关于复杂系统研究的计算理论与方法

关于复杂系统研究的计算理论与方法
关于复杂系统研究的计算理论与方法

浅谈计算复杂性理论

浅谈计算复杂性理论 任忠 乌鲁木齐石化公司计控中心 摘要:本文阐述了计算复杂性理论的产生、定义、研究内容和发展。 关键词:算法分析;计算复杂性;起源;发展 1.计算法复杂性理论的起源 在几千年的数学发展中,人们研究了各式各样的计算,创立了许多算法。但是,以计算或算法本身的性质为研究对象的数学理论,却是在20世纪30年代才发展起来的。 1936年,为了讨论对于每个问题是否都有求解算法,数理逻辑学家提出了几种不同的计算模型的定义。K.Godel和S.C.Kleene等人创立了递归函数论,将数论函数的算法、可计算性刻画为递归可枚举性。A.M.Turing和E.L.Post提出了理想计算机的概念,将问题算法可解性刻画为在具有严格定义的理想计算机上的可解性。40年代以后,随着计算机科学技术的发展,研究的焦点从理论可计算法转移到现实可计算性上。人们不仅需要研究理论上的、原则上的可计算性,还要研究现实的可计算性,即研究计算一个问题类需要多少时间,多少存储空间,研究哪些问题是现实可计算的,哪些问题虽然原则上可计算,但由于计算的量太大而实际上无法计算等。因而一般算法设计方法研究和对一类问题算法解的难度分析便成为计算机科学的热点。此后,计算复杂性的研究等不断有所发展。由此产生了算法学和计算复杂性理论等新兴研究领域。 计算复杂性大的进展始于50年代末、60年代初,当时在美国有两个并行的中心,一个是通用电气公司设立于纽约州Schenectady的研究实验室,核心人物是J.Hartmanis和R.Stearns。1964年11月,他们在普林斯顿举行的第五届开关电路理论和逻辑设计学术年会上发表了论文"Computational Complexity of recursivese quences",论文中首次使用了"计算复杂性"这一术语,由此开辟了计算机科学中的一个新领域,并为之奠定了理论基础。他们两人是1993年度图灵奖获得者。另一个中心是麻省理工学院MIT,在那里,加州大学伯克利分校著名的计算机科学家Manuel Blum与前述两人互相独立地进行着相关问题的研究,并完成了他的博士论文:"Amachine independent theory of the complexity of recur- sive functions",Blum是受以色列学者M.O.Rabin的启发而开始这方面的研究的。Rabin 是希伯莱大学的教授,是研究计算复杂性问题的先驱,并在1976年荣获图灵奖。Blum的论文不但提出了有关计算复杂性的一些公理,而且在对复杂性类的归纳上也比其他学者有更高的抽象度。因此布、哈、斯三人被学术界公认为计算复杂性理论的主要奠基人。

复杂系统理论和平台经济学

互联网金融的理论支撑:复杂系统理论和平台经济学 解释互联网世界最好的理论,是复杂系统理论。该理论的基本概念是节点、路径、度的幂率分布、网络聚集度、中枢节点、鲁棒性、脆弱性、网络优化等。可用以解释随机网络、社会网络、互联网和疾病传染等。 小世界理论,简单来说,就相当于跳棋游戏,上世纪60年代哈佛大学Stanley Milgram做过著名的小世界实验,推断出:世界上任意两个人平均距离是6,也就是说,即便你不认识奥巴马,通过最多6个人你就能成功联系到他,相当于任意位置的跳棋跳6步一定能到达赢棋点,这就是六度空间的由来。我估计移动互联网至多是四度空间,线下六度到线上四度,时空被指数级地凝聚缩小。 互联网使厂商和消费者的距离明显压缩,在去中心化的互联网上,厂商必须争取成为中枢节点。目前几乎所有互联网企业都处于无尺度网络,解决的是时间上的跨期平滑问题。但在结合数字地图之后,极少领先企业将从无尺度转向有尺度空间,将有可能解决空间上的产能和商品的有序调度。现在流行的是平台,未来流行的是配对,金融中介将大幅消亡。 从复杂网络系统来说,微信群是很典型的呈现,其中节点就是每个微信用户,建立节点之间的连接规则是手机通讯录两方之中有一方即可建立连接。这样相互连接的点就形成了一个二维社交网络,这样的网络是无标度的,也就是说节点之间不用考虑距离远近的问题。空港之间用航线相互连接也形成一个复杂网络,但这个网络显然有标度。此外,节点的地位不同,连接到节点的linkage越多,这个节点就越重要。所以复杂网络没有中心,但有聚集度的差异性和重要节点。互联网企业当然要全力争取成为重要节点。 顺便说一句,微信之所以是四度空间,而线下是六度空间,是由于微信通过大量增加较少联系的非熟悉朋友,而达到空间的浓缩,因此微信交往圈的扩大明显带有“次友效应”(subfriends)。我们大致可以认为,你在线下,在日常通讯录中都很少联系的人,通过微信邂逅,也就仅仅是增加了邂逅而已,要在 次友之间建立信任关系是非常困难的,因此微信群崩溃的可能,比朋友圈崩溃的可能性更大。

