;(2)设计的整个图案是某种对称图形.王老师给出了方案一,请你用所学的知识再设计两种方案,并完成下面的设计报告.名称 四等分圆的面积方案 方案一 方案二 方案三选用的工具 带刻度的三角板 带刻度三角板、量角器、圆规.带刻度三角板、圆规. 画出示意图简述设计方案 作⊙O 两条互相垂直的直径AB ,CD ,将⊙O 的面积分成相等的四份. (1)以点O 为圆心,以3个单位长度为半径作圆;(2)在大⊙O 上依次取三等分点A ,B ,C ;(3)连接OA ,OB ,OC.则小圆O 与三等份圆环把⊙O 的面积四等分.(4)作⊙O 的一条直径AB ;(5)分别以OA ,OB 的中点为圆心,以3个单位长度为半径作⊙O 1,⊙O 2;则⊙O 1,⊙O 2和⊙O 中剩余的两部分把⊙O 的面积四等分. 指出对称性 既是轴对称图形又是中心对称图形 轴对称图形 既是轴对称图形又是中心对称图形【点评】 本题主要考查了利用轴对称设计图案以及轴对称图形、中心对称图形的性质,熟练利用扇形面积公式是解题关键. 3.认真观察下图的4个图中阴影部分构成的图案,回答下列问题:。
2015年辽宁省地区中考数学总复习专题课件 专题五 阅读理解型问题(共33张PPT)

题型二:考查解题思维过程的阅读理解题 言之有据 ,言必有据 ,这是正确解题的关键所在 , 是提高我们数学 水平的前提.数学中的基本定理、公式、法则和数学思想方法都是理解 数学、学习数学和应用数学的基础,这类试题就是为检测我们理解解题 过程、掌握基本数学思想方法和辨别是非的能力而设置的. 题型三:考查纠正错误挖病根能力的阅读理解题 理解知识不是拘泥于形式地死记硬背 , 而是要把握知识的内涵或实 质,理解知识间的相互联系,形成知识脉络,从而整体地获取知识.这 类试题意在检测我们对知识的理解以及认识问题和解决问题的能力. 题型四:考查归纳、探索规律能力的阅读理解题 对材料信息的加工提炼和运用 , 对规律的归纳和发现能反映出我们 的应用数学、发展数学和进行数学创新的意识和能力.这类试题意在检 测我们的“数学化”能力以及驾驭数学的创新意识和才能.
3.(2014·济南)现定义一种变换:对于一个由有限个数组成的序列 S0,将其中的每个数换成该数在 S0中出现的次数,可得到一个新序列 S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2 ,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是(D) A.(1,2,1,2,2) B.(2,2,2,3,3) C.(1,1,2,2,3) D.(1,2,1,1,2)
解:应用:①若 PB=PC,连接 PB,则∠PCB=∠PBC,∵CD 为等边三角形的高,∴ AD=BD, ∠PCB=30°.∴∠PBD=∠PBC=30°, ∴PD= 3 3 1 DB= AB.与已知 PD= AB 3 6 2
矛盾,∴PB≠PC.②若 PA=PC,连接 PA,同理可得 PA≠PC. 1 ③若 PA=PB,由 PD= AB,得 PD=AD=BD,∴∠APD=∠BPD=45°.∴∠APB 2 =90°. 探究:∵BC=5,AB=3,∴AC= BC2-AB2= 52-32=4.①若 PB=PC,设 PA=x, 7 7 则 x2+32=(4-x)2,∴x= ,即 PA= .②若 PA=PC,则 PA=2.③若 PA=PB,由图知,在 8 8 7 Rt△PAB 中,不可能.∴PA=2 或 . 8 【点评】本题考查了线段垂直平分线的性质、等腰三角形的性质、勾股定理,读懂题 意,在仔细阅读之后弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三 种情况进行讨论.
