2016年江苏省高考理科数学试题及答案
2016江苏数学高考答案
2016江苏数学高考答案【篇一:2016年江苏理科数学高考试题(含解析)】xt>数学Ⅰ试题参考公式圆柱的体积公式:v圆柱=sh,其中s是圆柱的底面积,h为高。
圆锥的体积公式:v圆锥1sh,其中s是圆锥的底面积,h为高。
3一、填空题:本大题共14个小题,每小题5分,共70分.请把答案写在答题卡相应位置上。
1.已知集合a?{?1,2,3,6},b?{x|?2?x?3},则a?b=________▲________. 2.复数z?(1?2i)(3?i),其中i为虚数单位,则z的实部是________▲________.x2y23.在平面直角坐标系xoy中,双曲线??1的焦距是________▲________.734.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________▲________. 5.函数y.6.如图是一个算法的流程图,则输出的a的值是▲.7.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是▲ .8.已知{an}是等差数列,sn是其前n项和.若a1+a2=-3,s5=10,则a9的值是▲ .2x2y2b10.如图,在平面直角坐标系xoy中,f是椭圆2?2?1(a>b>0)的右焦点,直线y?与椭圆交于b,2abc两点,且?bfc?90? ,则该椭圆的离心率是▲ .1(第10题)?x?a,?1?x?0,?11.设f(x)是定义在r上且周期为2的函数,在区间[ ?1,1)上,f(x)??2其中a?r.若?x,0?x?1,?5?59f(?)?f(),则f(5a)的值是.22?x?2y?4?0?2212. 已知实数x,y满足?2x?y?2?0,则x+y的取值范围是▲ .?3x?y?3?0??????????????????????bc?ca?4,bf?cf??1,ece?13.如图,在△abc中,d是bc的中点,e,f是ad上的两个三等分点,则b 的值是▲.14.在锐角三角形abc中,若sina=2sinbsinc,则tanatanbtanc 的最小值是▲ .二、解答题(本大题共6小题,共90分.请在答题卡制定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)在△abc中,ac=6,cosb=(1)求ab的长;(2)求cos(a-2,c=. 54)的值.616.(本小题满分14分)如图,在直三棱柱abc-a1b1c1中,d,e分别为ab,bc的中点,点f在侧棱b1b上,且b1d?aac1f,11?a1b1.求证:(1)直线de∥平面a1c1f;(2)平面b1de⊥平面a1c1f.17.(本小题满分14分)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥p?a1bc11d1,下部分的形状是正四棱柱abcd?a1bc11d1(如图所示),并要求正四棱柱的高po1的四倍. 若ab?6m,po1?2m,则仓库的容积是多少?(1) 若正四棱柱的侧棱长为6m,则当po1为多少时,仓库的容积最大?318. (本小题满分16分)如图,在平面直角坐标系xoy中,已知以m为圆心的圆m:x2?y2?12x?14y?60?0及其上一点a(2,4)(1) 设圆n与x轴相切,与圆m外切,且圆心n在直线x=6上,求圆n的标准方程; (2) 设平行于oa的直线l与圆m相交于b、c两点,且bc=oa,求直线l的方程; (3) 设点t(t,o)满足:存在圆m 上的两点p和q,使得??????????ta?tp?tq,,求实数t的取值范围。
2016年高考江苏卷数学试题(含答案)
绝密★启用前2016年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,需用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
参考公式:棱柱的体积V sh=,其中S是棱柱的底面积,h是高.棱锥的体积V=13Sh,其中S是累赘的底面积,h是高。
一、填空题:本大题共14小题,每小题5分,共计70分。
请把答案填写在答题卡相应位置.......上.。
1.已知集合A=|-1,2,3,6|,B={x|-2<x<3},则A⋂B= ▲。
2.复数z=(1+2i)(3-i),其中i为虚数单位,则z的实部是▲。
3.在平面直角坐标系xOy中,双曲线27x-27y=1,其中i为虚数单位,则z的实部是▲。
4.已知一组数据4.7,4.8,5.1,5.4,5.5,则改组数据的方差是▲。
5.函数y=的定义域是▲。
6.右图是一个算法的流程图,则输出的a的值是▲。
7.讲一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 ▲8.已知{a m }是等差数列,S m 是其前n 项的和,a 1+a 22=-3,S 5=10,则a 9的值是 ▲9.定于在区间[0,3π]上的函数y=sin2x 的图像与y=cosx 的图像的交点个数是 ▲10.如图,在平面直角坐标系xOy 中,F 是椭圆2222=1(0)x y a b a b+>>的右焦点,直线2b y =与椭圆相较于B,C 两点,∠BFC=90°,则该椭圆的离心率是 ▲11.设22x y + ()f x 是定义在R 上且周期为2的函数,在区间[1,1)-上,,10()5,012x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中a R ∈,若59()()22f f -=,则(5)f a的值是 ▲12.已知实数x,y 满足240,220,330,x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩则22x y +的取值范围是的取值范围 ▲13. 如图,在△ABC 中,D 是BC 的中点,E ,F ,是AD 上的两个三等分点,·4BACA = ,·1BF CF =- ,则·BE CE 的值是 ▲14.在锐角三角形ABC 中,若SINA=2sinBsinC ,则tanAtanBtanC 的最小值是 ▲二、解答题:本大题共6小题,共计90分。
2016江苏省高考数学真题(含答案)
2016年江苏数学高考试题数学Ⅰ试题参考公式圆柱的体积公式:V 圆柱=Sh ,其中S 是圆柱的底面积,h 为高. 圆锥的体积公式:V 圆锥13Sh ,其中S 是圆锥的底面积,h 为高. 一、填空题:本大题共14个小题,每小题5分,共70分.请把答案写在答题卡相应位置上。
1.已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ________▲________. 2.复数(12i)(3i),z =+-其中i 为虚数单位,则z 的实部是________▲________.3.在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是________▲________.4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________▲________.5.函数y 的定义域是 ▲ .6.如图是一个算法的流程图,则输出的a 的值是 ▲ .7.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 ▲ .8.已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 ▲ . 9.定义在区间[0,3π]上的函数y =sin2x 的图象与y =cos x 的图象的交点个数是 ▲ .10.如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0的右焦点,直线2b y =与椭圆交于B ,C 两点,且90BFC ∠= ,则该椭圆的离心率是 ▲ .(第10题)11.设f (x )是定义在R 上且周期为2的函数,在区间[ −1,1)上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中.a ∈R 若59()()22f f -=,则f (5a )的值是 ▲ .12. 已知实数x ,y 满足240220330x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则x 2+y 2的取值范围是 ▲ .13.如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4BC CA ⋅=,1BF CF ⋅=- ,则BE CE ⋅的值是 ▲ .14.在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是 ▲ . 二、解答题(本大题共6小题,共90分.请在答题卡制定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分) 在ABC △中,AC =6,4πcos .54B C ==, (1)求AB 的长;(2)求πcos(6A -)的值.16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F在侧棱B 1B 上,且11B D A F ⊥,1111AC A B ⊥. 求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .17.(本小题满分14分)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A BC D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1OO 是正四棱锥的高1PO 的四倍.(1) 若16m,2m,AB PO ==则仓库的容积是多少?(2) 若正四棱锥的侧棱长为6 m,则当1PO 为多少时,仓库的容积最大?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+=及其上一点A (2,4)(1) 设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2) 设平行于OA 的直线l 与圆M 相交于B 、C 两点,且BC =OA ,求直线l 的方程; (3) 设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=,求实数t 的取值范围。
2016年江苏省高考数学试卷及答案解析
2016年江苏省高考数学试卷一、填空题(共14小题,每小题5分,满分70分)1.(5分)已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B=.2.(5分)复数z=(1+2i)(3﹣i),其中i为虚数单位,则z的实部是.3.(5分)在平面直角坐标系xOy中,双曲线﹣=1的焦距是.4.(5分)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是.5.(5分)函数y=的定义域是.6.(5分)如图是一个算法的流程图,则输出的a的值是.7.(5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.8.(5分)已知{a n}是等差数列,S n是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是.9.(5分)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.10.(5分)如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.11.(5分)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f (x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是.12.(5分)已知实数x,y满足,则x2+y2的取值范围是.13.(5分)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.14.(5分)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.二、解答题(共6小题,满分90分)15.(14分)在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.17.(14分)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?18.(16分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.19.(16分)已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.20.(16分)记U={1,2,…,100},对数列{a n}(n∈N*)和U的子集T,若T=∅,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C≥2S D.∩D附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A.【选修4—1几何证明选讲】21.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD.B.【选修4—2:矩阵与变换】22.(10分)已知矩阵A=,矩阵B的逆矩阵B﹣1=,求矩阵AB.C.【选修4—4:坐标系与参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长.24.设a>0,|x﹣1|<,|y﹣2|<,求证:|2x+y﹣4|<a.附加题【必做题】25.(10分)如图,在平面直角坐标系xOy中,已知直线l:x﹣y﹣2=0,抛物线C:y2=2px(p>0).(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2﹣p,﹣p);②求p的取值范围.26.(10分)(1)求7C﹣4C的值;(2)设m,n∈N*,n≥m,求证:(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.2016年江苏省高考数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B={﹣1,2} .【解答】解:∵集合A={﹣1,2,3,6},B={x|﹣2<x<3},∴A∩B={﹣1,2},故答案为:{﹣1,2}2.(5分)复数z=(1+2i)(3﹣i),其中i为虚数单位,则z的实部是5.【解答】解:z=(1+2i)(3﹣i)=5+5i,则z的实部是5,故答案为:5.3.(5分)在平面直角坐标系xOy中,双曲线﹣=1的焦距是2.【解答】解:双曲线﹣=1中,a=,b=,∴c==,∴双曲线﹣=1的焦距是2.故答案为:2.4.(5分)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是0.1.【解答】解:∵数据4.7,4.8,5.1,5.4,5.5的平均数为:=(4.7+4.8+5.1+5.4+5.5)=5.1,∴该组数据的方差:S2=[(4.7﹣5.1)2+(4.8﹣5.1)2+(5.1﹣5.1)2+(5.4﹣5.1)2+(5.5﹣5.1)2]=0.1.故答案为:0.1.5.(5分)函数y=的定义域是[﹣3,1] .【解答】解:由3﹣2x﹣x2≥0得:x2+2x﹣3≤0,解得:x∈[﹣3,1],故答案为:[﹣3,1]6.(5分)如图是一个算法的流程图,则输出的a的值是9.【解答】解:当a=1,b=9时,不满足a>b,故a=5,b=7,当a=5,b=7时,不满足a>b,故a=9,b=5当a=9,b=5时,满足a>b,故输出的a值为9,故答案为:97.(5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.【解答】解:将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,基本事件总数为n=6×6=36,出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,出现向上的点数之和不小于10包含的基本事件有:(4,6),(6,4),(5,5),(5,6),(6,5),(6,6),共6个,∴出现向上的点数之和小于10的概率:p=1﹣=.故答案为:.8.(5分)已知{a n}是等差数列,S n是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是20.【解答】解:∵{a n}是等差数列,S n是其前n项和,a1+a22=﹣3,S5=10,∴,解得a1=﹣4,d=3,∴a9=﹣4+8×3=20.故答案为:20.9.(5分)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是7.【解答】解:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.故答案为:7.10.(5分)如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.【解答】解:设右焦点F(c,0),将y=代入椭圆方程可得x=±a=±a,可得B(﹣a,),C(a,),由∠BFC=90°,可得k BF•k CF=﹣1,即有•=﹣1,化简为b2=3a2﹣4c2,由b2=a2﹣c2,即有3c2=2a2,由e=,可得e2==,可得e=,另解:设右焦点F(c,0),将y=代入椭圆方程可得x=±a=±a,可得B(﹣a,),C(a,),=(﹣a﹣c,),=(a﹣c,),•=0,则c2﹣a2十b2=0,因为b2=a2﹣c2,代入得3c2=2a2,由e=,可得e2==,可得e=.故答案为:.11.(5分)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f (x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是﹣.【解答】解:f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,∴f(﹣)=f(﹣)=﹣+a,f()=f()=|﹣|=,∴a=,∴f(5a)=f(3)=f(﹣1)=﹣1+=﹣,故答案为:﹣12.(5分)已知实数x,y满足,则x2+y2的取值范围是[,13] .【解答】解:作出不等式组对应的平面区域,设z=x2+y2,则z的几何意义是区域内的点到原点距离的平方,由图象知A到原点的距离最大,点O到直线BC:2x+y﹣2=0的距离最小,由得,即A(2,3),此时z=22+32=4+9=13,点O到直线BC:2x+y﹣2=0的距离d==,则z=d2=()2=,故z的取值范围是[,13],故答案为:[,13].13.(5分)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.【解答】解:∵D是BC的中点,E,F是AD上的两个三等分点,∴=+,=﹣+,=+3,=﹣+3,∴•=2﹣2=﹣1,•=92﹣2=4,∴2=,2=,又∵=+2,=﹣+2,∴•=42﹣2=,故答案为:14.(5分)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是8.【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,另解:由已知条件sinA=2sinBsinc,sin(B十C)=2sinBsinC,sinBcosC十cosBsinC=2sinBcosC,两边同除以cosBcosC,tanB十tanC=2tanBtanC,∵﹣tanA=tan(B十C)=,∴tanAtanBtanC=tanA十tanB十tanC,∴tanAtanBtanC=tanA十2tanBtanC≥2,令tanAtanBtanC=x>0,即x≥2,即x≥8,或x≤0(舍去),所以x的最小值为8.当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C 均为锐角.二、解答题(共6小题,满分90分)15.(14分)在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cosB=,∴sinB=,∵,∴AB==5;(2)cosA=﹣cos(C+B)=sinBsinC﹣cosBcosC=﹣.∵A为三角形的内角,∴sinA=,∴cos(A﹣)=cosA+sinA=.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.【解答】解:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE∥AC,∵ABC﹣A1B1C1为棱柱,∴AC∥A1C1,∴DE∥A1C1,∵A1C1⊂平面A1C1F,且DE⊄平面A1C1F,∴DE∥A1C1F;(2)∵ABC﹣A1B1C1为直棱柱,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE∥A1C1,∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE,∴A1F⊥平面B1DE,又∵A1F⊂平面A1C1F,∴平面B1DE⊥平面A1C1F.17.(14分)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?【解答】解:(1)∵PO1=2m,正四棱柱的高O1O是正四棱锥的高PO1的4倍.∴O1O=8m,∴仓库的容积V=×62×2+62×8=312m3,(2)若正四棱锥的侧棱长为6m,设PO1=xm,则O1O=4xm,A1O1=m,A1B1=•m,则仓库的容积V=×(•)2•x+(•)2•4x=x3+312x,(0<x<6),∴V′=﹣26x2+312,(0<x<6),当0<x<2时,V′>0,V(x)单调递增;当2<x<6时,V′<0,V(x)单调递减;故当x=2时,V(x)取最大值;即当PO1=2m时,仓库的容积最大.18.(16分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.【解答】解:(1)∵N在直线x=6上,∴设N(6,n),∵圆N与x轴相切,∴圆N为:(x﹣6)2+(y﹣n)2=n2,n>0,又圆N与圆M外切,圆M:x2+y2﹣12x﹣14y+60=0,即圆M:(x﹣6)2+(x﹣7)2=25,∴|7﹣n|=|n|+5,解得n=1,∴圆N的标准方程为(x﹣6)2+(y﹣1)2=1.(2)由题意得OA=2,k OA=2,设l:y=2x+b,则圆心M到直线l的距离:d==,则|BC|=2=2,BC=2,即2=2,解得b=5或b=﹣15,∴直线l的方程为:y=2x+5或y=2x﹣15.(3)设P(x1,y1),Q(x2,y2),∵A(2,4),T(t,0),,∴,①∵点Q在圆M上,∴(x2﹣6)2+(y2﹣7)2=25,②将①代入②,得(x1﹣t﹣4)2+(y1﹣3)2=25,∴点P(x1,y1)即在圆M上,又在圆[x﹣(t+4)]2+(y﹣3)2=25上,从而圆(x﹣6)2+(y﹣7)2=25与圆[x﹣(t+4)]2+(y﹣3)2=25有公共点,∴5﹣5≤≤5+5.解得2﹣2≤t,∴实数t的取值范围是[2﹣2,2+2].19.(16分)已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.【解答】解:函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①方程f(x)=2;即:=2,可得x=0.②不等式f(2x)≥mf(x)﹣6恒成立,即≥m()﹣6恒成立.令t=,t≥2.不等式化为:t2﹣mt+4≥0在t≥2时,恒成立.可得:△≤0或即:m2﹣16≤0或m≤4,∴m∈(﹣∞,4].实数m的最大值为:4.(2)g(x)=f(x)﹣2=a x+b x﹣2,g′(x)=a x lna+b x lnb=a x[+]lnb,0<a<1,b>1可得,令h(x)=+,则h(x)是递增函数,而,lna<0,lnb>0,因此,x0=时,h(x0)=0,因此x∈(﹣∞,x0)时,h(x)<0,a x lnb>0,则g′(x)<0.x∈(x0,+∞)时,h(x)>0,a x lnb>0,则g′(x)>0,则g(x)在(﹣∞,x0)递减,(x0,+∞)递增,因此g(x)的最小值为:g(x0).①若g(x0)<0,x<log a2时,a x>=2,b x>0,则g(x)>0,因此x1<log a2,且x1<x0时,g(x1)>0,因此g(x)在(x1,x0)有零点,则g(x)至少有两个零点,与条件矛盾.②若g(x0)>0,函数g(x)=f(x)﹣2有且只有1个零点,g(x)的最小值为g(x0),可得g(x0)=0,由g(0)=a0+b0﹣2=0,因此x0=0,因此=0,﹣=1,即lna+lnb=0,ln(ab)=0,则ab=1.可得ab=1.20.(16分)记U={1,2,…,100},对数列{a n}(n∈N*)和U的子集T,若T=∅,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1≥2S D.(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D【解答】解:(1)等比数列{a n}中,a4=3a3=9a2,当T={2,4}时,S T=a2+a4=a2+9a2=30,因此a2=3,从而a1==1,故a n=3n﹣1,(2)S T≤a1+a2+…a k=1+3+32+…+3k﹣1=<3k=a k+1,(3)设A=∁C(C∩D),B=∁D(C∩D),则A∩B=∅,分析可得S C=S A+S C∩D,S D=S B+S C∩D,则S C+S C∩D﹣2S D=S A﹣2S B,因此原命题的等价于证明S C≥2S B,由条件S C≥S D,可得S A≥S B,①、若B=∅,则S B=0,故S A≥2S B,②、若B≠∅,由S A≥S B可得A≠∅,设A中最大元素为l,B中最大元素为m,≤a m≤S B相矛盾,若m≥l+1,则其与S A<a i+1因为A∩B=∅,所以l≠m,则l≥m+1,S B≤a1+a2+…a m=1+3+32+…+3m﹣1=≤=,即S A≥2S B,综上所述,S A≥2S B,≥2S D.故S C+S C∩D附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A.【选修4—1几何证明选讲】21.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD.【解答】解:由BD⊥AC可得∠BDC=90°,因为E为BC的中点,所以DE=CE=BC,则:∠EDC=∠C,由∠BDC=90°,可得∠C+∠DBC=90°,由∠ABC=90°,可得∠ABD+∠DBC=90°,因此∠ABD=∠C,而∠EDC=∠C,所以,∠EDC=∠ABD.B.【选修4—2:矩阵与变换】22.(10分)已知矩阵A=,矩阵B的逆矩阵B﹣1=,求矩阵AB.【解答】解:∵B﹣1=,∴B=(B﹣1)﹣1==,又A=,∴AB==.C.【选修4—4:坐标系与参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.24.设a>0,|x﹣1|<,|y﹣2|<,求证:|2x+y﹣4|<a.【解答】证明:由a>0,|x﹣1|<,|y﹣2|<,可得|2x+y﹣4|=|2(x﹣1)+(y﹣2)|≤2|x﹣1|+|y﹣2|<+=a,则|2x+y﹣4|<a成立.附加题【必做题】25.(10分)如图,在平面直角坐标系xOy中,已知直线l:x﹣y﹣2=0,抛物线C:y2=2px(p>0).(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2﹣p,﹣p);②求p的取值范围.【解答】解:(1)∵l:x﹣y﹣2=0,∴l与x轴的交点坐标(2,0),即抛物线的焦点坐标(2,0).∴,∴抛物线C:y2=8x.(2)证明:①设点P(x1,y1),Q(x2,y2),则:,即:,k PQ==,又∵P,Q关于直线l对称,∴k PQ=﹣1,即y1+y2=﹣2p,∴,又PQ的中点在直线l上,∴==2﹣p,∴线段PQ的中点坐标为(2﹣p,﹣p);②因为Q中点坐标(2﹣p,﹣p).∴,即∴,即关于y2+2py+4p2﹣4p=0,有两个不相等的实数根,∴△>0,(2p)2﹣4(4p2﹣4p)>0,∴p∈.26.(10分)(1)求7C﹣4C的值;(2)设m,n∈N*,n≥m,求证:(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【解答】解:(1)7=﹣4×=7×20﹣4×35=0.证明:(2)对任意m∈N*,①当n=m时,左边=(m+1)=m+1,右边=(m+1)=m+1,等式成立.②假设n=k(k≥m)时命题成立,即(m+1)C+(m+2)C+(m+3)C+…+k+(k+1)=(m+1),当n=k+1时,左边=(m+1)+(m+2)+(m+3)++(k+1)+(k+2)=,右边=∵=(m+1)[﹣]=(m+1)×[k+3﹣(k﹣m+1)]=(k+2)=(k+2),∴=(m+1),∴左边=右边,∴n=k+1时,命题也成立,∴m,n∈N*,n≥m,(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。
2016年江苏省高考数学试题(精校高清)
⑴ 求 AB 的长; π ⑵ 求 cos A 的值. 6 4 3 【解析】⑴ cos B , B 为三角形的内角, sin B 5 5 AB AC AB 6 , ,即: AB 5 2 ; sinC sin B 2 3 5 2
【解析】由题意得 F c,0 ,直线 y
2
x a, 1 x 0, 11.设 f x 是定义在 R 上且周期为 2 的函数,在区间 1,1 上 f x 2 5 x , 0 x 1, 5 9 其中 a R ,若 f f ,则 f 5a 的值是 . 2 2 2 【答案】 5 1 1 5 1 9 1 2 1 【解析】由题意得 f f a , f f , 2 2 2 2 2 5 2 10
.
.
【解析】 c a 2 b 2 10 ,因此焦距为 2c 2 10 . 4.已知一组数据 4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 【答案】 0.1 1 【解析】 x 5.1 , s 2 0.42 0.32 02 0.32 0.42 0.1 . 5 5.函数 y 3 2 x x 2 的定义域是 【答案】 3,1 . 【解析】 3 2 x x 2 ≥ 0 ,解得 3 ≤ x ≤ 1 ,因此定义域为 3,1 . .