线损理论计算方法

线损理论计算方法 线损理论计算是降损节能,加强线损管理的一项重要的技术管理手段。通过理论计算可发现电能损失在电网中分布规律,通过计算分析能够暴露出管理和技术上的问题,对降损工作提供理论和技术依据,能够使降损工作抓住重点,提高节能降损的效益,使线损管理更加科学。所以在电网的建设改造过程以及正常管理中要经常进行线损理论计算。 线损理论计算是项繁琐复杂的工作,特别是配电线路和低压线路由于分支线多、负荷量大、数据多、情况复杂,这项工作难度更大。线损理论计算的方法很多,各有特点,精度也不同。这里介绍计算比较简单、精度比较高的方法。 理论线损计算的概念 1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1)单一线路有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A; R--导线电阻,Ω (2)三相电力线路 线路有功损失为 △P=△PA十△PB十△PC=3I2R (3)温度对导线电阻的影响: 导线电阻R不是恒定的,在电源频率一定的情况下,其阻值 随导线温度的变化而变化。 铜铝导线电阻温度系数为a=。 在有关的技术手册中给出的是20℃时的导线单位长度电阻值。但实际运行的电力线路周围的环境温度是变化的;另外;负载电流通过导线电阻时发热又使导线温度升高,所以导线中的实际电阻值,随环境、温度和负荷电流的变化而变化。为了减化计算,通常把导线电阴分为三个分量考虑: 1)基本电阻20℃时的导线电阻值R20为 R20=RL 式中R--电线电阻率,Ω/km,; L--导线长度,km。 2)温度附加电阻Rt为 Rt=a(tP-20)R20 式中a--导线温度系数,铜、铝导线a=0.004; tP--平均环境温度,℃。 3)负载电流附加电阻Rl为 Rl= R20 4)线路实际电阻为 R=R20+Rt+Rl (4)线路电压降△U为 △U=U1-U2=LZ 2.配电变压器损耗(简称变损)功率△PB

决策理论与方法

1、公共部门决策的特点:1决策主体的公共性2决策内容的公共性3决策方式的民主化4决策准则的公益性 2、公共部门决策的重要性作用:1为公共部门的决策提供目标2使公共部门的管理行为有了行动依据3有助于调动公共部门管理者的工作积极性4有助于使公共部门的管理工作达到更优效果 3、公共部门决策理论的研究方法:理论实践结合法,主体兼容法,吸收创新法。 4、经验决策的基本方法:直接判断法,淘汰法,排斥法,归纳法 5、科学决策的标志:1公关部门决策由个人决策发展为集团决策2公关部门由单纯的定性分析发展为定性与定量相结合的分析3公关部门决策由仅注重决策的结果到注重决策的全过程。决策分析方法的科学化主要趋势是出现了决策分析的数学化,模型化,电子计算机化。 6、中国传统决策文化观念:1中庸决策观,儒家:适可而止,不偏不倚,中庸之道2无为决策观,道家:无为而治,贵柔,守雌,不争3经验决策观,墨家:三表论,本,原,用,类,故4权谋决策观,法家:权势,谋略5知变决策观,孙子兵法:知,变,知己知彼,技之以计,奇正相生。 7、我国政府决策的基本经验:1坚持共产党在政府决策中的领导地位2遵循实事求是的思想路线,重视调查研究,坚持领导与群众相结合的决策方法3坚持民主集中制的组织原则4尊重专家的意见,按科学态度决策。 8、我国政府决策的主要教训:1没有一套完善的决策制度2决策研究缺乏公开性和民主性,3缺乏一套系统的科学决策程序。 9、公关部门决策科学化基本内容:决策研究的科学化,决策过程的程序化。公关部门决策民主化基本内容:决策参与的民主化,决策讨论的公开化。 10、公关部门决策科学化和民主化的保障机制:1完善重大决策的规则和程序,通过多种渠道和形式广泛集中民智,使决策真正建立在科学民主基础之上。2建立健全决策公开制度,增加决策的透明度,3建立决策失误责任追究制度,健全纠错改正机制4建立多种形式的决策咨询机制和信息支持系统 11、西方决策理论对决策模式作了三种分类:1两分法,将整个决策模式分为理性决策模式和渐进模式可能2三分法,在前两种模式的基础上,增加了另一种决策模式,混合扫描模式3七分法,进一步在前述两分法基础上增加了五个模式,即经济合理模式,顺序决策模式,超理性决策模式,剧烈改变模式,无为模式。 12、现代西方决策理论的基本模式:一理性决策模式,理性决策模式也被称为科学决策模式,它把决策过程分为六个步骤:发现问题,提

