毕业设计英文翻译-智能热能表控制器外文翻译-中英文文献对照翻译
太阳能热水器外文资料翻译通用
淮阴工学院毕业设计(论文)外文资料翻译学院:电子与电气学院专业:电气姓名:曹黎斌学号:1101205212外文出处:2011 International Conference on Electronic Devices,(用外文写)Systems and Applications (ICEDSA) 附件: 1.外文资料翻译译文;2.外文原文。
注:请将该封面与附件装订成册。
附件1:外文资料翻译译文太阳能热水器远程监控系统摘要:本文设计了一种由应用软件和硬件设备构成的能够对太阳能的使用情况进行远程监控的集成系统,该系统已经设计、实现并安装了。
目前,这种系统预期对当前来自管理处和消费者保障处监控的太阳能设备的热水温度、水箱热水量及消耗的热水量进行实时测量。
此外,可以对太阳能利用的辅助子系统发出命令和控制信号。
硬件设备(目前的太阳能热水器)安装在远处,而应用软件安装在公司PC 机或笔记本电脑上。
蜂窝网络被用来从全球任何覆盖蜂窝网络的地方访问远程设备进行数据检索或发出控制指令。
关键词:太阳能,远程监控,控制,热水器一、介绍约旦没有天然气石油资源,完全依靠进口燃料满足能源需求。
唯一可用的自然能源资源是太阳能。
约旦拥有非常晴朗的天气,平均每天地平面太阳辐射量为6.5KWh/m2。
在约旦,配置太阳能装置很贵的。
这些装置大多数是thermosyphonic 类型的。
这种类型的太阳能热水器由两个吸收面积在3至4平方米之间的平板式或真空集热管式太阳能集热器、一个容量为150至180升的储罐和一个冷水储罐。
这些都安装在一个合适的框架内。
一个用于集中供热协助产生热水的辅助电热管或逆流交换器在冬天低太阳辐射的阶段使用。
由于太阳能热水器的生产和安装在约旦快速发展,有必要开发一种远程监控及控制系统和研究大型商业机构远程维修的适用性。
普适计算是一种信息化空间和物理空间的无缝结合。
人们能在任何时间任何地点得到数字服务。
如GPRS, EDGE,3G,和WiMAX等相对较新的互联网和无线接入技术提供比基本的第二代GSM系统更高的数据(率)传输速度,提供未来远程监测及高端设计的控制方案。
电气毕业论文设计英语文献原文+翻译.doc
标准文档外文翻译院(系)专业班级姓名学号指导教师年月日Programmable designed for electro-pneumatic systemscontrollerJohn F.WakerlyThis project deals with the study of electro-pneumatic systems and the programmable controller that provides an effective and easy way to control the sequence of the pneumatic actuators movement and the states of pneumatic system. The project of a specific controller for pneumatic applications join the study of automation design and the control processing of pneumatic systems with the electronic design based on microcontrollers to implement the resources of the controller.1. IntroductionThe automation systems that use electro-pneumatic technology are formed mainly by three kinds of elements: actuators or motors, sensors or buttons and control elements like valves. Nowadays, most of the control elements used to execute the logic of the system were substituted by the Programmable Logic Controller (PLC). Sensors and switches are plugged as inputs and the direct control valves for the actuators are plugged as outputs. An internal program executes all the logic necessary to the sequence of the movements, simulates other components like counter, timer and control the status of the system.With the use of the PLC, the project wins agility, because it is possible to create and simulate the system as many times as needed. Therefore, time can be saved, risk of mistakes reduced and complexity can be increased using the same elements.A conventional PLC, that is possible to find on the market from many companies, offers many resources to control not only pneumatic systems, but all kinds of system that uses electrical components. The PLC can be very versatile and robust to be applied in many kinds of application in the industry or even security system and automation of buildings.Because of those characteristics, in some applications the PLC offers to much resources that are not even used to control the system, electro-pneumatic system is one of this kind of application. The use of PLC, especially for small size systems, can be very expensive for the automation project.An alternative in this case is to create a specific controller that can offer the exactly size and resources that the project needs [3, 4]. This can be made using microcontrollers as the base of this controller.The controller, based on microcontroller, can be very specific and adapted to only one kind of machine or it can work as a generic controller that can be programmed as a usual PLC and work with logic that can be changed. All these characteristics depend on what is needed and how much experience the designer has with developing an electronic circuit and firmware for microcontroller. But the main advantage of design the controller with the microcontroller is that the designer has the total knowledge of his controller, which makes it possible to control the size of the controller, change the complexity and the application of it. It means that the project gets more independence from other companies, but at the same time the responsibility of the control of the system stays at the designer hands2. Electro-pneumatic systemOn automation system one can find three basic components mentioned before, plus a logic circuit that controls the system. An adequate technique is needed to project the logic circuit and integrate all the necessary components to execute the sequence of movements properly.For a simple direct sequence of movement an intuitive method can be used [1, 5], but for indirect or more complex sequences the intuition can generate a very complicated circuit and signal mistakes. It is necessary to use another method that can save time of the project, makea clean circuit, can eliminate occasional signal overlapping and redundant circuits. The presented method is called step-by-step or algorithmic [1, 5], it is valid for pneumatic and electro-pneumatic systems and it was used as a base in this work.The method consists of designing the systems based on standard circuits made for each change on the state of the actuators, these changes are called steps.The first part is to design those kinds of standard circuits for each step, the next task is to link the standard circuits and the last part is to connect the control elements that receive signals from sensors, switches and the previous movements, and give the air or electricity to the supply lines of each step. In Figs. 1 and 2 the standard circuits are drawn for pneumatic and electro-pneumatic system [8]. It is possible to see the relations with the previous and the next steps.3. The method applied inside the controllerThe result of the method presented before is a sequence of movements of the actuator that is well defined by steps. It means that each change on the position of the actuators is a new state of the system and the transition between states is called step.The standard circuit described before helps the designer to define the states of the systems and to define the condition to each change betweenthe states. In the end of the design, the system is defined by a sequencethat never chances and states that have the inputs and the outputs well defined. The inputs are the condition for the transition and the outputs are the result of the transition.All the configuration of those steps stays inside of the microcontroller and is executed the same way it was designed. The sequences of strings are programmed inside the controller with 5 bytes; each string has the configuration of one step of the process. There are two bytes for the inputs, one byte for the outputs and two more for the other configurations and auxiliary functions of the step. After programming, this sequence of strings is saved inside of a non-volatile memory of the microcontroller, so they can be read and executed.The controller task is not to work in the same way as a conventional PLC, but the purpose of it is to be an example of a versatile controller that is design for an specific area. A conventional PLC process the control of the system using a cycle where it makes an image of the inputs, execute all the conditions defined by the configuration programmed inside, and then update the state of the outputs. This controller works in a different way, where it read the configuration of the step, wait the condition of inputs to be satisfied, then update the state or the outputs and after that jump to the next step and start the process again.It can generate some limitations, as the fact that this controller cannot execute, inside the program, movements that must be repeated for some time, but this problem can be solved with some external logic components. Another limitation is that the controller cannot be applied on systems that have no sequence. These limitations are a characteristic of the system that must be analyzed for each application.4. Characteristics of the controllerThe controller is based on the MICROCHIP microcontroller PIC16F877 [6,7] with 40 pins, and it has all the resources needed for thisproject .It has enough pins for all the components, serial communication implemented in circuit, EEPROM memory to save all the configuration of the system and the sequence of steps. For the execution of the main program, it offers complete resources as timers and interruptions.The list of resources of the controller was created to explore all the capacity of the microcontroller to make it as complete as possible. During the step, the program chooses how to use the resources reading the configuration string of the step. This string has two bytes for digital inputs, one used as a mask and the other one used as a value expected. One byte is used to configure the outputs value. One bytes more is used for the internal timer , the analog input or time-out. The EEPROM memory inside is 256 bytes length that is enough to save the string of the steps, with this characteristic it is possible to save between 48 steps (Table 1).The controller (Fig.3) has also a display and some buttons that are used with an interactive menu to program the sequence of steps and other configurations.4.1. Interaction componentsFor the real application the controller must have some elements to interact with the final user and to offer a complete monitoring of the system resources that are available to the designer while creating the logic control of the pneumatic system (Fig.3):•Interactive mode of work; function available on the main program for didactic purposes, the user gives the signal to execute the step. •LCD display, which shows the status of the system, values of inputs, outputs, timer and statistics of the sequence execution.•Beep to give important alerts, stop, start and emergency.• Leds to show power on and others to show the state of inputs and outputs.4.2. SecurityTo make the final application works property, a correct configuration to execute the steps in the right way is needed, but more then that itmust offer solutions in case of bad functioning or problems in the execution of the sequence. The controller offers the possibility to configure two internal virtual circuits that work in parallel to the principal. These two circuits can be used as emergency or reset buttons and can return the system to a certain state at any time [2]. There are two inputs that work with interruption to get an immediate access to these functions. It is possible to configure the position, the buttons and the value of time-out of the system.4.3. User interfaceThe sequence of strings can be programmed using the interface elements of the controller. A Computer interface can also be used to generate the user program easily. With a good documentation the final user can use the interface to configure the strings of bytes that define the steps of the sequence. But it is possible to create a program with visual resources that works as a translator to the user, it changes his work to the values that the controller understands.To implement the communication between the computer interface and the controller a simple protocol with check sum and number of bytes is the minimum requirements to guarantee the integrity of the data.4.4. FirmwareThe main loop works by reading the strings of the steps from the EEPROM memory that has all the information about the steps.In each step, the status of the system is saved on the memory and it is shown on the display too. Depending of the user configuration, it can use the interruption to work with the emergency circuit or time-out to keep the system safety. In Fig.4,a block diagram of micro controller main program is presented.5. Example of electro-pneumatic systemThe system is not a representation of a specific machine, but it is made with some common movements and components found in a real one. The system is composed of four actuators. The actuators A, B and C are double acting and D-single acting. Actuator A advances and stays in specified position till the end of the cycle, it could work fixing an object to the next action for example (Fig. 5) , it is the first step. When A reaches the end position, actuator C starts his work together with B, making as many cycles as possible during the advancing of B. It depends on how fastactuator B is advancing; the speed is regulated by a flowing control valve. It was the second step. B and C are examples of actuators working together, while B pushes an object slowly, C repeats its work for some time.When B reaches the final position, C stops immediately its cycle and comes back to the initial position. The actuator D is a single acting one with spring return and works together with the back of C, it is the third step. D works making very fast forward and backward movement, just one time. Its backward movement is the fourth step. D could be a tool to make a hole on the object.When D reaches the initial position, A and B return too, it is the fifth step.Fig. 6 shows the first part of the designing process where all the movements of each step should be defined [2]. (A+) means that the actuator A moves to the advanced position and (A−) to the initial position. The movements that happen at the same time are joined together in the same step. The system has five steps.These two representations of the system (Figs. 5 and 6) together are enough to describe correctly all the sequence. With them is possible to design the whole control circuit with the necessary logic components. But till this time, it is not a complete system, because it is missing some auxiliary elements that are not included in this draws because they work in parallel with the main sequence.These auxiliary elements give more function to the circuit and are very important to the final application; the most important of them is the parallel circuit linked with all the others steps. That circuit should be able to stop the sequence at any time and change the state of the actuators to a specific position. This kind of circuit can be used as a reset or emergency buttons.The next Figs. 7 and 8 show the result of using the method without the controller. These pictures are the electric diagram of the control circuit of the example, including sensors, buttons and the coils of the electrical valves.The auxiliary elements are included, like the automatic/manual switcher that permit a continuous work and the two start buttons that make the operator of a machine use their two hands to start the process, reducing the risk of accidents.6. Changing the example to a user programIn the previous chapter, the electro-pneumatic circuits were presented, used to begin the study of the requires to control a system that work with steps and must offer all the functional elements to be used in a real application. But, as explained above, using a PLC or this specific controller, the control becomes easier and the complexity can be increasealso.Table 2 shows a resume of the elements that are necessary to control the presented example.With the time diagram, the step sequence and the elements of the system described in Table 2 and Figs. 5 and 6 it is possible to create the configuration of the steps that can be sent to the controller (Tables 3 and 4).While using a conventional PLC, the user should pay attention to the logic of the circuit when drawing the electric diagram on the interface (Figs. 7 and 8), using the programmable controller, described in this work, the user must know only the concept o f the method and program only the configuration of each step.It means that, with a conventional PLC, the user must draw the relationbetween the lines and the draw makes it hard to differentiate the steps of the sequence. Normally, one needs to execute a simulation on the interface to find mistakes on the logicThe new programming allows that the configuration of the steps be separated, like described by the method. The sequence is defined by itself and the steps are described only by the inputs and outputs for each step.The structure of the configuration follows the order:1-byte: features of the step;2-byte: mask for the inputs;3-byte: value expected on the inputs;4-byte: value for the outputs;5-byte: value for the extra function.Table 5 shows how the user program is saved inside the controller, this is the program that describes the control of the example shown before.The sequence can be defined by 25 bytes. These bytes can be dividedin five strings with 5 bytes each that define each step of the sequence (Figs. 9 and 10).7. ConclusionThe controller developed for this work (Fig. 11) shows that it is possible to create a very useful programmable controller based on microcontroller. External memories or external timers were not used in case to explore the resources that the microcontroller offers inside. Outside the microcontroller, there are only components to implement the outputs, inputs, analog input, display for the interface and the serial communication.Using only the internal memory, it is possible to control a pneumatic system that has a sequence with 48 steps if all the resources for all steps are used, but it is possible to reach sixty steps in the case of a simpler system.The programming of the controller does not use PLC languages, but a configuration that is simple and intuitive. With electro-pneumatic system, the programming follows the same technique that was used before to design the system, but here the designer work s directly with the states or steps of the system.With a very simple machine language the designer can define all the configuration of the step using four or five bytes. It depends only on his experience to use all the resources of the controller.The controller task is not to work in the same way as a commercial PLC but the purpose of it is to be an example of a versatile controller that is designed for a specific area. Because of that, it is not possible to say which one works better; the system made with microcontroller is an alternative that works in a simple way.应用于电气系统的可编程序控制器约翰 F.维克里此项目主要是研究电气系统以及简单有效的控制气流发动机的程序和气流系统的状态。