2 2 2
则 BA CA 9a b , BF CF a b , BE CE 4a b ,
2 2
可得 sin B cos C cos B sin C 2 sin B sin C (*), 由三角形 ABC 为锐角三角形,则 cos B 0,cos C 0 , 在(*)式两侧同时除以 cos B cos C 可得 tan B tan C 2 tan B tan C ,
2016年普通高等学校招生全国统一考试(江苏卷)理科数学试题及参考答案解析
2016年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ一、 填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A ={-1,2,3,6},B ={x|-2<x<3},那么A ∩B =________.2. 若复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________.3. 在平面直角坐标系xOy 中,双曲线x 27-y 23=1的焦距是________.4. 已知一组数据4.7,4.8,5.1,5.4,5.5,那么该组数据的方差是________. 5. 函数y =3-2x -x 2的定义域是________.6. 如图所示的算法流程图,输出的a 的值是________.(第6题)7. 将一枚质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.8. 已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________. 9. 定义在区间[0,3π]上的函数y =sin 2x 的图象与y =cos x 的图象的交点个数是________.10. 如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a>b>0)的右焦点,若直线y=b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.(第10题)11. 设f(x)是定义在R 上且周期为2的函数,在区间[-1,1)上,f(x)=⎩⎪⎨⎪⎧x +a ,-1≤x<0,⎪⎪⎪⎪25-x ,0≤x<1,其中a ∈R .若f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫92,则f(5a)的值是________.12. 已知实数x ,y 满足⎩⎨⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,那么x 2+y 2的取值范围是________.13. 如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,若BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值是________.(第13题)14. 在锐角三角形ABC 中,若sin A =2sin Bsin C ,则tan Atan Btan C 的最小值是________.二、 解答题:本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,已知AC =6,cos B =45,C =π4.(1) 求边AB 的长; (2) 求cos ⎝⎛⎭⎫A -π6的值.\16. (本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.(1) 求证:直线DE ∥平面A 1C 1F ; (2) 求证:平面B 1DE ⊥平面A 1C 1F.(第16题)17. (本小题满分14分)现需要设计一个仓库,它由上下两部分组成,如图,上部分的形状是正四棱锥PA 1B 1C 1D 1,下部分的形状是正四棱柱ABCDA 1B 1C 1D 1,并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1) 若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2) 若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大?(第17题)18. (本小题满分16分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A(2,4).(1) 设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2) 设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程;(3) 设点T(t ,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围.(第18题)19. (本小题满分16分)已知函数f(x)=a x +b x (a>0,b>0,a ≠1,b ≠1). (1) 设a =2,b =12.①求方程f(x)=2的根;②若对于任意x ∈R ,不等式f(2x)≥mf(x)-6恒成立,求实数m 的最大值. (2) 若0<a<1,b>1,函数g(x)=f(x)-2有且只有1个零点,求ab 的值.20. (本小题满分16分)记U ={1,2,…,100}.对数列{a n }(n ∈N *)和U 的子集T ,若T =定义S T =0;若T ={t 1,t 2,…,t k },定义S T =at 1+at 2+…+at k .例如:T ={1,3,66}时,S T =a 1+a 3+a 66.现设{a n }(n ∈N *)是公比为3的等比数列,且当T ={2,4}时,S T =30.(1) 求数列{a n }的通项公式;(2) 对任意正整数k(1≤k ≤100),若T {1,2,…,k},求证:S T <a k +1; (3) 设S C ≥S D ,求证:S C +S C ∩D ≥2S D .数学Ⅱ(附加题)21. 【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. 选修41:几何证明选讲 如图,在△ABC 中,已知∠ABC =90°,BD ⊥AC ,D 为垂足,E 是BC 的中点,求证:∠EDC =∠ABD.(第21-A 题)B. 选修42:矩阵与变换已知矩阵A =⎣⎢⎡⎦⎥⎤120-2,矩阵B 的逆矩阵B -1=⎣⎢⎢⎡⎦⎥⎥⎤1-1202,求矩阵AB .C. 选修44:坐标系与参数方程在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1+12t ,y =32t(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.D. 选修45:不等式选讲设a >0,|x -1|<a 3,|y -2|<a3,求证:|2x +y -4|<a.【必做题】第22、23题,每小题10分,共20分,解答时应写出必要的文字说明,证明过程或演算步骤.22. (本小题满分10分)如图,在平面直角坐标系xOy中,已知直线l:x-y-2=0,抛物线C:y2=2px(p>0).(1) 若直线l过抛物线C的焦点,求抛物线C的方程;(2) 已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2-p,-p);②求p的取值范围.(第22题)23. (本小题满分10分)(1) 求7C36-4C47的值;(2) 设m,n∈N*,n≥m,求证:(m+1)C m m+(m+2)C m m+1+(m+3)C m m+2+…+nC m n-1+(n +1)C m n=(m+1)C m+2.n+22016年普通高等学校招生全国统一考试(江苏卷)1. {-1,2} 【解析】由题意知A ∩B ={-1,2}.2. 5 【解析】由题意知z =5+5i ,所以z 的实部是5.3. 210 【解析】由题意知c =a 2+b 2=7+3=10,所以焦距为2c =210.4. 0.1 【解析】因为x =15(4.7+4.8+5.1+5.4+5.5)=5.1,所以s 2=15(0.42+0.32+02+0.32+0.42)=0.1.5. [-3,1] 【解析】由题意知3-2x -x 2≥0,解得-3≤x ≤1,所以原函数的定义域为[-3,1].6. 9 【解析】由流程图可知,在循环的过程中,a 与b 的值依次为1,9;5,7;9,5.因为9>5,所以输出的a =9.7. 56 【解析】由题意知,先后抛掷骰子2次,共有36个基本事件.其中点数之和大于等于10的基本事件有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6个,则点数之和小于10的基本事件共有30个.故所求的概率为3036=56.8. 20 【解析】设等差数列{a n }的公差为d ,则由题意知a 1+(a 1+d)2=-3,5a 1+10d =10,解得a 1=-4,d =3,所以a 9=-4+8×3=20.9. 7 【解析】如图,在同一平面直角坐标系中作出函数y =sin 2x 与y =cos x 在区间[0,3π]上的图象,可知共有7个交点.(第9题)10.63【解析】由题意知焦点F 的坐标为(c ,0),联立解得x =±32a ,故点B 的坐标为⎝⎛⎭⎫-3a 2,b 2,点C 的坐标为⎝⎛⎭⎫3a 2,b 2. 因为∠BFC =90°,所以BF →·CF →=0.又BF →=⎝⎛⎭⎫c +3a 2,-b 2,CF →=⎝⎛⎭⎫c -3a 2,-b 2,所以c 2-34a 2+14b 2=0.因为b 2=a 2-c 2,所以34c 2=12a 2,即c 2a 2=23,所以e =ca =23=63.11. -25 【解析】由题意知f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-12=-12+a ,f ⎝⎛⎭⎫92=f ⎝⎛⎭⎫12=⎪⎪⎪⎪25-12=110. 因为f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫92,所以-12+a =110,解得a =35, 所以f(5a)=f(3)=f(-1)=-1+a =-1+35=-25.12. ⎣⎡⎦⎤45,13 【解析】作出实数x ,y 满足的可行域如图中阴影部分所示,则x 2+y 2即为可行域内的点(x ,y)到原点O 的距离的平方.由图可知点A 到原点O 的距离最近,点B到原点O 的距离最远.点A 到原点O 的距离即原点O 到直线2x +y -2=0的距离d =|0-2|12+22=255,则(x 2+y 2)min =45;点B 为直线x -2y +4=0与3x -y -3=0的交点,即点B 的坐标为(2,3),则(x 2+y 2)max =13.综上,x 2+y 2的取值范围是⎣⎡⎦⎤45,13.(第12题)13. 78 【解析】方法一:设DF →=a ,DB →=b ,则DC →=-b ,DE →=2a ,DA →=3a ,所以BA→=DA →-DB →=3a -b ,CA →=DA →-DC →=3a +b ,BE →=DE →-DB →=2a -b ,CE →=DE →-DC →=2a +b ,BF →=DF →-DB →=a -b ,CF →=DF →-DC →=a +b ,所以BA →·CA →=9a 2-b 2,BF →·CF →=a 2-b 2,BE →·CE →=4a 2-b 2.又因为BA →·CA →=4,BF →·CF →=-1,所以9a 2-b 2=4,a 2-b 2=-1,解得a 2=58,b 2=138,所以BE →·CE →=4a 2-b 2=4×58-138=78. 方法二:以D 为坐标原点,BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立平面直角坐标系,设点B 的坐标为(-a ,0),点C 的坐标为(a ,0),点A 的坐标为(b ,c),所以BA →=(b +a ,c),CA →=(b -a ,c),BF →=⎝⎛⎭⎫b 3+a ,c 3,CF →=⎝⎛⎭⎫b 3-a ,c 3. 因为BA →·CA →=b 2-a 2+c 2=4,BF →·CF →=b 29-a 2+c 29=-1,所以b 2+c 2=458,a 2=138.又因为BE →=BD →+DE →=⎝⎛⎭⎫23b +a ,2c 3,CE →=CD →+DE →=(23b -a ,2c 3), 所以BE →·CE →=49b 2-a 2+4c 29=49×458-138=78.14. 8 【解析】因为sin A =2sin Bsin C ,所以sin(B +C)=2sin Bsin C ,所以sin Bcos C +cos Bsin C =2sin Bsin C ,等式两边同时除以cos Bcos C ,得tan B +tan C =2tan Btan C. 又因为tan A =-tan(B +C)=tan B +tan Ctan Btan C -1,所以tan Atan Btan C -tan A =2tan Btan C ,即tan Btan C(tan A -2)=tan A.因为A ,B ,C 为锐角,所以tan A ,tan B ,tan C>0,且tan A>2, 所以tan Btan C =tan A tan A -2,所以原式=tan 2Atan A -2.令tan A -2=t(t>0),则tan 2A tan A -2=(t +2)2t =t 2+4t +4t =t +4t +4≥8,当且仅当t =2,即tan A =4时取等号. 故tan Atan Btan C 的最小值为8.15. (1) 因为cos B =45,0<B<π,所以sin B =1-cos 2B =1-⎝⎛⎭⎫452=35.由正弦定理知AC sin B =AB sin C ,所以AB =AC·sin Csin B =6×2235=5 2.(2) 在△ABC 中,因为A +B +C =π,所以A =π-(B +C), 所以cos A =-cos(B +C)=-cos ⎝⎛⎭⎫B +π4=-cos Bcos π4+sin Bsin π4.又cos B =45,sin B =35,故cos A =-45×22+35×22=-210.因为0<A<π,所以sin A =1-cos 2A =7210,所以cos ⎝⎛⎭⎫A -π6=cos Acos π6+sin Asin π6=-210×32+7210×12=72-620.16. (1) 在直三棱柱ABC -A 1B 1C 1中,A 1C 1∥AC.在△ABC 中,因为D ,E 分别为AB ,BC 的中点, 所以DE ∥AC ,所以DE ∥A 1C 1. 又因为DE平面A 1C 1F ,A 1C 1平面A 1C 1F ,所以直线DE ∥平面A 1C 1F.(2) 在直三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面A 1B 1C 1. 因为A 1C 1平面A 1B 1C 1,所以A 1A ⊥A 1C 1.又因为A 1C 1⊥A 1B 1,A 1A平面ABB 1A 1,A 1B 1平面ABB 1A 1,A 1A ∩A 1B 1=A 1,所以A 1C 1⊥平面ABB 1A 1. 因为B 1D平面ABB 1A 1,所以A 1C 1⊥B 1D.又因为B 1D ⊥A 1F ,A 1C 1平面A 1C 1F ,A 1F平面A 1C 1F ,A 1C 1∩A 1F =A 1,所以B 1D ⊥平面A 1C 1F. 因为直线B 1D平面B 1DE ,所以平面B 1DE ⊥平面A 1C 1F.17. (1) 由PO 1=2 m ,知O 1O =4PO 1=8 m ,因为A 1B 1=AB =6 m , 所以正四棱锥PA 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3), 正四棱柱ABCDA 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3), 所以仓库的容积V =V 锥+V 柱=24+288=312(m 3). (2) 设A 1B 1=a m ,PO 1=h m ,则0<h<6,O 1O =4h m.如图,连接O 1B 1.在Rt △PO 1B 1中,因为O 1B 21+PO 21=PB 21,所以⎝⎛⎭⎫2a 22+h 2=36,即a 2=2(36-h 2), 所以仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h =263(36h -h 3),0<h<6,所以V′=263(36-3h 2)=26(12-h 2).令V′=0,得h =23或h =-23(舍去). 当0<h<23时,V ′>0,V 在(0,23)上是单调增函数; 当23<h<6时,V ′<0,V 在(23,6)上是单调减函数. 故当h =23时,V 取得极大值,也是最大值. 所以,当PO 1=2 3 m 时,仓库的容积最大.(第17题)18. 圆M 的标准方程为(x -6)2+(y -7)2=25, 所以圆心M(6,7),半径为5.(1) 由圆心N 在直线x =6上,可设N(6,y 0). 因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7,所以圆N 的 半径为y 0,从而7-y 0=5+y 0,解得y 0=1, 所以圆N 的标准方程为(x -6)2+(y -1)2=1. (2) 因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m ,即2x -y +m =0, 则圆心M 到直线l 的距离d =|2×6-7+m|5=|m +5|5.(第18题)如图,因为BC =OA =22+42=25,又MC 2=d 2+⎝⎛⎭⎫BC 22,所以25=(m +5)25+5, 解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.(3) 设P(x 1,y 1),Q(x 2,y 2),因为A(2,4),T(t ,0),TA →+TP →=TQ →,所以因为点Q 在圆M 上,所以(x 2-6)2+(y 2-7)2=25. ② 将①代入②,得(x 1-t -4)2+(y 1-3)2=25,所以点P(x 1,y 1)既在圆M 上,又在圆[x -(t +4)]2+(y -3)2=25上, 从而圆(x -6)2+(y -7)2=25与圆[x -(t +4)]2+(y -3)2=25有公共点, 所以5-5≤[(t +4)-6]2+(3-7)2≤5+5, 解得2-221≤t ≤2+221.所以实数t 的取值范围是[2-221,2+221 ]. 19. (1) 因为a =2,b =12,所以f(x)=2x +2-x .①方程f(x)=2,则2x +2-x =2,即(2x )2-2×2x +1=0, 所以(2x -1)2=0,所以2x =1,解得x =0.②由题意知f(2x)=22x +2-2x =(2x +2-x )2-2=(f(x))2-2, 因为f(2x)≥mf(x)-6对于x ∈R 恒成立,且f(x)>0,所以m ≤(f (x ))2+4f (x )对于x ∈R 恒成立.又(f (x ))2+4f (x )=f(x)+4f (x )≥2f (x )·4f (x )=4,且(f (0))2+4f (0)=4,所以m ≤4,故实数m 的最大值为4.(2) 因为函数g(x)=f(x)-2只有1个零点,又g(0)=f(0)-2=a 0+b 0-2=0,所以0是函数g(x)的唯一零点. 因为g′(x)=a x ln a +b x ln b ,又由0<a<1,b>1,知ln a<0,ln b>0,所以g′(x)=0有唯一解x 0=log b a⎝⎛⎭⎫-ln aln b .令h(x)=g′(x), 则h′(x)=(a x ln a +b x ln b )′=a x (ln a)2+b x (ln b)2,从而对任意x ∈R ,h ′(x)>0,所以g′(x)=h(x)是(-∞,+∞)上的单调增函数, 所以当x ∈(-∞,x 0)时,g ′(x)<g′(x 0)=0;当x ∈(x 0,+∞)时,g ′(x)>g ′(x 0)=0.所以函数g(x)在(-∞,x 0)上是单调减函数,在(x 0,+∞)上是单调增函数. 下证x 0=0.若x 0<0,则x 0<x 02<0,所以g ⎝⎛⎭⎫x 02<g(0)=0.又g(log a 2)=alog a 2+blog a 2-2>alog a 2-2=0,且函数g(x)在以x 02和log a 2为端点的闭区间上的图象不间断,所以在x 02和log a 2之间存在g(x)的零点,记为x 1.因为0<a<1,所以log a 2<0.又x 02<0,所以x 1<0,与“0是函数g(x)的唯一零点”矛盾. 若x 0>0,同理可得,在x 02和log b 2之间存在g(x)的非0的零点,矛盾.综上,x 0=0. 所以-ln aln b=1,故ln a +ln b =0,所以ab =1. 20. (1) 由已知得a n =a 1·3n -1,n ∈N *.所以当T ={2,4}时,S T =a 2+a 4=3a 1+27a 1=30a 1. 又S T =30,故30a 1=30,即a 1=1,所以数列{a n }的通项公式为a n =3n -1,n ∈N *. (2) 因为T{1,2,…,k},a n =3n -1>0,n ∈N *,所以S T ≤a 1+a 2+…+a k =1+3+…+3k -1=12(3k -1)<3k ,所以S T <a k +1.(3) 下面分三种情况证明.①若D 是C 的子集,则S C +S C ∩D =S C +S D ≥S D +S D =2S D . ②若C 是D 的子集,则S C +S C ∩D =S C +S C =2S C ≥2S D . ③若D 不是C 的子集,且C 不是D 的子集. 令E =C ∩∁U D ,F =D ∩∁U C ,则E ≠,F ≠,E ∩F =,所以S C =S E +S C ∩D ,S D =S F +S C ∩D ,又由S C ≥S D ,得S E ≥S F . 设k 为E 中的最大数,l 为F 中的最大数,则k ≥1,l ≥1,k ≠l.由(2)知,S E <a k +1,所以3l -1=a l ≤S F ≤S E <a k +1=3k ,所以l -1<k ,即l ≤k. 又k ≠l ,故l ≤k -1,所以S F ≤a 1+a 2+…+a l =1+3+…+3l -1=3l -12≤3k -1-12=a k -12≤S E -12,故S E ≥2S F +1,所以S C -S C ∩D ≥2(S D -S C ∩D )+1,即S C +S C ∩D ≥2S D +1.综合①②③得,S C +S C ∩D ≥2S D . 21. A. 在△ADB 和△ABC 中,因为∠ABC =90°,BD ⊥AC ,∠A 为公共角, 所以△ADB ∽△ABC ,所以∠ABD =∠C. 在Rt △BDC 中,因为E 是BC 的中点, 所以ED =EC ,从而∠EDC =∠C , 所以∠EDC =∠ABD.C. 椭圆C 的普通方程为x 2+y 24=1.将直线l 的参数方程代入x 2+y 24=1,得⎝⎛⎭⎫1+12t 2+⎝⎛⎭⎫32t 24=1,即7t 2+16t =0,解得t 1=0,t 2=-167, 所以AB =|t 1-t 2|=167. D. 因为|x -1|<a 3,|y -2|<a3,所以|2x +y -4|=|2(x -1)+(y -2)|≤2|x -1|+|y -2|<2×a 3+a3=a.22. (1) 抛物线C :y 2=2px(p>0)的焦点为⎝⎛⎭⎫p 2,0,由点⎝⎛⎭⎫p 2,0在直线l :x -y -2=0上,得p2-0-2=0,即p =4, 所以抛物线C 的方程为y 2=8x.(2) 设P(x 1,y 1),Q(x 2,y 2),线段PQ 的中点M(x 0,y 0),因为点P 和Q 关于直线l 对称,所以直线l 垂直平分线段PQ , 所以直线PQ 的斜率为-1,则可设其方程为y =-x +b. ①由错误!消去x ,得y 2+2py -2pb =0. (*)因为P 和Q 是抛物线C 上的相异两点,所以y 1≠y 2, 所以Δ=(2p)2-4×(-2pb)>0,化简得p +2b>0. 方程(*)的两根为y 1,2=-p±p 2+2pb ,从而y 0=y 1+y 22=-p. 因为点M(x 0,y 0)在直线l 上,所以x 0=2-p , 所以线段PQ 的中点坐标为(2-p ,-p). ②因为M(2-p ,-p)在直线y =-x +b 上, 所以-p =-(2-p)+b ,即b =2-2p.由①知p +2b>0,所以p +2(2-2p)>0,所以p<43,所以p 的取值范围是⎝⎛⎭⎫0,43. 23. (1) 7C 36-4C 47=7×6×5×43×2×1-4×7×6×5×44×3×2×1=0. (2) 当n =m 时,结论显然成立. 当n>m 时,(k +1)C m k =(k +1)·k !m !·(k -m )!=(m +1)·(k +1)!(m +1)!·[(k +1)-(m +1)]!=(m +1)C m +1k +1,k =m +1,m +2,…,n.又因为C m +1k +1+C m +2k +1=C m +2k +2,所以(k +1)C m k =(m +1)(C m +2k +2-C m +2k +1),k =m +1,m +2,…,n ,所以(m +1)C m m +(m +2)C m m +1+(m +3)C m m +2+…+(n +1)C m n=(m +1)C m m +[(m +2)C m m +1+(m +3)C m m +2+…+(n +1)C mn ]=(m +1)C m +2m +2+(m +1)[(C m +2m +3-C m +2m +2)+(C m +2m +4-C m +2m +3)+…+(C m +2n +2-C m +2n +1)]=(m +1)C m +2n +2.。
2016年高考真题——数学(江苏卷)-Word版含解析
【说明】: 【参考版答案】非官方版正式答案,有可能存在少量错误,仅供参考使用。