《公共部门决策的理论与方法》期末复习材料

《公共部门决策的理论与方法》期末复习资料 第一章导论 公共部门的构成: ·社会部门可区分为三大部门: 第一部门是政府组织,这是纯粹的公共部门; 第二部门是工商企业,这是非公共部门,又称私人部门; 第三部门是介于政府组织与工商企业之间的一些部门,往被称为非政府公共机构。 ·公共部门既包括第一部门即纯粹的公共部门(政府组织),也包括准公共部门即第三部门。“纯粹性”非公共部门(竞争性工商企业)的特点: 1、它的投资主体是私人。 2、它所提高的产品一般是私人物品。 3、它的行为价值取向是本企业的利益最大化。 公共部门决策的特点: 1、决策主体的公共性(谁来决策)。即公共部门决策必须由公共组织按一定的法定程序进行。 2、决策内容的公共性(决策什么)。即其决策内容主要是公共领域的事务。 3、决策方式的民主化(怎样决策)。民主决策与公共参与是其决策方式的基本特点。 4、决策准则的公益性(根据什么决策)。这是公共部门决策与私人企业决策的本质区别之一。 三、公共部门决策理论的研究任务与研究方法 公共部门决策理论的研究方法: ·理论和实践相结合的方法,即理论从实践中来,又回到实践中去,接受实践的检验。 第一,必须认真总结公共部门决策的实践经验,使之上升为理论。 第二,公共部门决策理论必须接受公共部门决策实践的检验。 第三,研究公共部门决策理论的目的是为了指导公共部门决策实践。 ·主体兼容法,即立足于现代中国,兼容古今中外 立足于现代中国就是要从现代中国的实践出发去努力解决公共部门决策中存在的问题,为当前我国公共部门的决策实践服务。 我国公共部门决策的四个基本特点: 1、我国是一个大国,公共部门决策十分复杂,其作用范围也相当大。 2、我国是一个社会主义国家,人民是国家的主人。公共部门的决策应当从人民的利益出发。 3、共产党是全国人民的领导核心,公共部门的决策必须由党的领导和参与。 4、我国是一个发展中国家,公共部门的决策从理论到方法都还比较落后。 ·吸收创新法,即吸收现代的一切科学成果来丰富和充实公共部门决策理论,并在此基础上进行理论体系和内容上的创新。

波浪理论的计算方法

波浪理论的计算方法 1)第一浪只是推动浪开始 2)第二浪调整不能超过第一波浪起点 比率: 2浪=1浪0.5或0.618 3)第三浪通常是最长波浪,但绝不能是最短(相对1浪和5浪长度) 比率: 3浪=1浪1.618, 2或2.618倍 4)第四浪的调整不能与第一浪重迭(楔形除外) 比率: 4浪=3浪0.382倍。 5)第五浪在少数情况下未能超第三浪终点,即以失败形态告终 比率: 5浪=1浪或5浪=(1浪-3浪)0.382、0.5、0.618倍。 6)A浪比率: A浪=5浪0.5或0.618倍。 7)B浪比率: B浪=A浪0.382、0.5、0.618倍。 8)C浪比率: C浪=A浪1倍或0.618、1.382、1.618倍。 1、波浪理论基础 1) 波浪理论由8浪组成、1、3、5浪影响真正的走势,无论是下跌行情还是上升行情, 都在这三个浪中赚钱; 2) 2、4浪属于逆势发展(回调浪) 3) 6、7、8浪属于修正浪(汇价短期没有创新低或新高) 2、波浪理论相关法则 1) 第3永远不是最短的浪 2) 第4浪不能跌破第2浪的低点,或不能超过第2浪的高点 3) 数浪要点:你看到的任何一浪都是第1浪,第2浪永远和你真正的趋势相反; 4) 数浪规则:看到多少浪就是多少浪,倒回去数浪; 3、相关交易法则 1) 第3浪是最赚钱的一浪,我们应该在1、3、5浪进行交易,避免在2、4浪进场以 及避免在2、4浪的低点或者高点挂单,因为一旦上破或者下坡前期高点或者低点,则会出现发转,具体还要配合RSI和MACD指标进行分析;

4、波浪理论精华部分 1) 波浪理论中最简单的一个循环,或者说最小的一个循环为两浪循环,即上升浪或下跌浪+回调浪 2) 每一波上升浪或下跌浪由5个浪组成,这5浪中有两次2T确认进场; 3) 每一波回调浪由3个浪组成,这3浪中只有一次2T确认进场; 4) 波浪和移动均线共振时,得出进场做多、做空选择,同时要结合4R法则以及123法则进行分析 波浪理论图解 2011-10-21 19:14 每位投资者都希望能预测未来,波浪理论正是这样一种价格趋势分析工具,它根据周期循环的波动规律来分析和预测价格的未来走势。波浪理论的创始人——美国技术分析大师R.N.艾略特(1871~1948)正是在长期研究道琼斯工业平均指数的走势图后,于二十世纪三十年代创立了波浪理论。投资者一走进证券部就会看到记录着股价波动信息的K线图,它们有节奏、有规律地起伏涨落、周而复始,好像大海的波浪一样,我们也可以感受到其中蕴涵的韵律与协调。我们特别邀请到了研究波浪理论的资深专家杨青老师来与读者们一起“冲浪”。 1、基础课波浪理论在技术分析中被广泛采用波浪理论最主要特征就是它的通用性。人类社会经济活动的许多领域都遵循着波浪理论的基本规律,即在相似和不断再现的波浪推动下重复着自己。因为股票、债券的价格运动是在公众广泛参与的自由市场之中,市场交易记录完整,与市场相关的信息全面丰富,因此特别适于检验和论证波浪理论,所以它是诸多股票技术分析理论中被运用最多的,但不可否认,它也是最难于被真正理解和掌握的。专家导读:被事实验证的传奇波浪波浪理论的初次亮相极富传奇色彩。1929年开始的全球经济危机引发了经济大萧条,美国股市在1929年10月创下386点的高点后开始大崩盘,到 1932年仲夏时节,整个市场弥漫着一片绝望的气氛。这时,波浪理论的始作俑者艾略特给《美国投资周刊》主编格林斯发电报,明确指出长期下跌的走势已经结束,未来将会出现一个大牛市。当格林斯收到电报时,道琼斯30种工业指数已经大幅飙升,从邮戳上的时间看,电报就在道琼斯30种工业指数见底前两个小时发出。此后道琼斯指数在9周内上涨了100%,而且从此开始一路上扬。 但是波浪理论在艾略特生前却长期被人们忽视,直到1978年,他的理论继承者帕彻特出版了《波浪理论》一书,并在期货投资竞赛中运用波浪理论取得了四个月获利400%以上的骄人成绩后,这一理论才被世人广泛关注,并开始迅速传播。 2、波浪周期及实例解读 0 && image.height>0){if(image.width>=700){this.width=700;this.height=image .height*700/image.width;}}> 专家解读:五浪上升三浪下降组成完整周期一个完整的波动周期,即完成所谓从牛市到熊市的全过程,包括一个上升周期和一个下跌周期。上升周期由五浪构成,用1、2、3、4、5表示,其中1、3、 5浪上涨,2、4浪下跌;下跌周期由三浪构成,用a、b、c表示,其中a、c浪下跌,b 浪上升。与主趋势方向(即所在周期指明的大方向)相同的波浪我们称为推动浪,