基于单片机的全自动热饮机控制器设计外文翻译
毕业设计(论文)外文资料翻译系(院):电子与电气工程学院专业:测控技术与仪器姓名:学号:外文出处:HOT DRINK MAKERS(用外文写)附件: 1.外文资料翻译译文;2.外文原文。
附件1:外文资料翻译译文热饮机摘要一个热饮料机包括一个热水箱外壳,一个坐落在一个较高的位置和充满加热到预定的温度的热水的容器,一个控制供水设备,一个装满热饮原料的漏斗,一个位于漏斗下方的储存加热好的饮料的储罐。
储罐悬挂在一个保温箱中,那里的空气空间通过一个电暖炉均匀加热到适合饮用温度。
供应热水的管道连接热水箱和漏斗上方的喷淋头。
发明背景本发明涉及一种在地板上或在商店的柜台上的自动热饮机,如餐饮服务店和餐厅,更特别是,一个自动咖啡机中咖啡储罐位于独立的一个保持预定的温度和耐热热点水箱,使咖啡保持在合适的温度。
各种类型的热饮料制造商之一,已经提出了他们的型号热饮料,如咖啡或汤是由浇开水到粉末或地面材料在一个漏斗成员和储存在一个热的饮料储罐得到任何想要喝杯热饮料,准备时间。
自动咖啡机,是一种热饮料制造商的典型型,其示意图见图1。
图1中,自动咖啡机包扩,一个垂直的套管50,不锈钢制品的热水箱2,坐落在底部的一边的套管50和底部的容器2,包围隔热材料。
咖啡储罐4悬挂在热水箱2的上端部分,横向扩展槽4,上端边缘部分是在上端容器2的侧墙,以便构成上端热水箱(2)。
咖啡漏斗5中,提供滤芯5c,6连接到25形成在前面的墙上的50。
这样流出来打开一个入口上方5a开孔供盖子4a级。
这个水平的热水W分级加热式汇流热水箱中的水,二是检测水平检测和电磁供水阀门的连接是11及控制水平检测信号的检测11供水进油箱2,总是保持一个必要数量的热水W 分级加热式汇流热水箱中的2个。
热水钨加热处理由一个电暖炉在低13分的容器2和温度对热水是适当控制自动调温器连接到热水器12个电子。
8管有一个终点延伸的热水W从上部的容器2,而另一端提供喷淋头7定位以上5喷漏斗把热水W在容器2到地面的咖啡粉末装在漏斗5,由操作泵9纳入管8。
智能控制系统毕业论文中英文资料对照外文翻译文献
智能控制系统中英文资料对照外文翻译文献附录一:外文摘要The development and application of Intelligence controlsystemModern electronic products change rapidly is increasingly profound impact on people's lives, to people's life and working way to bring more convenience to our daily lives, all aspects of electronic products in the shadow, single chip as one of the most important applications, in many ways it has the inestimable role. Intelligent control is a single chip, intelligent control of applications and prospects are very broad, the use of modern technology tools to develop an intelligent, relatively complete functional software to achieve intelligent control system has become an imminent task. Especially in today with MCU based intelligent control technology in the era, to establish their own practical control system has a far-reaching significance so well on the subject later more fully understanding of SCM are of great help to.The so-called intelligent monitoring technology is that:" the automatic analysis and processing of the information of the monitored device". If the monitored object as one's field of vision, and intelligent monitoring equipment can be regarded as the human brain. Intelligent monitoring with the aid of computer data processing capacity of the powerful, to get information in the mass data to carry on the analysis, some filtering of irrelevant information, only provide some key information. Intelligent control to digital, intelligent basis, timely detection system in the abnormal condition, and can be the fastest and best way to sound the alarm and provide usefulinformation, which can more effectively assist the security personnel to deal with the crisis, and minimize the damage and loss, it has great practical significance, some risk homework, or artificial unable to complete the operation, can be used to realize intelligent device, which solves a lot of artificial can not solve the problem, I think, with the development of the society, intelligent load in all aspects of social life play an important reuse.Single chip microcomputer as the core of control and monitoring systems, the system structure, design thought, design method and the traditional control system has essential distinction. In the traditional control or monitoring system, control or monitoring parameters of circuit, through the mechanical device directly to the monitored parameters to regulate and control, in the single-chip microcomputer as the core of the control system, the control parameters and controlled parameters are not directly change, but the control parameter is transformed into a digital signal input to the microcontroller, the microcontroller according to its output signal to control the controlled object, as intelligent load monitoring test, is the use of single-chip I / O port output signal of relay control, then the load to control or monitor, thus similar to any one single chip control system structure, often simplified to input part, an output part and an electronic control unit ( ECU )Intelligent monitoring system design principle function as follows: the power supply module is 0~220V AC voltage into a0 ~ 5V DC low voltage, as each module to provide normal working voltage, another set of ADC module work limit voltage of 5V, if the input voltage is greater than 5V, it can not work normally ( but the design is provided for the load voltage in the 0~ 5V, so it will not be considered ), at the same time transformer on load current is sampled on the accused, the load current into a voltage signal, and then through the current - voltage conversion, and passes through the bridge rectification into stable voltage value, will realize the load the current value is converted to a single chip can handle0 ~ 5V voltage value, then the D2diode cutoff, power supply module only plays the role of power supply. Signal to the analog-to-digital conversion module, through quantization, coding, the analog voltage value into8bits of the digital voltage value, repeatedly to the analog voltage16AD conversion, and the16the digital voltage value and, to calculate the average value, the average value through a data bus to send AT89C51P0, accepted AT89C51 read, AT89C51will read the digital signal and software setting load normal working voltage reference range [VMIN, VMAX] compared with the reference voltage range, if not consistent, then the P1.0 output low level, close the relay, cut off the load on the fault source, to stop its sampling, while P1.1 output high level fault light, i.e., P1.3 output low level, namely normal lights. The relay is disconnected after about 2minutes, theAT89C51P1.0outputs high level ( software design), automatic closing relay, then to load the current regular sampling, AD conversion, to accept the AT89C51read, comparison, if consistent, then the P1.1 output low level, namely fault lights out, while P1.3 output high level, i.e. normal lamp ( software set ); if you are still inconsistent, then the need to manually switch S1toss to" repair" the slip, disconnect the relay control, load adjusting the resistance value is: the load detection and repair, and then close the S1repeatedly to the load current sampling, until the normal lamp bright, repeated this process, constantly on the load testing to ensure the load problems timely repair, make it work.In the intelligent load monitoring system, using the monolithic integrated circuit to the load ( voltage too high or too small ) intelligent detection and control, is achieved by controlling the relay and transformer sampling to achieve, in fact direct control of single-chip is the working state of the relay and the alarm circuit working state, the system should achieve technical features of this thesis are as follows (1) according to the load current changes to control relays, the control parameter is the load current, is the control parameter is the relay switch on-off and led the state; (2) the set current reference voltage range ( load normal working voltage range ), by AT89C51 chip the design of the software section, provide a basis for comparison; (3) the use of single-chip microcomputer to control the light-emitting diode to display the current state of change ( normal / fault / repair ); specific summary: Transformer on load current is sampled, a current / voltage converter, filter, regulator, through the analog-digital conversion, to accept the AT89C51chip to read, AT89C51 to read data is compared with the reference voltage, if normal, the normal light, the output port P.0high level, the relay is closed, is provided to the load voltage fault light; otherwise, P1.0 output low level, The disconnecting relay to disconnect the load, the voltage on the sampling, stop. Two minutes after closing relay, timing sampling.System through the expansion of improved, can be used for temperature alarm circuit, alarm circuit, traffic monitoring, can also be used to monitor a system works, in the intelligent high-speed development today, the use of modern technology tools, the development of an intelligent, function relatively complete software to realize intelligent control system, has become an imminent task, establish their own practical control system has a far-reaching significance. Micro controller in the industry design and application, no industry like intelligent automation and control field develop so fast. Since China and the Asian region the main manufacturing plant intelligence to improve the degree of automation, new technology to improve efficiency, have important influence on the product cost. Although the centralized control can be improved in any particular manufacturing process of the overall visual, but not for those response and processingdelay caused by fault of some key application.Intelligent control technology as computer technology is an important technology, widely used in industrial control, intelligent control, instrument, household appliances, electronic toys and other fields, it has small, multiple functions, low price, convenient use, the advantages of a flexible system design. Therefore, more and more engineering staff of all ages, so this graduate design is of great significance to the design of various things, I have great interest in design, this has brought me a lot of things, let me from unsuspectingly to have a clear train of thought, since both design something, I will be there a how to design thinking, this is very important, I think this job will give me a lot of valuable things.中文翻译:智能控制系统的开发应用现代社会电子产品日新月异正在越来越深远的影响着人们的生活,给人们的生活和工作方式带来越来越大的方便,我们的日常生活各个方面都有电子产品的影子,单片机作为其中一个最重要的应用,在很多方面都有着不可估量的作用。
温度控制系统中英文对照外文翻译文献
温度控制系统中英文对照外文翻译文献温度控制系统中英文对照外文翻译文献(文档含英文原文和中文翻译)译文:温度控制系统的设计摘要:研究了基于AT89S 51单片机温度控制系统的原理和功能,温度测量单元由单总线数字温度传感器DS18B 20构成。
该系统可进行温度设定,时间显示和保存监测数据。
如果温度超过任意设置的上限和下限值,系统将报警并可以和自动控制的实现,从而达到温度监测智能一定范围内。
基于系统的原理,很容易使其他各种非线性控制系统,只要软件设计合理的改变。
该系统已被证明是准确的,可靠和满意通过现场实践。
关键词:单片机;温度;温度I. 导言温度是在人类生活中非常重要的参数。
在现代社会中,温度控制(TC)不仅用于工业生产,还广泛应用于其它领域。
随着生活质量的提高,我们可以发现在酒店,工厂和家庭,以及比赛设备。
而比赛的趋势将更好地服务于整个社会,因此它具有十分重要的意义测量和控制温度。
在AT89S51单片机和温度传感器DS18B20的基础上,系统环境温度智能控制。
温度可设定在一定范围内动任意。
该系统可以显示在液晶显示屏的时间,并保存监测数据,并自动地控制温度,当环境温度超过上限和下限的值。
这样做是为了保持温度不变。
该系统具有很高的抗干扰能力,控制精度高,灵活的设计,它也非常适合这个恶劣的环境。
它主要应用于人们的生活,改善工作和生活质量。
这也是通用的,因此它可以方便地扩大使用该系统。
因此,设计具有深刻的重要性。
一般的设计,硬件设计和软件系统的设计都包括在内。
II. 系统总体设计该系统硬件包括微控制器,温度检测电路,键盘控制电路,时钟电路,显示,报警,驱动电路和外部RAM。
基于AT89S51单片机,DS18B20的将温度信号传送到数字信号的检测。
和信号发送到微控制器进行处理。
最后,温度值显示在液晶12232F。
这些步骤是用来实现温度检测。
使用键盘接口芯片HD7279在设定温度值,使用微控制器保持一定的温度,并使用液晶显示的温度控制设定值。
电气工程与自动化专业外文翻译--(中英文对照)温度控制简介和PID控制器--
电气工程与自动化专业外文翻译--(中英文对照)温度控制简介和PID控制器--河北建筑工程学院毕业设计(论文)外文资料翻译系别: 电气工程系专业: 电气工程及其自动化班级:姓名:学号:外文出处: Specialized English For ArchitecturalElectric Engineering and Automation附件:1、外文原文;2、外文资料翻译译文。
指导教师评语:签字:年月日注:请将该封面与附件装订成册。
1、外文原文Introductions to temperature controland PID controllersProcess control system.Automatic process control is concerned with maintaining process variables temperatures pressures flows compositions, and the like at some desired operation value. Processes are dynamic in nature. Changesare always occurring, and if actions are not taken, the important process variables-those related to safety, product quality, and production rates-will not achieve design conditions.In order to fix ideas, let us consider a heat exchanger in which a process stream is heated by condensing steam. The process is sketched in Fig.1Fig. 1 Heat exchangerThe purpose of this unit is to heat the process fluid from someinlet temperature, Ti(t), up to a certain desired outlet temperature,T(t). As mentioned, the heating medium is condensing steam.The energy gained by the process fluid is equal to the heat released by the steam, provided there are no heat losses to surroundings, iiithat is, the heat exchanger and piping are well insulated.In this process there are many variables that can change, causingthe outlet temperature to deviate from its desired value. [21 If this happens, some action must be taken to correct for this deviation. Thatis, the objective is to control the outlet process temperature tomaintain its desired value.One way to accomplish this objective is by first measuring the temperature T(t) , then comparing it to its desired value, and, based on this comparison, deciding what to do to correct for any deviation. The flow of steam can be used to correct for the deviation. This is, if the temperature is above its desired value, then the steam valve can be throttled back to cut the stearr flow (energy) to the heat exchanger. If the temperature is below its desired value, then the steam valve couldbe opened some more to increase the steam flow (energy) to the exchanger. All of these can be done manually by the operator, and since the procedure is fairly straightforward, it should present no problem. However, since in most process plants there are hundreds of variablesthat must be maintained at some desired value, this correction procedure would required a tremendous number of operators. Consequently, we would like to accomplish this control automatically. That is, we want to have instnnnents that control the variables wJtbom requ)ring interventionfrom the operator. (si This is what we mean by automatic process control.To accomplish ~his objective a control system must be designed and implemented. A possible control system and its basic components areshown in Fig.2.Fig. 2 Heat exchanger control loopThe first thing to do is to measure the outlet temperaVare of the process stream. A sensor (thermocouple, thermistors, etc) does this. This sensor is connected physically to a transmitter, which takes the output from the sensor and converts it to a signal strong enough to be transmitter to a controller. The controller then receives the signal, which is related to the temperature, and compares it with desired value. Depending on this comparison, the controller decides what to do to maintain the temperature at its desired value. Base on this decision, the controller then sends another signal to final control element, which in turn manipulates the steam flow.The preceding paragraph presents the four basic components of all control systems. They are(1) sensor, also often called the primary element.(2) transmitter, also called the secondary element.(3) controller, the "brain" of the control system.(4) final control system, often a control valve but not always.Other common final control elements are variable speed pumps, conveyors, and electric motors.The importance of these components is that they perform the three basic operations that must be present in every control system. These operations are(1) Measurement (M) : Measuring the variable to be controlled is usually done by the combination of sensor and transmitter.(2) Decision (D): Based on the measurement, the controller must then decide what to do to maintain the variable at its desired value.