2016年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式: 样本数据12,,,n x x x 的方差()2211ni i s x xn ==-∑,其中11ni i x x n ==∑.棱柱的体积V Sh =,其中S 是棱柱的底面积,h 是高. 棱锥的体积13V Sh =,其中S 是棱锥的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合{}1,2,3,6A =-,{}|23B x x =-<<,则A B = .【答案】{}1,2-;【解析】由交集的定义可得{}1,2AB =-.2. 复数()()12i 3i z =+-,其中i 为虚数单位,则z 的实部是 . 【答案】5;【解析】由复数乘法可得55i z =+,则则z 的实部是5.3. 在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是 .【答案】【解析】c,因此焦距为2c =4. 已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 . 【答案】0.1; 【解析】 5.1x =,()22222210.40.300.30.40.15s =++++=. 5.函数y =的定义域是 . 【答案】[]3,1-;【解析】2320x x --≥,解得31x -≤≤,因此定义域为[]3,1-. 6. 如图是一个算法的流程图,则输出a 的值是 . 【答案】9;【解析】,a b 的变化如下表:则输出时9a =.7. 将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 . 【答案】56; 【解析】将先后两次点数记为(),x y ,则共有6636⨯=个等可能基本事件,其中点数之和大于等于10有()()()()()()4,6,5,5,5,6,6,4,6,5,6,6六种,则点数之和小于10共有30种,概率为305366=. 8. 已知{}n a 是等差数列,n S 是其前n 项和.若2123a a +=-,510S =,则9a 的值是 . 【答案】20;【解析】设公差为d ,则由题意可得()2113a a d ++=-,151010a d +=, 【解析】解得14a =-,3d =,则948320a =-+⨯=.9. 定义在区间[]0,3π上的函数sin 2y x =的图象与cos y x =的图象的交点个数是 . 【答案】7;【解析】画出函数图象草图,共7个交点.10. 如图,在平面直角坐标系xOy 中,F 是椭圆()222210x y a b a b +=>>的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=︒,则该椭圆的离心率是 .【解析】由题意得(),0F c ,直线2by =与椭圆方程联立可得2b B ⎛⎫ ⎪⎪⎝⎭,2b C ⎫⎪⎪⎝⎭,【解析】由90BFC ∠=︒可得0BF CF ⋅=,2b BF c ⎛⎫=+- ⎪ ⎪⎝⎭,2b CF c ⎛⎫=- ⎪ ⎪⎝⎭, 【解析】则22231044c a b -+=,由222b a c =-可得223142c a =,则c e a ==.11. 设()f x 是定义在R 上且周期为2的函数,在区间[)1,1-上(),10,2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩12. 其中a ∈R ,若5922f f ⎛⎫⎛⎫-=⎪ ⎪⎝⎭⎝⎭,则()5f a 的值是 .【答案】25-;【解析】由题意得511222f f a ⎛⎫⎛⎫-=-=-+ ⎪ ⎪⎝⎭⎝⎭,91211225210f f ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭, 【解析】由5922f f ⎛⎫⎛⎫-=⎪ ⎪⎝⎭⎝⎭可得11210a -+=,则35a =,【解析】则()()()325311155f a f f a ==-=-+=-+=-. 13. 已知实数,x y 满足240,220,330,x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩则22x y +的取值范围是 .【答案】4,135⎡⎤⎢⎥⎣⎦;【解析】在平面直角坐标系中画出可行域如下22x y +为可行域内的点到原点距离的平方.可以看出图中A 点距离原点最近,此时距离为原点A 到直线220x y +-=的距离,d =,则()22min45x y +=, 图中B 点距离原点最远,B 点为240x y -+=与330x y --=交点,则()2,3B , 则()22max13x y +=.14. 如图,在ABC △中,D 是BC 的中点,,E F 是AD 上两个三等分点,4BA CA ⋅=,1BF CF ⋅=-,15. 则BE CE ⋅的值是 . 【答案】78; 【解析】令DF a =,DB b =,则DC b =-,2DE a =,3DA a =,【解析】则3BA a b =-,3CA a b =+,2BE a b =-,2CE a b =+,BF a b =-【解析】则229BA CA a b ⋅=-,22BF CF a b ⋅=-,224BE CE a b ⋅=-,【解析】由4BA CA ⋅=,1BF CF ⋅=-可得2294a b -=,221a b -=-,因此22513,88a b ==,【解析】因此22451374888BE CE a b ⨯⋅=-=-=. 16. 在锐角三角形ABC 中,sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 . 【答案】8;【解析】由()()sin sin πsin sin cos cos sin A A B C B C B C =-=+=+,sin 2sin sin A B C =, 【解析】可得sin cos cos sin 2sin sin B C B C B C +=(*), 【解析】由三角形ABC 为锐角三角形,则cos 0,cos 0B C >>,【解析】在(*)式两侧同时除以cos cos B C 可得tan tan 2tan tan B C B C +=, 【解析】又()()tan tan tan tan πtan 1tan tan B CA ABC B C+=--=-+=--(#),【解析】则tan tan tan tan tan tan tan 1tan tan B CA B C B C B C+=-⨯-,【解析】由tan tan 2tan tan B C B C +=可得()22tan tan tan tan tan 1tan tan B C A B C B C=--,令tan tan B C t =,由,,A B C 为锐角可得tan 0,tan 0,tan 0A B C >>>, 由(#)得1tan tan 0B C -<,解得1t > 2222tan tan tan 111t A B C t t t=-=---,221111124t t t ⎛⎫-=-- ⎪⎝⎭,由1t >则211104t t >-≥-,因此tan tan tan A B C 最小值为8, 当且仅当2t =时取到等号,此时tan tan 4B C +=,tan tan 2B C =,解得tan 2tan 2tan 4B C A ===(或tan ,tan B C 互换),此时,,A B C 均为锐角.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤.17. (本小题满分14分)在ABC △中,6AC =,4cos 5B =,π4C =.⑴ 求AB 的长; ⑵ 求πcos 6A ⎛⎫- ⎪⎝⎭的值.【答案】⑴. 【解析】⑴ 4cos 5B =,B 为三角形的内角635=,即:AB =又A 为三角形的内角π1cos sin 62A A A ⎛⎫∴-=+= ⎪⎝⎭18. (本小题满分14分)如图,在直三棱柱111ABC A B C -中,,D E 分别为,AB BC 的中点,点F 在侧棱1B B 上, 且11B D A F ⊥,1111AC A B ⊥. 求证:⑴ 直线//DE 平面11A C F ;⑵ 平面1B DE ⊥平面11A C F .【答案】见解析; 【解析】⑴,D E 为中点,DE ∴为ABC ∆的中位线 又111ABC A B C -为棱柱,11//AC AC ∴11//DE AC ∴,又11AC ⊂平面11A C F ,且11DE AC F ⊄//DE ∴平面11A C F ;⑵111ABC A B C -为直棱柱,1AA ∴⊥平面111A B C111AA AC ∴⊥,又1111AC A B ⊥且1111AA A B A =,111,AA A B ⊂平面11AA B B11AC ∴⊥平面11AA B B ,又11//DE AC ,DE ∴⊥平面11AA B B 又1A F ⊂平面11AA B B ,1DE A F ∴⊥又11A F B D ⊥,1DE B D D =,且1,DE B D ⊂平面1B DE 1A F ∴⊥平面1B DE ,又111A F AC F ⊂∴平面1B DE ⊥平面11A C F .19. (本小题满分14分)20. 现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1O O 是正四棱锥的高1PO 的4倍. 21. ⑴ 若6m AB =,12m PO =,则仓库的容积是多少;FEC BAC 1B 1A 11A22. ⑵ 若正四棱锥的侧棱长为6m ,当1PO 为多少时,仓库的容积最大?【答案】⑴3312m ;⑵m ; 【解析】⑴ 12m PO =,则18m OO =,【解析】⑴ 1111231116224m 33P A B C D ABCD V S PO -⋅=⨯⨯==,111123168288m ABCD A B C D ABCD V S OO -⋅=⨯==,【解析】⑴ 111111113312m =P A B C D ABCD A B C D V V V --+=, 【解析】⑴ 故仓库的容积为3312m ;⑵ 设1m PO x =,仓库的容积为()V x则14m OO x =,11A O =,11A B =,()111123331111272224m 3333P A B C D ABCD V S PO x x x x x -⋅=⨯⨯=-=-=,1111233142888m ABCD A B C D ABCD V S OO x x x-⋅=⨯=-=,()()111111113332262428883120633=P A B C D ABCD A B C D V x V V x x x x x x x --+=-+-=-+<<,()()22'263122612V x x x =-+=--()06x <<,当(x ∈时,()'0V x >,()V x 单调递增,当()x ∈时,()'0V x <,()V x 单调递减,因此,当x =()V x 取到最大值,即1m PO =时,仓库的容积最大.23. (本小题满分14分)24. 如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+= 25. 及其上一点()2,4A .26. ⑴ 设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程; 27. ⑵ 设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程;28. ⑶ 设点(),0T t 满足:存在圆M 上的两点P 和Q ,使得TA TP TQ +=,求实数t 的取值范围.【答案】⑴()()22611x y -+-=⑵25y x =+或215y x =-⑶2⎡-+⎣;【解析】⑴ 因为N 在直线6x =上,设()6,N n ,因为与x 轴相切, 【解析】⑴ 则圆N 为()()2226x y n n -+-=,0n >【解析】⑴ 又圆N 与圆M 外切,圆M :()()226725x x -+-=,【解析】⑴ 则75n n -=+,解得1n =,即圆N 的标准方程为()()22611x y -+-=;⑵ 由题意得OA =2OA k = 设:2l y x b =+,则圆心M 到直线l 的距离d ==,⑵ 则BC ==BC =⑵ 解得5b =或15b =-,即l :25y x =+或215y x =-; ⑶ TA TP TQ +=,即TA TQ TP PQ =-=,即TA PQ =, ⑶ (TA t =⑶ 又10PQ ≤,⑶ 10,解得2t ⎡∈-+⎣,⑶ 对于任意2t ⎡∈-+⎣,欲使TA PQ =, ⑶ 此时10TA ≤,只需要作直线TA 2TA⑶ 必然与圆交于P Q 、两点,此时TA PQ =,即TA PQ =,⑶ 因此对于任意2t ⎡∈-+⎣,均满足题意,⑶ 综上2t ⎡∈-+⎣.29. (本小题满分14分)30. 已知函数()()0,0,1,1x x f x a b a b a b =+>>≠≠. 31. ⑴ 设2a =,12b =. 32. ① 求方程()2f x =的根;33. ② 若对于任意x ∈R ,不等式()()26f x mf x -≥恒成立,求实数m 的最大值; 34. ⑵ 若01a <<,1b >,函数()()2g x f x =-有且只有1个零点,求ab 的值. 【答案】⑴ ①0x =;②4;⑵1;【解析】⑴ ① ()122xxf x ⎛⎫=+ ⎪⎝⎭,由()2f x =可得1222x x +=,【解析】⑴ 则()222210x x -⨯+=,即()2210x -=,则21x =,0x =;【解析】⑴ ② 由题意得221122622x x x x m ⎛⎫++- ⎪⎝⎭≥恒成立, 【解析】⑴ 令122x xt =+,则由20x >可得2t ≥, 【解析】⑴ 此时226t mt --≥恒成立,即244t m t t t+=+≤恒成立【解析】⑴ ∵2t ≥时44t t +=≥,当且仅当2t =时等号成立,【解析】⑴ 因此实数m 的最大值为4.()()22xxg x f x a b =-=+-,()ln 'ln ln ln ln x x x xa b g x a a b b a b b a ⎡⎤⎛⎫=+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,由01a <<,1b >可得1b a >,令()ln ln xb ah x a b ⎛⎫=+ ⎪⎝⎭,则()h x 递增,而ln 0,ln 0a b <>,因此0ln log ln b aa xb ⎛⎫=- ⎪⎝⎭时()00h x =,因此()0,x x ∈-∞时,()0h x <,ln 0x a b >,则()'0g x <; ()0,x x ∈+∞时,()0h x >,ln 0x a b >,则()'0g x >;则()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x , ① 若()00g x <,log 2a x <时,log 22a x a a >=,0x b >,则()0g x >; x >log b 2时,0x a >,log 22b x b b >=,则()0g x >;因此1log 2a x <且10x x <时,()10g x >,因此()g x 在()10,x x 有零点, 2l o g 2b x >且20x x >时,()20g x >,因此()g x 在()02,x x 有零点, 则()g x 至少有两个零点,与条件矛盾;② 若()00g x ≥,由函数()g x 有且只有1个零点,()g x 最小值为()0g x , 可得()00g x =, 由()00020g a b =+-=, 因此00x =,因此ln log 0ln b a a b ⎛⎫-= ⎪⎝⎭,即ln 1ln a b -=,即ln ln 0a b +=, 因此()ln 0ab =,则1ab =.35. (本小题满分14分) 36. 记{}1,2,,100U =.对数列{}n a (*n ∈N )和U 的子集T ,若T =∅,定义0T S =;若{}12,,,k T t t t =,定义12k T t t t S a a a =+++.例如:{}1,3,66T =时,1366T S a a a =++.现设{}n a (*n ∈N )是公比为3的等比数列,且当{}2,4T =时,30T S =. ⑴ 求数列{}n a 的通项公式;⑵ 对任意正整数k (1100k ≤≤),若{}1,2,,T k ⊆,求证:1T k S a +<; ⑶ 设C U ⊆,D U ⊆,C D S S ≥,求证:2C CDD S S S +≥.【答案】⑴13n n a -=;⑵⑶详见解析;【解析】⑴ 当{}2,4T =时,2422930T S a a a a =+=+=,因此23a =,从而2113a a ==,13n n a -=; ⑵ 2112131133332k k k T k k S a a a a -+-++=++++=<=≤;⑶ 设()C A CD =ð,()D B C D =ð,则A B =∅,C A CDS S S =+,D B CDS S S =+,22C CDD A B S S S S S +-=-,因此原题就等价于证明2A B S S ≥.⑶ 由条件C D S S ≥可知A B S S ≥.⑶ ① 若B =∅,则0B S =,所以2A B S S ≥.⑶ ② 若B ≠∅,由A B S S ≥可知A ≠∅,设A 中最大元素为l ,B 中最大元素为m , ⑶ 若1m l +≥,则由第⑵小题,1A l m B S a a S +<≤≤,矛盾. ⑶ 因为A B =∅,所以l m ≠,所以1l m +≥, ⑶ 211123113332222m m m lA B m a a S S a a a -+-+++=++++=<≤≤≤,即2A B S S >.⑶ 综上所述,2A B S S ≥,因此2C CDD S S S +≥.数学Ⅱ(附加题)37. [选做题]本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A .[选修4-1:几何证明选讲](本小题满分10分)如图,在ABC △中,90ABC ∠=︒,BD AC ⊥,D 为垂足,E 是BC 中点.求证:EDC ABD ∠=∠. 【答案】详见解析;【解析】由BD AC ⊥可得90BDC ∠=︒, 【解析】由E 是BC 中点可得12DE CE BC ==, 【解析】则EDC C ∠=∠,【解析】由90BDC ∠=︒可得90C DBC ∠+∠=︒, 【解析】由90ABC ∠=︒可得90ABD DBC ∠+∠=︒, 【解析】因此ABD C ∠=∠,【解析】又EDC C ∠=∠可得EDC ABD ∠=∠.B .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵1202⎡⎤=⎢⎥-⎣⎦A ,矩阵B 的逆矩阵111202-⎡⎤-⎢⎥=⎢⎥⎣⎦B ,求矩阵AB . 【答案】51401⎡⎤⎢⎥⎢⎥-⎣⎦;【解析】()11112124221010222--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦B B ,因此151121*********⎡⎤⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦AB .C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l的参数方程为()11,2,x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数,椭圆C 的参数方程为()cos ,2sin ,x y θθθ=⎧⎨=⎩为参数,设直线l 与椭圆C 相交于,A B 两点,求线段AB 的长. 【答案】167; 【解析】直线l0y --=,【解析】椭圆C 方程化为普通方程为2214y x +=,【解析】联立得22014y y x -=⎨+=⎪⎩,解得10x y =⎧⎨=⎩或17x y ⎧=-⎪⎪⎨⎪=⎪⎩【解析】因此167AB ==.D .[选修4-5:不等式选讲](本小题满分10分) 设0a >,13a x -<,23ay -<,求证:24x y a +-<. 【答案】详见解析; 【解析】由13a x -<可得2223a x -<, 【解析】22422233a ax y x y a +--+-<+=≤. [必做题]第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤. 38. (本小题满分10分)39. 如图,在平面直角坐标系xOy 中,已知直线:20l x y --=,抛物线()2:20C y px p =>. 40. ⑴ 若直线l 过抛物线C 的焦点,求抛物线C 的方程; 41. ⑵ 已知抛物线C 上存在关于直线l 对称的相异两点P 和Q . ①求证:线段PQ 上的中点坐标为()2,p p --; ②求p 的取值范围.【答案】⑴28y x =;⑵①见解析;②40,3⎛⎫⎪⎝⎭【解析】⑴ :20l x y --=,∴l 与x 轴的交点坐标为()2,0即抛物线的焦点为()2,0,22p∴= 28y x ∴=;⑵ ① 设点()11,P x y ,()22,Q x y则:21122222y px y px ⎧=⎪⎨=⎪⎩,即21122222y x p y x p⎧=⎪⎪⎨⎪=⎪⎩,12221212222PQ y y p k y y y y p p -==+- 又,P Q 关于直线l 对称,1PQ k ∴=-即122y y p +=-,122y y p +∴=- 又PQ 中点一定在直线l 上∴线段PQ 上的中点坐标为()2,p p --;②中点坐标为()2,p p --122212122422y y p y y x x p p +=-⎧⎪∴+⎨+==-⎪⎩即1222212284y y p y y p p +=-⎧⎨+=-⎩ 12212244y y py y p p+=-⎧∴⎨=-⎩,即关于222440y py p p ++-=有两个不等根 0∴∆>,()()2224440p p p -->,40,3p ⎛⎫∴∈ ⎪⎝⎭.42. (本小题满分10分)43. ⑴ 求34677C 4C -的值;44. ⑵ 设*,m n ∈N ,n m ≥,求证:45. ()()()()()212121C 2C 3C C 1C 1C m m m m m m m m m n n n m m m n n m +++-++++++++++=+.【答案】⑴0;⑵详见解析;【解析】⑴ 34677C 4C 7204350-=⨯-⨯=;⑵ 对任意的*m ∈N ,⑵ ① 当n m =时,左边()1C 1m m m m =+=+,右边()221C 1m m m m ++=+=+,等式成立,⑵ ② 假设()n k k m =≥时命题成立,⑵ 即()()()()()212121C 2C 3C C 1C 1C m m m m m m m m m k k k m m m k k m +++-++++++++++=+,⑵ 当1n k =+时,⑵ 左边=()()()()()12111C 2C 3C C 1C 2C m m mm m mm m m k k k m m m k k k ++-++++++++++++⑵ ()()2211C 2C m m k k m k +++=+++, ⑵ 右边()231C m k m ++=+, ⑵ 而()()22321C 1C m m k k m m +++++-+,⑵ ()()()()()()()()()()()()()()()()13!2!12!1!2!!2!1312!1!1!2!1!2C m k k k m m k m m k m k m k k m m k m k k m k m k +⎡⎤++=+-⎢⎥+-++-⎢⎥⎣⎦+=+⨯+--+⎡⎤⎣⎦+-++=+-+=+ ⑵ 因此()()()222131C 2C 1C m m m k k k m k m ++++++++=+,⑵ 因此左边=右边,⑵ 因此1n k =+时命题也成立,综合①②可得命题对任意n m ≥均成立.另解:因为()()111C 1C m m k k k m +++=+,所以 左边()()()1111211C 1C 1C m m m m m n m m m ++++++=++++++()()1111211C C C m m m m m n m ++++++=++++又由111C C C k k k n n n ---=+,知2212112111112111221121C C C C C C C C C C C C m m m m m m m m m m m m n n n n n n m m n m m n ++++++++++++++++++++++=+=++==+++=+++,所以,左边=右边.。
【高考试题】2016年全国高考理科数学试题 (江苏卷) ★☆答案
【高考试题】2016年全国高考理科数学试题 (江苏卷) ★☆答案2016年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ一、 填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A ={-1,2,3,6},B ={x|-2<x<3},那么A ∩B =________.2. 若复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________.3. 在平面直角坐标系xOy 中,双曲线x 27-y 23=1的焦距是________.4. 已知一组数据4.7,4.8,5.1,5.4,5.5,那么该组数据的方差是________. 5. 函数y =3-2x -x 2的定义域是________.6. 如图所示的算法流程图,输出的a 的值是________.(第6题)7. 将一枚质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.8. 已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________. 9. 定义在区间[0,3π]上的函数y =sin 2x 的图象与y =cos x 的图象的交点个数是________.10. 如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a>b>0)的右焦点,若直线y=b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.(第10题)11. 设f(x)是定义在R 上且周期为2的函数,在区间[-1,1)上,f(x)=⎩⎪⎨⎪⎧x +a ,-1≤x<0,⎪⎪⎪⎪25-x ,0≤x<1,其中a ∈R .若f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫92,则f(5a)的值是________. 12. 已知实数x ,y 满足⎩⎨⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,那么x 2+y 2的取值范围是________.13. 如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,若BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值是________.(第13题)14. 在锐角三角形ABC 中,若sin A =2sin Bsin C ,则tan Atan Btan C 的最小值是________.二、 解答题:本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,已知AC =6,cos B =45,C =π4.(1) 求边AB 的长; (2) 求cos ⎝⎛⎭⎫A -π6的值.\16. (本小题满分14分)如图,在直三棱柱ABC-A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.(1) 求证:直线DE ∥平面A 1C 1F ; (2) 求证:平面B 1DE ⊥平面A 1C 1F.(第16题)17. (本小题满分14分)现需要设计一个仓库,它由上下两部分组成,如图,上部分的形状是正四棱锥PA 1B 1C 1D 1,下部分的形状是正四棱柱ABCDA 1B 1C 1D 1,并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1) 若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2) 若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大?(第17题)18. (本小题满分16分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A(2,4).(1) 设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2) 设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程;(3) 设点T(t ,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围.(第18题)19. (本小题满分16分)已知函数f(x)=a x +b x (a>0,b>0,a ≠1,b ≠1). (1) 设a =2,b =12.①求方程f(x)=2的根;②若对于任意x ∈R ,不等式f(2x)≥mf(x)-6恒成立,求实数m 的最大值. (2) 若0<a<1,b>1,函数g(x)=f(x)-2有且只有1个零点,求ab 的值.20. (本小题满分16分)记U ={1,2,…,100}.对数列{a n }(n ∈N *)和U 的子集T ,若T =定义S T =0;若T ={t 1,t 2,…,t k },定义S T =at 1+at 2+…+at k .例如:T ={1,3,66}时,S T =a 1+a 3+a 66.现设{a n }(n ∈N *)是公比为3的等比数列,且当T ={2,4}时,S T =30.(1) 求数列{a n }的通项公式;(2) 对任意正整数k(1≤k ≤100),若T {1,2,…,k},求证:S T <a k +1; (3) 设S C ≥S D ,求证:S C +S C ∩D ≥2S D .数学Ⅱ(附加题)21. 【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. 选修41:几何证明选讲 如图,在△ABC 中,已知∠ABC =90°,BD ⊥AC ,D 为垂足,E 是BC 的中点,求证:∠EDC =∠ABD.(第21-A 题)B. 选修42:矩阵与变换已知矩阵A =⎣⎢⎡⎦⎥⎤120-2,矩阵B 的逆矩阵B -1=⎣⎢⎢⎡⎦⎥⎥⎤1-1202,求矩阵AB .C. 选修44:坐标系与参数方程在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1+12t ,y =32t(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.D. 选修45:不等式选讲设a>0,|x-1|<a3,|y-2|<a3,求证:|2x+y-4|<a.【必做题】第22、23题,每小题10分,共20分,解答时应写出必要的文字说明,证明过程或演算步骤.22. (本小题满分10分)如图,在平面直角坐标系xOy中,已知直线l:x-y-2=0,抛物线C:y2=2px(p>0).(1) 若直线l过抛物线C的焦点,求抛物线C的方程;(2) 已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2-p,-p);②求p的取值范围.(第22题)23. (本小题满分10分)(1) 求7C36-4C47的值;(2) 设m,n∈N*,n≥m,求证:(m+1)C m m+(m+2)C m m+1+(m+3)C m m+2+…+nC m n-1+(n +1)C m n=(m+1)C m+2n+2.。