第一性原理计算原理和方法

第二章 计算方法及其基本原理介绍 化学反应的本质是旧键的断裂和新建的形成,参与成键原子的电子壳层重新组合是导致生成稳定多原子化学键的明显特征。因此阐述化学键的理论应当描写电子壳层的相互作用与重排,借助求解满足适当的Schrodinger 方程的波函数描写分子中电子分布的量子力学,为解决这一问题提供了一般的方法,然而,对于一些实际的体系,不引入一些近似,就不可能求解其Schrodinger 方程。这些近似使一般量子力学方程简化为现代电子计算机可以求解的方程。这些近似和关于分子波函数的方程形成计算量子化学的数学基础。 2.1 SCF-MO 方法的基本原理 分子轨道的自洽场计算方法 (SCF-MO)是各种计算方法的理论基础和 核心部分,因此在介绍本文计算工作所用 方法之前,有必要对其关键的部分作一简 要阐述。 2.1.1 Schrodinger 方程及一些基本近似 为了后面介绍各种具体在自洽场分子轨道(SCF MO)方法方便,这里将主要阐明用于本文量子化学计算的一些重要的基本近似,给出SCF MO 方法的一些基本方程,并对这些方程作简略说明,因为在大量的文献和教材中对这些方程已有系统的推导和阐述[1-5]。 确定任何一个分子的可能稳定状态的电子结构和性质,在非相对论近似下,须求解定态Schrodinger 方程 ''12121212122ψψT p B A q p A p pA A pq AB B A p A A A E R Z r R Z Z M =??????? ?-++?-?-∑∑∑∑∑∑≠≠ (2.1) R AB =R 图2-1分子体系的坐标

其中分子波函数依赖于电子和原子核的坐标,Hamilton 算符包含了电子p 的动能和电子p 与q 的静电排斥算符, ∑∑≠+?-=p q p pq p e r H 12121?2 (2.2) 以及原子核的动能 ∑?-=A A A N M H 2121? (2.3) 和电子与核的相互作用及核排斥能 ∑∑≠+-=p A B A AB B A pA A eN R Z Z r Z H ,21? (2.4) 式中Z A 和M A 是原子核A 的电荷和质量,r pq =|r p -r q |,r pA =|r p -R A |和R A B =|R A -R B |分别是电子p 和q 、核A 和电子p 及核A 和B 间的距离(均以原子单位表示之)。上述分子坐标系如图2.1所示。可以用V(R,r)代表(2.2)-(2.4)式中所有位能项之和 ∑∑∑-+= ≠≠p A pA A B A q p pq AB B A r Z r R Z Z r R V ,12121),( (2.5) ● 原子单位 上述的Schrodinger 方程和Hamilton 算符是以原子单位表示的,这样表示的优点在于简化书写型式和避免不必要的常数重复计算。在原子单位的表示中,长度的原子单位是Bohr 半径 A == 52917725.042220e m h a e π 能量是以Hartree 为单位,它定义为相距1Bohr 的两个电子间的库仑排斥作用能 2 1a e Hartree = 质量则以电子制单位表示之,即定义m e =1 。 ● Born-Oppenheimer 近似 可以把分子的Schrodinger 方程(2.1)改写为如下形式