(3) Action (A): As a result of the controller's decision, the system must then take an action. This is usually accomplished by the final control element.As mentioned, these three operations, M, D, and A, must be present in every control system.PID controllers can be stand-alone controllers (also called single loop controllers), controllers in PLCs, embedded controllers, or software in Visual Basic or C# computer programs.PID controllers are process controllers with the following characteristics:Continuous process controlAnalog input (also known as "measuremem" or "Process Variable" or "PV")Analog output (referred to simply as "output")Setpoint (SP)Proportional (P), Integral (I), and/or Derivative (D) constantsExamples of "continuous process control" are temperature, pressure, flow, and level control. For example, controlling the heating of a tank. For simple control, you have two temperature limit sensors (one low and one high) and then switch the heater on when the low temperature limit sensor tums on and then mm the heater off when the temperature rises to the high temperature limit sensor. This is similar to most home air conditioning & heating thermostats.In contrast, the PID controller would receive input as the actual temperature and control a valve that regulates the flow of gas to the heater. The PID controller automatically finds the correct (constant) flow of gas to the heater that keeps the temperature steady at the setpoint. Instead of the temperature bouncing back and forth between two points, the temperature is held steady. If the setpoint is lowered, then the PID controller automatically reduces the amount of gas flowing to the heater. If the setpoint is raised, then the PID controller automatically increases the amount of gas flowing to the heater. Likewise the PID controller would automatically for hot, sunny days (when it is hotter outside the heater) and for cold, cloudy days.The analog input (measurement) is called the "process variable" or "PV". You want the PV to be a highly accurate indication of the process parameter you are trying to control. For example, if you want to maintain a temperature of + or -- one degree then we typically strivefor at least ten times that or one-tenth of a degree. If the analog input is a 12 bit analog input and the temperature range for the sensoris 0 to 400 degrees then our "theoretical" accuracy is calculated to be 400 degrees divided by 4,096 (12 bits) =0.09765625 degrees. [~] We say "theoretical" because it would assume there was no noise and error in our temperature sensor, wiring, and analog converter. There are other assumptions such as linearity, etc.. The point being--with 1/10 of a degree "theoretical" accuracy--even with the usual amount of noise and other problems-- one degree of accuracy should easily be attainable.The analog output is often simply referred to as "output". Oftenthis is given as 0~100 percent. In this heating example, it would mean the valve is totally closed (0%) or totally open (100%).The setpoint (SP) is simply--what process value do you want. In this example--what temperature do you want the process at?The PID controller's job is to maintain the output at a level sothat there is no difference (error) between the process variable (PV) and the setpoint (SP).In Fig. 3, the valve could be controlling the gas going to a heater, the chilling of a cooler, the pressure in a pipe, the flow through a pipe, the level in a tank, or any other process control system. What the PID controller is looking at is the difference (or "error") between the PV and the SP.SETPOINT P,I,&DCONSTANTSDifference error PID controlalgorithmprocess outputvariableFig .3 PIDcontrolIt looks at the absolute error and the rate of change of error. Absolute error means--is there a big difference in the PV and SP or a little difference? Rate of change of error means--is the difference between the PV or SP getting smaller or larger as time goes on.When there is a "process upset", meaning, when the process variableor the setpoint quickly changes--the PID controller has to quickly change the output to get the process variable back equal to the setpoint. If you have a walk-in cooler with a PID controller and someone opens the door and walks in, the temperature (process variable) could rise very quickly. Therefore the PID controller has to increase the cooling (output) to compensate for this rise in temperature.Once the PID controller has the process variable equal to the setpoint,a good PID controller will not vary the output. You want the outputto be very steady (not changing) . If the valve (motor, or other control element) is constantly changing, instead of maintaining a constant value, this could cause more wear on the control element.So there are these two contradictory goals. Fast response (fast change in output) when there is a "process upset", but slow response (steady output) when the PV is close to the setpoint.Note that the output often goes past (over shoots) the steady-state output to get the process back to the setpoint. For example, a cooler may normally have its cooling valve open 34% to maintain zero degrees (after the cooler has been closed up and the temperature settled down). If someone opens the cooler, walks in, walks around to find something, then walks back out, and then closes the cooler door--the PID controller is freaking out because the temperature may have raised 20 degrees! Soit may crank the cooling valve open to 50, 75, or even 100 percent--to hurry up and cool the cooler back down--before slowly closing the cooling valve back down to 34 percent.Let's think about how to design a PID controller.We focus on the difference (error) between the process variable (PV) and the setpoint (SP). There are three ways we can view the error. The absolute errorThis means how big is the difference between the PV and SP. If there is a small difference between the PV and the SP--then let's make a small change in the output. If there is a large difference in the PV and SP--then let's make a large change in the output. Absolute error is the "proportional" (P) component of the PID controller.The sum of errors over timeGive us a minute and we will show why simply looking at the absolute error (proportional) only is a problem. The sum of errors over time is important and is called the "integral" (I) component of the PID controller. Every time we run the PID algorithm we add the latest errorto the sum of errors. In other words Sum of Errors = Error 1 q- Error2 + Error3 + Error4 + ....The dead timeDead time refers to the delay between making a change in the output and seeing the change reflected in the PV. The classical example is getting your oven at the right temperature. When you first mm on the heat, it takes a while for the oven to "heat up". This is the dead time. If you set an initial temperature, wait for the oven to reach theinitial temperature, and then you determine that you set the wrong temperature--then it will take a while for the oven to reach the new temperature setpoint. This is also referred to as the "derivative" (D) component of the PID controller. This holds some future changes back because the changes in the output have been made but are not reflectedin the process variable yet. Absolute Error/Proportional One of the first ideas people usually have about designing an automatic process controller is what we call "proportional". Meaning, if the difference between the PV and SP is small--then let's make a small correction to the output. If the difference between the PV and SP is large-- then let's make a larger correction to the output. This idea certainly makes sense.We simulated a proportional only controller in Microsoft Excel.Fig.4 is the chart showing the results of the first simulation (DEADTIME = 0, proportional only):Proportional and Integral ControllersThe integral portion of the PID controller accounts for the offset problem in a proportional only controller. We have another Excel spreadsheet that simulates a PID controller with proportional and integral control. Here (Fig. 5) is a chart of the first simulation with proportional and integral (DEADTIME :0, proportional = 0.4).As you can tell, the PI controller is much better than just the P controller. However, dead time of zero (as shown in the graph) is not common.Fig .4 The simulation chartDerivative ControlDerivative control takes into consideration that if you change the output, then it takes tim for that change to be reflected in the input (PV).For example, let's take heating of the oven.Fig.5The simulation chartIf we start turning up the gas flow, it will take time for the heat to be produced, the heat to flow around the oven, and for the temperature sensor to detect the increased heat. Derivative control sort of "holds back" the PID controller because some increase in temperature will occur without needing to increase the output further. Setting the derivative constant correctly allows you to become more aggressive with the P & I constants.2、外文资料翻译译文温度控制简介和PID控制器过程控制系统自动过程控制系统是指将被控量为温度、压力、流量、成份等类型的过程变量保持在理想的运行值的系统。
毕业设计英文翻译(译文)
编号:毕业设计(论文)外文翻译(译文)院(系):桂林电子科技大学专业:电子信息工程学生姓名: xx学号: xxxxxxxxxx指导教师单位:桂林电子科技大学姓名: xxxx职称: xx2014年x月xx日定时通断电源用途开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防,电脑机箱,数码产品和仪器类等领域。
简介随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。
开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和开关器件(MOSFET、BJT等)构成。
开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。
线性电源成本在某一输出功率点上,反而高于开关电源。
随着电力电子技术的发展和创新,使得开关电源技术在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广泛的发展空间。
开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。
另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。
分类现代开关电源有两种:一种是直流开关电源;另一种是交流开关电源。
这里主要介绍的只是直流开关电源,其功能是将电能质量较差的原生态电源(粗电),如市电电源或蓄电池电源,转换成满足设备要求的质量较高的直流电压(精电)。
电气工程毕业设计外文翻译原文
西南交通大学本科毕业设计外文翻译年级:学号:姓名:专业:指导老师xx 年xx、月院系 xxx 专业电气工程及其自动化年级 xx 姓名 xxx题目外文翻译指导教师评语指导教师 (签章)评阅人评语评阅人 (签章) 成绩答辩委员会主任 (签章)年月日目录ABSTRACT (1)I. INTRODUCTION (1)II. DESIGN OF HARDWARE FOR TEMPERATURE CONTROL SYSTEM (2)III. DESIGN OF SIGNAL WIRELESS TRANSMISSION (2)IV. SOFTWARE DESIGN (4)V. CONCLUSION (10)REFERENCES (11)摘要 (12)I 介绍 (12)II 对温度控制系统的硬件是合计 (12)III 设计信号的无线传输 (13)IV 软件设计 (14)V 结论 (18)Design of Temperature Control Device Underground Coal Mine Based on AT89S52ABSTRACTAbstract-Temperature underground coal mine is an important index, especially for mining workers underground. To monitor the temperature effectively, a temperature measurement and control system is necessary to design. Temperature value is displayed on LED screen on line. When temperature value reaches the maximum, conditioning device connected with the opening end of the relay controlled by the MeV will start up. Temperature signal and control information is all transmitted by wireless signal transmission module nRF905. The system program consists of transducer control and display of the temperature value. The control program of transducer is compiled according to its communication protocol. Program of wireless data transmission should be debugged between the data transmission modules. Alarm device is designed to provides effective information to workers when the temperature value is unusual. Thus monitoring of the temperature underground coal mine can be real and effective.Keywords: Index Terms-DS18B20, AT89S52, nRF905, coal mine temperature controlI. INTRODUCTIONThe environment underground coal mine is poor, and various dangers can easily occur. Therefore, in order to ensure safe production of coal mine, it is needed to supervise various parameters underground coal mine, including temperature, pressure, gas, wind speed and distance. Timely monitoring temperatures of some mine key points and coal face is an important monitoring project to guarantee safe production. Moreover, the ultrasonic measurement of distance is usually used in coal mine, to ensure the accuracy of measurement, it is also needed to make accurate temperature measurement. Traditionaltemperature measurement is done by classical isolated sensors, which has some disadvantages as follows: slow reaction rate, high measuring errors, complex installation and debugging and inconvenient long-distance transmission. In this paper intelligent temperature measurement and control is realized by taking DS18B20 temperature sensor and AT89S52 MCU as platform. DS18B20 has some advantages, mainly including digital counting, direct output of the measured temperature value in digital form, less temperature error, high resolution, strong anti-interference ability, long-distance transmission and characteristic of serial bus interface. Comparing with the traditional method of temperature measurement, MCU temperature measurement can achieve storage and analysis of temperature data, remote transmission and so on. DS18B20 sensor is a series of digital single bustemperature sensor made in DALLAS company ofUSA.[I]II. DESIGN OF HARDWARE FOR TEMPERATURE CONTROLSYSTEMThe device is composed of the temperature sensor DS18B20, MCU AT89S52, display module and relay for main fan control. The principle diagram of this hardware is shown in Fig.l.DS18B20 temperature sensor converts the environmental temperature into signed digital signal (with 16 bits complementary code accounting for two bytes), its output pin 2 directly connected with MCU Pl.2. Rl is pull-up resistor and the sensor uses external power supply. Pl.7 is linked to relay and PO is linked to LED display. AT89S52 is the control core of the entire device. Display modules consists of quaternity common-anode LED and four 9012. The read-write of sensor, the display of temperature and the control of relay are completed by program control ofthe system. [2]III. DESIGN OF SIGNAL WIRELESS TRANSMISSION Tested signal is transmitted by wireless mode, as shown in Fig. 1. Wire transmitting of signal underground coal mine has some disadvantages:1) The mineral products are mined by excavation of shaft and tunnel. Meanwhile, there are so many equipments used underground coal mine. Therefore, it is more difficult to wiring in shaft and tunnel, and environmental suitability is poor for wire transmitting of signals;2) Support workers should check up cables for transmitting signals at any moment when combined motion of the coal machine support occurs. Thus, workers' labor intensity is increased;3) The long-distance transmission of sensing element with contact method may lead to larger errors. To reduce errors, the long-distance line driver and safety barrier are needed. Thus, the cost is increased;4) The work load of maintenance underground coal mine is larger.Figure 1. Structure diagram of signal wireless transmission systemBy contrast, adopting wireless data transmission can effectively avoid the above disadvantages. [3]Wireless signal transmission module nRF905 is used in the design. Its characteristics are as follows: Integrated wireless transceiver chip nRF905 works in the ISM band 433/868/915 MHz, consists of a fully integrated frequency modulator, a receiver with demodulator, a power amplifier, a crystal oscillator and a regulator. Its working mode of operation isShock Burst. Preambles and CRC code are automatically generated in the mode, and can easily be programmed through the SPI interface. Current consumption of the module is very low. When the transmit power is +10 dBm, the emission current is 30 rnA and receiving current is 12.2 rnA. It also can enter POWERDOWN model to achieve energy-saving. [4]IV. SOFTWARE DESIGNFor doing the read-write programming for DS18B20, its read-write time sequence should be guaranteed. Otherwise, the result oftemperature measurement will not be read.Figure 2. Software design flow chartTherefore, program design for operation on DS18B20 had better adopt assembly language.[5] Software design flow chart is shown in Fig.2.Structure of Main program for temperature measurement is shown as following: INIT 1820:SETB DINNOPCLRDINMOV RO,#250TSRI: DJNZ RO,TSRISETB DINNOPNOPNOPMOV RO,#60TSR2: DJNZ RO,TSR2JNB PI.0,TSR3LJMPTSR4TSR3: SETB FLAGILJMPTSR5TSR4: CLR FLAG1LJMPTSR7TSR5: MOY RO,#6BHTSR6: DJNZ RO,TSR6TSR7: SETB DINSETB DINRETGET TEMPER:SETB DINLCALL INIT 182018 FLAG1,TSS2RETTSS2: MOY A,#OCCH LCALL WRITE 1820 MOY A,#44HLCALL WRITE 1820 LCALL DELAY LCALL DELAY LCALLDELAY LCALLDELAY LCALL DELAY LCALLDELAY LCALL INIT 1820 MOY A,#OCCH LCALL WRITE 1820 MOY A,#OBEH LCALL WRITE 1820 LCALL READ 1820 RETWRITE 1820:MOY R2,#8CLRCREAD_l 820:MOVR4,#2MOV Rl,#29H REOO: MOV R2,#8 REOl: CLR CSETB DINNOPNOPCLRDINNOPNOPNOPSETB DINMOVR3,#9ADJUST_TEMPER: CLR TEM_BITJNB 47H,AJUSTSETB TEM_BITXRL TEMPER_L,#OFFH MOV A,TEMPER_L ADDA,#OlHMOV TEMPE~L,AXRL TEMPER_H,#OFFH MOV A,TEMPER_H ADDCA,#OOHMOV TEMPER_H,A ADJUST:MOV A,TEMPER_L MOV B,#lOODIVABMOV B_BIT,AMOV A,BMOV B,#lODIVABMOV S_BIT,AMOV G_BIT,BDISP MAIN: LCALL D_DISP LCALL G_DISP LCALL S_DISP LCALL B_DISP MOV A,#OFFH LCALLDISPMOV A,#OFFH LCALL DISPMOV A,#OFFH LCALLDISPMOV A,#OFFH LCALL DISP LCALLDELAY RETD DISP:MOVC,D_BITJC D DISPIMOV A,#03H LCALL DISPRETD DISPl:MOV A,#49H LCALL DISPRETG DISP:MOV A,G_BIT MOV DPTR,#TAB MOVC A,@A+DPTRANLA,#OFEH LCALL DISPRETS DISP:MOV A,S_BITMOV DPTR,#TAB MOVC A,@A+DPTR LCALL DISPRETB DISP:JNB TEM_BIT,B_DIS MOV A,#Ofdh LCALL DISPRETB DIS:JB l8H,B_lMOV A,#Offh LCALL DISPRETB 1: MOV A,#03H LCALL DISPRETDISP: CLRCMOVR2,#8DIS: RRCA MOVDAT,C CLRCLK SETBCLKCLRCLKDJNZ R2,DISRETDELAY: MOV R3,#80hDl: MOV R4,#OfEhDJNZ R4,$DJNZ R3,DlRETTAB:DB 03H,9FH,25H,ODH,99HDB 49H,4IH,IFH,OIH,09HENDV. CONCLUSIONThe performance of measurement-control device mainly depends on the performance of sensing element, the processing circuit and the transmission efficiency of collected data. Digital temperature sensor DSl8B20 and processing chip AT89S52 have characteristics of good technical indexes, and the field operations indicate that circuits system has many advantages, such as accurate data detection, good stability and easy adjustment.After industrial operation test, the system is excellent for worst mine environment, which provides powerful assurance for safe production in the coal industry, and brings good economic and social benefits.REFERENCES[1] WANG Furui, "Single chip microcomputer measurement and control system comprehensive design," Beijing University of Aeronautics and Astronautics Press, 1998.[2] XIA Huguo, "Technology application in automation combined-mining face," Shaanxi Coal, 2007.[3] SHA Zhanyou, "Principle and application of intelligent integrated temperature sensor," Mechanical Industry Publishing House, 2002.[4] CAO Shujuan, HE Yinyong, GUO San-rning, On-line temperaturemeasuring system involving coal mine, Journal of Heilongjiang Instituteof Science & Technology,7(2005)[5] SUN Xiaoqing, XIAO Xingming, WANG Peng, "Design of Measuring System for Rotating Speed of Hoist Based on Virtual Instrument," CoalMine Machinery, 12(2005).基于AT89S52煤矿井下的温度控制装置的设计摘要煤矿井下抽象温度是评价学术期刊的重要指标,特别是对在地下工作的采矿工。