2016年高考数学江苏省理科试题及答案解析版
2016年江苏省高考数学试卷一、填空题(共14小题,每小题5分,满分70分)【2016 江苏(理)】已知集合 A={ - 1, 2, 3, 6} , B={x| - 2 V x V 3},则 A AB= _____ 【答案】{ - 1, 2}【解析】 解:•••集合 A={ - 1, 2, 3, 6} , B={x| - 2V x V 3}, ••• A n B={ - 1, 2},【2016江苏(理)】复数z= (1+2i ) (3- i ),其中i 为虚数单位,则z 的实部是 _______ , 【答案】5【解析】 解:z= (1+2i ) (3 - i ) =5+5i , 则z 的实部是5,【答案】2 , I• c =Uw 5 护=顶,【2016江苏(理)】已知一组数据4.7, 4.8, 5.1 , 5.4 , 5.5,则该组数据的方差是 _ 【答案】0.1【解析】 解:•••数据4.7, 4.8, 5.1, 5.4, 5.5的平均数为:—1工=匸(4.7+4.8+5.1+5.4+5.5 ) =5.1,5•该组数据的方差: 2 1 2 2 2 2 2 s=〒[(4.7 -5.1)+ (4.8 -5.1) + ( 5.1 - 5.1) + ( 5.4 -5.1) + ( 5.5 -5.1)]=0.1 ・【2016江苏(理)】函数y= : 「 ■-的定义域是 【答案】[-3, 11【解析】解:由3 - 2x - x 2%得:x 2+2x - 3包),解得:x €[ - 3 , 1 ],【2016江苏(理)】如图是一个算法的流程图,则输出的【2016江苏(理)】在平面直角坐标系2X2 y3a= ; b=二2xOy 中,双曲线专■=1的焦距是【解析】解:双曲线 =1中, 的焦距是2 一【答案】9【解析】解:当a=1, b=9时,不满足a> b,故a=5, b=7 ,当a=5, b=7 时,不满足a>b,故a=9, b=5当a=9, b=5时,满足a> b,故输出的a值为9,【2016江苏(理)】将一颗质地均匀的骰子(一种各个面上分别标有 1 , 2, 3, 4, 5, 6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_____ .【答案】卫【解析】解:将一颗质地均匀的骰子(一种各个面上分别标有1, 2, 3, 4, 5, 6个点的正方体玩具)先后抛掷2次,基本事件总数为n=6 0=36,出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,出现向上的点数之和不小于10包含的基本事件有:(4, 6), (6 , 4), (5 , 5), (5 , 6), (6 , 5), (6 , 6),共6 个,•••出现向上的点数之和小于10的概率:4 6 5p=1「—.2【2016江苏(理)】已知{a n}是等差数列,S n是其前n项和,若a1+a2=-3 , S5=10 ,贝U a9 的值是—.【答案】20【解析】解:••• {a n}是等差数列,S n是其前n项和,a1+a22=- 3 , S5=10 , 8]+( a^+d)'二- 3••5托4 ,5哲■尹左10解得a仁-4 , d=3 ,• a9= - 4+8 X3=20.【2016江苏(理)】定义在区间[0 , 3冗]上的函数y=sin2x的图象与y=cosx的图象的交点个数是—.【答案】7【解析】解:画出函数y=sin2x与y=cosx 在区间[0, 3 n上的图象如下:【2016江苏(理)】如图,在平面直角坐标系xOy中,F是椭圆‘1+-’ =1 (a> b>0)的2),由 / BFC=90 ° 可得k BF?k CF= - 1,_:_=- 1=1,2 2 °化简为b2=3a2- 4c2,由b2=a2- c2,即有3c2=2a2,C两点,且/ BFC=90 °则该椭圆的离心率是【解析】解:设右焦点可得B (-丄a,-2即有【答将y=*代入椭圆方程可得=± a,,一),C•-a _,【解析】 解:作出不等式组对应的平面区域,设Z=x 2+y 2,则Z 的几何意义是区域内的点到原点距离的平方, 由图象知A 到原点的距离最大, 点O 到直线BC : 2x+y - 2=0的距离最小,,即 A ( 2,3),此时 Z =22+32=4+9=13 ,则 z=d 2= 一) 2=十, 故Z 的取值范围是[半,13], 故答案为:[一,13].5【2016江苏(理)】设f ( x )是定义在R 上且周期为2的函数,在区间[-1,1) 上,f (x )I 匕【答案】-二,其中a€R ,若f (-吕)=f (半),则f (5a )的值是【解析】解:f (x )是定义在R 上且周期为2的函数,在区间[-1, 1) 上, f (x )=f —= 丄)丐--1 -.7 i +a,ii••• f (5a ) =f (3) =f (- 1) = - 1+-匸x - 2y+4^0【2016江苏(理)】已知实数x , y 满足2>0,则x 2+y 2的取值范围是得r s-2[尸3点O 到直线BC : 2x+y - 2=0的距离_ 2|【答[x - 2^4=0:- ------------【2016江苏(理)】如图,在△ ABC中,D是BC的中点,E, F是AD上的两个三等分点, -.? -.=4, °T? i;=-1,则n的值是 _.【答案】丄s【解析】解:•/ D是BC的中点,E, F是AD上的两个三等分点,••• ¥=□+『. 卜=-二+5 ,「= .1-0+3 I', = - U1+3 ',.•.干?飞=:卩2-「2=- i,';? '「.=9 下2-辰¥=4,s 8:r| —■ | —■冃|| jw | iH又•••i+2| I , : =- +2,,【2016江苏(理)】在锐角三角形ABC中,若sin A=2si nBsi nC,贝U tan Ata nBta nC的最小值是____ .【答案】8【解析】解:由sinA=sin ( n- A) =sin (B+C ) =sinBcosC+cosBsinC , sinA=2sinBsinC , 可得sinBcosC+cosBsinC=2sinBsinC ,①由三角形ABC为锐角三角形,则cosB>0, cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC ,又tanA= - tan ( n- A) = - tan (B+C ) = ------------- ------------- --- ② ,1 - tanBtanC门■ ' ?tanBtanC ,1 一t anBtanC由 tan B+ta nC=2ta nBta nC 可得 tan Ata nBta nC=-令 tanBtanC=t ,由 A , B , C 为锐角可得 tanA >0, tanB >0, tanC > 0, 由② 式得1 - tanBtanC V 0,解得t > 1,:■、解答题(共6小题,满分90分)4TT【2016江苏(理)】在厶ABC 中,AC=6 , cosB —, C^ .5 4(1 )求AB 的长; (2)求cos (A -丄)的值.6【2016江苏(理)】如图,在直三棱柱 ABC - A 1B 1C 1中,D , E 分别为AB , 点F 在侧棱B 1B 上,且B 1D 丄A 1F , A 1C 1丄A 1B 1.求证: (1)直线DE //平面A 1C 1F ;(2)平面B 1DE 丄平面A 1C 1F .2=- Rtan Ata nBta nC=-(丄迪21「由 t>1 2 * *得,-严= 因此tanAtanBtanC 的最小值为8,当且仅当t=2时取到等号,此时 tanB+tanC=4 , tanBtanC=2, 解得 tan B=2+ 工,tan C=2—『.,ta nA=4 ,(或 tanB , ta nC 互换),此时 A , B , C 均为锐角. …cos 则 tan Ata nBta nC=-2 (tat^BtanC ) 2 1 一t anBtanCBC 的中点,sinB=【解析】解:(1) •/ D, E分别为AB , BC的中点,••• DE为仏ABC的中位线,••• DE // AC ,••• ABC - A1B1C1 为棱柱,•AC // A1C1,•DE // A1C1,•/ A1C1?平面A1C1F,且DE?平面A1C1F,•DE // A1C1F;(2)T ABC - A1B1C1 为直棱柱,•AA 1 丄平面A1B1C1,•AA 1 丄A1C1,又T A1C1 丄A1B1,且AA 1A A1B1=A1, AA1、A1B1?平面AA1B1B,•A1C1 丄平面AA1B1B,•/ DE // A1C1,•DE 丄平面AA1B1B, 又••• A1F?平面AA 1B1B,•DE 丄A1F,又T A1F丄B1D, DE A B1D=D,且DE、B1D?平面B1DE,•A1F丄平面B1DE , 又T A1F?平面A1C1F, •平面B1DE丄平面A1C1F .【2016江苏(理)】现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A1B1C1D1,下部的形状是正四棱柱ABCD - A1B1C1D1 (如图所示),并要求正四棱柱的高010是正四棱锥的高PO1的4倍.(1 )若AB=6m , P01=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当P01为多少时,仓库的容积最大?【解析】 解:(1) •/ PO i =2m ,正四棱柱的高 010是正四棱锥的高 PO 1的4倍. /• 0i 0=8m ,•••仓库的容积 V=2>62>2+62^8=312m 3,3(2 )若正四棱锥的侧棱长为 6m , 设 P01=xm ,则 010=4xm , A 101= I - m ,A 1B 1= 下,-m ,则仓库的容积 V=g X(近剤 3" /)2?x+ (近勾36— F ) 2?4X =—^X 3+312X , (O v x3 「「■3v 6),• V = - 26X 2+312 , ( O v x v 6),当 O v x v 2.时,V'> 0, V ( x )单调递增; 当2 :;v x v 6时,V'v 0, V (x )单调递减; 故当x=2 一时,V (x )取最大值; 即当P01=2 . _;m 时,仓库的容积最大.【2016江苏(理)】如图,在平面直角坐标系 xOy 中,已知以M 为圆心的圆M : x 2+y 2- 12x - 14y+60=0 及其上一点 A (2, 4).(1) 设圆N 与x 轴相切,与圆 M 外切,且圆心 N 在直线x=6上,求圆N 的标准方程; (2) 设平行于 0A 的直线I 与圆M 相交于B 、C 两点,且BC=0A ,求直线I 的方程; M 上的两点P 和Q ,使得•:+“「=• i.i,求实数t 的取值【解析】 解:(1) ••• N 在直线x=6上,•设N (6, n ),•••圆 N 与 x 轴相切,•••圆 N 为:(x - 6) 2+ (y - n ) 2=n 2, n >0,又圆 N 与圆 M 外切,圆 M : x 2+y 2 - 12x - 14y+60=0,即圆 M : ((x - 6) 2+ (x - 7) 2=25 , • |7 — n|=|n|+5,解得 n=1 ,•••圆N 的标准方程为(x - 6) 2+ (y - 1) 2=1. (2)由题意得 0A=2 口,k °A =2,设 I : y=2x+b ,则圆心M 到直线l 的距离:解得b=5或b= - 15,•直线l 的方程为:y=2x+5或y=2x - 15.(3)设点T (t , 0)满足:存在圆 则 |BC|=2 •.辭BC=2「,,即(3) IN I ^ = li,即 T 】_T 「 一“ 即「〔Fl Ml ,I I 4=I :' ' I ',又底Ho ,即J (我—2]打牡削,解得t €[2 - 2阿,2+2阿], 对于任意t€[2 - 2阿,2+2届],欲使冠二而,此时,I 丑鬥0, 只需要作直线TA 的平行线,使圆心到直线的距离为必然与圆交于P 、Q 两点,此时|」=|川,即Z — ll.i,因此实数t 的取值范围为t €[2 - 2「, 2+2.「],. 【2016江苏(理)】已知函数 (1 )设 a=2, b=_.2① 求方程f (x ) =2的根; ② 若对于任意x€R ,不等式f (2)若 0v a v 1, b > 1,函数 【解析】解:(1 )设 a=2, f (x ) =a x +b x (a >0, b > 0, a 为,b 为).(2x )湘f ( x )- 6恒成立,求实数 m 的最大值; g (x ) =f (x ) - 2有且只有1个零点,求ab 的值.函数 f (x ) =a x +b x (a >0, b >0, a 鬥,b ^l ).b=-.2①方程f (x ) =2;即: =2,可得 x=0 .②不等式f (2x )初f (x )- 6恒成立,即-二2钥令t=^十丄,t 支.2K不等式化为:t 2- mt+4为在t 呈时,恒成立.可得:△<)或L 22-2inl-4>0即:m 2 - 160或m 詔, m € (-汽 4]. 实数m 的最大值为:4.(2) g (x ) =f (x )- 2=a x +b x - 2,ag'(x ) =ax In a+bx In b=ax|丄nr],0 v a v 1, b > 1 可得一-•,令 h(x ) = 1—则h (x )是递增函数,而,Ina v 0, Inb >0,因此,X0=__-lnbaIna+lnb ,1时,h (x 0) =0,)-6恒成立.湘(_x因此 x € (—a, x o )时,h (x )v 0, a Inb > 0,贝 U g' (x )v 0. x € (x o , + a)时,h (x )> 0, a x lnb >0,则 g'(x ) > 0, 则g (x )在(-a, x 0)递减,(x 0, + a)递增,因此g ( x )的最小值为:g (x 0). ①若 g (x 0)v 0, x v Iog a 2 时,a x > _ "、=2, b x > 0,则 g (x ) > 0,因此 x i v Iog a 2,且 x i v x 0时,g (x i )> 0,因此 g (x )在(x i , x 0)有零点, 则g (x )至少有两个零点,与条件矛盾.(1) 求数列{a n }的通项公式; (2) 对任意正整数 k (1惑000),若T?{1 , 2,…,k },求证:S T v &+1 ; (3) 设 C? U , D? U , S C 爲D ,求证:S C +S CP 壹S D . 【解析】 解:(1 )当 T={2 , 4}时,S T =a 2+a 4=a 2+9a 2=30 , 因此a 2=3,从而a 1= . =1, 故 a n =3n 1,(3 )设 A=?C ( C A D ), B=?D ( C A D ),则 A AB= ?,分析可得 S C =S A +S CAD , S D =S B +S CPD ,贝y S C +S CAD — 2S D =S A — 2S B , 因此原命题的等价于证明 S C^S B ,由条件S C ^S D ,可得S A 爲B ,① 、若 B=?,贝U S B =0 ,故 S A 支S B ,② 、若B 老,由S A ^S B 可得A 老,设A 中最大元素为I , B 中最大元素为 m , 若m 半1 ,则其与S Av a i+1毛m<S B 相矛盾,因为A AB=?,所以I 剂,则I 初+1 ,综上所述,S A 丝S B , 故 S C +S C PD 丝S D .附加题【选做题】本题包括 A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区 域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算 步骤.A .【选修4—1几何证明选讲】②若g (x 0)> 0,函数g (x ) =f (x )— 2有且只有1个零点,g (x )的最小值为g (x o ),可得 g (x o ) =0 ,由g (0) =a 0 . 0 i +b—2=0 , 因此 x 0=0 , 因此 1□电a可得ab=1.=0,F 1,即lna+lnb=0,In (ab ) =0, ab=1 .【2016江苏(理)】记U={1 , 2, 定义 S T =0 ;若 T={t 1, t 2,…,t k }, …,100},对数列{a n } (n€N ) 和U 的子集若 T=?,定义S T = I 一 兀LS T =a 1+a 3+a 66.现设{a n } (n€N )是公比为3的等比数列,且当 T={2 , 4}时,S T =30.+a t+ •• +二+ .例如:T={1 , 3, 66}时,(2)2 k — 1S T OH +a 2+ --a k =1+3+3 + --+3~_12~kv 3 =a k+1 S B<a 1+a 2+-a m =1+3+32+1a»+l2 =2即S A 支S ,【2016江苏(理)】如图,在△ ABC中,/ ABC=90 ° BD丄AC, D为垂足,E为BC的中点,求证:/ EDC= / ABD .因为E为BC的中点,所以DE=CE=2B C,2则:/ EDC= / C,由/ BDC=90 ° 可得 / C+Z DBC=90 ° 由Z ABC=90 ° 可得Z ABD+ Z DBC=90 ° 因此Z ABD= Z C,而Z EDC= Z C, 所以,Z EDC=Z ABD .B.【选修4—2:矩阵与变换】点,求线段AB的长.【2016江苏(理)】已知矩阵A=_ 1,矩阵B的逆矩阵B14,求矩阵AB .0 2【解析】解: _1•/ B 11"I0 2• B= (B••• AB=1 20 -212 i=2 20 12 20!=2,又A=1 20 -2C.【选修4—4: 坐标系与参数方程】【2016江苏(理)】在平面直角坐标系xOy中,已知直线I的参数方程为参数),椭圆C的参数方程为(0为参数),设直线I与椭圆C相交于A , B两(t为• |AB|=—「「,, I 二.【2016 江苏(理)】设 a >0, |x — 1|<—, |y — 2|v 卫,求证:|2x+y — 4|v a .、〒口口 亠 一、cI_ _,1 一巴【 -- ---- ------- -- --- 3可得 |2x+y — 4|=|2 (x — 1) + (y — 2) |则 |2x+y — 4|v a 成立.附加题【必做题】【2016江苏(理)】如图,在平面直角坐标系 xOy 中,已知直线l : x — y — 2=0,抛物线C :2y =2px ( p > 0).(1) 若直线I 过抛物线C 的焦点,求抛物线 C 的方程; (2) 已知抛物线 C 上存在关于直线I 对称的相异两点 P 和Q . ①求证:线段PQ 的中点坐标为(2— p , — p );x - y - 2=0,「.l 与x 轴的交点坐标(2, 0), 0).2s !+ a 33€|x — l|+|y - 2|V =a ,由.\=<os 日L y=2sin6,得2两式平方相加得V3^-y-后Q联立,解得• 「.7【解析】证明:由a >0, |x — 1|v 寻|y - 2|v 冷,Jo代入①并整理得, )-:I.【解析】解:2 •••抛物线C: y =8x.又••• P , Q 关于直线l 对称,.线段PQ 的中点坐标为(2—p ,_ p );②因为Q 中点坐标(2 — p , — p ).(n+1) C一( 3X2X144X3X2X1=7>20_ 4 X 35=0.证明:(2)对任意m €N *,① 当 n=m 时,左边=(m+1) C :=m+1 , 右边=(m+1) C :;;=m+1,等式成立.② 假设n=k (k 湘)时命题成立, 即(m+1)C +( m+2)C +( m+3)JILJl+LC 加+"k Ct-i +( k+1)C, =( m+1)C ::;,f 2 Vi,k _叮 ■ y丫2,kPQ 一yJ -: y2 屮yj I 2p _2p即:(2)证明:①设点 P (X 1 , y i ) , Q (X 2, y 2),贝U :码 2二y 22=Zpx 2又PQ 的中点在直线l 上,2填=2 - p ,2占y]4r 2="死旳+ y © yi 2-Fy 23=8p-4p 2yi +y £= -2p y 1/2=4p,即关于y 2+2py+4p 2_ 4p=0,有两个不相等的实数根,2 2•••△ > 0, (2p ) — 4 (4p — 4p )> 0,【2016江苏(理)】(1)求7C : —4C 卡的值; (2)设 m , n€N *, n >n ,求证:(m+1) C:+(m+2 )C +(m+3 )C+・・+nC | +n ' Ik PQ = — 1,即 y 1+y 2= — 2p ,\17 1当n=k+1时,=(^ft) C ;:;+ (kf2) c£i ,右边=;:」二春左边=(m+1)+ (m+3) ,■二 +(m+2V J1L + (k+1) + (k+2)•••(毗C 豔-(讯)C 常[k+3 -( k — m+1)]=(k+2)c 角, ](nrl-2) ! (k _ ID ) I•'•(讨1) C?:* (k+2)蹲十1 =(m+1) i :一 :,•••左边=右边, ••• n=k+1时,命题也成立,• m , n€N *, ng ( m+1) C 二 + ( m+2) C 血 a+1+ (m+3 )C=+・・+nC 九’n~ 1+ (n+1) C 二=n (m+1 ) C ])L +2 n+2 2016年江苏省高考数学试卷(共14小题,每小题5分,满分70分) 1. 2. 、填空题【2016 江苏(理)】已知集合 A={ - 1 , 2, 3, 6} , B={x| - 2< x V 3},则 A A B= 【2016江苏(理)】复数z=( 1+2i )( 3 - i ),其中i 为虚数单位,则z 的实部是 3. 2【2016江苏(理)】在平面直角坐标系 xOy 中,双曲线专■- =1的焦距是 4. ____________________________________________________________________________ 【2016江苏(理)】已知一组数据4.7,4.8,5.1,5.4, 5.5,则该组数据的方差是_________________ 5. 【2016江苏(理)】函数y= :「 .-的定义域是 _______________7.【2016江苏(理)】将一颗质地均匀的骰子(一种各个面上分别标有 1, 2, 3, 4, 5, 6个点的正方体玩具) 先后抛掷2次,则出现向上的点数之和小于10的概率是 ____________28【2016江苏(理)】已知{a n }是等差数列,S 是其前n 项和,若a 1+a 2 = - 3, S 5=10,则 a 9的值是 __________________ .9. [ 2016江苏(理)】定义在区间[0 , 3冗]上的函数y=sin2x 的图象与y=cosx 的图象的交点 个数是 _____________ . T2肿10.[2016江苏(理)】如图,在平面直角坐标系xOy 中,F 是椭圆—亠 =1 (a >b > 0)a 2b 2的右焦点,直线y=^与椭圆交于B , C 两点,且/ BFC=90 °则该椭圆的离心率2-2y+4>0y 满足伍+y - 2>0 ,则x 2+y 2的取值范围3x-y- 3<Q是 _____________ .13. [2016江苏(理)】如图,在△ ABC 中,D 是BC 的中点,E , F 是AD 上的两个三等分6.【2016江苏(理)】如图是一个算法的流程图,则输出的 a 的值是 ______________(X )=,其中a 灵若((*)=心),则((5a )的值是12. [2016江苏(理)】已知实数X , 是.11. [2016江苏(理)】设f (x )是定义在 R 上且周期为2的函数,在区间[-1 , 1) 上, f点,•⑦「=4,丨=-1,贝U卜.?』的值是14. ____________ 【2016江苏(理)】在锐角三角形值是 . 二、解答题(共6小题,满分90分)47T 15. 【2016 江苏(理)】在厶 ABC 中,AC=6,cosB==,C=一 .5 4 (1 )求AB 的长;TT(2 )求 cos (A - 一)的值.616. 【2016江苏(理)】如图,在直三棱柱 ABC - A 1B 1C 1中,D , E 分别为AB , BC 的中点, 点F 在侧棱B 1B 上,且B 1D 丄A 1F , A 1C 1丄A 1B 1 .求证: (1) 直线 DE // 平面 A 1C 1F ; (2) 平面B 1DE 丄平面A 1C 1F .17. 【2016江苏(理)】现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱 锥P - A 1B 1C 1D 1,下部的形状是正四棱柱 ABCD - A 1B 1C 1D 1 (如图所示),并要求正四棱柱 的高010是正四棱锥的高 PO 1的4倍.(1 )若AB=6m , PO 1=2m ,则仓库的容积是多少?(2)若正四棱锥的侧棱长为 6m ,则当PO 1为多少时,仓库的容积最大?ABC 中,若 sinA=2sinBsinC ,则 tanAtanBtanC 的最小AG2 2 18. 【2016江苏(理)】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M : x +y-12x - 14y+60=0 及其上一点 A (2, 4).(1) 设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2) 设平行于OA的直线I与圆M相交于B、C两点,且BC=OA,求直线I的方程;(3) 设点T( t, 0)满足:存在圆M上的两点P和Q,使得订|+「=Ti,求实数t的取值①求方程f (x) =2的根;②若对于任意x€R,不等式f (2x)湘f ( x)- 6恒成立,求实数m的最大值;(2)若O v a v 1, b> 1,函数g (x) =f (x)- 2有且只有1个零点,求ab的值.20. 【2016江苏(理)】记U={1 , 2,…,100},对数列{a n}(n3*)和U的子集T,若T=?,S T=a1+a3+a66.现设{a n}(n€N )是公比为3的等比数列,且当T={2 , 4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k (1惑O00),若T?{1 , 2,…,k},求证:S T v e k+1 ;(3)设C? U , D? U , S C^S D,求证:S C+S CPD ^2S D.附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A .【选修4—1几何证明选讲】21. 【2016江苏(理)】如图,在△ ABC中,/ ABC=90 ° BD丄AC , D为垂足,E为BC的中点,求证:/ EDC= / ABD .C.【选修4—4:坐标系与参数方程】(a> 0, b > 0, a 力,b 詞).定义S T=0;若T={t 1 , t2, …,t k},定义ST p%+%+ ••+*.例如: T={1 , 3, 66}时,B.【选修4—2:矩阵与变换】r 1222. 【2016江苏(理)】已知矩阵A=,矩阵B的逆矩阵B-1= I 2 ,求矩阵AB .0 2已知函数f( x) =a x+b x23. 【2016江苏(理)】在平面直角坐标系 xOy 中,已知直线I 的参数方程为(2)设 m , n€N , n 身m ,求证:(m+1) C 7L + (m+2) HL (n+1) CI d为参数),椭圆C 的参数方程为.(0为参数),设直线I 与椭圆C 相交于A , B 两点,求线段AB 的长. 24.【2016江苏(理)】 设 a >0,|x - 1|^,|y -2心,求证:|2x+y - 4|< a . 附加题【必做题】25.【2016江苏(理)】 2C : y =2px ( p > 0).(1)若直线I 过抛物线 如图,在平面直角坐标系 xOy 中,已知直线I : x - y - 2=0 ,抛物线 C 的焦点,求抛物线 C 的方程;(2)已知抛物线C 上存在关于直线I 对称的相异两点①求证:线段PQ 的中点坐标为(2- p , - p );(1)求 7C : -4C(tC ' +(m+3 )C;+・・+nC r - n - I【解析】解:(1)•••△ ABC中,cosB=」,。