系统工程理论与方法

学校管理系统化的实践与思考 按照系统论的观点,世界的万事万物都是系统的,系统性是自然界和人类社会的根本属性。学校作为一个社会组织,同样具有系统性。一方面它是教育系统的组成部分(子系统)另一方面它又自成系统,一般由教务教学、总务后勤、思想政治和行政管理等子系统组成。而每一子系统又由更小的系统(或要素)组成,如教务教学子系统是由学科教研室、实验室、图书馆、电教中心等要素组成,等等。所谓系统方法,就是根据系统的基本特征去认识系统、改造系统的方法。本文仅就此方法在学校管理里的运用,谈点粗浅的体会和看法。 一、调整管理机构,创设良好管理系统 系统的结构决定着系统的功能,不同的结构可以产生不同的功能。要想使学校运转和谐有序,必须改造优化学校内部机构。随着高等教育的改革与发展,高校内部的原设机构和运行机制,已明显不适应新的形势,应该大胆地调整和优化。对调整后的内设机构,必须明确其岗位职责和工作任务,严格界定其工作范围。同时,理顺各个机构之间的关系,营造互动机制。在调整过程中,应该注意三点:一是要从学校适应社会要求和满足实际工作需要出发;二是调整后的内设机构,能充分承担学校任务,行使学校职能;三是保证学校内部结构合理,避免内耗。通过这样一种调整,使学校成为一个结构合理、层次分明、整体性强、功能完备的管理系统,为实现系统化管理创造了一个客观的前提。 二、合理使用人才,有效操作管理系统 创设一个好的管理系统,固然奠定了系统化管理的基础,如何使系统发挥作用,关键在于用什么人去操作。用人妥当,能使学校的各个部门各尽其职,发挥最佳功能,收到整体大于部分之和的效果;反之,用人不当,有可能造成系统运转的薄弱环节,各个部分彼此扯皮推诿,不负责任,形不成合力,系统运转不畅,甚至停摆,出现内耗,造成整体功能小于部分之和的结果。可见合理用人至关重要。首先,校级领导分工要科学。传统的领导分工,过多地考虑权力分配,其弊端不言而喻。要实现学校领导分工的科学化要求,一方面要从系统观点出发,把学校工作进行模块划分,尽量体现联系性,一般可分为教学科研工作、后勤服务工作、思想政治工作、行政管理工作等;另一方面要根据个人知识结构、年龄、个性特征、专长等进行合理分工,尽量做到人尽其才,扬长避短,发挥优势;第三,从整体性出发,分工不分家,强调协作,优势互补,突出集体领导,反对个人专权。 其次,中层干部的安排要妥当。选好、用好中层干部,是充分发挥处室功能的关键。一是用竞聘方式,选拔优秀人才,充实中层干部队伍,力求能者上,庸者下。二是对原有中层干部实行轮岗使用,实行动态管理,打破多年一贯制,调整用人机制,力求把每个中层干部安排 到最能发挥作用的岗位上来,帮助他们克服经验主义和思维定势,重新激发他们的创造性思维,开辟新的工作局面。三是加强对中层干部工作的督导和评估,调控他们的工作关系,及时消除矛盾,搞好工作协调。

3 计算复杂性理论

计算复杂性理论(Computational complexity theory)是计算理论的一部分,研究计算问题时所需的资源,比如时间和空间,以及如何尽可能的节省这些资源。 目录 [隐藏] ? 1 简介 ? 2 历史 ? 3 基本概念和工具 o 3.1 计算模型与计算资源 o 3.2 判定性问题和可计算性 o 3.3 算法分析 o 3.4 复杂性类 o 3.5 归约 ? 4 NP与P关系问题及相关理论 o 4.1 NP和P的定义 o 4.2 NP与P关系问题 o 4.3 NP完备理论 o 4.4 电路复杂性 o 4.5 其它NP与P关系问题相关的理论 ? 5 理论与实践 ? 6 参考 ?7 外部链接 [编辑]简介 计算复杂性理论所研究的资源中最常见的是时间(要通过多少步才能解决问题)和空间(在解决问题时需要多少内存)。其他资源亦可考虑,例如在并行计算中,需要多少并行处理器才能解决问题。 时间复杂度是指在计算机科学与工程领域完成一个算法所需要的时间,是衡量一个算法优劣的重要参数。时间复杂度越小,说明该算法效率越高,则该算法越有价值。 空间复杂度是指计算机科学领域完成一个算法所需要占用的存储空间,一般是输入参数的函数。它是算法优劣的重要度量指标,一般来说,空间复杂度越小,算法越好。我们假设有一个图灵机来解决某一类语言的某一问题,设有X个字(word)属于这个问题,把X放入这个图灵机的输入端,这个图灵机为解决此问题所需要的工作带格子数总和称为空间。

复杂度理论和可计算性理论不同,可计算性理论的重心在于问题能否解决,不管需要多少资源。而复杂性理论作为计算理论的分支,某种程度上被认为和算法理论是一种“矛”与“盾”的关系,即算法理论专注于设计有效的算法,而复杂性理论专注于理解为什么对于某类问题,不存在有效的算法。 [编辑]历史 在20世纪50年代,Trahtenbrot和Rabin的论文被认为是该领域最早的文献。而一般说来,被公认为奠定了计算复杂性领域基础的是Hartmanis和Stearns 的1960年代的论文On the computational complexity of algorithms。在这篇论文中,作者引入了时间复杂性类TIME(f(n))的概念,并利用对角线法证明了时间层级定理(Time Hierarchy Theorem)。 在此之后,许多研究者对复杂性理论作出了贡献。期间重要的发现包括:对随机算法的去随机化(derandomization)的研究,对近似算法的不可近似性(hardness of approximation)的研究,以及交互式证明系统(Interactive proof system)理论和零知识证明(Zero-knowledge proof)等。特别的复杂性理论对近代密码学的影响非常显著,而最近,复杂性理论的研究者又进入了博弈论领域,并创立了“算法博弈论”(algorithmic game theory)这一分支。 该领域重要的研究者有(不完全列表): ?史提芬·古克 ?姚期智(Andrew Chi-Chih Yao) ?Allan Borodin ?Manuel Blum ?Juris Hartmanis ?Richard Karp ?Leonid Levin ?Alexander Razborov ?Michel Sipser ?Avi Wigderson ?Walter Savitch ?Richard Stearns ?Lance Fortnow ?V. Arvind ?Lazlo Babai [编辑]基本概念和工具 [编辑]计算模型与计算资源