热能与动力工程毕业设计文献翻译
热能与动力工程毕业设计文献翻译文献翻译题目生水源热泵空调系统学生姓名专业班级热能与动力工程08-1 学号院(系)机电工程学院指导教师(职称)完成时间生水源热泵空调系统Yong Cho , Rin YunA K-Water Institute, Korea Water Resources Corporation, 462-1, Jeonmin-dong, Daejeon305-730, Republic of KoreaB Department of Mechanical Eng., Hanbat National Univ., Duckmyung-dong, San 16-1, Daejeon 305-719, Republic of Korea摘要生水源是很有发展前景的新热源之一,研究人员正在将生水源和其他水源(如地面水、湖泊水、河流水和污水)一起作为研究对象。
一般来说,取于环境再供给水质处理设备的水就叫做生水。
在这个课题中,利用供给水质处理设备的生水热能来工作的热泵机组的制冷和制热性能还有待研究。
每两个被测的热泵的热容量为65.2KW,并且通常安置在加热或制冷的控制中心房间。
可以运用焊接的金属板接收来自于生水源的热能。
除了春季,与周围的空气源相比,生水源能够提供良好的热源。
在春秋季节,加热和制冷的负荷极低,因此,生水源热泵系统在这些季节表现不佳。
关键词生水源/热泵/加热和制冷/部分负荷性能1.引言水源有很多种,像地面水,湖泊水,河水,污水和生水。
生水是这些很有发展前景的热源之一。
一般来说,这种水取于环境再通过大型的管道进入水质处理设备来进行后续处理或净化。
像那种没有经过处理的水源就叫做生水。
被调往多个区域供水系统的生水通过各种渠道的运输流动是产生巨大温差的来源。
在这个研究项目中,生水被当作热泵系统的热源来完成水质处理设备整合操作中心的加热和冷却过程。
在实际生活中我们很难找到可以把生水当作热源的相似或相近的操作系统。
毕业设计英文文献翻译(电力方向附带中文)
毕业设计英文文献翻译(电力方向附带中文)大学毕业设计英文文献翻译,关于电力系统方向,电力谐波!绝对原创!HarmonicsService reliability and quality of power have become growing concerns for many facility managers, especially with the increasing sensitivity of electronic equipment and automated controls. There are several types of voltage fluctuations that can cause problems, including surges and spikes, sags, harmonic distortion, and momentary disruptions. Harmonics can cause sensitive equipment to malfunction and other problems, including overheating of transformers and wiring, nuisance breaker trips, and reduced power factor.What Are Harmonics?Harmonics are voltage and current frequencies riding on top of the normal sinusoidal voltage and current waveforms. Usually these harmonic frequencies are in multiples of the fundamental frequency, which is 60 hertz (Hz) in the US and Canada. The mostcommon source of harmonic distortion is electronic equipment using switch-mode power supplies, such as computers, adjustable-speed drives, and high-efficiency electronic light ballasts.Harmonics are created by these Dswitching loads‖ (also called “nonlinear loads,‖ because current does not vary smoothly with voltage as it does with simple resistive and reactive loads): Each time the current is switched on and off, a current pulse is created. The resulting pulsed waveform is made up of a spectrum of harmonic frequencies, including the 60 Hz fundamental and multiples of it. This voltage distortion typically results from distortion in the current reacting with system impedance. (Impedance is a measure of the total opposi tion―resistance, capacitance, and inductance―to the flow of an alternating current.) The higher-frequency waveforms, collectively referred to as total harmonic distortion (THD), perform no useful work and can be asignificant nuisance.Harmonic waveforms are characterized by their amplitude and harmonic number. In the U.S. and Canada, the third harmonic is 180 Hz―or 3 x 60 Hz―and the fifth harmonic is 300 Hz (5 x 60Hz). The third harmonic (and multiples of it) is the largest problem in circuits with single-phase loads such as computers and fax machines. Figure 1 shows how the 60-Hz alternating current (AC) voltage waveform changes when harmonics are added.大学毕业设计英文文献翻译,关于电力系统方向,电力谐波!绝对原创!The Problem with HarmonicsAny distribution circuit serving modern electronic devices will contain some degree of harmonic frequencies. The harmonics do not always cause problems, but the greater the power drawn by these modern devices or other nonlinear loads, the greater the level of voltage distortion. Potential problems (or symptoms of problems) attributed to harmonics include:■ Malfunction of sensitive equipment■ Random tripping of circuit breakers■ Flickering lights■ Very high neutral currents■ Overheated phase conductors, panels, and transformers ■ Premature failure of transformers and uninterruptible power supplies (UPSs)■ Reduced power factor■ Reduced system capacity (because harmonics create additional heat, transformers and otherdistribution equipment cannot carry full rated load)Identifying the ProblemWithout obvious symptoms such as nuisance breaker trips or overheated transformers, how do you determine whether harmonic current or voltages are a cause for concern? Here are several suggestions for simple, inexpensive measurements that a facility manager or staff electrician could take, starting at the outlet and moving upstream:■ Measure the peak and root mean square (RMS) voltage at a sample of receptacles. The Dcrest factor‖ is the ra tio of peak to RMS voltage. For a perfectly sinusoidal voltage, the crest factor will be 1.4. Low crest factor is a clear indicator of the presence of harmonics. Note that these measurements must be performed with a Dtrue RMS‖ meter―one that doesn‘t assume a perfectly sinusoidal waveform.■ Inspect distribution panels. Remove panel covers and visually inspect components for signs of overheating, including discolored or receded insulation or discoloration of terminal screws. If you see any of these symptoms, check that connectionsare tight (since loose connections could also cause overheating), and compare currents in all conductors to their ratings.■ Measure phase and neutral currents at the transformer secondary with clamp-on current probes. If no harmonics are being generated, the neutral current of a three-phase distribution system carries only the imbalance of the phase currents. In a well-balanced three-phase distribution system, phase currents will be very similar, and current in the neutral conductor should be much lower than phase current and far below its rated current capacity. If phase currents are similar and neutral current exceeds their imbalance by a wide margin, harmonics are present. If neutral current is above 70 percent of the cond uctor‘s rated capacity, you need to mitigate the problem.■Compare transformer temperature and loading with nameplate temperature rise and capacity ratings. Even lightly loaded transformers can overheat if harmonic current is high. A transformer that is near or over its rated temperature rise but is loaded well below its rated capacity is a clear sign that harmonics are at work. (Many transformers have built-in temperature gauges. If yours does not, infrared thermography can be used to detect overheating.)大学毕业设计英文文献翻译,关于电力系统方向,电力谐波!绝对原创!In addition to these simple measurements, many power-monitoring devices are now commercially available from a variety of manufacturers to measure and record harmonic levels. These instruments provide detailed information on THD, as well as on the intensity of individual harmonic frequencies. After taking the appropriate measurements to determine whether you have high levels of harmonics and, if so, to find the source, you will be well-positioned to choose the best solution.Solutions to Harmonics ProblemsThe best way to deal with harmonics problems is through prevention: choosing equipment and installation practices that minimize the level of harmonics in any one circuit or portion of a facility. Many power quality problems, including those resulting from harmonics, occur when new equipment is haphazardly added to older systems. However, even within existing facilities, the problems can often be solved with simple solutions such as fixing poor or nonexistent grounding on individual equipment or the facility as a whole, moving a few loads between branch circuits, or adding additional circuits to help isolate the sensitiveequipment from what is causing the harmonic distortion. If the problems cannot be solved by these simple measures, there are two basic choices: to reinforce the distribution system to withstand the harmonics or to install devices to attenuate or remove the harmonics. Reinforcing the distribution system means installing double-size neutral wires or installing separate neutral wires for each phase, and/or installing oversized or Krated transformers, which allow for more heat dissipation. There are also harmonic-rated circuit breakers and panels, which are designed to prevent overheating due to harmonics. This option is generally more suited to new facilities, because the costs of retrofitting an existing facility in this way could be significant. Strategies for attenuating harmonics, from cheap to more expensive, include passive harmonic filters, isolation transformers, harmonic mitigating transformers (HMTs), the Harmonic Suppression System (HSS) from Harmonics Ltd., and active filters(Table 1).Passive filters (also called traps) include devices that provide low-impedance paths to divert harmonics to ground and devices that create a higher-impedance path to discourage the flow of harmonics. Both of these devices, by necessity, change theimpedance characteristics of the circuits into which they are inserted. Another weakness of passive harmonic technologies is that, as their name implies, they cannot adapt to changes in the electrical systems in which they operate. This means that changes to the electrical system (for example, the addition or removal of power factorCcorrection capacitors or the addition of more nonlinear loads) could cause them to be overloaded or to create Dresonances‖ that could actually amplify, rather than diminish, harmonics.Active harmonic filters, in contrast, continuously adjust their behavior in response to the harmonic current content of the monitored circuit, and they will not cause resonance. Like an automatic transmission in a car, active filters are designed to accommodate a full range of expected operating conditions upon installation, without requiring further adjustments by the operator.Isolation transformers are filtering devices that segregate harmonics in the circuit in which they are created, protecting upstream equipment from the effects of harmonics. These transformers do not remove the problem in the circuit generating the harmonics, but they can prevent the harmonics from affecting more sensitive equipment elsewhere within the facility.大学毕业设计英文文献翻译,关于电力系统方向,电力谐波!绝对原创!Harmonic mitigating transformers actually do relieve problematic harmonics. HMTs can be quite cost-effective in the right application, because they can both improve reliability and reduce energy costs. The right application includes transformers that are heavily or moderately loaded and where high levels of harmonic currents are present. In addition, HMTs are very effective in supporting critical loads that are backed up by a UPS. UPSs and backup generators tend to have high impedance, which results in high voltage distortion under nonlinear loading. Because of this, equipment that operates flawlessly when supplied by utility power may malfunction when the backup system engages during a utility outage. Note that some of these power systems have output filters (either passive or active) to control harmonic levels. The presence or absence of such filters should be determined before adding an HMT.The Harmonics Ltd. Harmonic Suppression System is a unique solution for single-phase loads that is designed to suppress the third harmonic. An HSS is generally more expensive than an HMT, but it is designed to attenuate the harmonicsproblems throughout the entire distribution system, not just upstream of the transformer. The types of facilities that present the best opportunities for HSS installation are those that place a very high premium on power quality and reliability, such as server farms, radio and television broadcast studios, and hospitals. (See .) Economic EvaluationEvaluating the life-cycle costs and effectiveness of harmonics mitigation technologies can be ve ry challenging―beyond the expertise of most industrial facility managers. After performing the proper measurement and analysis of the harmonics problem, this type of evaluation requires an analysis of the costs of the harmonics problem (downtime of sensitive equipment, reduced power factor, energy losses or potential energy savings) and the costs of the solutions. A good place to start in performing this type of analysis is to ask your local utility or electricity provider for assistance. Many utilities offer their own power quality mitigation services or can refer you to outside power quality service providers.Additional ResourcesInstitute of Electrical and Electronics Engineers (IEEE),Standard 519-1992, DIEEE大学毕业设计英文文献翻译,关于电力系统方向,电力谐波!绝对原创!Recommended Practices and Requirements for Harmonic Control in Electric Power Systems‖ (1992), available at .Relationship between harmonics and symmetrical componentsAbstract New terminology is introduced to make clear the relationship between harmonics and symmetrical components. Three-phase sets are classified in terms of symmetrical sets and asymmetrical sets. Subclasses are introduced with the names symmetrical balanced sets, symmetrical unbalanced sets, asymmetrical balanced sets and asymmetrical unbalanced sets to show that a threephase set can resolve to either one, two or three symmetrical component sets. The results from four case studies show that these subclasses and their resolution to symmetrical component sets improve understanding of harmonic analysis of systems having balanced and unbalanced harmonic sources and loads.Keywords asymmetrical sets; harmonic flows; harmonic sources; symmetrical component sets; symmetrical sets Any periodic wave shape can be broken down into oranalysed as a fundamentalwave and a series of harmonics.Three-phase harmonic analysis requires a clear understanding of the relationship between symmetrical component injections from harmonic sources (e.g. adjustable speed drives, ASDs) and their relationship to harmonic flows (symmetrical components) arising from the application of a harmonic source to a linear system.Alimited number of references contain brief information concerning harmonics and symmetrical components. Reference 1, provides a paragraph on this topic and uses the heading Relationship between Harmonics and Symmetrical Components‘.It includes a table that is supported by a brief explanatory paragraph. The table expresses harmonics in terms of positive, negative and zero sequences. It states that these sequences are for harmonics in balanced three-phase systems. The heading refers to symmetrical components while the content refers to balanced three-phase systems. Herein lies the anomaly. Classically, symmetrical components (especially ero sequence) are only applied in unbalanced systems. The following questions rose after reading the Ref. 1 paragraph.