2016江苏卷数学理科
2016年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ一、 填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A ={-1,2,3,6},B ={x|-2<x<3},那么A ∩B =________.2. 若复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________.3. 在平面直角坐标系xOy 中,双曲线x 27-y 23=1的焦距是________.4. 已知一组数据4.7,4.8,5.1,5.4,5.5,那么该组数据的方差是________. 5. 函数y =3-2x -x 2的定义域是________.6. 如图所示的算法流程图,输出的a 的值是________.(第6题)7. 将一枚质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.8. 已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________. 9. 定义在区间[0,3π]上的函数y =sin 2x 的图象与y =cos x 的图象的交点个数是________.10. 如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a>b>0)的右焦点,若直线y=b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.(第10题)11. 设f(x)是定义在R 上且周期为2的函数,在区间[-1,1)上,f(x)=⎩⎪⎨⎪⎧x +a ,-1≤x<0,⎪⎪⎪⎪25-x ,0≤x<1,其中a ∈R .若f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫92,则f(5a)的值是________.12. 已知实数x ,y 满足⎩⎨⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,那么x 2+y 2的取值范围是________.13. 如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,若BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值是________.(第13题)14. 在锐角三角形ABC 中,若sin A =2sin Bsin C ,则tan Atan Btan C 的最小值是________.二、 解答题:本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,已知AC =6,cos B =45,C =π4.(1) 求边AB 的长; (2) 求cos ⎝⎛⎭⎫A -π6的值.\16. (本小题满分14分)如图,在直三棱柱ABC-A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.(1) 求证:直线DE ∥平面A 1C 1F ; (2) 求证:平面B 1DE ⊥平面A 1C 1F.(第16题)17. (本小题满分14分)现需要设计一个仓库,它由上下两部分组成,如图,上部分的形状是正四棱锥PA 1B 1C 1D 1,下部分的形状是正四棱柱ABCDA 1B 1C 1D 1,并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1) 若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2) 若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大?(第17题)18. (本小题满分16分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A(2,4).(1) 设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2) 设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程;(3) 设点T(t ,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围.(第18题)19. (本小题满分16分)已知函数f(x)=a x +b x (a>0,b>0,a ≠1,b ≠1). (1) 设a =2,b =12.①求方程f(x)=2的根;②若对于任意x ∈R ,不等式f(2x)≥mf(x)-6恒成立,求实数m 的最大值. (2) 若0<a<1,b>1,函数g(x)=f(x)-2有且只有1个零点,求ab 的值.20. (本小题满分16分)记U ={1,2,…,100}.对数列{a n }(n ∈N *)和U 的子集T ,若T =定义S T =0;若T ={t 1,t 2,…,t k },定义S T =at 1+at 2+…+at k .例如:T ={1,3,66}时,S T =a 1+a 3+a 66.现设{a n }(n ∈N *)是公比为3的等比数列,且当T ={2,4}时,S T =30.(1) 求数列{a n }的通项公式;(2) 对任意正整数k(1≤k ≤100),若T {1,2,…,k},求证:S T <a k +1; (3) 设S C ≥S D ,求证:S C +S C ∩D ≥2S D .数学Ⅱ(附加题)21. 【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. 选修41:几何证明选讲 如图,在△ABC 中,已知∠ABC =90°,BD ⊥AC ,D 为垂足,E 是BC 的中点,求证:∠EDC =∠ABD.(第21-A 题)B. 选修42:矩阵与变换已知矩阵A =⎣⎢⎡⎦⎥⎤120-2,矩阵B 的逆矩阵B -1=⎣⎢⎢⎡⎦⎥⎥⎤1-1202,求矩阵AB .C. 选修44:坐标系与参数方程在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1+12t ,y =32t(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.D. 选修45:不等式选讲设a >0,|x -1|<a 3,|y -2|<a3,求证:|2x +y -4|<a.【必做题】第22、23题,每小题10分,共20分,解答时应写出必要的文字说明,证明过程或演算步骤.22. (本小题满分10分)如图,在平面直角坐标系xOy中,已知直线l:x-y-2=0,抛物线C:y2=2px(p>0).(1) 若直线l过抛物线C的焦点,求抛物线C的方程;(2) 已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2-p,-p);②求p的取值范围.(第22题)23. (本小题满分10分)(1) 求7C36-4C47的值;(2) 设m,n∈N*,n≥m,求证:(m+1)C m m+(m+2)C m m+1+(m+3)C m m+2+…+nC m n-1+(n +1)C m n=(m+1)C m+2.n+22016年普通高等学校招生全国统一考试(江苏卷)1. {-1,2} 【解析】由题意知A ∩B ={-1,2}.2. 5 【解析】由题意知z =5+5i ,所以z 的实部是5.3. 210 【解析】由题意知c =a 2+b 2=7+3=10,所以焦距为2c =210.4. 0.1 【解析】因为x =15(4.7+4.8+5.1+5.4+5.5)=5.1,所以s 2=15(0.42+0.32+02+0.32+0.42)=0.1.5. [-3,1] 【解析】由题意知3-2x -x 2≥0,解得-3≤x ≤1,所以原函数的定义域为[-3,1].6. 9 【解析】由流程图可知,在循环的过程中,a 与b 的值依次为1,9;5,7;9,5.因为9>5,所以输出的a =9.7. 56 【解析】由题意知,先后抛掷骰子2次,共有36个基本事件.其中点数之和大于等于10的基本事件有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6个,则点数之和小于10的基本事件共有30个.故所求的概率为3036=56.8. 20 【解析】设等差数列{a n }的公差为d ,则由题意知a 1+(a 1+d)2=-3,5a 1+10d =10,解得a 1=-4,d =3,所以a 9=-4+8×3=20.9. 7 【解析】如图,在同一平面直角坐标系中作出函数y =sin 2x 与y =cos x 在区间[0,3π]上的图象,可知共有7个交点.(第9题)10.63【解析】由题意知焦点F 的坐标为(c ,0),联立解得x =±32a ,故点B 的坐标为⎝⎛⎭⎫-3a 2,b 2,点C 的坐标为⎝⎛⎭⎫3a 2,b 2. 因为∠BFC =90°,所以BF →·CF →=0.又BF →=⎝⎛⎭⎫c +3a 2,-b 2,CF →=⎝⎛⎭⎫c -3a 2,-b 2,所以c 2-34a 2+14b 2=0.因为b 2=a 2-c 2,所以34c 2=12a 2,即c 2a 2=23,所以e =ca =23=63.11. -25 【解析】由题意知f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-12=-12+a ,f ⎝⎛⎭⎫92=f ⎝⎛⎭⎫12=⎪⎪⎪⎪25-12=110. 因为f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫92,所以-12+a =110,解得a =35, 所以f(5a)=f(3)=f(-1)=-1+a =-1+35=-25.12. ⎣⎡⎦⎤45,13 【解析】作出实数x ,y 满足的可行域如图中阴影部分所示,则x 2+y 2即为可行域内的点(x ,y)到原点O 的距离的平方.由图可知点A 到原点O 的距离最近,点B到原点O 的距离最远.点A 到原点O 的距离即原点O 到直线2x +y -2=0的距离d =|0-2|12+22=255,则(x 2+y 2)min =45;点B 为直线x -2y +4=0与3x -y -3=0的交点,即点B 的坐标为(2,3),则(x 2+y 2)max =13.综上,x 2+y 2的取值范围是⎣⎡⎦⎤45,13.(第12题)13. 78 【解析】方法一:设DF →=a ,DB →=b ,则DC →=-b ,DE →=2a ,DA →=3a ,所以BA→=DA →-DB →=3a -b ,CA →=DA →-DC →=3a +b ,BE →=DE →-DB →=2a -b ,CE →=DE →-DC →=2a +b ,BF →=DF →-DB →=a -b ,CF →=DF →-DC →=a +b ,所以BA →·CA →=9a 2-b 2,BF →·CF →=a 2-b 2,BE →·CE →=4a 2-b 2.又因为BA →·CA →=4,BF →·CF →=-1,所以9a 2-b 2=4,a 2-b 2=-1,解得a 2=58,b 2=138,所以BE →·CE →=4a 2-b 2=4×58-138=78. 方法二:以D 为坐标原点,BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立平面直角坐标系,设点B 的坐标为(-a ,0),点C 的坐标为(a ,0),点A 的坐标为(b ,c),所以BA →=(b +a ,c),CA →=(b -a ,c),BF →=⎝⎛⎭⎫b 3+a ,c 3,CF →=⎝⎛⎭⎫b 3-a ,c 3. 因为BA →·CA →=b 2-a 2+c 2=4,BF →·CF →=b 29-a 2+c 29=-1,所以b 2+c 2=458,a 2=138.又因为BE →=BD →+DE →=⎝⎛⎭⎫23b +a ,2c 3,CE →=CD →+DE →=(23b -a ,2c 3), 所以BE →·CE →=49b 2-a 2+4c 29=49×458-138=78.14. 8 【解析】因为sin A =2sin Bsin C ,所以sin(B +C)=2sin Bsin C ,所以sin Bcos C +cos Bsin C =2sin Bsin C ,等式两边同时除以cos Bcos C ,得tan B +tan C =2tan Btan C. 又因为tan A =-tan(B +C)=tan B +tan Ctan Btan C -1,所以tan Atan Btan C -tan A =2tan Btan C ,即tan Btan C(tan A -2)=tan A.因为A ,B ,C 为锐角,所以tan A ,tan B ,tan C>0,且tan A>2, 所以tan Btan C =tan A tan A -2,所以原式=tan 2Atan A -2.令tan A -2=t(t>0),则tan 2A tan A -2=(t +2)2t =t 2+4t +4t =t +4t +4≥8,当且仅当t =2,即tan A =4时取等号. 故tan Atan Btan C 的最小值为8.15. (1) 因为cos B =45,0<B<π,所以sin B =1-cos 2B =1-⎝⎛⎭⎫452=35.由正弦定理知AC sin B =AB sin C ,所以AB =AC·sin Csin B =6×2235=5 2.(2) 在△ABC 中,因为A +B +C =π,所以A =π-(B +C), 所以cos A =-cos(B +C)=-cos ⎝⎛⎭⎫B +π4=-cos Bcos π4+sin Bsin π4.又cos B =45,sin B =35,故cos A =-45×22+35×22=-210.因为0<A<π,所以sin A =1-cos 2A =7210,所以cos ⎝⎛⎫A -π6=cos Acos π6+sin Asin π6=-210×32+7210×12=72-620.16. (1) 在直三棱柱ABC-A 1B 1C 1中,A 1C 1∥AC.在△ABC 中,因为D ,E 分别为AB ,BC 的中点, 所以DE ∥AC ,所以DE ∥A 1C 1. 又因为DE平面A 1C 1F ,A 1C 1平面A 1C 1F ,所以直线DE ∥平面A 1C 1F.(2) 在直三棱柱ABC-A 1B 1C 1中,A 1A ⊥平面A 1B 1C 1. 因为A 1C 1平面A 1B 1C 1,所以A 1A ⊥A 1C 1.又因为A 1C 1⊥A 1B 1,A 1A平面ABB 1A 1,A 1B 1平面ABB 1A 1,A 1A ∩A 1B 1=A 1,所以A 1C 1⊥平面ABB 1A 1. 因为B 1D平面ABB 1A 1,所以A 1C 1⊥B 1D.又因为B 1D ⊥A 1F ,A 1C 1平面A 1C 1F ,A 1F平面A 1C 1F ,A 1C 1∩A 1F =A 1,所以B 1D ⊥平面A 1C 1F. 因为直线B 1D平面B 1DE ,所以平面B 1DE ⊥平面A 1C 1F.17. (1) 由PO 1=2 m ,知O 1O =4PO 1=8 m ,因为A 1B 1=AB =6 m , 所以正四棱锥PA 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3), 正四棱柱ABCDA 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3), 所以仓库的容积V =V 锥+V 柱=24+288=312(m 3). (2) 设A 1B 1=a m ,PO 1=h m ,则0<h<6,O 1O =4h m.如图,连接O 1B 1.在Rt △PO 1B 1中,因为O 1B 21+PO 21=PB 21,所以⎝⎛⎭⎫2a 22+h 2=36,即a 2=2(36-h 2), 所以仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h =263(36h -h 3),0<h<6,所以V′=263(36-3h 2)=26(12-h 2).令V′=0,得h =23或h =-23(舍去). 当0<h<23时,V ′>0,V 在(0,23)上是单调增函数; 当23<h<6时,V ′<0,V 在(23,6)上是单调减函数. 故当h =23时,V 取得极大值,也是最大值. 所以,当PO 1=2 3 m 时,仓库的容积最大.(第17题)18. 圆M 的标准方程为(x -6)2+(y -7)2=25, 所以圆心M(6,7),半径为5.(1) 由圆心N 在直线x =6上,可设N(6,y 0). 因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7,所以圆N 的 半径为y 0,从而7-y 0=5+y 0,解得y 0=1, 所以圆N 的标准方程为(x -6)2+(y -1)2=1. (2) 因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m ,即2x -y +m =0, 则圆心M 到直线l 的距离d =|2×6-7+m|5=|m +5|5.(第18题)如图,因为BC =OA =22+42=25,又MC 2=d 2+⎝⎛⎭⎫BC 22,所以25=(m +5)25+5, 解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.(3) 设P(x 1,y 1),Q(x 2,y 2),因为A(2,4),T(t ,0),TA →+TP →=TQ →,所以因为点Q 在圆M 上,所以(x 2-6)2+(y 2-7)2=25. ② 将①代入②,得(x 1-t -4)2+(y 1-3)2=25,所以点P(x 1,y 1)既在圆M 上,又在圆[x -(t +4)]2+(y -3)2=25上, 从而圆(x -6)2+(y -7)2=25与圆[x -(t +4)]2+(y -3)2=25有公共点, 所以5-5≤[(t +4)-6]2+(3-7)2≤5+5, 解得2-221≤t ≤2+221.所以实数t 的取值范围是[2-221,2+221 ]. 19. (1) 因为a =2,b =12,所以f(x)=2x +2-x .①方程f(x)=2,则2x +2-x =2,即(2x )2-2×2x +1=0, 所以(2x -1)2=0,所以2x =1,解得x =0.②由题意知f(2x)=22x +2-2x =(2x +2-x )2-2=(f(x))2-2, 因为f(2x)≥mf(x)-6对于x ∈R 恒成立,且f(x)>0,所以m ≤(f (x ))2+4f (x )对于x ∈R 恒成立.又(f (x ))2+4f (x )=f(x)+4f (x )≥2f (x )·4f (x )=4,且(f (0))2+4f (0)=4,所以m ≤4,故实数m 的最大值为4.(2) 因为函数g(x)=f(x)-2只有1个零点,又g(0)=f(0)-2=a 0+b 0-2=0,所以0是函数g(x)的唯一零点. 因为g′(x)=a x ln a +b x ln b ,又由0<a<1,b>1,知ln a<0,ln b>0,所以g′(x)=0有唯一解x 0=log b a⎝⎛⎭⎫-ln aln b .令h(x)=g′(x), 则h′(x)=(a x ln a +b x ln b )′=a x (ln a)2+b x (ln b)2,从而对任意x ∈R ,h ′(x)>0,所以g′(x)=h(x)是(-∞,+∞)上的单调增函数, 所以当x ∈(-∞,x 0)时,g ′(x)<g′(x 0)=0;当x ∈(x 0,+∞)时,g ′(x)>g ′(x 0)=0.所以函数g(x)在(-∞,x 0)上是单调减函数,在(x 0,+∞)上是单调增函数. 下证x 0=0.若x 0<0,则x 0<x 02<0,所以g ⎝⎛⎭⎫x 02<g(0)=0.又g(log a 2)=alog a 2+blog a 2-2>alog a 2-2=0,且函数g(x)在以x 02和log a 2为端点的闭区间上的图象不间断,所以在x 02和log a 2之间存在g(x)的零点,记为x 1.因为0<a<1,所以log a 2<0.又x 02<0,所以x 1<0,与“0是函数g(x)的唯一零点”矛盾. 若x 0>0,同理可得,在x 02和log b 2之间存在g(x)的非0的零点,矛盾.综上,x 0=0. 所以-ln aln b=1,故ln a +ln b =0,所以ab =1. 20. (1) 由已知得a n =a 1·3n -1,n ∈N *.所以当T ={2,4}时,S T =a 2+a 4=3a 1+27a 1=30a 1. 又S T =30,故30a 1=30,即a 1=1,所以数列{a n }的通项公式为a n =3n -1,n ∈N *. (2) 因为T{1,2,…,k},a n =3n -1>0,n ∈N *,所以S T ≤a 1+a 2+…+a k =1+3+…+3k -1=12(3k -1)<3k ,所以S T <a k +1.(3) 下面分三种情况证明.①若D 是C 的子集,则S C +S C ∩D =S C +S D ≥S D +S D =2S D . ②若C 是D 的子集,则S C +S C ∩D =S C +S C =2S C ≥2S D . ③若D 不是C 的子集,且C 不是D 的子集. 令E =C ∩∁U D ,F =D ∩∁U C ,则E ≠,F ≠,E ∩F =,所以S C =S E +S C ∩D ,S D =S F +S C ∩D ,又由S C ≥S D ,得S E ≥S F . 设k 为E 中的最大数,l 为F 中的最大数,则k ≥1,l ≥1,k ≠l.由(2)知,S E <a k +1,所以3l -1=a l ≤S F ≤S E <a k +1=3k ,所以l -1<k ,即l ≤k. 又k ≠l ,故l ≤k -1,所以S F ≤a 1+a 2+…+a l =1+3+…+3l -1=3l -12≤3k -1-12=a k -12≤S E -12,故S E ≥2S F +1,所以S C -S C ∩D ≥2(S D -S C ∩D )+1,即S C +S C ∩D ≥2S D +1.综合①②③得,S C +S C ∩D ≥2S D . 21. A. 在△ADB 和△ABC 中,因为∠ABC =90°,BD ⊥AC ,∠A 为公共角, 所以△ADB ∽△ABC ,所以∠ABD =∠C. 在Rt △BDC 中,因为E 是BC 的中点, 所以ED =EC ,从而∠EDC =∠C , 所以∠EDC =∠ABD.C. 椭圆C 的普通方程为x 2+y 24=1.将直线l 的参数方程代入x 2+y 24=1,得⎝⎛⎭⎫1+12t 2+⎝⎛⎭⎫32t 24=1,即7t 2+16t =0,解得t 1=0,t 2=-167, 所以AB =|t 1-t 2|=167. D. 因为|x -1|<a 3,|y -2|<a3,所以|2x +y -4|=|2(x -1)+(y -2)|≤2|x -1|+|y -2|<2×a 3+a3=a.22. (1) 抛物线C :y 2=2px(p>0)的焦点为⎝⎛⎭⎫p 2,0,由点⎝⎛⎭⎫p 2,0在直线l :x -y -2=0上,得p2-0-2=0,即p =4, 所以抛物线C 的方程为y 2=8x.(2) 设P(x 1,y 1),Q(x 2,y 2),线段PQ 的中点M(x 0,y 0),因为点P 和Q 关于直线l 对称,所以直线l 垂直平分线段PQ , 所以直线PQ 的斜率为-1,则可设其方程为y =-x +b. ①由错误!消去x ,得y 2+2py -2pb =0. (*)因为P 和Q 是抛物线C 上的相异两点,所以y 1≠y 2, 所以Δ=(2p)2-4×(-2pb)>0,化简得p +2b>0. 方程(*)的两根为y 1,2=-p±p 2+2pb ,从而y 0=y 1+y 22=-p. 因为点M(x 0,y 0)在直线l 上,所以x 0=2-p , 所以线段PQ 的中点坐标为(2-p ,-p). ②因为M(2-p ,-p)在直线y =-x +b 上, 所以-p =-(2-p)+b ,即b =2-2p.由①知p +2b>0,所以p +2(2-2p)>0,所以p<43,所以p 的取值范围是⎝⎛⎭⎫0,43. 23. (1) 7C 36-4C 47=7×6×5×43×2×1-4×7×6×5×44×3×2×1=0. (2) 当n =m 时,结论显然成立. 当n>m 时,(k +1)C m k =(k +1)·k !m !·(k -m )!=(m +1)·(k +1)!(m +1)!·[(k +1)-(m +1)]!=(m +1)C m +1k +1,k =m +1,m +2,…,n.又因为C m +1k +1+C m +2k +1=C m +2k +2,所以(k +1)C m k =(m +1)(C m +2k +2-C m +2k +1),k =m +1,m +2,…,n ,所以(m +1)C m m +(m +2)C m m +1+(m +3)C m m +2+…+(n +1)C m n=(m +1)C m m +[(m +2)C m m +1+(m +3)C m m +2+…+(n +1)C mn ]=(m +1)C m +2m +2+(m +1)[(C m +2m +3-C m +2m +2)+(C m +2m +4-C m +2m +3)+…+(C m +2n +2-C m +2n +1)]=(m +1)C m +2n +2.。
2016年高考数学江苏省(理科)试题及答案【解析版】
2016年江苏省高考数学试卷一、填空题(共14小题,每小题5分,满分70分)【2016江苏(理)】已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B=.【答案】{﹣1,2}【解析】解:∵集合A={﹣1,2,3,6},B={x|﹣2<x<3},∴A∩B={﹣1,2},【2016江苏(理)】复数z=(1+2i)(3﹣i),其中i为虚数单位,则z的实部是.【答案】5【解析】解:z=(1+2i)(3﹣i)=5+5i,则z的实部是5,【2016江苏(理)】在平面直角坐标系xOy中,双曲线﹣=1的焦距是.【答案】2【解析】解:双曲线﹣=1中,a=,b=,∴c==,∴双曲线﹣=1的焦距是2.【2016江苏(理)】已知一组数据4。
7,4.8,5。
1,5。
4,5.5,则该组数据的方差是.【答案】0。
1【解析】解:∵数据4。
7,4。
8,5.1,5。
4,5。
5的平均数为:=(4.7+4.8+5.1+5.4+5.5)=5。
1,∴该组数据的方差:S2=[(4.7﹣5。
1)2+(4。
8﹣5。
1)2+(5。
1﹣5。
1)2+(5.4﹣5。
1)2+(5.5﹣5。
1)2]=0。