复杂系统与复杂性科学

第5卷第4期  复杂系统与复杂性科学 Vol .5No .42008年12月  COM P LEX SYSTE M S AND COM P LEX I TY SC I E NCE Dec .2008文章编号:1672-3813(2008)04-0021-08 收稿日期:2008-10-10 基金项目:国家基础研究计划973项目(2006CB705500);国家自然科学基金(60744003,10635040,10532060,10472116);中国科学院院长基金 特别支持项目计划《复杂网络的结构与功能及动力学性质研究》;高等学校博士学科点专项科研基金(20060358065) 作者简介:汪秉宏(1944-),男,江西婺源人,教授,中国科学技术大学理论物理研究所所长,主要研究方向为复杂系统理论、复杂性科学、统计 物理、计算物理和非线性动力学。 当前复杂系统研究的几个方向 汪秉宏1,2,周 涛 1,3,王文旭4,杨会杰2,5,刘建国1,3,赵 明1,6,殷传洋7,韩筱璞1,谢彦波 1(1.中国科学技术大学近代物理系理论物理研究所复杂系统研究组,合肥230026; 2.上海系统科学研究院及上海理工大学复杂适应系统研究所,上海200093; 3.瑞士弗里堡大学物理系,瑞士弗里堡CH -1700;4.亚利桑那州立大学电子工程系,美国亚利桑那州85287-5706; 5.新加坡国立大学物理系,新加坡119077; 6.香港浸会大学物理系,香港; 7.南京信息工程大学,南京210044) 摘要:复杂系统与复杂性科学被誉为21世纪的科学,是吸引跨学科广泛注意的新 型交叉科学。简要概述了复杂系统研究的几个重要方向,包括网络同步、网络交通 流、新一代信息网络的结构和动力学、演化合作博弈、生物网络复杂性、人类动力学 和信息物理学。 关键词:复杂系统;复杂性科学;复杂网络;人类动力学;信息物理学 中图分类号:N94文献标识码:A Severa l D i recti on s i n Co m plex Syste m Research WANG B ing 2hong 1,2,Z HOU Tao 1,3,WANG W en 2xu 4,Y ANG Hui 2jie 2,5,L IU J ian 2guo 1,3,ZHAO M ing 1,6,YIN Chuan 2yang 7,HAN Xiao 2pu 1,X IE Yan 2bo 1(1.Depart m ent of Modern Physics,I nstitute of Theoretical Physics and Gr oup of Comp lex Syste m, University of Science and Technol ogy of China,Hefei 230026,China; 2.I nstitute of Comp lex Adap tive Syste m s,Shanghai Acade my of Syste m Science and University of Shanghai f or Science and Technol ogy,Shanghai 200093,China; 3.Depart m ent of Physics,University of Fribourg,Fribourg CH -1700,S witzerland; 4.Depart m ent of Electr onic Engineering,A rizona State University,A rizona 85287-5706,US A; 5.Depart m ent of Physics,Nati onal University of Singapore,119077,Singapore; 6.Depart m ent of Physics,Hong Kong Bap tist University,Hong Kong,China; 7.Nanjing University of I nfor mati on Science and Technol ogy,Nanjing 210044,China ) Abstract:A s the 21st 2century ’s science,the comp lexity science is attracting wide attenti on fr om the sci 2 entific community .I n this paper,we highlight s ome relevant key issues,including net w ork 2based syn 2 chr onizati on,traffic dyna m ics on net w orks,structure and evoluti on of inf or mati on net w orks in the next generati on,ev oluti onary cooperating ga me,comp lexity of bi ol ogical net w orks,human dyna m ics and inf o 2 physics .

材料理论计算公式

常见黑色材料理论计算公式 元钢重量(公斤)=0.00617×直径×直径×长度 方钢重量(公斤)=0.00785×边宽×边宽×长度 扁钢重量(公斤)=0.00785×厚度×边宽×长度 六角钢重量(公斤)=0.0068×对边宽×对边宽×长度 八角钢重量(公斤)=0.0065×对边宽×对边宽×长度 角钢重量(公斤)=0.00785×(边宽+边宽-边厚)×边厚×长度钢板重量(公斤)=0.00785×厚度×边宽×长度 钢管重量(公斤)=0.02466×壁厚×(外径-壁厚)×长度 方管重量(公斤)=0.0157×(边宽+边宽-2.8584厚)×厚×长度 常见有色材料理论计算公式 紫铜棒量(公斤)=0.00698×直径×直径×长度 紫铜板重量(公斤)=0.0089×厚×宽×长度 紫铜管重量(公斤)=0.028×壁厚×(外径-壁厚)×长度 六角棒重量(公斤)=0.0077×对边宽×对边宽×长度 黄铜棒重量(公斤)=0.00668×直径×直径×长度 黄铜板重量(公斤)=0.0085×厚×宽×长度 黄铜管重量(公斤)=0.0267×壁厚×(外径-壁厚)×长度 六角棒重量(公斤)=0.00736×边宽×对边宽×长度 铝棒重量(公斤)=0.0022×直径×直径×长度 铝板重量(公斤)=0.00271×厚×宽×长度 铝管重量(公斤)=0.00879×壁厚×(外径-壁厚)×长度 六角棒重量(公斤)=0.00242×对边宽×对边宽×长度 注:公式中长度单位为米,其余单位均为毫米