(a)Do symmetrical components (especially zero sequence), in the classical sense,apply in balanced as well as unbalanced non-sinusoidal systems and is this abreak from tradition?(b)What do the terms, symmetrical, asymmetrical, balanced, unbalanced andsymmetrical components mean?(c)What are the conditions under which a system must operate so that harmonicsresolve to positive, negative and zero sequences and is the table given inRef. 1 correct?The terminology used is found inadequate for describing non-sinusoidal systems.There is thus a need to introduce a three-phase terminology that will show the relationship and make the comparison between injections (currents) and harmonic flows (voltages and currents) meaningful.References 3 provides the basis for the solution by providing definitions for threephase sets‘, symmetrical sets‘an d symmetricalcomponent sets‘.The purpose of this paper is to introduce an approach to harmonic analysis大学毕业设计英文文献翻译,关于电力系统方向,电力谐波!绝对原创!based on the classification of three-phase sets and to make to comparison between injections from harmonic sources and corresponding harmonic flows quantifiable by expressing the results in terms of the number of symmetrical component sets found.Harmonic flows and their resolution to symmetrical components depends upon the magnitudes and phase sequences of the injections from a harmonic source, on the system‘s sequence impedances, on three- and four-wire connections and on whether the customer‘s linear load on the system is balanced or unbalanced. Therefore, what is injected in terms of symmetrical component sets by a harmonic source is not necessarily received by the system, i.e. the harmonic flows may resolve to one, two or three symmetrical component sets and this depends upon the type of three-phase set found. Therefore, any three-phase harmonic may be partially made up of any of thesymmetrical component sets.Four case studies are reported and they show a novel method for teaching the flow of power system harmonics. It is important to use case studies as part of one‘s teaching as they link learning to concepts and improve understanding. They show how the method of symmetrical components can be extended to a system‘s response to harmonic flows. When taught as a group, the four case studies improve cognitive skills by showing that the symmetrical component responses under unbalanced situations are different to the balanced state.IEEE __TIONS ON POWER __NICS VOL.19,NO.3,__年大学毕业设计英文文献翻译,关于电力系统方向,电力谐波!绝对原创!谐波服务的可靠性和电能质量已成为越来越多设施经理的关注,尤其是随着电子设备和自动化控制灵敏度提高了很多。
外文翻译-----智能家用电热水器控制器
附录3The Controller of the Domestic Electric Water-Heater1.The perspectives of applianceWater-heater is a kind of domestic electric appliance which can be used in bathroom, wash room and kitchen. The types of water-heater available in the market at present includes: electric water-heater, solar water-heater, gas water-heater. To be specifically in China, the use of solar water-heater is limited by the weather and the scope for use is narrow while gas water-hater is fueled by petrol and gas, the supply of which will be difficult to meet the increasing demands and bad for environment. So the electric water-heater has become more and more popular among customers. According to statistics from Chinese commercial federation not long ago, the market share of electric water-heater in sales volume and sales revenue has surpassed the gas water-heater which keeps ahead for along time. It is predicted by this federation that driven by the larger-scale reconstructing of the electric network in the city and the extensive startup of the housing market in the city, the market for electric water-heater will present the strong growth tendency in the next few years.2. The Goal for DesignThere are two kinds of electric water-heaters available in the market at present: the continual fluent type and water storage type. Considering the special demand of the moist working conditions on single chip, we adopt the newly promoted MC68HC08 single chip by Motorola to be the control center. With its high resistance to interference, steady working, flash memory and so on, this single chip can satisfy the demand of the electric water-heater with high performance. Also considering the fierce competition in domestic appliances industry, we will realize these functions by using components as simple as possible to reduce the cost. We will make full use of the internal and outer functions to enhance the performance-to-price ratio. With few improvements, it can be produced massively with low cost in practice.3. The LZC-CI Hardware Design3.1 Technology Standards and CharacteristicsThe main function of the controller is to control the temperature. Besides that, it has to realize the following functions:To display the real-time temperature of water, the range is 0~99℃.To set the temperature of water arbitrarily within 20~80℃.Have the function of appointment which enables 24 hour turning on setting willfully.Have LTD to display real-time temperature digitally. When setting, the temperature and the time set will be displayed by flicker and the controller will have instructions of appointment, heat preservation and heating.Able to look over and revise the time of system.Equipped with remote controller, the control will be easy and simple.Cut the power swiftly when temperature is too high and alarm.When electricity leaks, cut the power swiftly and propose alarming.When the power is cut, the data set can be preserved.3.2 The Structure of the SystemThe system consists of two main parts: the main controller of water-heater and the remote controller, realized by two pieces of 68hc908gr8 respectively.3.2.1 The Power Supply and the Clock CircuitThe power circuit consists of the transformation bridge, the rectification bridge, the filter resistance, the pressure sensitive resistance and integration voltage-stabilizer circuit MC7812T and MC7805T, which can provide +5V and the +12V power source for the controller. OutsideOSC1 and OSC2, 8 kHz crystal oscillator is connected with the circuit.3.2.2 The KeyboardThe function of controlling and the enactment of parameters are realized by the pressing the keys. The two keys o f the system’s main controller complete directly the functions of heating and the inquiring of the water level, using the keyboard severance pattern and PTA2, PTA3 as the input entrance of the pressing. The keyboard of the remote controller is designed into matrix type. The pressing of the keys will initiate the keyboard severance, by scanning from line to line; the number of the key can be judged and then sent to the register for preservation and the delivering. The main procedure will deal with it in the keyboard procedure after receiving the number of the key. Since there will be vibration at the moment of turning on and off, the design uses software time delay to eliminate the vibration.3.2.3 The Display CircuitConsidering that the working environment is humid, the main controller takes LED Nixie tube to display. It takes the main way of SPI to expand two piece of 74LS164 as the output orifice of the static demonstration of the seven-segment display. When there is no pressing, the main controller will display the current temperature of water and the remote controller will display the current time; when setting or inquiring, the remote controller and main controller will flash to display the information set or inquired while when stopping pressing, the display will automatically back to normal.3.2.4 The Real-time Temperature of Water and the Circuit of Water-Level DetectingThe thermistor will transmit the temperature information into the voltage information and then will be input into CPU by the PTB0 A/D transformation module. After checking, the real-time temperature will be deduced. The circuit of water-level detecting consists of the parallel connection of three resistances with different resistance value. The electricity of the electrode is small (only several microamperes), thus the erosion is little which suits the wide range variety of the resistance of water(10K一100K O). When the water of level of certain resistance doesn’t arrive where the resistance is, the resistance will not work; when the water-level arrives, the three resistances are linked into parallel connection. The information of water-level can be judged by transforming voltages from different resistances through PTB1 (high, middle, low and burning).3.2.5 The Detecting of Electricity Leaking and Alarming CircuitSince the working environment of water-heater is humid, the controller should be able to detect the electricity leaking to ensure the safety of the user. Under normal circumstance, the electric current passing the magnetic circle is the same but with opposite directions. The magnetic detecting circle wouldn’t sense any signal of electric current and the integrated circuit of electricity leaking detecting will output low electric level. When the electric current leaks, the electric current passing the magnetic circle is lopsided. The detecting circuit will detect the signal of electricity leaking and magnify the electric level output through the integrated circuit M54123L and then will be output into CPU after inverting by audion. Receiving the signal of electricityleaking, the CPU will stop heating and preservation and the operation of keyboards, ends the operation and sends alarming signal. The electricity light will flicker to warn and the buzzer will buzz continuously.Generally speaking, CPU will send out a reliable pulse for leaking protection every 10ms to replace the ordinary detecting switch and control the connection of crystal tube. So the electric current passing the magnetic circle is larger than 10 MA, which will be detected by the detecting magnetic circle as stimulant signal for leaking, magnified by M54123L and inverted by audion and then output to CPU.CPU will judge whether the detection is eligible. If there is signal, the detection is eligible and can go on working; if there is no signal, the detection is not eligible and heating, preservation and keyboard operations will stop automatically. CPU will end whole operations and send out alarm. The light for power will flicker to warn and the buzzer will buzz continuously to ensure the safe use of the electric water-heater. When the leaking detection protection and detection are not eligible, we have to turn off the power, obviate the obstacles, switch on again and then the water-heater will work.3.2.6 The Protection Circuit When Heating and Relay Are Out of ControlUnder normal working conditions, the two repays can carry on double-pole separation of power to ensure that when heating stops, the heating system is completely isolated from the electricity outside. It is almost impossible for two relay to have a screw loose simultaneously, however, during the normal life of electric water-heater, it is possible that one relay will have a screw loose. If it is not dealt with in time, the other relay will possibly have the same problem later which may result real danger. So the key to solve this problem is that the system can detect as soon as one relay has problems and can relay on the other normal relay to carry on the protection measures of the system and detect the sticking and disconnection of the two relays.3.2.7 The Remote ControllerThe remote controller utilizes simple controlling circuit which doesn’t decrease the functions. Some hardware circuits will be realized by software and the interference resisting has been considered. Since the supply for buttery has to save energy, the remote controller uses the low-consumption model. When the system is not working, it stops. When it begins working, one has to use the keyboard signal to end the low-consumption model and turn into normal (press the key to evoke the system). The low voltage resetting can be achieved by MC34064. The keyboard is designed into matrix type with two lines and has connected by PTA0~PTA3 orifice. When set for keyboard, the pressing of keyboard will result to the stopping, making the system back to normal. The crystal oscillator is 6MHZ. The infrared signal output uses the software encoding method. The software of the main controller will decode. In order to reduce cost, LCD display is used. 4543 drive and decoding used for driving.4. The Software DesignThe whole programs consist of the main program, service intermitting program and numerous subprogram of functional model. Among them, the main program includes the transmitting subprogram (the level and temperature of water), subprogram of keyboard dealing and displaying, subprogram of heating controlling (the function of output comparison is used), subprogram of infrared signal receiving, the subprogram of leaking and burning protection, subprogram of calendric clock of the TBM module, subprogram of data-preserving, subprogram for delaying, etc. The intermitting includes time intermitting, keyboard inputting intermitting, TIM inputting intermitting, TBM module intermitting, etc. The programs of remote includessubprogram of pressing dealing, subprogram of infrared signal sending, subprogram of LCD displaying, subprogram of calendric clock of the TBM module.4.1 The Main ProgramThe main program has to initialize the working parameters of the system, mainly that of CPU timer, COP module, A/D transforming, the intermitting of keys, etc. Later, the main program alternatively uses the subprograms of each functional module. The dealing the relative incidents relies on the flag bit and the judgment of flag bit.4.2 The subprogram of keyboard dealing and displayingThis program is mainly designed to judge the electric level of the orifice I/O. when the keys are pressed, the keyboard is in a static state, while when stopping pressing, relative dealings will be carried on. When setting and inquiring, the keys will flicker to display the result of setting and inquiring, or the real-time temperature of water is displayed.4.3 The Subprogram of Heating ControllingThis program is used to judge whether there is appointment and heating and to deal with it according to the procedures. To avoid the frequent starting of the heating wire, the heating controlling adopts the hysteretic error controlling. When heating stops, the heating wire will start work only when the real-time temperature of water is lower than the target temperature for some distance. There are two kinds of heating to satisfy different powers: rapid heating and ordinary heating. In normal and appointment, ordinary heating is uses to control the power of electricity.4.4 The Subprogram of Remote Signal DealingSending: press the key with remote controller, set the flag bit, get the number of the key through dynamic scanning and send the coding by output comparison according to the flag bit and the number of the key; Receiving: get the signal by input catching, set the flag bit and read the number of the key and submit to main program to deal with.4.5 The Subprogram for DelayingThe whole system would use the subprogram for timing and delaying in many situations, like when the keyboard judges to eliminate vibration, the display of flicker and fading display, input catching and calendric clock, etc.4.6 The protection SubprogramIn normal situation, the leaking detection will output low electric level. Once the electricity leaks, the electricity output is high and will be cut off. The whole circuit of power will be cut off as soon as possible by the protection circuit to ensure the safety of the user. When the temperature is too high or too low, the heating will be turned off automatically and the buzzer will buzz to warn.5. The Extension of the DesignWith the development of information technology, intelligent domestic appliances will gradually step into families. Based on this design, making use of the resources of 68HC908GR8 and SCI and USB module to connect domestic appliances with computer and internet by telephone wire, they can be controlled from long-distance, thus making life easy and convenient..智能家用电热水器控制器1.应用前景热水器是一种可供浴室,洗手间及厨房使用的家用电器。
毕业论文之温度控制系统的设计外文翻译