2015九年级数学中考复习方案

九年级数学总复习方案——金称市镇中学数学组随着中考的临近,学生面临升学。
作为教师,上好复习课至关重要。
做为九年级数学总复习,教学内容多、时间紧、任务重、要求高,如何提高总复习的质量和效益,是数学教师值得认真思考的问题。
为了提高数学教学质量,提高数学复习效率,使学生在中考中取得理想的成绩,特制定下面的数学复习计划:一、复习目标:1.使所学知识系统化、结构化,让学生将三年的数学知识形成一个有机整体,利于学生理解;2.精讲多练,巩固基础知识,掌握基本技能;3.抓好方法教学,引导学生归纳、总结解题的方法,适应各种题型的变化;4.做好综合题训练,提高学生综合运用知识分析问题的能力。
二.复习措施。
1.认真钻研教材、课标要求、吃透考试大纲,确定复习重点。
2.正确分析学生的知识状况和近期的思想状况。
3.根据知识重点、学生的知识状况及总复习时间制定比较具体详细可行的复习计划。
4.切实抓好“双基”的训练。
5.抓好教材中例题、习题的归类、变式的教学。
三、复习过程(四个阶段)第一阶段:系统复习,梳理知识,形成知识网络(4月1日——5月4完成)这个阶段的复习目的是让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统、形成知识网络,同时对典型问题进行变式训练,做到以不变应万变,提高应变能力。
我们学校的具体做法是:对各章节按《数与式》、《方程与不等式》、《函数及图象》、《几何初步知识与三角形》、《四边形》、《圆》、《相似与投影》、《图形变换》、《锐角三角函数》、《统计与概率》这十个单元进行系统复习,资料的选取以《中考总复习》为主,要求学生在复习中重点放在理解概念、弄清定义、掌握基本方法上。
复习中教师应引导学生对本单元知识进行系统归类,弄清内部结构,然后让学生通过恰当的训练,加深对概念的理解、结论的掌握、方法的运用和能力的提高。
第二阶段:专题复习,归纳解题思路,提高解题能力。
(5月4日——5月20日完成)如果说第一阶段是总复习的基础,是重点,侧重于双基训练,那么第二阶段就是第一阶段复习的延伸和提高,应侧重培养学生的数学能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题五方案与设计
1.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水需2分钟;②洗菜需3分钟;③准备面条及佐料需2分钟;④用锅把水烧开需7分钟;⑤用烧开的水煮面条和菜需3分钟.以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用() A.14分钟B.13分钟C.12分钟D.11分钟
2.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.请问可行的租车方案有()
A.2种B.3种C.4种D.5种
3.一宾馆有两人间、三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,且每个房间都住满,租房方案有()
A.4种B.3种C.2种D.1种
4.某乳制品厂现有鲜牛奶10吨,若直接销售,每吨可获利500元;若制成酸奶销售,每吨可获利1 200元;若制成奶粉销售,每吨可获利2 000元.该工厂的生产能力是:若制成酸奶,每天可加工鲜牛奶3吨;若制成奶粉,每天可加工鲜牛奶1吨(两种加工方式不能同时进行).受气温条件限制,这批鲜牛奶必须在4天内全部销售或加工完成.为此该厂设计了以下两种可行方案:
方案一:4天时间全部用来生产奶粉,其余直接销售鲜奶;
方案二:将一部分制成奶粉,其余制成酸奶,并恰好4天完成.
你认为哪种方案获利最多,为什么?
5.(2012年四川泸州)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.
(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2 700元,求购进甲、乙两种商品各多少件?
(2)若该商店准备用不超过3 100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少(利润=售价-进价)?
6.(2011年贵州安顺)某班到毕业时共结余班费1 800元,班委会决定拿出不少于270元,但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品.已知每件T恤比每本影集贵9元,用200元恰好可以买到2件T恤和5本影集.
(1)求每件T恤和每本影集的价格;
(2)有几种购买T恤和影集的方案?
7.(2012年四川内江)某市为创建省卫生城市,有关部门决定利用现有的4 200盆甲种花卉和3 090盆乙种花卉,搭配A,B两种园艺造型共60个,摆放于入城大道两侧,搭配每
(1)符合题意的搭配方案有哪几种?
(2)如果搭配一个A种造型的成本为1 000元,搭配一个B种造型的成本为1 500元,试说明选用哪种方案成本最低?最低成本为多少元?
8.(2011年湖北黄石)今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环保意识,节约用水,某校数学教师编造了一道应用题:为了保护水资源,某市制定一套节水的管
(2)记该用户六月份的用水量为x吨,缴纳水费y元,试列出y关于x的函数式;
(3)若该用户六月份的用水量为40吨,缴纳水费y元的取值范围为70≤y≤90,试求m 的取值范围.
9.(2012年四川达州)大学生王强积极响应“自主创业”的号召,准备投资销售一种进价为每件40元的小家电.通过试营销发现,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y(单位:件)与销售单价x(单位:元)之间的关系可近似地看作一次函数,其图象如图Z5-2.
图Z5-2
(1)求y 与x 的函数关系式;
(2)设王强每月获得的利润为p (单位:元),求p 与x 之间的函数关系式;如果王强想要每月获得2 400元的利润,那么销售单价应定为多少元?
10.潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A ,B 两类蔬菜,两种植
(1)求A ,B 两类蔬菜每亩的平均收入各是多少元;
(2)某种植户准备租20亩地用来种植A ,B 两类蔬菜,为了使总收入不低于63 000元,且种植A 类蔬菜的面积多于种植B 类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有的租地方案.