1.【2016江苏(理)】函数y=的定义域是.【答案】[﹣3,1]【解析】解:由3﹣2x﹣x2≥0得:x2+2x﹣3≤0,解得:x∈[﹣3,1],【2016江苏(理)】如图是一个算法的流程图,则输出的a的值是.【答案】9【解析】解:当a=1,b=9时,不满足a>b,故a=5,b=7,当a=5,b=7时,不满足a>b,故a=9,b=5当a=9,b=5时,满足a>b,故输出的a值为9,【2016江苏(理)】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.【答案】【解析】解:将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,基本事件总数为n=6×6=36,出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,出现向上的点数之和不小于10包含的基本事件有:(4,6),(6,4),(5,5),(5,6),(6,5),(6,6),共6个,∴出现向上的点数之和小于10的概率:p=1﹣=.【2016江苏(理)】已知{a n}是等差数列,S n是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是.【答案】20【解析】解:∵{a n}是等差数列,S n是其前n项和,a1+a22=﹣3,S5=10,∴,解得a1=﹣4,d=3,∴a9=﹣4+8×3=20.【2016江苏(理)】定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.【答案】7【解析】解:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.【2016江苏(理)】如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.【答案】【解析】解:设右焦点F(c,0),将y=代入椭圆方程可得x=±a=±a,可得B(﹣a,),C(a,),由∠BFC=90°,可得k BF•k CF=﹣1,即有•=﹣1,化简为b2=3a2﹣4c2,由b2=a2﹣c2,即有3c2=2a2,由e=,可得e2==,可得e=,【2016江苏(理)】设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是.【答案】﹣【解析】解:f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,∴f(﹣)=f(﹣)=﹣+a,f()=f()=|﹣|=,∴a=,∴f(5a)=f(3)=f(﹣1)=﹣1+=﹣,【2016江苏(理)】已知实数x,y满足,则x2+y2的取值范围是.【答案】[,13]【解析】解:作出不等式组对应的平面区域,设z=x2+y2,则z的几何意义是区域内的点到原点距离的平方,由图象知A到原点的距离最大,点O到直线BC:2x+y﹣2=0的距离最小,由得,即A(2,3),此时z=22+32=4+9=13,点O到直线BC:2x+y﹣2=0的距离d==,则z=d2=()2=,故z的取值范围是[,13],故答案为:[,13].【2016江苏(理)】如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.【答案】【解析】解:∵D是BC的中点,E,F是AD上的两个三等分点,∴=+,=﹣+,=+3,=﹣+3,∴•=2﹣2=﹣1,•=92﹣2=4,∴2=,2=,又∵=+2,=﹣+2,∴•=42﹣2=,【2016江苏(理)】在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.【答案】8【解析】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C均为锐角.二、解答题(共6小题,满分90分)【2016江苏(理)】在△ABC中,AC=6,cosB=,C=.(1)求AB的长; (2)求cos(A﹣)的值.【解析】解:(1)∵△ABC中,cosB=,∴sinB=,∵,∴AB==5;(2)cosA=﹣cos(C+B)=sinBsinC﹣cosBcosC=﹣.∵A为三角形的内角,∴sinA=,∴cos(A﹣)=cosA+sinA=.【2016江苏(理)】如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.【解析】解:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE∥AC,∵ABC﹣A1B1C1为棱柱,∴AC∥A1C1,∴DE∥A1C1,∵A1C1⊂平面A1C1F,且DE⊄平面A1C1F,∴DE∥A1C1F;(2)∵ABC﹣A1B1C1为直棱柱,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE∥A1C1,∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE,∴A1F⊥平面B1DE,又∵A1F⊂平面A1C1F,∴平面B1DE⊥平面A1C1F.【2016江苏(理)】现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P ﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?【解析】解:(1)∵PO1=2m,正四棱柱的高O1O是正四棱锥的高PO1的4倍.∴O1O=8m,∴仓库的容积V=×62×2+62×8=312m3,(2)若正四棱锥的侧棱长为6m,设PO1=xm,则O1O=4xm,A1O1=m,A1B1=m,则仓库的容积V=×(•)2•x+(•)2•4x=x3+312x,(0<x<6),∴V′=﹣26x2+312,(0<x<6),当0<x<2时,V′>0,V(x)单调递增;当2<x<6时,V′<0,V(x)单调递减;故当x=2时,V(x)取最大值;即当PO1=2m时,仓库的容积最大.【2016江苏(理)】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x ﹣14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.【解析】解:(1)∵N在直线x=6上,∴设N(6,n),∵圆N与x轴相切,∴圆N为:(x﹣6)2+(y﹣n)2=n2,n>0,又圆N与圆M外切,圆M:x2+y2﹣12x﹣14y+60=0,即圆M:((x﹣6)2+(x﹣7)2=25,∴|7﹣n|=|n|+5,解得n=1,∴圆N的标准方程为(x﹣6)2+(y﹣1)2=1.(2)由题意得OA=2,k OA=2,设l:y=2x+b,则圆心M到直线l的距离:d==,则|BC|=2=2,BC=2,即2=2,解得b=5或b=﹣15,∴直线l的方程为:y=2x+5或y=2x﹣15.(3)=,即,即||=||,||=,又||≤10,即≤10,解得t∈[2﹣2,2+2],对于任意t∈[2﹣2,2+2],欲使,此时,||≤10,只需要作直线TA的平行线,使圆心到直线的距离为,必然与圆交于P、Q两点,此时||=||,即,因此实数t的取值范围为t∈[2﹣2,2+2],.【2016江苏(理)】已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.【解析】解:函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①方程f(x)=2;即:=2,可得x=0.②不等式f(2x)≥mf(x)﹣6恒成立,即≥m()﹣6恒成立.令t=,t≥2.不等式化为:t2﹣mt+4≥0在t≥2时,恒成立.可得:△≤0或即:m2﹣16≤0或m≤4,∴m∈(﹣∞,4].实数m的最大值为:4.(2)g(x)=f(x)﹣2=a x+b x﹣2,g′(x)=axlna+bxlnb=ax[+],0<a<1,b>1可得,令h(x)=+,则h(x)是递增函数,而,lna<0,lnb>0,因此,x0=时,h(x0)=0,因此x∈(﹣∞,x0)时,h(x)<0,a x lnb>0,则g′(x)<0.x∈(x0,+∞)时,h(x)>0,a x lnb>0,则g′(x)>0,则g(x)在(﹣∞,x0)递减,(x0,+∞)递增,因此g(x)的最小值为:g(x0).①若g(x0)<0,x<log a2时,a x>=2,b x>0,则g(x)>0,因此x1<log a2,且x1<x0时,g(x1)>0,因此g(x)在(x1,x0)有零点,则g(x)至少有两个零点,与条件矛盾.②若g(x0)>0,函数g(x)=f(x)﹣2有且只有1个零点,g(x)的最小值为g(x0),可得g(x0)=0,由g(0)=a0+b0﹣2=0,因此x0=0,因此=0,﹣=1,即lna+lnb=0,ln(ab)=0,则ab=1.可得ab=1.【2016江苏(理)】记U={1,2,…,100},对数列{a n}(n∈N*)和U的子集T,若T=∅,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.【解析】解:(1)当T={2,4}时,S T=a2+a4=a2+9a2=30,因此a2=3,从而a1==1,故a n=3n﹣1,(2)S T≤a1+a2+…a k=1+3+32+…+3k﹣1=<3k=a k+1,(3)设A=∁C(C∩D),B=∁D(C∩D),则A∩B=∅,分析可得S C=S A+S C∩D,S D=S B+S C∩D,则S C+S C∩D﹣2S D=S A﹣2S B,因此原命题的等价于证明S C≥2S B,由条件S C≥S D,可得S A≥S B,①、若B=∅,则S B=0,故S A≥2S B,②、若B≠∅,由S A≥S B可得A≠∅,设A中最大元素为l,B中最大元素为m,若m≥l+1,则其与S A<a i+1≤a m≤S B相矛盾,因为A∩B=∅,所以l≠m,则l≥m+1,S B≤a1+a2+…a m=1+3+32+…+3m﹣1=<=,即S A≥2S B,综上所述,S A≥2S B,故S C+S C∩D≥2S D.附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤。
2016年高考真题——数学(江苏卷) Word版含解析
【说明】: 【参考版答案】非官方版正式答案,有可能存在少量错误,仅供参考使用。
2016年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式: 样本数据12,,,n x x x 的方差()2211n i i s x x n ==-∑,其中11ni i x x n ==∑.棱柱的体积V Sh =,其中S 是棱柱的底面积,h 是高.棱锥的体积13V Sh =,其中S 是棱锥的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上.. 1. 已知集合{}1,2,3,6A =-,{}|23B x x =-<<,则A B = .【答案】{}1,2-;【解析】由交集的定义可得{}1,2AB =-.2. 复数()()12i 3i z =+-,其中i 为虚数单位,则z 的实部是 . 【答案】5;【解析】由复数乘法可得55i z =+,则则z 的实部是5.3. 在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是 .【答案】【解析】c,因此焦距为2c =.4. 已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 . 【答案】0.1; 【解析】 5.1x =,()22222210.40.300.30.40.15s =++++=. 5.函数y 的定义域是 . 【答案】[]3,1-;【解析】2320x x --≥,解得31x -≤≤,因此定义域为[]3,1-.6. 如图是一个算法的流程图,则输出a 的值是 .【答案】9;【解析】,a b 的变化如下表:则输出时9a =.7. 将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 . 【答案】56; 【解析】将先后两次点数记为(),x y ,则共有6636⨯=个等可能基本事件,其中点数之和大于等于10有()()()()()()4,6,5,5,5,6,6,4,6,5,6,6六种,则点数之和小于10共有30种,概率为305366=. 8. 已知{}n a 是等差数列,n S 是其前n 项和.若2123a a +=-,510S =,则9a 的值是 . 【答案】20;【解析】设公差为d ,则由题意可得()2113a a d ++=-,151010a d +=,解得14a =-,3d =,则948320a =-+⨯=.9. 定义在区间[]0,3π上的函数s i n 2y x =的图象与c o s y x =的图象的交点个数是 . 【答案】7;【解析】画出函数图象草图,共7个交点.10. 如图,在平面直角坐标系xOy 中,F 是椭圆()222210x y a b a b +=>>的右焦点,直线2b y =与椭圆交于,B C 两点,且90BFC ∠=︒,则该椭圆的离心率是.【解析】由题意得(),0F c ,直线2by =与椭圆方程联立可得2b B ⎛⎫ ⎪ ⎪⎝⎭,2b C ⎫⎪⎪⎝⎭, 由90BFC ∠=︒可得0BF CF ⋅=,2b BFc ⎛⎫=+- ⎪ ⎪⎝⎭,2b CF c ⎛⎫=- ⎪ ⎪⎝⎭, 则22231044c a b -+=,由222b a c =-可得223142c a =,则c e a ==.11. 设()f x 是定义在R 上且周期为2的函数,在区间[)1,1-上(),10,2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中a ∈R ,若5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则()5f a 的值是 .【答案】25-;【解析】由题意得511222f f a ⎛⎫⎛⎫-=-=-+ ⎪ ⎪⎝⎭⎝⎭,91211225210f f ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭, 由5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭可得11210a -+=,则35a =,则()()()325311155f a f f a ==-=-+=-+=-. 12. 已知实数,x y 满足240,220,330,x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩ 则22x y +的取值范围是 .【答案】4,135⎡⎤⎢⎥⎣⎦;【解析】在平面直角坐标系中画出可行域如下22x y +为可行域内的点到原点距离的平方.可以看出图中A 点距离原点最近,此时距离为原点A 到直线220x y +-=的距离, d ==()22min45x y +=, 图中B 点距离原点最远,B 点为240x y -+=与330x y --=交点,则()2,3B , 则()22max13x y +=.13. 如图,在ABC △中,D 是BC 的中点,,E F 是AD 上两个三等分点,4BA CA ⋅=,1BF CF ⋅=-,则BE CE ⋅的值是 .B【答案】78; 【解析】令DF a =,DB b =,则DC b =-,2DE a =,3DA a =,则3BA a b =-,3CA a b =+,2BE a b =-,2CE a b =+,BF a b =-,CF a b =+, 则229BA CA a b ⋅=-,22BF CF a b ⋅=-,224BE CE a b ⋅=-,由4BA CA ⋅=,1BF CF ⋅=-可得2294a b -=,221a b -=-,因此22513,88a b ==,因此22451374888BE CE a b ⨯⋅=-=-=. 14. 在锐角三角形ABC 中,sin 2sin sin A B C =,则t a n t a n t a n AB C 的最小值是 .【答案】8;【解析】由()()sin sin πsin sin cos cos sin A A B C B C B C =-=+=+,sin 2sin sin A B C =,可得sin cos cos sin 2sin sin B C B C B C +=(*), 由三角形ABC 为锐角三角形,则cos 0,cos 0B C >>,在(*)式两侧同时除以cos cos B C 可得tan tan 2tan tan B C B C +=, 又()()tan tan tan tan πtan 1tan tan B CA ABC B C+=--=-+=--(#),则tan tan tan tan tan tan tan 1tan tan B CA B C B C B C+=-⨯-,由tan tan 2tan tan B C B C +=可得()22tan tan tan tan tan 1tan tan B C A B C B C=--,令tan tan B C t =,由,,A B C 为锐角可得tan 0,tan 0,tan 0A B C >>>, 由(#)得1tan tan 0B C -<,解得1t > 2222tan tan tan 111t A B C t t t=-=---,221111124t t t ⎛⎫-=-- ⎪⎝⎭,由1t >则211104t t >-≥-,因此tan tan tan A B C 最小值为8, 当且仅当2t =时取到等号,此时tan tan 4B C +=,tan tan 2B C =,解得tan 224B C A ===(或tan ,tan B C 互换),此时,,A B C 均为锐角.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤. 15. (本小题满分14分)在ABC △中,6AC =,4cos 5B =,π4C =. ⑴ 求AB 的长; ⑵ 求πcos 6A ⎛⎫- ⎪⎝⎭的值.【答案】⑴. 【解析】⑴ 4cos 5B =,B 为三角形的内角 3sin 5B ∴=sinC sin AB ACB =635=,即:AB = ⑵ ()cos cos sin sin cos cos A C B B C B C =-+=-cos A ∴= 又A 为三角形的内角sin A ∴=π1cos sin 62A A A ⎛⎫∴-=+= ⎪⎝⎭.16. (本小题满分14分)如图,在直三棱柱111ABC A B C -中,,D E 分别为,AB BC 的中点,点F 在侧棱1B B 上, 且11B D A F ⊥,1111AC A B ⊥. 求证:⑴ 直线//DE 平面11AC F ;⑵ 平面1B DE ⊥平面11AC F .【答案】见解析;【解析】⑴ ,D E 为中点,DE ∴为ABC ∆的中位线//DE AC ∴又111ABC A B C -为棱柱,11//AC AC ∴11//DE AC ∴,又11AC ⊂平面11AC F ,且11DE AC F ⊄FEC BAC 1B 1A 1//DE ∴平面11AC F ;⑵111ABC A B C -为直棱柱,1AA ∴⊥平面111A B C 111AA AC ∴⊥,又1111AC A B ⊥且1111AA A B A =,111,AA A B ⊂平面11AA B B11AC ∴⊥平面11AA B B ,又11//DE AC ,DE ∴⊥平面11AA B B 又1A F ⊂平面11AA B B ,1DE A F ∴⊥ 又11A F B D ⊥,1DEB D D =,且1,DE B D ⊂平面1B DE 1A F ∴⊥平面1B DE ,又111A F AC F ⊂∴平面1B DE ⊥平面11AC F .17. (本小题满分14分)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1O O 是正四棱锥的高1PO 的4倍.⑴ 若6m AB =,12m PO =,则仓库的容积是多少;⑵ 若正四棱锥的侧棱长为6m ,当1PO 为多少时,仓库的容积最大?【答案】⑴3312m;⑵m ; 【解析】⑴ 12m PO =,则18m OO =,1111231116224m 33P A B C D ABCD V S PO -⋅=⨯⨯==,111123168288m ABCD A B C D ABCD V S OO -⋅=⨯==, 111111113312m =P A B C D ABCD A B C D V V V --+=, 故仓库的容积为3312m ;⑵ 设1m PO x =,仓库的容积为()V x则14m OO x =,11AO,11m A B =,()111123331111272224m 3333P A B C D ABCD V S PO x x x x x -⋅=⨯⨯=-=-=,1A1111233142888m ABCD A B C D ABCD V S OO x x x -⋅=⨯=-=,()()111111113332262428883120633=P A B C D ABCD A B C D V x V V x x x x x x x --+=-+-=-+<<,()()22'263122612V x x x =-+=--()06x <<,当(0,x ∈时,()'0V x >,()V x 单调递增,当()x ∈时,()'0V x <,()V x 单调递减,因此,当x =()V x 取到最大值,即1PO =时,仓库的容积最大.18. (本小题满分14分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+= 及其上一点()2,4A .⑴ 设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程; ⑵ 设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程;⑶ 设点(),0T t 满足:存在圆M 上的两点P 和Q ,使得TA TP TQ +=,求实数t 的取值范围.【答案】⑴()()22611x y -+-=⑵25y x =+或215y x =-⑶2⎡-+⎣【解析】⑴ 因为N 在直线6x =上,设()6,N n ,因为与x 轴相切,则圆N 为()()2226x y n n -+-=,0n >又圆N 与圆M 外切,圆M :()()226725x x -+-=,则75n n -=+,解得1n =,即圆N 的标准方程为()()22611x y -+-=; ⑵ 由题意得OA =2OA k = 设:2l y x b =+,则圆心M 到直线l 的距离d ==则BC =BC =,即=解得5b =或15b =-,即l :25y x =+或215y x =-; ⑶ TA TP TQ +=,即TA TQ TP PQ =-=,即TA PQ =,(TA t =又10PQ ≤,10,解得2t ⎡∈-+⎣,对于任意2t ⎡∈-+⎣,欲使TA PQ =,此时10TA ≤,只需要作直线TA 2TA必然与圆交于P Q 、两点,此时TA PQ =,即TA PQ =,因此对于任意2t ⎡∈-+⎣,均满足题意,综上2t ⎡∈-+⎣.19. (本小题满分14分)已知函数()()0,0,1,1x x f x a b a b a b =+>>≠≠. ⑴ 设2a =,12b =. ① 求方程()2f x =的根;② 若对于任意x ∈R ,不等式()()26f x mf x -≥恒成立,求实数m 的最大值; ⑵ 若01a <<,1b >,函数()()2g x f x =-有且只有1个零点,求ab 的值. 【答案】⑴ ①0x =;②4;⑵1;【解析】⑴ ① ()122xxf x ⎛⎫=+ ⎪⎝⎭,由()2f x =可得1222x x +=,则()222210x x -⨯+=,即()2210x -=,则21x =,0x =;② 由题意得221122622x x x x m ⎛⎫++- ⎪⎝⎭≥恒成立,令122x xt =+,则由20x>可得2t =≥, 此时226t mt --≥恒成立,即244t m t t t +=+≤恒成立∵2t ≥时44t t +≥,当且仅当2t =时等号成立,因此实数m 的最大值为4.()()22xxg x f x a b =-=+-,()ln 'ln ln ln ln x x x xa b g x a a b b a b b a ⎡⎤⎛⎫=+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,由01a <<,1b >可得1b a >,令()ln ln xb ah x a b ⎛⎫=+ ⎪⎝⎭,则()h x 递增,而ln 0,ln 0a b <>,因此0ln log ln b aa xb ⎛⎫=- ⎪⎝⎭时()00h x =,因此()0,x x ∈-∞时,()0h x <,ln 0x a b >,则()'0g x <; ()0,x x ∈+∞时,()0h x >,ln 0x a b >,则()'0g x >;则()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x , ① 若()00g x <,log 2a x <时,log 22a x a a >=,0x b >,则()0g x >; x >log b 2时,0x a >,log 22b x b b >=,则()0g x >;因此1log 2a x <且10x x <时,()10g x >,因此()g x 在()10,x x 有零点, 2l o g 2bx >且20x x >时,()20g x >,因此()g x 在()02,x x 有零点, 则()g x 至少有两个零点,与条件矛盾;② 若()00g x ≥,由函数()g x 有且只有1个零点,()g x 最小值为()0g x , 可得()00g x =, 由()00020g a b =+-=, 因此00x =,因此ln log 0ln b a a b ⎛⎫-= ⎪⎝⎭,即ln 1ln a b -=,即ln ln 0a b +=, 因此()ln 0ab =,则1ab =.20. (本小题满分14分) 记{}1,2,,100U =.对数列{}n a (*n ∈N )和U 的子集T ,若T =∅,定义0T S =;若{}12,,,k T t t t =,定义12k T t t t S a a a =+++.例如:{}1,3,66T =时,1366T S a a a =++.现设{}n a (*n ∈N )是公比为3的等比数列,且当{}2,4T =时,30T S =. ⑴ 求数列{}n a 的通项公式;⑵ 对任意正整数k (1100k ≤≤),若{}1,2,,T k ⊆,求证:1T k S a +<; ⑶ 设C U ⊆,D U ⊆,C D S S ≥,求证:2C CDD S S S +≥.【答案】⑴13n n a -=;⑵⑶详见解析;【解析】⑴ 当{}2,4T =时,2422930T S a a a a =+=+=,因此23a =,从而2113a a ==,13n n a -=;⑵ 2112131133332k k k T k k S a a a a -+-++=++++=<=≤;⑶ 设()C A CD =ð,()D B C D =ð,则A B =∅,C A CDS S S =+,D B CDS S S =+,22C CDD A B S S S S S +-=-,因此原题就等价于证明2A B S S ≥.由条件C D S S ≥可知A B S S ≥.① 若B =∅,则0B S =,所以2A B S S ≥.② 若B ≠∅,由A B S S ≥可知A ≠∅,设A 中最大元素为l ,B 中最大元素为m , 若1m l +≥,则由第⑵小题,1A l m B S a a S +<≤≤,矛盾. 因为A B =∅,所以l m ≠,所以1l m +≥, 211123113332222m m m lA B m a a S S a a a -+-+++=++++=<≤≤≤,即2A B S S >.综上所述,2A B S S ≥,因此2C CDD S S S +≥.数学Ⅱ(附加题)21. [选做题]本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,在ABC △中,90ABC ∠=︒,BD AC ⊥,D 为垂足,E 是BC 中点. 求证:EDC ABD ∠=∠.【答案】详见解析;【解析】由BD AC ⊥可得90BDC ∠=︒,由E 是BC 中点可得12DE CE BC ==, 则EDC C ∠=∠,由90BDC ∠=︒可得90C DBC ∠+∠=︒, 由90ABC ∠=︒可得90ABD DBC ∠+∠=︒, 因此ABD C ∠=∠,又EDC C ∠=∠可得EDC ABD ∠=∠.B .[选修4-2:矩阵与变换](本小题满分10分)ECBA已知矩阵1202⎡⎤=⎢⎥-⎣⎦A ,矩阵B 的逆矩阵111202-⎡⎤-⎢⎥=⎢⎥⎣⎦B ,求矩阵AB . 【答案】51401⎡⎤⎢⎥⎢⎥-⎣⎦;【解析】()11112124221010222--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦B B ,因此151121*********⎡⎤⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦AB .C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l的参数方程为()11,2,x t t y ⎧=+⎪⎪⎨⎪⎪⎩为参数,椭圆C 的参数方程为()cos ,2sin ,x y θθθ=⎧⎨=⎩为参数,设直线l 与椭圆C 相交于,A B 两点,求线段AB 的长.【答案】167; 【解析】直线l0y -,椭圆C 方程化为普通方程为2214y x +=,联立得22014y y x --=⎨+=⎪⎩,解得10x y =⎧⎨=⎩或17x y ⎧=-⎪⎪⎨⎪=⎪⎩,因此167AB .D .[选修4-5:不等式选讲](本小题满分10分)设0a >,13a x -<,23ay -<,求证:24x y a +-<.【答案】详见解析; 【解析】由13a x -<可得2223a x -<, 22422233a ax y x y a +--+-<+=≤.[必做题]第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤. 22. (本小题满分10分)如图,在平面直角坐标系xOy 中,已知直线:20l x y --=,抛物线()2:20C y px p =>. ⑴ 若直线l 过抛物线C 的焦点,求抛物线C 的方程; ⑵ 已知抛物线C 上存在关于直线l 对称的相异两点P 和Q . ①求证:线段PQ 上的中点坐标为()2,p p --; ②求p 的取值范围.【答案】⑴28y x =;⑵①见解析;②40,3⎛⎫⎪⎝⎭【解析】⑴ :20l x y --=,∴l 与x 轴的交点坐标为()2,0即抛物线的焦点为()2,0,22p∴= 28y x ∴=;⑵ ① 设点()11,P x y ,()22,Q x y则:21122222y px y px ⎧=⎪⎨=⎪⎩,即21122222y x p y x p⎧=⎪⎪⎨⎪=⎪⎩,12221212222PQ y y p k y y y y p p -==+- 又,P Q 关于直线l 对称,1PQ k ∴=- 即122y y p +=-,122y y p +∴=- 又PQ 中点一定在直线l 上12122222x x y y p ++∴=+=- ∴线段PQ 上的中点坐标为()2,p p --;②中点坐标为()2,p p --122212122422y y p y y x x p p +=-⎧⎪∴+⎨+==-⎪⎩即1222212284y y p y y p p +=-⎧⎨+=-⎩ 12212244y y py y p p+=-⎧∴⎨=-⎩,即关于222440y py p p ++-=有两个不等根 0∴∆>,()()2224440p p p -->,40,3p ⎛⎫∴∈ ⎪⎝⎭.23. (本小题满分10分)⑴ 求34677C 4C -的值;⑵ 设*,m n ∈N ,n m ≥,求证:()()()()()212121C 2C 3C C 1C 1C m m m m m m m m m n n n m m m n n m +++-++++++++++=+.【答案】⑴0;⑵详见解析;【解析】⑴ 34677C 4C 7204350-=⨯-⨯=;⑵ 对任意的*m ∈N ,① 当n m =时,左边()1C 1m m m m =+=+,右边()221C 1m m m m ++=+=+,等式成立,② 假设()n k k m =≥时命题成立,即()()()()()212121C 2C 3C C 1C 1C m m m m m m m m m k k k m m m k k m +++-++++++++++=+,当1n k =+时, 左边=()()()()()12111C 2C 3C C 1C 2C m m mm m mm m m k k k m m m k k k ++-++++++++++++()()2211C 2C m m k k m k +++=+++,右边()231C m k m ++=+, 而()()22321C 1C m m k k m m +++++-+,()()()()()()()()()()()()()()()()13!2!12!1!2!!2!1312!1!1!2!1!2C m k k k m m k m m k m k m k k m m k m k k m k m k +⎡⎤++=+-⎢⎥+-++-⎢⎥⎣⎦+=+⨯+--+⎡⎤⎣⎦+-++=+-+=+ 因此()()()222131C 2C 1C m m m k k k m k m ++++++++=+,因此左边=右边,因此1n k =+时命题也成立,综合①②可得命题对任意n m ≥均成立.另解:因为()()111C 1C m m k k k m +++=+,所以 左边()()()1111211C 1C 1C m m m m m n m m m ++++++=++++++()()1111211C C C m m m m m n m ++++++=++++又由111C C C k k k n n n ---=+,知2212112111112111221121C C C C C C C C C C C C m m m m m m m m m m m m n n n n n n m m n m m n ++++++++++++++++++++++=+=++==+++=+++,所以,左边=右边.。