Design of the Temperature Control System Based on AT89C51ABSTRACTThe principle and functions of the temperature control system based on micro controller AT89C51 are studied, and the temperature measurement unit consists of the 1-Wire bus digital temperature sensor DS18B20. The system can be expected to detect the preset temperature, display time and save monitoring data. An alarm will be given by system if the temperature exceeds the upper and lower limit value of the temperature which can be set discretionarily and then automatic control is achieved, thus the temperature is achieved monitoring intelligently within a certain range. Basing on principle of the system, it is easy to make a variety of other non-linear control systems so long as the software design is reasonably changed. The system has been proved to be accurate, reliable and satisfied through field practice. KEYWORDS: AT89C51; micro controller; DS18B20; temperature1 INTRODUCTIONTemperature is a very important parameter in human life. In the modern society, temperature control (TC) is not only used in industrial production, but also widely used in other fields. With the improvement of the life quality, we can find the TC appliance in hotels, factories and home as well. And the trend that TC will better serve the whole society, so it is of great significance to measure and control the temperature. Based on the AT89C51 and temperature sensor DS18B20, this system controls the condition temperature intelligently. The temperature can be set discretionarily within a certain range. The system can show the time on LCD, and save monitoring data; and automatically control the temperature when the condition temperature exceeds the upper and lower limit value. By doing so it is to keep the temperature unchanged. The system is of high anti-jamming, high control precision and flexible design; it also fits the rugged environment. It is mainly used in people's life to improve the quality of the work and life. It is also versatile, so that it can be convenient to extend the use of the system. So the design is of profound importance. The general design, hardware design and software design of the system are covered.1.1 IntroductionThe 8-bit AT89C51 CHMOS microcontrollers are designed to handle high-speed calculations and fast input/output operations. MCS 51 microcontrollers are typically used for high-speed event control systems. Commercial applications include modems, motor-control systems, printers, photocopiers, air conditioner control systems, disk drives, and medical instruments. The automotive industry use MCS 51 microcontrollers in engine-control systems, airbags, suspension systems, and antilock braking systems (ABS). The AT89C51 is especially well suited to applications that benefit from its processing speed and enhanced on-chip peripheral functions set, such as automotive power-train control, vehicle dynamic suspension, antilock braking, and stability control applications. Because of these critical applications, the market requires a reliable cost-effective controller with a low interrupt latency response, ability to service the high number of time and event driven integrated peripherals needed in real time applications, and a CPU with above average processing power in a single package. The financial and legal risk of having devices that operate unpredictably is very high. Once in the market, particularly in mission critical applications such as an autopilot or anti-lock braking system, mistakes are financially prohibitive. Redesign costs can run as high as a $500K, much more if the fix means 2 back annotating it across a product family that share the same core and/or peripheral design flaw. In addition, field replacements of components is extremely expensive, as the devices are typically sealed in modules with a total value several times that of the component. To mitigate these problems, it is essential that comprehensive testing of the controllers be carried out at both the component level and system level under worst case environmental and voltage conditions. This complete and thorough validation necessitates not only a well-defined process but also a proper environment and tools to facilitate and execute the mission successfully. Intel Chandler Platform Engineering group provides post silicon system validation (SV) of various micro-controllers and processors. The system validation process can be broken into three major parts. The type of the device and its application requirements determine which types of testing are performed on the device.1.2 The AT89C51 provides the following standard features4Kbytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16-bittimer/counters, a five vector two-level interrupt architecture, a full duple ser-ial port, on-chip oscillatorand clock circuitry. In addition, the AT89C51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt sys -tem to continue functioning. The Power-down Mode saves the RAM contents but freezes the oscil–lator disabling all other chip functions until the next hardware reset.1.3Pin DescriptionVCC Supply voltage.GND Ground.Port 0:Port 0 is an 8-bit open-drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high impedance inputs. Port 0 may also be configured to be the multiplexed low order address/data bus during accesses to external program and data memory. In this mode P0 has internal pull ups. Port 0 also receives the code bytes during Flash programming, and outputs the code bytes during program verification. External pull ups are required during program verification.Port 1:Port 1 is an 8-bit bi-directional I/O port with internal pull ups. The Port 1 output buffers can sink/so -urce four TTL inputs. When 1s are written to Port 1 pins they are pulled high by the internal pull ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pullups. Port 1 also receives the low-order address bytes during Flash programming and verification.Port 2:Port 2 is an 8-bit bi-directional I/O port with internal pull ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins they are pulled high by the internal pull ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pull ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pull ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX@DPTR). In this application, it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register. Port 2 also receives the high-orderaddress bits and some control signals durin Flash programming and verification.Port 3:Port 3 is an 8-bit bi-directional I/O port with internal pull ups. The Port 3 output buffers can sink/sou -rce four TTL inputs. When 1s are written to Port 3 pins they are pulled high by the internal pull ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL) because of the pull ups.Port 3 also serves the functions of various special features of the AT89C51 as listed below:RST:Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.ALE/PROG:Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming. In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped duri-ng each access to external Data Memory. If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.PSEN:Program Store Enable is the read strobe to external program memory. When theAT89C51 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.EA/VPP:External Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset. EA should be strapped to VCC for internal program executions. This pin alsreceives the 12-volt programming enable voltage (VPP) during Flash programming, for parts that require 12-volt VPP.XTAL1:Input to the inverting oscillator amplifier and input to the internal clock operating circuit.XTAL2 :Output from the inverting oscillator amplifier. Oscillator CharacteristicsXTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shownin Figure 1. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure 2.There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed. Idle Mode In idle mode, the CPU puts itself to sleep while all the on chip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset. It should be noted that when idle is terminated by a hard ware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.Power-down ModeIn the power-down mode, the oscillator is stopped, and the instruction that invokes power-down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the power-down mode is terminated. The only exit from power-down is a hardware reset. Reset redefines the SFRS but does not change the on-chip RAM. The reset should not be activated before VCC is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize. The AT89C51 code memory array is programmed byte-by byte in either programming mode. To program any nonblank byte in the on-chip Flash Memory, the entire memory must be erased using the Chip Erase Mode.2 Programming AlgorithmBefore programming the AT89C51, the address, data and control signals should be set up according to the Flash programming mode table and Figure 3 and Figure 4. To program the AT89C51, take the following steps.1. Input the desired memory location on the address lines.2. Input the appropriate data byte on the data lines. 3. Activate the correct combination of control signals. 4. Raise EA/VPP to 12V for the high-voltage programming mode. 5. Pulse ALE/PROG once to program a byte in the Flash array or the lock bits. The byte-write cycle is self-timed and typically takes nomore than 1.5 ms. Repeat steps 1 through 5, changing the address and data for the entire array or until the end of the object file is reached. Data Polling: The AT89C51 features Data Polling to indicate the end of a write cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the written datum on PO.7. Once the write cycle has been completed, true data are valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated.2.1Ready/Busy:The progress of byte programming can also be monitored by the RDY/BSY output signal. P3.4 is pulled low after ALE goes high during programming to indicate BUSY. P3.4 is pulled high again when programming is done to indicate READY.Program Verify:If lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. The lock bits cannot be verified directly. Verification of the lock bits is achieved by observing that their features are enabled.2.2 Chip Erase:The entire Flash array is erased electrically by using the proper combination of control signals and by holding ALE/PROG low for 10 ms. The code array is written with all “1”s. The chip erase operation must be executed before the code memory can be re-programmed.2.3 Reading the Signature Bytes:The signature bytes are read by the same procedure as a normal verification of locations 030H, 031H, and 032H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned areas follows.(030H) = 1EH indicates manufactured by Atmel(031H) = 51H indicates 89C51(032H) = FFH indicates 12V programming(032H) = 05H indicates 5V programming2.4 Programming InterfaceEvery code byte in the Flash array can be written and the entire array can be erased by using the appropriate combination of control signals. The write operationcycle is self timed and once initiated, will automatically time itself to completion. A microcomputer interface converts information between two forms. Outside the microcomputer the information handled by an electronic system exists as a physical signal, but within the program, it is represented numerically. The function of any interface can be broken down into a number of operations which modify the data in some way, so that the process of conversion between the external and internal forms is carried out in a number of steps. An analog-to-digital converter(ADC) is used to convert a continuously variable signal to a corresponding digital form which can take any one of a fixed number of possible binary values. If the output of the transducer does not vary continuously, no ADC is necessary. In this case the signal conditioning section must convert the incoming signal to a form which can be connected directly to the next part of the interface, the input/output section of the microcomputer itself. Output interfaces take a similar form, the obvious difference being that here the flow of information is in the opposite direction; it is passed from the program to the outside world. In this case the program may call an output subroutine which supervises the operation of the interface and performs the scaling numbers which may be needed for digital-to-analog converter(DAC). This subroutine passes information in turn to an output device which produces a corresponding electrical signal, which could be converted into analog form using a DAC. Finally the signal is conditioned(usually amplified) to a form suitable for operating an actuator. The signals used within microcomputer circuits are almost always too small to be connected directly to the outside world”and some kind of interface must be used to translate them to a more appropriate form. The design of section of interface circuits is one of the most important tasks facing the engineer wishing to apply microcomputers. We have seen that in microcomputers information is represented as discrete patterns of bits; this digital form is most useful when the microcomputer is to be connected to equipment which can only be switched on or off, where each bit might represent the state of a switch or actuator. To solve real-world problems, a microcontroller must have more than just a CPU, a program, and a data memory. In addition, it must contain hardware allowing the CPU to access information from the outside world. Once the CPU gathers information and processes the data, it must also be able to effect change on some portion of the outside world. These hardware devices, called peripherals, are the CPU’s window to the outside.The most basic form of peripheral available on microcontrollers is the generalpurpose I70 port. Each of the I/O pins can be used as either an input or an output. The function of each pin is determined by setting or clearing corresponding bits in a corresponding data direction register during the initialization stage of a program. Each output pin may be driven to either a logic one or a logic zero by using CPU instructions to pin may be viewed (or read.) by the CPU using program instructions. Some type of serial unit is included on microcontrollers to allow the CPU to communicate bit-serially with external devices. Using a bit serial format instead of bit-parallel format requires fewer I/O pins to perform the communication function, which makes it less expensive, but slower. Serial transmissions are performed either synchronously or asynchronously.3 SYSTEM GENERAL DESIGNThe hardware block diagram of the TC is shown in Fig. 1. The system hardware includes the micro controller, temperature detection circuit, keyboard control circuit, clock circuit, Display, alarm, drive circuit and external RAM. Based on the AT89C51, the DS18B20 will transfer the temperature signal detected to digital signal. And the signal is sent to the micro controller for processing. At last the temperature value is showed on the LCD 12232F. These steps are used to achieve the temperature detection. Using the keyboard interface chip HD7279 to set the temperature value, using the micro controller to keep a certain temperature, and using the LCD to show the preset value for controlling the temperature. In addition, the clock chip DS1302 is used to show time and the external RAM 6264 is used to save the monitoring data. An alarm will be given by buzzer in time if the temperature exceeds the upper and lower limit value of the temperature.3.1 HARDWARE DESIGNA. Micro controllerThe AT89C51 is a low-power, high-performance CMOS 8-bit micro controller with 4K bytes of in-system programmable Flash memory. The device is manufactured using At mel’s high-density nonvolatile memory technology and is compatible with the industry-standard 80C51 instruction set and pin out. