数学常识——整数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整数
整数(Integer):像-2,-1,0,1,2这样的数称为整数。(整数是表示物体个数的数,0表示有0个物体)整数是人类能够掌握的最基本的数学工具。整数的全体构成整数集,整数集合是一个数环。在整数系中,自然数为0和正整数的统称,称0为零,称-1、-2、-3、…、-n、…(n为整数)为负整数。正整数、零与负整数构成整数系。一个给定的整数n可以是负数,非负数,零(n=0)或正数。
数学分类
我们以0为界限,将整数分为三大类
1.正整数,即大于0的整数如,1,2,3······直到n。
2.0 ,既不是正整数,也不是负整数,它是介于正整数和负整数的数。
3.负整数,即小于0的整数如,-1,-2,-3······直到-n。
注:现中学数学教材中规定:零和正整数为自然数。
整数也可分为奇数和偶数两类。
正整数
它是从古代以来人类计数的工具。可以说,从“一头牛,两头牛”或是“五个人,六个人”抽象化成正整数的过程是相当自然的。
零
不仅表示“没有”(“无”),更是表示空位的符号。中国古代用算筹计算数并进行运算时,空位不放算筹,虽无空位记号,但仍能为位值记数与四则运算创造良好的条件。印度-阿拉伯命数法中的零(Zero)来自印度的(Sunya)字,其原意也是“空”或“空白”。
负整数
中国最早引进了负数。《九章算术.方程》中论述的“正负数”,就是整数的加减法。减法的需要也促进了负整数的引入。减法运算可看作求解方程a - b=c,如果a、b是自然数,则所给方程未必有自然数解。为了使它恒有解,就有必要把自然数系扩大为整数系。
奇数
在整数中,不能被2整除的数叫做奇数,它跟偶数是相对的。日常生活中,人们通常把奇数叫做单数,它跟双数是相对的。
偶数
整数中,能够被2整除的数,叫做偶数。偶数包括正偶数(俗称双数)、负偶数和0。所有整数不是奇数,就是偶数。当n是整数时,偶数可表示为2n(n为整数);奇数则可表示为2n+1(或2n-1)。在十进制里,我们可用看个位数的方式判断该数是奇数还是偶数:个位为1,3,5,7,9的数为奇数;个位为0,2,4,6,8的数为偶数。
代数性质
下表给出任何整数a,b和c的加法和乘法的基本性质。
性质加法乘法
封闭性 a + b 是整数 a × b 是整数
结合律 a + (b + c) = (a + b) + c 是整数 a × (b × c) = (a × b) × c 是整数
交换律 a + b = b + a a × b = b × a
存在单位元 a + 0 = a a × 1 = a
存在逆元 a + (-a)= 0 在整数集中,只有1或-1关于乘法存在整数逆元
分配律a × (b + c) = a × b+ a × c
性质及应用
如果不加特殊说明,我们所涉及的数都是整数,所采用的字母也表示整数。
定义:设a,b是给定的数,b≠0,若存在整数c,使得a=bc,则称b整除a,记作b|a,并称b是a的一个约数(因子),称a是b的一个倍数,如果不存在上述c,则称b不能整除a。
整数整除性的一些数码特征(即常见结论)
(1)1与0的特性:
1是任何整数的约数,即对于任何整数a,总有1|a.
0是任何非零整数的倍数,a≠0,a为整数,则a|0.
(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。
(3)若一个整数的数字和能被3整除,则这个整数能被3整除。
(4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除。
(5)若一个整数的末位是0或5,则这个数能被5整除。
(6)若一个整数能被2和3整除,则这个数能被6整除。
(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7 的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。
(8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。
(9)若一个整数的数字和能被9整除,则这个整数能被9整除。
(10)若一个整数的末位是0,则这个数能被10整除。
(11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!
(12)若一个整数能被3和4整除,则这个数能被12整除。
(13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,则重复「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
(14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,同样重复之前的过程,直到能清楚判断为止。
(15)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,同样重复之前的计算思路,直到能清楚判断为止。
(16)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。
(17)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。
(18)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除
奇偶性
(1)奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数,偶数×偶数=偶数,奇数×偶数=偶数,奇数×奇数=奇数;即任意多个偶数的和、差、积仍为偶数,奇数个奇数的和、差为偶数,偶数个奇数的和、差为奇数;
(2)奇数的平方都可以表示成(8m+1)的形式,偶数的平方可以表示为8m或(8m+4)的形式;
(3)若有限个整数之积为奇数,则其中每个整数都是奇数;若有限个整数之积为偶数,则这些整数中至少有一个是偶数;两个整数的和与差具有相同的奇偶性;偶数的平方根若是整数,它必为偶数。
完全平方数
完全平方数及其性质
能表示为某整数的平方的数称为完全平方数,简称平方数。平方数有以下性质与结论:(1)平方数的个位数字只可能是0,1,4,5,6,9;
(2)偶数的平方数是4的倍数,奇数的平方数被8除余1,即任何平方数被4除的余数只有可能是0或1;
(3)奇数平方的十位数字是偶数;
(4)十位数字是奇数的平方数的个位数一定是6;
(5)不能被3整除的数的平方被3除余1,能被3整除的数的平方能被3整除。因而,平