【真题】2016年江苏省高考数学试题(含附加题+答案)
绝密★启用前2016年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14个小题,每小题5分,共70分.请把答案写在答题卡相应位置上。
1.已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ▲.2.复数(12i)(3i),z =+-其中i 为虚数单位,则z 的实部是▲.3.在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是▲.4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是▲.5.函数y =232x x --的定义域是▲.6.如图是一个算法的流程图,则输出的a 的值是▲.7.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是▲.8.已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是▲.9.定义在区间[0,3π]上的函数y =sin2x 的图象与y =cos x 的图象的交点个数是▲.10.如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b +=>>0的右焦点,直线2by =与椭圆交于B ,注意事项考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分。
考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
2016年高考理科数学江苏卷(含详细答案)
数学试卷 第1页(共24页)数学试卷 第2页(共24页) 数学试卷 第3页(共24页)绝密★启用前2016年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:样本数据12n ,,,x x x ⋅⋅⋅的方差2211()n i i S x x n ==-∑,其中11n i i x x n ==∑.棱柱的体积V Sh =,其中S 是棱柱的底面积,h 是高.棱锥的体积13V Sh =,其中S 是棱锥的底面积,h 是高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上... 1. 已知集合{1,2,3,6}A =-,{|23}B x x =-<<,则A B = .2. 复数z (12i)(3i)=+-,其中i 为虚数单位,则z 的实部是 .3. 在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是 . 4. 已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 . 5.函数y 的定义域是 .6. 如图是一个算法的流程图,则输出的a 的值是 .7. 将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后 抛掷2次,则出现向上的点数之和小于10的概率是 .8. 已知{}n a 是等差数列,S n 是其前n 项和.若2123a a +=-,5S =10,则9a 的值是 .9. 定义在区间[0,3]π上的函数sin 2y x =的图象与c o s y x =的图象的交点个数是 .10. 如图,在平面直角坐标系xOy 中,F 是椭圆22221x ya b += ()a b >>0的右焦点,直线2by =与椭圆交于,B C 两 点,且90BFC ∠=︒,则该椭圆的离心率是 .11. 设()f x 是定义在R 上且周期为2的函数,在区间[1,1)-上,()f x =,10,2,01,5x a x x x +-⎧⎪⎨-⎪⎩≤<≤<其中a ∈R .若59()()22f f -=,则(5)f a 的值是 .12. 已知实数,x y 满足240220330x y x y x y -+⎧⎪+-⎨⎪--⎩≥,≥,≤,则22x y +的取值范围是 .13. 如图,在ABC △中,D 是BC 的中点,,E F 是AD 上的两个三等分点,A 4B CA =,1BF CF =-,则BE CE 的值是 . 14. 在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C的最小值是 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)在ABC △中,6AC =,4cos 5B =,π4C =. (Ⅰ)求AB 的长;(Ⅱ)求πcos()6A -的值.16. (本小题满分14分)如图,在直三棱柱111ABC A B C -中,D ,E 分别为AB ,BC 的中点,点F 在侧棱1B B 上,且11B D A F ⊥,1111AC A B ⊥. 求证:(Ⅰ)直线DE平面11AC F ;(Ⅱ)平面1B DE ⊥平面11AC F .17. (本小题满分14分)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥1111P A B C D -,下部的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1O O 是正四棱锥的高1PO 的4倍.(Ⅰ)若6AB m =,12PO m =,则仓库的容积是多少?(Ⅱ)若正四棱锥的侧棱长为6m ,则当1PO 为多少时,仓库的容积最大?姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共24页) 数学试卷 第5页(共24页) 数学试卷 第6页(共24页)18. (本小题满分16分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214x y x y +--+600=及其上一点(2,4)A .(Ⅰ)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程;(Ⅱ)设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程; (Ⅲ)设点(,0)T t 满足:存在圆M 上的两点P 和Q ,使得TA TP TQ +=,求实数t 的取值范围.19. (本小题满分16分)已知函数()=(0,0,1,1)x xf x a b a >b a b +>≠≠.(Ⅰ)设2a =,12b =. ①求方程()=2f x 的根;②若对于任意x R ∈,不等式(2)()6f x mf x -≥恒成立,求实数m 的最大值; (Ⅱ)若01a <<,1b >,函数()()2g x f x =-有且只有1个零点,求ab 的值.20.(本小题满分16分)记{}1,2,,100U =….对数列{}*(N )n a n ∈和U 的子集T ,若T =∅,定义0T S =;若{}12,,,k T t t t =…,定义12+k T t t t S a a a =++….假如:{}=1,3,66T 时,1T S a =+366+a a .现设{}*()n a n N ∈是公比为3的等比数列,且当{}=2,4T 时,=30T S .(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意正整数()1100k k ≤≤,若{}1,2,,k T ⊆…,求证:1T k S a +<; (Ⅲ)设C U ⊆,D U ⊆,C D S S ≥,求证:2C C D D S S S +≥.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题........,.并在相应的答题区域.........内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A. [选修4—1:几何证明选讲](本小题满分10分)如图,在ABC △中,90ABC ∠=︒,BD AC ⊥,D 为垂足,E 是BC 的中点,求证:EDC ABD ∠=∠.B. [4—2:矩阵与变换](本小题满分10分) 已知矩阵A 1202⎡⎤=⎢⎥-⎣⎦,矩阵B 的逆矩阵B -111=202⎡⎤-⎢⎥⎢⎥⎣⎦,求矩阵AB . C. [选修4—4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参数方程为11,2,x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),椭圆C 的参数方程为cos ,2sin ,x y θθ=⎧⎨=⎩(θ为参数).设直线l 与椭圆C 相交于A ,B两点,求线段AB 的长.D. [4—5:不等式选讲](本小题满分10分)设0a >,|1|3a x -<,|2|3ay -<,求证:24x y a +-<. 【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22. (本小题满分10分)如图,在平面直角坐标系xOy 中,已知直线20l x y --=:,抛物线22C y px =:(0)p >.(Ⅰ)若直线l 过抛物线C 的焦点,求抛物线C 的方程;(Ⅱ)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q .①求证:线段PQ 的中点坐标为2p p --(,);②求p 的取值范围.23. (本小题满分10分)(Ⅰ)求3467–47C C 的值;(Ⅱ)设m ,n ∈N *,n m ≥,求证:(m +1)C m m +(m +2)+1C m m +(m +3)+2C m m +…+n –1C mn +(n +1)C m n =(m +1)+2+2C m n .数学试卷 第7页(共24页)数学试卷 第8页(共24页)数学试卷 第9页(共24页) {1,2}AB =-{1,2,3,6}-0B FC F =,BF c ⎛=+ ,CF c ⎛=- 63=. 【提示】设右焦点,将2by =代入椭圆方程求得数学试卷 第10页(共24页)数学试卷 第11页(共24页)数学试卷 第12页(共24页)8【解析】令DF a =,DB b =,则D C b =-,2DE a =,3DA a =,则3B A a b =-,3CA a b =+,2BE a b =-,A B =∅,BF a b =-,CF a b =+,则229BA CA a b =-,22BF CF a b =-,224BE CE a b =-,由4B A C A =,1BF CF =-可得2294a b -=,221a b -=-,因此258a =,2138b =,因此22451374888BE CE a b ⨯=-=-=.【提示】结合已知求出258a =,2138b =,可得答案.【考点】平面向量数量积的运算,平面向量数量积的性质及其运算律.(Ⅰ)4cos 5B =sinC sin AB =32526AB ∴=又A 为三角形的内角31cos 22A +(Ⅰ)证明:,D E 为中点,又11ABC A B C -为棱柱,数学试卷 第13页(共24页)数学试卷 第14页(共24页)数学试卷 第15页(共24页),又11AC ⊂平面1AC F ;(Ⅱ)111ABC A B C -为直棱柱,11AC ⊥,又11AC A ⊥1111A B A =⊥平面1AA B B ,又B D E ⊥平面AA 又1A F ⊂平面11AA B B ,∴ 又11A F B ⊥1DEB D D =1A F ⊥平面,又11A F AC ⊂平面1B DE 11AC F .//DE AC ,进而113ABCD PO =⨯216ABCD OO =⨯1111312A B C D =m x ,1AO 2236m x -,3112)243ABCDPO x x =⨯=31(72m ABCD OO =,111ABCD A B C D V -2236m x -55TA TP TQ +=,即T A T Q T P PQ =-=,即||||T A P Q =,||(2)4TA t =-+,又||10PQ ≤,2221+,对于任意,欲使TA PQ =,此时||10TA ≤,只需要作直线2||TA ||||TA PQ =,即TA PQ =,[2221,2∈-,均满足题意,综上[2221,2221]t ∈-+.(Ⅲ)TA TP TQ +=,即||(TA t =-||10PQ ≤,得[22t ∈-欲使TA PQ =,TA 的平行线,使圆心到直线的距离为2||25TA -44t t=,当且仅当2x x a b =+数学试卷 第16页(共24页)数学试卷 第17页(共24页)数学试卷 第18页(共24页)213113332k k k a --+=++++=<)CD ,()D B CD =ð,则A B =∅,C D,CD S ,22CDA B S S S --,因此原题就等价于证明A S ≥C S S ≥可知A B S S ≥.AB =∅,所以21123113332m m m a a --+++=++++=<综上所述,2A B S S ≥,因此2C C DD S S S +≥.的定义,分析可得211333k k a -+=++++,由等比数列的前)()DCD B C D =,,则A B =∅,进而分析可以将原命题转化为证明S ∅,可以证明得到2A B S S ≥,即可得证明.【考点】数列的应用,集合的包含关系判断及应用,等比数列的通项公式,数列与不等式的综合.(Ⅰ):l x y --即抛物线的焦点为(2,0),∴又P Q ,关于直线12y y +=-又PQ 中点一定在直线线段PQ 上的中点坐标为数学试卷 第19页(共24页)数学试卷 第20页(共24页)数学试卷 第21页(共24页)②中点坐标为1m k kC -+++112)(m m k C m kC +-++++3(1)m +-+(1)m +++11)m n C ++++211111221121m m m m m m m m n m m n C C C C C C ++++++++++++==+++=+++,1m k kC -+++数学试卷第22页(共24页)数学试卷第23页(共24页)数学试卷第24页(共24页)。
2016届江苏省高考数学试卷 解析版
2016年江苏省高考数学试卷一、填空题(共 小题,每小题 分,满分 分).( 分)( 江苏)已知集合 ﹣ , , , , ﹣ < < ,则 ..( 分)( 江苏)复数 ( )( ﹣ ),其中 为虚数单位,则 的实部是 ..( 分)( 江苏)在平面直角坐标系 中,双曲线﹣ 的焦距是 ..( 分)( 江苏)已知一组数据 , , , , ,则该组数据的方差是 ..( 分)( 江苏)函数 的定义域是 ..( 分)( 江苏)如图是一个算法的流程图,则输出的 的值是..( 分)( 江苏)将一颗质地均匀的骰子(一种各个面上分别标有 , , , , , 个点的正方体玩具)先后抛掷 次,则出现向上的点数之和小于 的概率是 ..( 分)( 江苏)已知 是等差数列, 是其前 项和,若 ,则 的值是 .﹣ ,.( 分)( 江苏)定义在区间 , 上的函数 的图象与 的图象的交点个数是 ..( 分)( 江苏)如图,在平面直角坐标系 中, 是椭圆 ( > > )的右焦点,直线 与椭圆交于 , 两点,且∠ ,则该椭圆的离心率是 ..( 分)( 江苏)设 ( )是定义在 上且周期为 的函数,在区间 ﹣ , )上, ( ) ,其中 ∈ ,若 (﹣) (),则 ( )的值是 ..( 分)( 江苏)已知实数 , 满足,则 的取值范围是 ..( 分)( 江苏)如图,在△ 中, 是 的中点, , 是 上的两个三等分点, , ﹣ ,则 的值是 ..( 分)( 江苏)在锐角三角形 中,若 ,则的最小值是 .二、解答题(共 小题,满分 分).( 分)( 江苏)在△ 中, , , .( )求 的长;( )求 ( ﹣)的值..( 分)( 江苏)如图,在直三棱柱 ﹣ 中, , 分别为 , 的中点,点 在侧棱 上,且 ⊥ , ⊥ .求证:;( )直线 ∥平面⊥平面 .( )平面.( 分)( 江苏)现需要设计一个仓库,它由上下两部分组成,上部,下部的形状是正四棱柱 ﹣ (如图所示),的形状是正四棱锥 ﹣是正四棱锥的高 的 倍.并要求正四棱柱的高,则仓库的容积是多少?( )若 ,( )若正四棱锥的侧棱长为 ,则当为多少时,仓库的容积最大?.( 分)( 江苏)如图,在平面直角坐标系 中,已知以 为圆心的圆 : ﹣ ﹣ 及其上一点 ( , ).( )设圆 与 轴相切,与圆 外切,且圆心 在直线 上,求圆 的标准方程;( )设平行于 的直线 与圆 相交于 、 两点,且 ,求直线 的方程;( )设点 ( , )满足:存在圆 上的两点 和 ,使得 ,求实数 的取值范围..( 分)( 江苏)已知函数 ( ) ( > , > , ≠ , ≠ ).( )设 , .求方程 ( ) 的根;若对于任意 ∈ ,不等式 ( )≥ ( )﹣ 恒成立,求实数 的最大值;( )若 < < , > ,函数 ( ) ( )﹣ 有且只有 个零点,求 的值. .( 分)( 江苏)记 , , , ,对数列 (;若 , , , ,定义∈ )和 的子集 ,若 ∅,定义.例如: , , 时, .现设 ( ∈ )是公比为 的等比数列,且当 , 时, .( )求数列 的通项公式;( )对任意正整数 ( ≤ ≤ ),若 ⊆ , , , ,求证: < ; ( )设 ⊆ , ⊆ , ≥ ,求证: ≥ .附加题【选做题】本题包括 、 、 、 四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤 .【选修 几何证明选讲】.( 分)( 江苏)如图,在△ 中,∠ , ⊥ , 为垂足, 为 的中点,求证:∠ ∠ .【选修 :矩阵与变换】.( 分)( 江苏)已知矩阵 ,矩阵 的逆矩阵 ﹣,求矩阵 .【选修 :坐标系与参数方程】.( 江苏)在平面直角坐标系 中,已知直线 的参数方程为( 为参数),椭圆 的参数方程为( 为参数),设直线 与椭圆 相交于 , 两点,求线段 的长..( 江苏)设 > , ﹣ <, ﹣ <,求证: ﹣ < .附加题【必做题】.( 分)( 江苏)如图,在平面直角坐标系 中,已知直线 : ﹣ ﹣ ,抛物线 : ( > ).( )若直线 过抛物线 的焦点,求抛物线 的方程;( )已知抛物线 上存在关于直线 对称的相异两点 和 .求证:线段 的中点坐标为( ﹣ ,﹣ );求 的取值范围..( 分)( 江苏)( )求 ﹣ 的值;( )设 , ∈ , ≥ ,求证:( ) ( ) ( ) ( ) ( ) .年江苏省高考数学试卷参考答案与试题解析一、填空题(共 小题,每小题 分,满分 分).( 分)( 江苏)已知集合 ﹣ , , , , ﹣ < < ,则 ﹣ , .【分析】根据已知中集合 ﹣ , , , , ﹣ < < ,结合集合交集的定义可得答案.【解答】解:∵集合 ﹣ , , , , ﹣ < < ,∴ ﹣ , ,故答案为: ﹣ ,【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题..( 分)( 江苏)复数 ( )( ﹣ ),其中 为虚数单位,则 的实部是 .【分析】利用复数的运算法则即可得出.【解答】解: ( )( ﹣ ) ,则 的实部是 ,故答案为: .【点评】本题考查了复数的运算性质,考查了推理能力与计算能力,属于基础题. .( 分)( 江苏)在平面直角坐标系 中,双曲线﹣ 的焦距是 .【分析】确定双曲线的几何量,即可求出双曲线﹣ 的焦距.【解答】解:双曲线﹣ 中, , ,∴ ,∴双曲线﹣ 的焦距是 .故答案为: .【点评】本题重点考查了双曲线的简单几何性质,考查学生的计算能力,比较基础..( 分)( 江苏)已知一组数据 , , , , ,则该组数据的方差是 .【分析】先求出数据 , , , , 的平均数,由此能求出该组数据的方差.【解答】解:∵数据 , , , , 的平均数为:( ) ,∴该组数据的方差:( ﹣ ) ( ﹣ ) ( ﹣ ) ( ﹣ ) ( ﹣ ) .故答案为: .【点评】本题考查方差的求法,是基础题,解题时要认真审题,注意方差计算公式的合理运用..( 分)( 江苏)函数 的定义域是 ﹣ , .【分析】根据被开方数不小于 ,构造不等式,解得答案.【解答】解:由 ﹣ ﹣ ≥ 得: ﹣ ≤ ,解得: ∈ ﹣ , ,故答案为: ﹣ ,【点评】本题考查的知识点是函数的定义域,二次不等式的解法,难度不大,属于基础题..( 分)( 江苏)如图是一个算法的流程图,则输出的 的值是 .【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量 的值,模拟程序的运行过程,可得答案.【解答】解:当 , 时,不满足 > ,故 , ,当 , 时,不满足 > ,故 ,当 , 时,满足 > ,故输出的 值为 ,故答案为:【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答..( 分)( 江苏)将一颗质地均匀的骰子(一种各个面上分别标有 , , , , , 个点的正方体玩具)先后抛掷 次,则出现向上的点数之和小于 的概率是.【分析】出现向上的点数之和小于 的对立事件是出现向上的点数之和不小于 ,由此利用对立事件概率计算公式能求出出现向上的点数之和小于 的概率.【解答】解:将一颗质地均匀的骰子(一种各个面上分别标有 , , , , , 个点的正方体玩具)先后抛掷 次,基本事件总数为 × ,出现向上的点数之和小于 的对立事件是出现向上的点数之和不小于 ,出现向上的点数之和不小于 包含的基本事件有:( , ),( , ),( , ),( , ),( , ),( , ),共 个,∴出现向上的点数之和小于 的概率:﹣ .故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用..( 分)( 江苏)已知 是等差数列, 是其前 项和,若 ,则 的值是 .﹣ ,【分析】利用等差数列的通项公式和前 项和公式列出方程组,求出首项和公差,由此能求出的值.是等差数列, 是其前 项和, ﹣ , ,【解答】解:∵∴,﹣ , ,解得﹣ × .∴故答案为: .【点评】本题考查等差数列的第 项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用..( 分)( 江苏)定义在区间 , 上的函数 的图象与 的图象的交点个数是 .【分析】画出函数 与 在区间 , 上的图象即可得到答案.【解答】解:画出函数 与 在区间 , 上的图象如下:由图可知,共 个交点.故答案为: .【点评】本题考查正弦函数与余弦函数的图象,作出函数 与 在区间 , 上的图象是关键,属于中档题..( 分)( 江苏)如图,在平面直角坐标系 中, 是椭圆 ( > > )的右焦点,直线 与椭圆交于 , 两点,且∠ ,则该椭圆的离心率是.【分析】设右焦点 ( , ),将 代入椭圆方程求得 , 的坐标,运用两直线垂直的条件:斜率之积为﹣ ,结合离心率公式,计算即可得到所求值.【解答】解:设右焦点 ( , ),将 代入椭圆方程可得 ± ± ,可得 (﹣ ,), ( ,),﹣ ,由∠ ,可得即有 ﹣ ,化简为 ﹣ ,由 ﹣ ,即有 ,由 ,可得 ,可得 ,故答案为:.【点评】本题考查椭圆的离心率的求法,注意运用两直线垂直的条件:斜率之积为﹣ ,考查化简整理的运算能力,属于中档题..( 分)( 江苏)设 ( )是定义在 上且周期为 的函数,在区间 ﹣ , )上, ( ) ,其中 ∈ ,若 (﹣) (),则 ( )的值是﹣.【分析】根据已知中函数的周期性,结合 (﹣) (),可得 值,进而得到 ( )的值.【解答】解: ( )是定义在 上且周期为 的函数,在区间 ﹣ , )上, ( ) ,∴ (﹣) (﹣) ﹣ ,() () ﹣ ,∴ ,∴ ( ) ( ) (﹣ ) ﹣ ﹣,故答案为:﹣【点评】本题考查的知识点是分段函数的应用,函数的周期性,根据已知求出 值,是解答的关键..( 分)( 江苏)已知实数 , 满足,则 的取值范围是 , .【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合两点间的距离公式以及点到直线的距离公式进行求解即可.【解答】解:作出不等式组对应的平面区域,设 ,则 的几何意义是区域内的点到原点距离的平方,由图象知 到原点的距离最大,点 到直线 : ﹣ 的距离最小,由得,即 ( , ),此时 ,点 到直线 : ﹣ 的距离 ,则 () ,故 的取值范围是 , ,故答案为: , .【点评】本题主要考查线性规划的应用,涉及距离的计算,利用数形结合是解决本题的关键..( 分)( 江苏)如图,在△ 中, 是 的中点, , 是 上的两个三等分点, , ﹣ ,则 的值是.【分析】由已知可得 , ﹣ , , ﹣ , , ﹣ ,结合已知求出 , ,可得答案.