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with in-system programmable Flash on a monolithic chip, the At mel AT89C51 is a powerful micro controller which provides a highly-flexible and cost-effective solution to manyembedded control applications. Minimum system of the micro controller is shown in Fig. 2. In order to save monitoring data, the 6264 is used as an external RAM. It is a static RAM chip, low-power with 8K bytes memory.B. Temperature Detection CircuitThe temperature sensor is the key part in the system. The Dallas DS18B20 is used, which supports the 1-Wire bus interface, and the ON-BOARD Patented is used internally. All the sensor parts and the converting circuit are integrated in integrated circuit like a transistor [1]. Its measure range is -55℃~125 ℃, and the precision between -10℃~85℃is ±0.5℃[2 ,3]. The temperature collected by the DS18B20 is transmitted in the 1-Wire bus way, and this highly raises the system anti-jamming and makes it fit in situ temperature measurement of the rugged environment [4]. There are two power supply ways for the DS18B20. The first is external power supply: the first pin of the DS18B20 is connected to the ground; the second pin serves as signal wire and the third is connected to the power. The second way is parasite power supply [5]. As the parasite power supply will lead to the complexity of the hardware circuit, the difficulty of the software control and the performance degradation of the chip, etc. But the DS18B20(s) can be connected to the I/O port of the micro controller in the external power supply way and it is more popular. Therefore the external power supply is used and the second pin is connected to the pin P1.3 of the AT89S51. Actually, if there are multipoint to be detected, the DS18B20(s) can be connected to the 1-Wire bus. But when the number is over 8, there is a concern to the driving and the more complex software design as well as the length of the 1-Wire bus. Normally it is no more than 50m. To achieve distant control, the system can be designed in to a wireless one to breakthe length limit of the 1-Wire bus [6].C. LCD CircuitThe LCD 12232F is used, which can be used to show characters, temperature value and time, and supply a friendly display interface. The 12232F is a LCD with 8192 128×32 pixels Chinese character database and 128 16×8 pixels ASCII character set graphics. It mainly consists of row drive/column drive and 128×32 full lattice LCD with the function of displaying graphics as well as 7.5×2 Chinese characters. It is in a parallel or serial mode to connect to external CPU [7]. In order to economize the hardware resource, the 12232F should be connected to the AT89S51 in serial mode with only 4 output ports used. The LCD grayscale can be changed by adjustingthe variable resistor connected the pin Vlcd of the LCD. CLK is used to transmit serial communication clock. SID is used to transmit serial data. CS is used to enable control the LCD. L+ is used to control the LCD backlight power.D. Clock CircuitThe Dallas DS18B20 is used, which is a high performance, low-power and real-time clock chip with RAM. The DS18B20 serves in the system with calendar clock and is used to monitor the time. The time data is read and processed by the AT89C51 and then displayed by the LCD. Also the time can be adjusted by the keyboard. The DS18B20 crystal oscillator is set at 32768Hz, and the recommended compensation capacitance is 6pF. The oscillator frequency is lower, so it might be possible not to connect the capacitor, and this would not make a big difference to the time precision. The backup power supply can be connected to a 3.6V rechargeable battery.E. Keyboard Control CircuitThe keyboard interface in the system is driven by the HD7279A which has a +5V single power supply and which is connected to the keyboard and display without using any active-device. According to the basic requirements and functions of the system, only 6 buttons are needed. The system's functions are set by the AT89C51 receiving the entered data. In order to save the external resistor, the 1×6 keyboard is used, and the keyboard codes are defined as: 07H, 0FH, 17H, 1FH, 27H, 2FH. The order can be read out by reading the code instruction. HD7279A is connected to the AT89S51 in serial mode and only 4 ports are need. As shown in Fig. 6, DIG0~DIG5 and DP are respectively the column lines and row line ports of the six keys which achieve keyboard monitoring, decoding and key codes identification.F. Alarm CircuitIn order to simplify the circuit and convenient debugging, a 5V automatic buzzer is used in the alarm circuit [8]. And this make the software programming simplified. As shown in Fig. 7, it is controlled by the PNP transistor 9012 whose base is connected to the pin P2.5 of the AT89C51. When the temperature exceeds the upper and lower limit value, the P2.5 output low level which makes the transistor be on and then an alarm is given by the buzzer.G. Drive CircuitA step motor is used as the drive device to control the temperature. The four-phase and eight-beat pulse distribution mode is used to drive motor and thesimple delay program is used to handle the time interval between the pulses to obtain different rotational speed. There are two output states for the step motor. One: when the temperature is over the upper value, the motor rotates reversely (to low the temperature), while when lower than the lower limit value, the motor rotates normally (to raise the temperature); besides not equals the preset value. Two: when the temperature is at somewhere between the two ends and equals the preset value, the motor stops. These steps are used to achieve the temperature control. In addition, the motor speed can also be adjusted by relative buttons. As shown in Fig. 8, the code data is input through ports A11~A8 (be P2.3~P2.0) of the AT89C51 and inverted output by the inverter 74LS04. Finally it is amplified by the power amplifier 2803A to power the motor.3.2 SOFTW ARE DESIGNAccording to the general design requirement and hardware circuit principle of the system, as well as the improvement of the program readability, transferability and the convenient debugging, the software design is modularized. The system flow mainly includes the following 8 steps: POST (Power-on self-test), system initiation, temperature detection, alarm handling, temperature control, clock chip DS18B20 operation, LCD and keyboard operation. The main program flow is shown in Fig. 9. Give a little analysis to the above 8 tasks, it is easy to find out that the last five tasks require the real time operation. But to the temperature detection it can be achieved with timer0 timing 1 second, that is to say temperature detection occurs per second. The system initiation includes global variable definition, RAM initiation, special function register initiation and peripheral equipment initiation. Global variable definition mainly finishes the interface definition of external interface chip connected to the AT89C51, and special definition of some memory units. RAM initiation mainly refers to RAM processing. For example when the system is electrified the time code will be stored in the internal unit address or the scintillation flag will be cleared. The special function register initiation includes loading the initial value of timer and opening the interrupt. For example, when the system is electrified the timer is initialized. The peripheral equipment initiation refers to set the initial value of peripheral equipment. For example, when the system is electrified, the LCD should be initialized, the start-up display should be called, the temperature conversion command should be issued firstly and the clock chip DS18B20 should also be initialized. The alarm handling is mainly the lowering and the raising of temperature to make thetemperature remain with the preset range. When the temperature is between the upper and the lower limit value, it goes to temperature control handling, that is to say the temperature need to be raised or lowered according to the preset value. By doing so make the condition temperature equal to the preset value and hence to reach the temperature target.4 CONCLUSIONThe temperature control system has the advantages of friendly human-computer interaction interface, simple hardware, low cost, high temperature control precision (error in the range of ±1 ℃), convenience and versatility, etc. It can be widely used in the occasions with -55℃to 125℃range, and there is a certain practical value.。
ZigBee中英文翻译 本科毕业设计
ZigBee: Wireless Technology for Low-Power Sensor Networks Technologists have never had trouble coming up with potential applications for wireless sensors. In a home security system, for example, wireless sensors would be much easier to install than sensors that need wiring. The same is true in industrial environments, where wiring typically accounts for 80% of the cost of sensor installations. And then there are applications for sensors where wiring isn't practical or even possible.The problem, though, is that most wireless sensors use too much power, which means that their batteries either have to be very large or get changed far too often. Add to that some skepticism about the reliability of sensor data that's sent through the air, and wireless sensors simply haven't looked very appealing.A low-power wireless technology called ZigBee is rewriting the wireless sensor equation, however. A secure network technology that rides on top of the recently ratified IEEE 802.15.4 radio standard (Figure 1), ZigBee promises to put wireless sensors in everything from factory automation systems to home security systems to consumer electronics. In conjunction with 802.15.4, ZigBee offers battery life of up to several years for common small batteries. ZigBee devices are also expected to be cheap, eventually selling for less than $3 per node by some estimates. With prices that low, they should be a natural fit even in household products like wireless light switches, wireless thermostats, and smoke detectors.Figure 1: ZigBee adds network, security, andapplication-services layers to the PHY and MAC layers of theIEEE 811.15.4 radioAlthough no formal specification for ZigBee yet exists (approval by the ZigBee Alliance, a trade group, should come late this year), the outlook for ZigBee appears bright. Technology research firm In-Stat/MDR, in what it calls a "cautious aggressive" forecast, predicts that sales of 802.15.4 nodes and chipsets will increase from essentially zero today to 165 million units by 2010. Not all of these units will be coupled with ZigBee, but most probably will be. Research firm ON World predicts shipments of 465 million wireless sensor RF modules by 2010, with 77% of them being ZigBee-related.In a sense, ZigBee's bright future is largely due to its low data rates—20 kbps to 250 kbps, depending on the frequency band used (Figure 2)—compared to a nominal 1 Mbps for Bluetooth and 54 Mbps for Wi-Fi's 802.11g technology. But ZigBee won'tbe sending email and large documents, as Wi-Fi does, or documents and audio, as Bluetooth does. For sending sensor readings, which are typically a few tens of bytes, high bandwidth isn't necessary, and ZigBee's low bandwidth helps it fulfill its goals of low power, low cost, and robustness.Figure 2: ZigBee's data rates range from 20 kbps to 250kbps, depending on the frequency usedBecause of ZigBee applications' low bandwidth requirements, a ZigBee node can sleep most of the time, thus saving battery power, and then wake up, send data quickly, and go back to sleep. And, because ZigBee can transition from sleep mode to active mode in 15 msec or less, even a sleeping node can achieve suitably low latency. Someone flipping a ZigBee-enabled wireless light switch, for example, would not be aware of a wake-up delay before the light turns on. In contrast, wake-up delays for Bluetooth are typically around three seconds.A big part of ZigBee's power savings come from the radio technology of 802.15.4, which itself was designed for low power. 802.15.4 uses DSSS (direct-sequence spread spectrum) technology, for example, because the alternative FHSS (frequency-hopping spread spectrum) would have used too much power just in keeping its frequency hops synchronized.ZigBee nodes, using 802.15.4, can communicate in any of several different ways, however, and some ways use more power than others. Consequently, ZigBee users can't necessarily implement a sensor network any way they choose and still expect the multiple-year battery life that is ZigBee's hallmark. In fact, some technologists who are planning very large networks of very small wireless sensors say that even ZigBee is too power hungry for their uses.A ZigBee network node can consume extra power, for example, if it tries to keep its transmissions from overlapping with other nodes' transmissions or with transmissions from other radio sources. The 802.15.4 radio used by ZigBee implements CSMA/CA (carrier sense multiple access collision avoidance) technology, and a ZigBee node that uses CSMA/CA is essentially taking a listen-before-talk approach to see if any radio traffic is already underway. But, as noted by Venkat Bahl, marketing vice president for sensor company Ember Corp. and vice chairman of the ZigBee Alliance, that's not a preferred approach. "Having to listen burns power," says Bahl, "and we don't like to do that."Another ZigBee and 802.15.4 communications option is the beacon mode, in which normally sleeping network slave nodes wake up periodically to receive a synchronizing "beacon" from the network's control node. But listening for a beaconwastes power, too, particularly because timing uncertainties force nodes to turn on early to avoid missing a beacon.In-Your-Face CommunicationTo save as much power as possible, ZigBee employs a talk-when-ready communication strategy, simply sending data when it has data ready to send and then waiting for an automatic acknowledgement. According to Bob Heile, who is chairman of both the ZigBee Alliance and IEEE 802.15, talk-when-ready is an "in-your-face" scheme, but one that's very power efficient. "We did an extensive analysis that led to the best power-saving strategy in various kinds of environments from quiet to noisy," Heile says. "We discovered that, hands down, we were better off just sending the packet and acknowledging it. If you don't get an ack, it just means you got clobbered, so send it again. You wind up having much better power management than if you listen and determine if it's quiet before you talk."Fortunately, this in-your-face strategy leads to very little RF interference. That's largely because ZigBee nodes have very low duty cycles, transmitting only occasionally and sending only small amounts of data. Other ZigBee nodes, as well as Wi-Fi and Bluetooth modules, can easily deal with such small, infrequent bursts. ZigBee's talk-when-ready scheme doesn't suit all purposes, however. For example, in a network of thousands of tiny sensors dropped into a war zone to monitor enemy troop movements, the power savings provided still might not be enough. With each network node sending data periodically—and with transmissions repeated numerous times through other nearby nodes of a mesh network configuration in order to reach a network controller—large numbers of packet collisions and retransmissions could waste power and significantly shorten sensor node battery life. If the sensor batteries are very small and power-limited, that's especially problematic.Although contention for airwave access isn't generally a problem for ZigBee, it can be. Sensor-network company Dust Networks, in fact, says contention issues are keeping the company from turning to ZigBee—for now, at least—even though Dust remains a member of the ZigBee Alliance. "Each ZigBee device needs to contend for airspace with its neighbors," says Dust director of product management Robert Shear, "so there's inevitably some contention and some inefficiency." To avoid ZigBee's access contention, Dust uses contention-free TDMA (time division multiple access) technology. ZigBee, through the 802.15.4 MAC layer, provides guaranteed time slots in a scheme that somewhat resembles TDMA, but only as part of an optional "superframe" that's more complex and less power-efficient than TDMA.ZigBee has still more power-saving tricks up its sleeve, however. For example, it reduces power consumption in ZigBee components by providing for power-saving reduced-function devices (RFDs) in addition to more capable full-function devices (FFDs). Each ZigBee network needs at least one FFD as a controller, but most network nodes can be RFDs (Figure 3). RFDs can talk only with FFDs, not to other RFDs, but they contain less circuitry than FFDs, and little or no power-consuming memory.Figure 3: ZigBee networks can contain as many as 65,536nodes in a variety of configurationsZigBee conserves still more power by reducing the need for associated