专题五 方案与设计
【专题演练】
1.C 2.C
3.C 解析:设租两人间x 间,三人间y 间,则四人间(7-x -y )间,由题意,得⎩⎪⎨⎪⎧ 2x +3y +4(7-x -y )=20,7-x -y >0,x >0,y >0.
解得2x +y =8,x >0,y >0,7-x -y >0.
∴x =2,y =4,7-x -y =1;x =3,y =2,7-x -y =2.
故有2种租房方案.故选C.
4.解:方案一获利:4×2 000+6×500=11 000(元).
方案二:设制奶粉x 天,则
1×x +(4-x )×3=10,
解得x =1天.
故1×1×2 000+3×3×1 200=12 800(元).
故选方案二.
5.解:(1)设购进甲种商品x 件,购进乙种商品y 件,
根据题意,得
⎩⎪⎨⎪⎧
x +y =100,15x +35y =2 700, 解得:⎩⎪⎨⎪⎧
x =40,y =60. 答:商店购进甲种商品40件,购进乙种商品60件.
(2)设商店购进甲种商品a 件,则购进乙种商品(100-a )件,
根据题意列,得
⎩⎪⎨⎪⎧
15a +35(100-a )≤3 100,5a +10(100-a )≥890,
解得20≤a ≤22.
∵总利润W =5a +10(100-a )=-5a +1 000,W 是关于x 的一次函数,W 随x 的增大而减小,
∴当x =20时,W 有最大值,此时W =900,且100-20=80,
答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
6.解:(1)设T 恤和影集的价格分别为x 元和y 元,则⎩⎪⎨⎪⎧ x -y =9,2x +5y =200.解得⎩
⎪⎨⎪⎧ x =35,y =26. 答:T 恤和影集的价格分别为35元和26元.
(2)设购买T 恤t 件,则购买影集(50-t )本.依题意,得
1 500≤35t +26(50-t )≤1 530.
解得2009≤t ≤2309
. ∵t 为正整数,∴t =23,24,25.
即有三种方案.
第一种方案:购T 恤23件,影集27本;
第二种方案:购T 恤24件,影集26本;
第三种方案:购T 恤25件,影集25本.
7.解:(1)设搭配A 种造型x 个,则搭配B 种造型(60-x )个.
由题意,得⎩
⎪⎨⎪⎧
80x +50(60-x )≤4 20040x +70(60-x )≤3 090,解得37≤x ≤40. ∵x 为正整数,∴x 1=37,x 2=38,x 3=39,x 4=40.
∴符合题意的搭配方案有4种:①A 种造型37个,B 种造型23个;②A 种造型38个,B 种造型22个;③A 种造型39个,B 种造型21个;④A 种造型40个,B 种造型20个.
(2)设总成本为W 元,则W =1 000x +1 500(60-x )=-500x +90 000.
∵W 随x 的增大而减小,∴当x =40时,W 最小=70 000元.
即选用A 种造型40个,B 种造型20个时,成本最低为70 000元.
8.解:(1)应缴纳水费:
10×1.5+(18-10)×2=31(元).
(2)当0≤x ≤10时,y =1.5x ;
当10<x ≤m 时,y =10×1.5+2(x -10)=2x -5;
当x >m 时,y =15+2(m -10)+3(x -m )=3x -m -5. ∴y =⎩⎪⎨⎪⎧ 1.5x (0≤x ≤10),2x -5 (10<x ≤m ),
3x -m -5 (x >m ).
(3)当40≤m ≤50时,y =2×40-5=75(元),满足.
当20≤m <40时,y =3×40-m -5=115-m ,
则70≤115-m ≤90,∴25≤m ≤45,即25≤m ≤40.
综上得,25≤m ≤50.
9.解:(1)y =-4x +360(40≤x ≤90).
(2)由题意,得p 与x 的函数关系式为:
p =(x -40)(-4x +360)=-4x 2+520x -14 400,
当p =2 400时,-4x 2+520x -14 400=2 400,
解得x 1=60,x 2=70.
故销售单价应定为60元或70元.
10.解:(1)设A ,B 两类蔬菜每亩平均收入分别是x 元,y 元.
由题意,得⎩⎪⎨⎪⎧
3x +y =12 500,2x +3y =16 500.
解得⎩⎪⎨⎪⎧
x =3 000,y =3 500. 答:A ,B 两类蔬菜每亩平均收入分别是3 000元,3 500元.
(2)设用来种植A 类蔬菜的面积为a 亩,则用来种植B 类蔬菜的面积为(20-a )亩.
由题意,得⎩
⎪⎨⎪⎧
3 000a +3 500(20-a )≥63 000,a >20-a . 解得10<a ≤14.
∵a 取整数,为:11,12,13,14.。