花纹板每平米的重量 基本厚度扁豆形理论重量(kg/m2) 2.5 22.6 3.0 26.6 3.5 30.5 4.0 34.4 4.5 38.3 5.0 42.3 5.5 4 6.2 6.0 50.1 7.0 58.0 8.0 65.8

组织理论对复杂系统理论的借鉴

综述研究 组织理论对复杂系统理论的借鉴① 李 良,郭耀煌 (西南交通大学经济管理学院,成都610031) 摘要:综述了复杂系统理论对组织理论的影响.介绍了与组织理论(organization theory,OT)有关的复杂系统理论(com plexity systems theory,CST)的特征、研究方法、范例;并介绍了OT对CST 的借鉴,主要说明CST对组织演化和组织的社会网络分析的影响. 关键词:组织理论;复杂系统理论;组织演化;社会网络分析 中图分类号:N94 文献标识码:A 文章编号:1007-9807(2002)06-0077-06 0 引 言 自从1938年伯纳德(Chester I Barnard)的名著《主管的功能》(The Functions of the Executives)发表以来,组织设计学家的研究旨趣便显露出朝着4个主要方向发展的趋势.这4个方向是:倾向于把组织看作开放的系统,注重组织中的信息处理系统,组织设计中采取权变的观点和生态学的观点[1].同样在对组织决策的研究中,Sim on针对“理性决策模式”的缺陷,提出了“有限理性理论”(bounded rationality theory)[2].March等人针对组织决策的实际情况,发展了名为“垃圾桶模式”(garbage can m odel)的思想,并由Levitt,Mandell等人广为应用,对决策的研究领域做出了不小的贡献.通过这些事件不难发现组织理论研究者对组织中复杂性的关注. 很难指出对组织中复杂现象开始研究的确切年代.就文献来看它们大部分都发表在20世纪80年代以后,尤其是在专门从事复杂科学研究的桑塔费研究所(Santa Fe Institute,SFI,1984)成立以后.美国和英国的一些学者运用复杂科学研究组织与管理问题,并取得了初步的成效[3—6].这些研究展现了新的世界图像,开始影响人类的观念并将渗透到人类生活的方方面面.然而到底复杂系统理论为何物,它对组织理论有何影响?本文将对这两个问题进行讨论. 1 复杂系统理论 复杂性最早见诸于数学、语言学、经济学和生物学.这里讨论的系统复杂性属于本体论的概念[7].复杂系统理论属于交叉学科,它的出现得益于计算机处理能力的提高.运算能力的提高使得用数字技术探索非线性系统动力学成为可能.与其说CST是一种理论,不如说它是一种新的研究角度.考虑到提出一个理念的基本假设和原则的难度,本文借鉴文[8]的方法通过描述这个研究角度的不同方面来介绍CST:CST研究的系统的特征,研究复杂系统的工具,CST方法的典型范例. 1.1 复杂系统的特征 到目前为止,没有对复杂系统公认的、清晰的定义.复杂性在不同领域中的含义不同,有时甚至在同一领域其含义也可能有差异.例如,在组织中任务系统的复杂性被普遍认为对任务系统的影响很大.然而对这种复杂性的理解却不统一,它可以指任务的数目、任务程序化的程度以及突发事件 第5卷第6期2002年12月 管 理 科 学 学 报 JOURNA L OF M ANAGE ME NT SCIE NCES I N CHI NA V ol.5N o.6 Dec.,2002 ①收稿日期:2001-10-16;修订日期:2002-03-18. 作者简介:李 良(1975—),男,河北赵县人,博士生.

支护理论计算方法

1、按悬吊理论 (1)锚杆长度L, L=L 1+L 2+L 3 =50+1000+300=1350mm 式中:L 1——锚杆外露长度 L 2——软弱岩层厚度,可根据柱状图确定mm L 3——锚杆伸入稳定岩层深度一般不小于300mm (2)锚固力N:可按锚杆杆体的屈服载荷计算 N=π/4(d 2 σ屈) =0.25×3.14×(0.02)2×335×106=105KN 式中:σ屈——杆体材料的屈服极限Mpa d——杆体直径 (3)锚杆间排距 锚杆间距D≤1/2L D≤0.5×2200=1100mm 锚杆排距L 0=Nn/2kra L 2 =105×103×13/2×3×24×103×2.1×1=4.51m 式中:n——每排锚杆根数 N——设计锚固力,KN/根 K——安全系数,取2-3 r ——上覆岩层平均容重,取24KN/m 3 a——1/2巷道掘进宽度m

2、按自然平衡拱理论计算 Ⅰ、两帮煤体受挤压深度C C=((KrHB/1000fcKc)Cos(a/2)-1)h×tg(45-ψ/2) =((2.5×24×510×1/1000×2×1.0)Cos(23°/2) -1)×2.65×tg(45°-63°/2)=8.9m 式中:K——自然平衡拱角应力集中系数,与巷道断面形状有关;矩形断面,取2.8 r——上覆岩层平均容重,取24KN/m3 H——巷道埋深m B——固定支撑力压力系数,按实体煤取1 fc——煤层普氏系数, Kc——煤体完整性系数,0.9-1.0 a——煤层倾角 h——巷道掘进高度m ψ——煤体内摩擦角,可按fc反算 Ⅱ、潜在冒落高度b b=(a+c)Cosa/Kyfr =(2.1+8.9)×0.92/0.45×4=5.62m 式中:a——顶板有效跨度之半m Ky——直接顶煤岩类型性系数。当岩石f=3-4时,取0.45;f=4-6时,取0.6;f=6-9时,取0.75。 Fr——直接顶普氏系数