processing. Simple 8-bit processors like an 8051 can handle ZigBee chores easily, and ZigBee protocol stacks occupy very little memory. An FFD stack, for example, needs about 32 kbytes, and an RFD stack needs only about 4 kbytes. Those numbers compare with about 250 kbytes for the far more complex Bluetooth technology.From ZigBee's relatively simple implementations, cost savings naturally accrue. RFDs, of course, reduce ZigBee component costs by omitting memory and other circuitry, and simple 8-bit processors and small protocol stacks help keep system costs down. Often, an application's main processor can easily bear the small additional load of ZigBee processing, making a separate processor for ZigBee functions unnecessary. But the main strategy for keeping ZigBee prices low is to have big markets and high volumes. The ZigBee Alliance, by making ZigBee an open standard and by vigorously promoting interoperability among ZigBee devices, expects that ZigBee will be very big in applications such as home and building automation. The alliance is currently working on interoperability procedures for those particular applications, which it expects to complete later this year along with ZigBee Specification 1.0.One reason for optimism about ZigBee adoption for home automation and security is its ease of use. ZigBee networks are self-forming, making it easy even for consumers to set them up. "In the residential space, there's no configuration involved," says the ZigBee Alliance's Heile. "You take something out of the box, put the batteries in, and maybe do something as simple as button-press security—bring two devices close together, push the buttons until the green lights come on, and you're done."ZigBee networks can also self-form in commercial and industrial settings, but professional installers will have tools that provide additional control, particularly for security. ZigBee security is flexible, says Heile, to give both consumer and professional users what they need. "You don't have to have 128-bit public-key encryption for a smoke detector," he says, "but if I'm in a high-rise office complex, that's exactly the level of security I'm going to have for my fluorescent light fixtures. If you're in a high-rise building on Fifth Avenue, you don't want someone going downthe street and turning your lights off."Proprietary CompetitionCompetition for ZigBee comes almost entirely from proprietary technologies. Sensor company Dust, as noted, is sticking with its own technology, and Ember, although pushing strongly into the ZigBee arena, plans to keep offering its proprietary EmberNet as well. In addition, Zensys is providing its Z-Wave technology to customers. Sylvania, for example, is already using Z-Wave for lighting control, while ZigBee systems remain at least several months away.By offering interoperability, however, ZigBee adds capabilities that proprietary products can't. For example, says Ember's Bahl, interoperability allows the ZigBee nodes of a lighting system to work with the ZigBee network of an HV AC system, or vice versa. "Philips Lighting is really excited about this," Bahl, says, "because it turns them from a ballast manufacturer into the infrastructure backbone of a building-automation system."Needless to say, many of the major semiconductor companies, and especially those that are big in embedded systems, are eagerly anticipating ZigBee's entry into mass markets. Freescale Semiconductor (until recently known as Motorola's Semiconductor Products Sector) is already providing ZigBee-ready technology to select customers. Other semiconductor companies, including AMI, Atmel, Microchip, Philips, and Renesas, are members of the ZigBee Alliance.ZigBee will likely be slow to penetrate the industrial market for wireless sensors, however. According to market research firm ON World, it will take five to seven years to convince industrial customers of the reliability, robustness, and security of wireless-sensor systems. ON World does predict significant long-term growth of ZigBee in industry, though. By 2010, the company projects, RF modules used in industrial monitoring and control will reach 165 million units, up from 1.9 million in 2004. About 75% of those, ON World predicts, will be based on ZigBee and 802.15.4. Eventually, ZigBee could go into a wide variety of applications. In household appliances, it could help monitor and control energy consumption. In automotive applications, it could provide tire-pressure monitoring and remote keyless entry. ZigBee could also be used in medical devices or even in computer peripherals, such as wireless keyboards or mice.Concern is increasing, though, that ZigBee could turn into a one-size-fits-all technology that doesn't fit any application particularly well. Some skeptics, for example, worry that an attempt to make ZigBee all-encompassing could make the ZigBee protocol stack too large for ZigBee's twin goals of very low power consumption and very low cost. If that happens, then ZigBee's low-power, low-data-rate niche—narrow as it is—will have proven to be too broad. And then, perhaps, we'll need yet another wireless standard to go with the burgeoning number we already have.ZigBee:无线技术,低功耗传感器网络技师(工程师)们在发掘无线传感器的潜在应用方面从未感到任何困难。
智能建筑管理系统中英文对照外文翻译文献
智能建筑管理系统中英文对照外文翻译文献(文档含英文原文和中文翻译)翻译:智能建筑和建筑管理系统摘要:伴随着社会的急速发展,民用高层建筑也日益趋于智能化。
本文主要介绍智能建筑的设计和智能家居的应用,照明系统的节能和控制方法,以及北方建筑的暖气设计应用。
关键词:智能建筑、智能家居、照明控制、照明系统、暖气1前言智能领域的建筑,智能家居,建筑管理系统(房屋管理中心)包含了一个巨大的各种技术,各地商业,工业,体制和住宅楼宇,包括能源管理系统和建设控制的功能,建设管理系统的核心是'智能建筑'的概念,其目的是为了控制、监测和优化建设服务,例如,照明;加热;安全,闭路电视及警报系统;存取控制;视听和娱乐系统;通风,过滤和气候控制等;甚至产品的考勤控制和报告(尤其是工作人员的运动和供货)潜在的这些概念和周边技术是巨大的,和我们的生活正在发生变化的影响,从智能建筑的设计与发展对我们的生活和工作环境的影响,对设施的规划和设施管理,也是潜在的巨大的。
任何设施管理人员考虑楼宇发展或网站的搬迁也应考虑所带来的机会智能建筑技术及概念。
这项免费的概要文章是由一家总部设在英国的首席专家加里米尔斯提供,他在智能建筑,智能家居,以及大厦管理系统都有非常熟练以及高超的水平。
智能建筑物和建筑管理系统在20世纪70年代已经在工业界开始应用,从制度和管制使用的自动化生产过程和管理植物的生长。
发达国家智能建筑在80年代概念和应用软件的发展和标准化,使智能楼宇的技术和系统,可以在以住宅和商业部门之间转让。
2智能建筑控制理论智能建筑的本质,建设管理系统和智能建筑是在控制技术,使服务一体化,自动化和优化的所有服务和设备提供服务和管理环境的建设。
可编程逻辑控制器(PLC),形成了原来的基础上的控制技术。
后来的事态发展,在商业和住宅的申请,是基于分布式智能的微处理器。
稍后这些技术的采用和发展,让各种网站的建设和服务得以优化,往往高产显着并且降低成本和节省大量能源。
毕业设计方案plc英文文献翻译
PLC technique discussion and future developmentAlong with the development of the ages, the technique that is nowadays is also gra the operation that list depends 。
dually perfect, the competition plays more more strongthe artificial has already can't satisfied with the current manufacturing industry foreground, also can't guarantee the request of the higher quantity and high new the image of the technique business enterprise.The people see in produce practice, automate brought the tremendous convenience and the product quantities for people up of assurance, also eased the personnel's laborstrength, reduce the establishment on the personnel. The target control of the hard realization in many complicated production lines, whole and excellent turn, the best decisionetc., well-trained operation work, technical personnel or expert, governor but can judgeand operate easily, can acquire the satisfied result. The research target of the artificial intelligence makes use of the calculator exactly to carry out, imitate these intelligences behavior, moderating the work through person's brain and calculators, with the mode that person's machine combine, for resolve the very complicated problem to look for the best pathWe come in sight of the control that links after the electric appliances in various situation, that is already the that time generation past, now of after use in the mold a perhaps simple equipments of grass-roots control that the electric appliances can do for the loAnd the PLC emergence also became the epoch-making topic, adding the vw level only。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外文资料与中文翻译外文资料:Intelligent thermal energy meter controllerAbstractA microcontroller based, thermal energy meter cum controller (TEMC) suitable for solar thermal systems has been developed. It monitors solar radiation, ambient temperature,fluid flow rate, and temperature of fluid at various locations of the system and computes the energy transfer rate. It also controls the operation of the fluid-circulating pumpdepending on the temperature difference across the solar collector field. The accuracyof energy measurement is ±1.5%. The instrument has been tested in a solar water heatingsystem. Its operation became automatic with savings in electrical energy consumption ofpump by 30% on cloudy days.1 IntroductionSolar water heating systems find wide applications in industry to conserve fossil fuel like oil, coal etc. They employ motor driven pumps for circulating water with on-offcontrollers and calls for automatic operation. Reliability and performance of the system depend on the instrumentation and controls employed. Multi-channel temperature recorders, flow meters, thermal energy meters are the essential instruments for monitoring andevaluating the performance of these systems. A differential temperature controller (DTC) is required in a solar water heating system for an automatic and efficient operation ofthe system. To meet all these requirements, a microcontroller based instrument wasdeveloped. Shoji Kusui and Tetsuo Nagai [1] developed an electronic heat meter formeasuring thermal energy using thermistors as temperature sensors and turbine flow meter as flow sensor.2 Instrument detailsThe block diagram of the microcontroller (Intel 80C31) based thermal energy meter cum controller is shown in Fig. 1. RTD (PT100, 4-wire) sensors are used for the temperaturemeasurement of water at the collector field inlet, outlet and in the tank with appropriate signal conditioners designed with low-drift operational amplifiers. A precision semiconductor temperature sensor (LM335) is used for ambient temperature measurement. A pyranometer, having an output voltage of 8.33 mV/kW/m2, is used for measuring the incident solar radiation. To monitor the circulating fluid pressure, a sensor with 4–20 mA output is used. This output is converted into voltage using an I-V converter. All these outputsignals are fed to an 8-channel analog multiplexer (CD4051). Its output is fed to adual-slope 12-bit A/D converter (ICL7109). It is controlled by the microcontroller through the Programmable Peripheral Interface (PPI-82C55).Fig. 1. Block diagram of thermal energy meter cum controller.A flow sensor (turbine type) is used with a signal conditioner to measure the flowrate. Its output is fed to the counter input of the microcontroller. It is programmed tomonitor all the multiplexed signals every minute, compute the temperature difference,energy transfer rate and integrated energy. A real-time clock with MM58167 is interfacedto the microcontroller to time-stamp the logged data. An analog output (0–2 V) is provided using D/A converter (DAC-08) to plot both the measured and computed parameters. A 4×4 matrix keyboard is interfaced to the microcontroller to enter the parameters like specificheat of liquid, data log rate etc. An alphanumeric LCD display (24-character) is alsointerfaced with the microcontroller to display the measured variables. The serialcommunication port of the microcontroller is fed to the serial line driver and receiver(MAX232). It enables the instrument to interface with the computer for down-loading thelogged data. A battery-backed static memory of 56K bytes is provided to store the measured parameters. Besides data logging, the instrument serves as a DTC. This has been achievedby interfacing a relay to the PPI. The system software is developed to accept thedifferential temperature set points (ΔT on and ΔT off) from the keyboard. An algorithmsuitable for on-off control having two set-points is implemented to control the relays.3 Instrument calibrationThe amount of energy transferred (Q) is :Where = mass flows rate of liquid kg/s ; V = volumetric flow rate (l/h) ; ρ= density of water (kg/l) ; Cp = specific heat (kJ/kg°C); and ΔT = temperature difference between hot and cold (°C).The accuracy in energy measurement depends on the measurement accuracy of individual parameters. Temperature measurement accuracy depends on the initial error in the sensorand the error introduced due to temperature drifts in the signal conditioners and the A/D converter. The temperature sensor is immersed in a constant temperature bath (HAAKE B ath-K, German), whose temperature can be var ied in steps of 0.1°C. A mercury glass thermometer (ARNO A MARELL, Germany) with a resolution of 0.05°C is also placed along with PT100 sensor in the bath. This is compared with the instrument readings. The accuracy of the instrument in temperature measurem ent is ±0.1°C. Hence, the accuracy in differential temperature measurement is ±0.2°C.The flow sensor having a maximum flow rate of 1250 l/h is used for flow measurement.It is calibrated by fixing it in the upstream of a pipeline of length 8 m. The sensor output is connected to a digital frequency counter to monitor the number of pulses generated withdifferent flow rates. Water collected at the sensor outlet over a period is used forestimating the flow rate. The K-factor of the sensor is 3975 pulses/l. The uncertaintyin flow measurement is ±0.25% at 675 l/h. Uncertainties in density and specific heat ofwater are ±0.006 kg/l and ±0.011 kJ/kg°C respectively.Maximum amount of energy collection (Q) = 675×0.98×4.184×15/3600 = 11.53kW. Uncertainty in energy measurementωq/Q = [(ωv/V)2 + (ωρ/ρ)2 + (ωcp/Cp)2+(ωt/T )2]1/2.Inaccuracy in electronic circuitry is ±0.03 kW.The net inaccuracy in energy measurement is ±1.5%4 Field testThe instrument is incorporated in a solar water heating system as shown in Fig. 2.It consists of five solar flat plate collectors having an absorber area of 1.6 m2 each. The absorber is a fin and tube extruded from aluminium and painted with matt black paint. The collectors are mounted on a rigid frame facing south at an angle equal to the latitude of Bangalore (13°N). They are arranged in parallel configuration and connected to athermally insulated 500 l capacity storage tank. A 0.25 hp pump is used for circulatingthe water through the collector field. All the pipelines are thermally insulated. Thetemperature sensors and the flow sensor are incorporated in the system as shown in Fig.2. The data on solar radiation, ambient temperature, water flow rate, solar collector inlet and outlet temperatures and the system heat output are monitored at regular intervals.Fig. 2. Solar water heating system with thermal energy meter cum controller.The performance of the solar water heating system with TEMC on a partial cloudy dayis shown in Fig. 3. It is observed that DTC switched OFF the pump around 14:40 h as thereis no further energy gain by the collector field. This in turn reduced the heat lossesfrom the collector to ambient. Experiments are conducted with and without DTC o n both sunny and cloudy days. The DTC operated system shows the savings in electrical energy by 30%on a partial cloudy day and 8% on a sunny day. The variation in system output with andwithout DTC i s around 3%. Thus the controller has not only served as an energy conservation device, but also switches ON/OFF the system automatically depending on the availabilityof solar radiation. The collector field output (shown in Fig. 3) is calculated by measuring the fluid flow rate using volumetric method and the temperature difference with anotherpair of standard thermometers. It is 16.86 kWh. It is compared with the instrument reading 17.18 kWh. Thus, the deviation is 1.9%. Fig. 3 shows that the solar collector fieldefficiency is 54% when the incident solar irradiation is 31.75 kWh.Fig. 3. Performance of SWH system with TEMC on a partial cloudy day.5 Concluding remarksTEMC is used as on-line instrument in solar water heating systems for the measurement of thermal energy, temperature, flow rate with simultaneous control on the operation ofthe pump t o save electrical energy and enhance the thermal energy collection. Since several options are provided in the instrument, it can be used for monitoring the energy transfer rate in other thermal systems.AcknowledgementsThe authors are thankful to Department of Science and Technology, Govt. of India forproviding the financial assistance to carry out the above work.References1. Shoji Kusui, Tetsuo Nagai. An electronic integrating heat meter. IEEE Trans. onInstrumentation and Measurement, 1990;39(5):785-789.中文翻译:智能热能表控制器摘要适用于太阳能热系统的单片机热能表控制器(TEMC)已经研制成功。