计算复杂性理论031104(2)

第三章计算复杂性理论主要内容 3.1 Turing机 3.2 计算复杂性理论 3.3 NP完全性理论的基本概念 3.4 NP完全性证明 3.5 用NP完全性理论分析问题 3.6 NP难度

3.1 Turing机 一、Turing机的定义 1. 基本模型 2. 基本Turing机的变种 单向带的Turing机 k条带的Turing机 非确定型的Turing机 二、Turing机模型的等价性 1. 单向带Turing机与基本Turing机等价 2. k条带的Turing机与基本Turing机等价 3. 非确定型Turing机与基本Turing机等价

一、Turing机的定义 1. 基本模型 双向无限带的Turing机M = , 其中Q 有穷状态集 Γ有穷带字符集 ∑输入字符集∑?Γ B 空白字符, B∈Γ-∑ q 0初始状态, q ∈Q F 终结状态集, F?Q,q Y ,q N ∈F δ: (Q-F)×Γ→Q×Γ×{L,R} 状态转移函数

(ID) α1qα 2 表示此刻Turing机的FSC处于状态q,读写头 指在串α 2 的第一个字符. 例如Turing机M的某时刻的状态转移函数是 δ(q,x i ) = (p,Y,L) 带上的字符串为x 1x 2 ...x i ...x n , 读写头指向字符x i , 则 它的瞬间描述是: x 1x 2 ...x i-1 qx i ...x n ┣x1x2...x i-2px i-1Yx i+1...x n ┣表示由左边的ID一步达到右边的ID ┣*表示由左边的ID经有限步达到右边的ID

复杂系统

复杂系统建模简述 11091061章学丰 目前,我们面临的社会正迅速从制度经济转入知识经济,其中所涉及的各种研究系统越来越复杂,人在之中的作用也变得越来越不可忽略。而网络化的加速发展,更是极大地加剧了各类系统的复杂性程度。因此现有的系统分析方法已远远不能有效地解决这些复杂系统所面临的许多关键性问题,我们需要新的理论、新的方法、新的技术有针对性的进行复杂系统建模,所以复杂系统建模的知识就越来越重要。下面就我所学到的复杂系统建模做一个简述。一、系统理论概述 平常说的系统是具有一定功能,相互间具有有机联系,由许多要素或构成部分组成的整体。可以将港口码头定义为一个系统。该系统中的实体有船舶和码头装卸设备。船舶按某种规律到达,装卸设备按一定的程序为其服务,装卸完后船舶离去。船舶到达模式影响着装卸设备的工作忙闲状态和港口的排队状态,而装卸设备的多少和工作效率也影响着船舶接受服务的质量。 系统一般有三个要素,即实体、属性、活动。实体确定了系统的构成,也就确定了系统的边界,属性也称为描述变量,描述每一实体的特征。活动定义了系统内部实体之间的相互作用,反映了系统内部发生变化的过程。 系统建模则是建立一个新系统,用来模拟或仿真原有系统。模型是对实际系统的简化表示,它提取和反映了所研究系统的基本性质。模型的表现形式有直觉模型、实物模型、模拟模型、图表模型、数学模型。其中数学模型的种类包括参数模型、非参数模型、模糊及神经元模型、区域规划模型、网络模型、黑箱模型、黑板模型、遗传算法模型等。二、复杂系统理论概述 典型的复杂系统有工程技术大系统,社会经济大系统,生态环境大系统. 复杂系统则是能够被解耦或者分解成若干个互连子系统,从而进行有效计算或者满足实际需要的系统,或传统的建模、系统分析、控制器设计及优化技术不能处理的、具有多个互连子系统的系统。 2 复杂系统的一般特点是规模庞大,结构复杂,功能综合,因素众多。复杂系统的控制形式包括启发方法,人机方法,拟人方法,灰箱方法,集成方法,分解方法。 研究复杂系统的意义在于如果复杂系统运行状态好,效益高,稳定,可靠,优化,协调,将有利于国计民生,造福于人类社会;反之,复杂系统运行状态差,效益低,失稳,故障,劣化,失调,将危害人民的生命财产,破坏社会环境,国家稳定,乃至世界和平。 4 部分的功能是将多变量系统补偿为多个单输入单输出系统,而控制器使这些单输入单输出的控制系统达到理想的性能指标;闭环解耦控制是指将解耦补偿和预测控制器合并起来,统一设计,不仅消除回路间的耦合影响,而且达到所确定的闭环性能指标;智能解耦预测控制方法主要是将智能算法融合到预测控制之中,借助于智能算法建立被控对象的数学模型或者控制器参数,从而达到系统解耦目的。 变粒度模型:由于实际大系统都可以分解为若干“子系统”,而子系统又可以再分为“子子系统”,因此可用“变粒度”模型化方法分别对大系统、子系统、子子系统建立相应的粗粒度、中粒度、细粒度的模型,将它们组织起来,构成大系统的变粒度模型。 智能算子模型:智能算子是基本的智能操作单元,我们可以从各种智能系统的智能操作过程中用归纳法来建立智能算子模型。

相关文档
最新文档