【解答】解:∵ 是 的中点, , 是 上的两个三等分点,∴ , ﹣ ,, ﹣ ,∴ ﹣ ﹣ ,﹣ ,∴ , ,又∵ , ﹣ ,∴ ﹣ ,故答案为:【点评】本题考查的知识是平面向量的数量积运算,平面向量的线性运算,难度中档. .( 分)( 江苏)在锐角三角形 中,若 ,则的最小值是 .【分析】结合三角形关系和式子 可推出,进而得到 ,结合函数特性可求得最小值.【解答】解:由 ( ﹣ ) ( ) ,,可得 ,由三角形 为锐角三角形,则 > , > ,在 式两侧同时除以 可得 ,又 ﹣ ( ﹣ ) ﹣ ( ) ﹣ ,则 ﹣ ,由 可得 ﹣,令 ,由 , , 为锐角可得 > , > , > ,由 式得 ﹣ < ,解得 > ,﹣ ﹣,() ﹣,由 > 得,﹣≤< ,因此 的最小值为 ,当且仅当 时取到等号,此时 , ,解得 , ﹣, ,(或 , 互换),此时 , , 均为锐角.【点评】本题考查了三角恒等式的变化技巧和函数单调性知识,有一定灵活性.二、解答题(共 小题,满分 分).( 分)( 江苏)在△ 中, , , .( )求 的长;( )求 ( ﹣)的值.【分析】( )利用正弦定理,即可求 的长;( )求出 、 ,利用两角差的余弦公式求 ( ﹣)的值.【解答】解:( )∵△ 中, ,∴ ,∵,∴ ;( ) ﹣ ( ) ﹣ ﹣.∵ 为三角形的内角,∴ ,∴ ( ﹣) .【点评】本题考查正弦定理,考查两角和差的余弦公式,考查学生的计算能力,属于基础题..( 分)( 江苏)如图,在直三棱柱 ﹣ 中, , 分别为 , 的中点,点 在侧棱 上,且 ⊥ , ⊥ .求证:;( )直线 ∥平面⊥平面 .( )平面【分析】( )通过证明 ∥ ,进而 ∥ ,据此可得直线 ∥平面 ; ( )通过证明 ⊥ 结合题目已知条件 ⊥ ,进而可得平面 ⊥平面 .【解答】解:( )∵ , 分别为 , 的中点,∴ 为△ 的中位线, ∴ ∥ ,∵ ﹣ 为棱柱, ∴ ∥ , ∴ ∥ ,∵ ⊂平面 ,且 ⊄平面 , ∴ ∥ ;( )∵ ﹣ 为直棱柱, ∴ ⊥平面 , ∴ ⊥ ,又∵ ⊥ ,且 , 、 ⊂平面 , ∴ ⊥平面 , ∵ ∥ ,,∴ ⊥平面⊂平面 ,又∵,∴ ⊥⊥ , ,且 、 ⊂平面 ,又∵⊥平面 ,∴⊂平面 ,又∵⊥平面 .∴平面【点评】本题考查直线与平面平行的证明,以及平面与平面相互垂直的证明,把握常用方法最关键,难度不大..( 分)( 江苏)现需要设计一个仓库,它由上下两部分组成,上部,下部的形状是正四棱柱 ﹣ (如图所示),的形状是正四棱锥 ﹣是正四棱锥的高 的 倍.并要求正四棱柱的高,则仓库的容积是多少?( )若 ,为多少时,仓库的容积最大?( )若正四棱锥的侧棱长为 ,则当是正四棱锥的高 的 倍,可得 时,【分析】( )由正四棱柱的高,进而可得仓库的容积;,则 , , ,( )设代入体积公式,求出容积的表达式,利用导数法,可得最大值.,正四棱柱的高 是正四棱锥的高 的 倍.【解答】解:( )∵,∴∴仓库的容积 × × × ,( )若正四棱锥的侧棱长为 ,,设, , ,则则仓库的容积 ×( ) ( ),( < < ),∴ ﹣ ,( < < ),当 < < 时, > , ( )单调递增;当 < < 时, < , ( )单调递减;故当 时, ( )取最大值;时,仓库的容积最大.即当【点评】本题考查的知识点是棱锥和棱柱的体积,导数法求函数的最大值,难度中档. .( 分)( 江苏)如图,在平面直角坐标系 中,已知以 为圆心的圆 : ﹣ ﹣ 及其上一点 ( , ).( )设圆 与 轴相切,与圆 外切,且圆心 在直线 上,求圆 的标准方程;( )设平行于 的直线 与圆 相交于 、 两点,且 ,求直线 的方程;( )设点 ( , )满足:存在圆 上的两点 和 ,使得 ,求实数 的取值范围.【分析】( )设 ( , ),则圆 为:( ﹣ ) ( ﹣ ) , > ,从而得到 ﹣ ,由此能求出圆 的标准方程.,设 : ,则圆心 到直线 的距离:( )由题意得 ,,由此能求出直线 的方程.( ) ,即 ,又 ≤ ,得 ∈ ﹣ , ,对于任意 ∈ ﹣ , ,欲使,只需要作直线 的平行线,使圆心到直线的距离为,由此能求出实数 的取值范围.【解答】解:( )∵ 在直线 上,∴设 ( , ),∵圆 与 轴相切,∴圆 为:( ﹣ ) ( ﹣ ) , > ,又圆 与圆 外切,圆 : ﹣ ﹣ ,即圆 :(( ﹣ ) ( ﹣ ) ,∴ ﹣ ,解得 ,∴圆 的标准方程为( ﹣ ) ( ﹣ ) .,设 : ,( )由题意得 ,则圆心 到直线 的距离: ,则 , ,即,解得 或 ﹣ ,∴直线 的方程为: 或 ﹣ .( ) ,即,即 ,,又 ≤ ,即≤ ,解得 ∈ ﹣ , ,对于任意 ∈ ﹣ , ,欲使,此时, ≤ ,只需要作直线 的平行线,使圆心到直线的距离为,必然与圆交于 、 两点,此时 ,即,因此实数 的取值范围为 ∈ ﹣ , ,.【点评】本题考查圆的标准方程的求法,考查直线方程的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意圆的性质的合理运用..( 分)( 江苏)已知函数 ( ) ( > , > , ≠ , ≠ ).( )设 , .求方程 ( ) 的根;若对于任意 ∈ ,不等式 ( )≥ ( )﹣ 恒成立,求实数 的最大值;( )若 < < , > ,函数 ( ) ( )﹣ 有且只有 个零点,求 的值.【分析】( ) 利用方程,直接求解即可. 列出不等式,利用二次函数的性质以及函数的最值,转化求解即可.( )求出 ( ) ( )﹣ ﹣ ,求出函数的导数,构造函数 ( ),求出 ( )的最小值为: ( ).同理 若 ( )< , ( )至少有两个)> ,利用函数 ( ) ( )﹣ 有且只有 个零点,推零点,与条件矛盾. 若 (出 () ,然后求解 .【解答】解:函数 ( ) ( > , > , ≠ , ≠ ).( )设 , . 方程 ( ) ;即:,可得 .不等式 ( )≥ ( )﹣ 恒成立,即≥ ()﹣ 恒成立.令, ≥ .不等式化为: ﹣ ≥ 在 ≥ 时,恒成立.可得:△≤ 或即: ﹣ ≤ 或 ≤ , ∴ ∈(﹣ , . 实数 的最大值为: .( ) ( ) ( )﹣ ﹣ , ( ),< < , > 可得,令 ( ),则 ( )是递增函数,而, < , > ,因此,时, ( ) ,因此 ∈(﹣ , )时, ( )< , > ,则 ( )< . ∈( , )时, ( )> , > ,则 ( )> ,则 ( )在(﹣ , )递减,( , )递增,因此 ( )的最小值为: ( ). 若 ( )< , < 时, >, > ,则 ( )> ,因此 < ,且 < 时, ( )> ,因此 ( )在( , )有零点, 则 ( )至少有两个零点,与条件矛盾.若 ( )> ,函数 ( ) ( )﹣ 有且只有 个零点, ( )的最小值为 ( ),可得 ( ) ,由 ( ) ﹣ , 因此 ,因此,﹣,即 , ( ),则 .可得 .【点评】本题考查函数与方程的综合应用,函数的导数的应用,基本不等式的应用,函数恒成立的应用,考查分析问题解决问题的能力..( 分)( 江苏)记 , , , ,对数列 ( ∈ )和 的子集 ,若 ∅,定义 ;若 , , , ,定义.例如: , , 时, .现设 ( ∈ )是公比为 的等比数列,且当 , 时, .( )求数列 的通项公式;( )对任意正整数 ( ≤ ≤ ),若 ⊆ , , , ,求证: < ; ( )设 ⊆ , ⊆ , ≥ ,求证: ≥ .【分析】( )根据题意,由 的定义,分析可得 ,计算可得 ,进而可得 的值,由等比数列通项公式即可得答案;( )根据题意,由 的定义,分析可得 ≤﹣,由等比数列的前 项和公式计算可得证明;( )设 ∁ ( ), ∁ ( ),则 ∅,进而分析可以将原命题转化为证明 ≥ ,分 种情况进行讨论: 、若 ∅, 、若 ≠∅,可以证明得到 ≥ ,即可得证明.【解答】解:( )当 , 时, , 因此 ,从而 ,故﹣,( ) ≤ ﹣< ,( )设 ∁ ( ), ∁ ( ),则 ∅,分析可得 , ,则 ﹣ ﹣ , 因此原命题的等价于证明 ≥ , 由条件 ≥ ,可得 ≥ , 、若 ∅,则 ,故 ≥ ,、若 ≠∅,由 ≥ 可得 ≠∅,设 中最大元素为 , 中最大元素为 , 若 ≥ ,则其与 < ≤ ≤ 相矛盾, 因为 ∅,所以 ≠ ,则 ≥ ,≤ ﹣≤,即 ≥,综上所述, ≥ , 故 ≥ .【点评】本题考查数列的应用,涉及新定义的内容,解题的关键是正确理解题目中对于新定义的描述.附加题【选做题】本题包括 、 、 、 四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤 .【选修 几何证明选讲】.( 分)( 江苏)如图,在△ 中,∠ , ⊥ , 为垂足, 为 的中点,求证:∠ ∠ .【分析】依题意,知∠ ,∠ ∠ ,利用∠ ∠ ∠ ∠,可得∠ ∠ ,从而可证得结论.【解答】解:由 ⊥ 可得∠ ,因为 为 的中点,所以 ,则:∠ ∠ ,由∠ ,可得∠ ∠ ,由∠ ,可得∠ ∠ ,因此∠ ∠ ,而∠ ∠ ,所以,∠ ∠ .【点评】本题考查三角形的性质应用,利用∠ ∠ ∠ ∠ ,证得∠ ∠ 是关键,属于中档题.【选修 :矩阵与变换】.( 分)( 江苏)已知矩阵 ,矩阵 的逆矩阵 ﹣,求矩阵 .【分析】依题意,利用矩阵变换求得 ( ﹣ )﹣ ,再利用矩阵乘法的性质可求得答案.【解答】解:∵ ﹣ ,∴ ( ﹣ )﹣ ,又 ,∴ .【点评】本题考查逆变换与逆矩阵,考查矩阵乘法的性质,属于中档题.【选修 :坐标系与参数方程】.( 江苏)在平面直角坐标系 中,已知直线 的参数方程为( 为参数),椭圆 的参数方程为( 为参数),设直线 与椭圆 相交于 , 两点,求线段 的长.【分析】分别化直线与椭圆的参数方程为普通方程,然后联立方程组,求出直线与椭圆的交点坐标,代入两点间的距离公式求得答案.【解答】解:由,由 得,代入 并整理得,.由,得,两式平方相加得.联立,解得或.∴ .【点评】本题考查直线与椭圆的参数方程,考查了参数方程化普通方程,考查直线与椭圆位置关系的应用,是基础题..( 江苏)设 > , ﹣ <, ﹣ <,求证:﹣ < .【分析】运用绝对值不等式的性质: ≤ ,结合不等式的基本性质,即可得证.【解答】证明:由 > , ﹣ <, ﹣ <,可得 ﹣ ( ﹣ ) ( ﹣ )≤ ﹣ ﹣ < ,则 ﹣ < 成立.【点评】本题考查绝对值不等式的证明,注意运用绝对值不等式的性质,以及不等式的简单性质,考查运算能力,属于基础题.附加题【必做题】.( 分)( 江苏)如图,在平面直角坐标系 中,已知直线 :﹣ ﹣ ,抛物线 : ( > ).( )若直线 过抛物线 的焦点,求抛物线 的方程;( )已知抛物线 上存在关于直线 对称的相异两点 和 .求证:线段 的中点坐标为( ﹣ ,﹣ );求 的取值范围.【分析】( )求出抛物线的焦点坐标,然后求解抛物线方程.( ): 设点 ( , ), ( , ),通过抛物线方程,求解 ,通过 , 关于直线 对称,点的 ﹣ ,推出, 的中点在直线 上,推出 ﹣,即可证明线段 的中点坐标为( ﹣ ,﹣ );利用线段 中点坐标( ﹣ ,﹣ ).推出,得到关于﹣ ,有两个不相等的实数根,列出不等式即可求出 的范围.【解答】解:( )∵ : ﹣ ﹣ ,∴ 与 轴的交点坐标( , ), 即抛物线的焦点坐标( , ). ∴,∴抛物线 : .( )证明: 设点 ( , ), ( , ),则:,即:,,又∵ , 关于直线 对称,∴ ﹣ ,即 ﹣ ,∴,又 的中点在直线 上,∴ ﹣ ,∴线段 的中点坐标为( ﹣ ,﹣ ); 因为 中点坐标( ﹣ ,﹣ ).∴,即∴,即关于 ﹣ ,有两个不相等的实数根,∴△> ,( ) ﹣ ( ﹣ )> ,∴ ∈.【点评】本题考查抛物线方程的求法,直线与抛物线的位置关系的应用,考查转化思想以及计算能力..( 分)( 江苏)( )求 ﹣ 的值;( )设 , ∈ , ≥ ,求证:( ) ( ) ( )( ) ( ) .【分析】( )由已知直接利用组合公式能求出 的值.( )对任意 ∈ ,当 时,验证等式成立;再假设 ( ≥ )时命题成立,推导出当 时,命题也成立,由此利用数学归纳法能证明( ) ( ) ( ) ( ) ( ) .【解答】解:( )﹣ ×× ﹣ × .证明:( )对任意 ∈ ,当 时,左边 ( ) ,右边 ( ) ,等式成立.假设 ( ≥ )时命题成立,即( ) ( ) ( ) ( ) ( ),当 时,左边 ( ) ( ) ( ) ( ) ( ),右边∵( ) ﹣( )× ﹣( ﹣ )( )( ),∴ ( ),∴左边 右边,∴ 时,命题也成立,∴ , ∈ , ≥ ,( ) ( ) ( )( ) ( ) .【点评】本题考查组合数的计算与证明,是中档题,解题时要认真审题,注意组合数公式和数学归纳法的合理运用.剑影实验学校名师高中部 高一化学第二次月考试卷。
2016年高考江苏卷数学试题(解析版)
10. 如图,在平面直角坐标系
xOy 中, F 是椭圆
x a
2 2
y b
2 2
1(a> b> 0) 的右焦点,直线
y
b 2
与椭圆交于 B , C 两点,且
BFC
90 , 则该椭圆的离心率是
x xOy 中,双曲线 7
2
a
2
b 、共轭为 a bi .
2
3. 在平面直角坐标系 【答案】
y 3
2
1 的焦距是 ________ ▲ _______ _.
2 10
考点:双曲线性质 【名师点睛】本题重点考查双曲线基本性质,而双曲线性质是与双曲线标准方程息息相关,
明确双曲线标准方程中量所对应关系是解题关键: 实轴长为 2 a ,虚轴长为
2 2
x 2 a
2 2
2
y 2 b
2
1(a
0, b y
0) 揭示焦点在 x 轴, b a x ,离心率为
2b ,焦距为 2 c
2 a
b ,渐近线方程为
c a
a
b
a
4.7,4.8,5.1,5.4,5.5 ,则该组数据的方差是 ________ ▲ _______ _.
4. 已知一组数据 【答案】 0.1 【解析】
{ 1,2,3,6}, B
1,2
B
{ 1,2,3,6}
{x| 2
x
3} { 1,2}
数较小 .一要注意培养良好的答题习惯,避免出现粗心错误,二是明确江苏高考对于集合题 的考查立足于列举法,强调对集合运算有关概念及法则的理解 2. 复数 z 【答案】 5 【解析】 试题分析: z 考点:复数概念 【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题 则 运 算 , 要 切 实 掌 握 其 运 算 技 巧 和 常 .首先对于复数的四 规 思 路 , 如 (1 2i)(3 i), 其中 i 为虚数单位,则 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学Ⅰ试题参考公式圆柱的体积公式:V 圆柱=Sh ,其中S 是圆柱的底面积,h 为高. 圆锥的体积公式:V 圆锥13Sh ,其中S 是圆锥的底面积,h 为高. 一、填空题:本大题共14个小题,每小题5分,共70分.请把答案写在答题卡相应位置上。
1.已知集合{1,2,3,6},{|23},A B x x =-=-<< 则=A B ________▲________. 2.复数(12i)(3i),z =+- 其中i 为虚数单位,则z 的实部是________▲________.3.在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是________▲________.4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________▲________. 5.函数y =232x x -- 的定义域是 ▲ .6.如图是一个算法的流程图,则输出的a 的值是 ▲ .7.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 ▲ .8.已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 ▲ . 9.定义在区间[0,3π]上的函数y =sin2x 的图象与y =cos x 的图象的交点个数是 ▲ .10.如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0 的右焦点,直线2b y = 与椭圆交于B ,C 两点,且90BFC ∠= ,则该椭圆的离心率是 ▲ .(第10题)11.设f (x )是定义在R 上且周期为2的函数,在区间[ −1,1)上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中.a ∈R 若59()()22f f -= ,则f (5a )的值是 ▲ .12. 已知实数x ,y 满足240220330x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则x 2+y 2的取值范围是 ▲ .13.如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4BC CA ⋅=,1BF CF ⋅=- ,则BE CE ⋅ 的值是 ▲ .14.在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是 ▲ .二、解答题 (本大题共6小题,共90分.请在答题卡制定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分) 在ABC △中,AC =6,4πcos .54B C , (1)求AB 的长; (2)求πcos(6A )的值.16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥. 求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1O O 是正四棱锥的高1PO 的四倍. (1) 若16m,2m,AB PO ==则仓库的容积是多少?(2) 若正四棱锥的侧棱长为6 m,则当1PO 为多少时,仓库的容积最大?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+=及其上一点A (2,4)(1) 设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2) 设平行于OA 的直线l 与圆M 相交于B 、C 两点,且BC =OA ,求直线l 的方程;(3) 设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=,求实数t 的取值范围。
已知函数()(0,0,1,1)xxf x a b a b a b =+>>≠≠. (1) 设a =2,b =12. ① 求方程()f x =2的根;②若对任意x R ∈,不等式(2)f()6f x m x ≥-恒成立,求实数m 的最大值;(2)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值.20.(本小题满分16分)记{}1,2,100U =…,.对数列{}()*n a n N ∈和U 的子集T ,若T =∅,定义0TS=;若{}12,,k T t t t =…,,定义12+k T t t t S a a a =++….例如:{}=1,3,66T 时,1366+T S a a a =+.现设{}()*n a n N ∈是公比为3的等比数列,且当{}=2,4T 时,=30T S . (1) 求数列{}n a 的通项公式;(2) 对任意正整数()1100k k ≤≤,若{}1,2,k T ⊆…,,求证:1T k S a +<; (3)设,,C D C U D U S S ⊆⊆≥,求证:2C C DD S S S +≥.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题........,并在相应的答题区域内作答.............若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .【选修4—1几何证明选讲】(本小题满分10分) 如图,在△ABC 中,∠ABC =90°,BD ⊥AC ,D 为垂足,E 是BC 的中点,求证:∠EDC =∠ABD .B.【选修4—2:矩阵与变换】(本小题满分10分)已知矩阵12,02A ⎡⎤=⎢⎥-⎣⎦ 矩阵B 的逆矩阵111=202B -⎡⎤-⎢⎥⎢⎥⎣⎦,求矩阵AB .C.【选修4—4:坐标系与参数方程】(本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参数方程为1123x t y ⎧=+⎪⎪⎨⎪=⎪⎩ (t 为参数),椭圆C 的参数方程为cos ,2sin x y θθ=⎧⎨=⎩ (θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长. D.设a >0,|x -1|<3a ,|y -2|<3a,求证:|2x +y -4|<a .【必做题】第22题、第23题,每题10分,共计20分. 请在答题卡指定区域内作答.............解答时应写出文字说明、证明过程或演算步骤.22. (本小题满分10分)如图,在平面直角坐标系xOy 中,已知直线l :x -y -2=0,抛物线C :y 2=2px (p >0).(1)若直线l 过抛物线C 的焦点,求抛物线C 的方程;(2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q .①求证:线段PQ 的中点坐标为(2-p ,-p ); ②求p 的取值范围.23.(本小题满分10分) (1)求3467–47C C 的值; (2)设m ,n N *,n ≥m ,求证:(m +1)C m m +(m +2)+1C m m +(m +3)+2C m m +…+n –1C m n +(n +1)C m n =(m +1)+2+2C m n .参考答案1.{}1,2-2.53.4.0.15.[]3,1-6.97.5.68.20. 9.7.10.11. 25-12. 4[,13]513. 7814.8.15.解(1)因为4cos ,0,5B B π=<<所以3sin ,5B =由正弦定理知sin sin AC ABB C=,所以6sin 23sin 5AC C AB B ⋅===(2)在三角形ABC 中A B C π++=,所以().A B C π=-+于是cosA cos(B C)cos()cos cossin sin ,444B B B πππ=-+=-+=-+又43cos ,sin ,55B B ==,故43cos 525210A =-⨯+⨯=-因为0A π<<,所以sin A ==因此1cos()cos cos sin sin 6662A A A πππ-=+=+=16.证明:(1)在直三棱柱111ABC A B C -中,11//AC AC 在三角形ABC 中,因为D,E 分别为AB,BC 的中点.所以//DE AC ,于是11//DE AC又因为DE ⊄平面1111,AC F AC ⊂平面11AC F 所以直线DE//平面11AC F(2)在直三棱柱111ABC A B C -中,1111AA ⊥平面A B C 因为11AC ⊂平面111A B C ,所以111AA⊥A C 又因为111111*********,,AC A B AA ABB A A B ABB A A B AA A ⊥⊂⊂=,平面平面所以11AC ⊥平面11ABB A因为1B D ⊂平面11ABB A ,所以111AC B D ⊥又因为1111111111111C F,C F,B D A AC A A F A AC A F A ⊥⊂⊂=F ,平面平面所以111C F B D A ⊥平面因为直线11B D B DE ⊂平面,所以1B DE 平面11.AC F ⊥平面17.本小题主要考查函数的概念、导数的应用、棱柱和棱锥的体积等基础知识,考查空间想象能力和运用数学模型及数学知识分析和解决实际问题的能力.满分14分. 解:(1)由PO 1=2知OO 1=4PO 1=8. 因为A1B1=AB=6,所以正四棱锥P-A 1B 1C 1D 1的体积()22311111=6224;33V A B PO m ⋅⋅=⨯⨯=柱 正四棱柱ABCD-A 1B 1C 1D 1的体积()2231=68288.V AB OO m ⋅=⨯=柱 所以仓库的容积V=V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a(m),PO 1=h(m),则0<h<6,OO 1=4h.连结O 1B 1. 因为在11RT PO B ∆中,222111OB PO PB +=,所以22362h ⎛⎫+= ⎪ ⎪⎝⎭,即()22236.a h =- 于是仓库的容积()()222311326436,06333V V V a h a h a h h h h =+=⋅+⋅==-<<锥柱, 从而()()2226'36326123V h h =-=-.令'0V =,得h =或h =-(舍).当0h <<'0V > ,V 是单调增函数;当236h <<时,'0V <,V 是单调减函数. 故23h =时,V 取得极大值,也是最大值. 因此,当123PO = 时,仓库的容积最大.18.本小题主要考查直线方程、圆的方程、直线与直线、直线与圆、圆与圆的位置关系、平面向量的运算等基础知识,考查分析问题能力及运算求解能力.满分16分.解:圆M 的标准方程为()()226725x y -+-=,所以圆心M(6,7),半径为5,. (1)由圆心在直线x=6上,可设()06,N y .因为N 与x 轴相切,与圆M 外切, 所以007y <<,于是圆N 的半径为0y ,从而0075y y -=+,解得01y =. 因此,圆N 的标准方程为()()22611x y -+-=. (2)因为直线l||OA ,所以直线l 的斜率为40220-=-. 设直线l 的方程为y=2x+m ,即2x-y+m=0, 则圆心M 到直线l 的距离267555mm d ⨯-++==因为222425,BC OA ==+=而222,2BC MC d ⎛⎫=+ ⎪⎝⎭所以()252555m +=+,解得m=5或m=-15.故直线l 的方程为2x-y+5=0或2x-y-15=0. (3)设()()1122,,Q ,.P x y x y因为()()2,4,,0,A T t TA TP TQ +=,所以2124x x ty y =+-⎧⎨=+⎩ ……①因为点Q 在圆M 上,所以()()22226725.x y -+-= …….② 将①代入②,得()()22114325x t y --+-=.于是点()11,P x y 既在圆M 上,又在圆()()224325x t y -++-=⎡⎤⎣⎦上, 从而圆()()226725x y -+-=与圆()()224325x t y -++-=⎡⎤⎣⎦没有公共点, 所以5555,-≤≤+解得22t -≤+因此,实数t的取值范围是22⎡-+⎣.19.(1)因为12,2a b ==,所以()22x xf x -=+. ①方程()2f x =,即222xx-+=,亦即2(2)2210x x -⨯+=,所以2(21)0x-=,于是21x=,解得0x =.②由条件知2222(2)22(22)2(())2xx x x f x f x --=+=+-=-.因为(2)()6f x mf x ≥-对于x R ∈恒成立,且()0f x >,所以2(())4()f x m f x +≤对于x R ∈恒成立.而2(())44()4()()f x f x f x f x +=+≥=,且2((0))44(0)f f +=, 所以4m ≤,故实数m 的最大值为4.(2)因为函数()()2g x f x =-只有1个零点,而00(0)(0)220g f a b =-=+-=, 所以0是函数()g x 的唯一零点.因为'()ln ln x xg x a a b b =+,又由01,1a b <<>知ln 0,ln 0a b <>, 所以'()0g x =有唯一解0ln log ()ln b aax b=-. 令'()()h x g x =,则''22()(ln ln )(ln )(ln )xxxxh x a a b b a a b b =+=+,从而对任意x R ∈,'()0h x >,所以'()()g x h x =是(,)-∞+∞上的单调增函数,于是当0(,)x x ∈-∞,''0()()0g x g x <=;当0(,)x x ∈+∞时,''0()()0g x g x >=.因而函数()g x 在0(,)x -∞上是单调减函数,在0(,)x +∞上是单调增函数. 下证00x =. 若00x <,则0002x x <<,于是0()(0)02xg g <=, 又log 2log 2log 2(log 2)220a a a a g ab a =+->-=,且函数()g x 在以2x 和log 2a 为端点的闭区间上的图象不间断,所以在02x 和log 2a 之间存在()g x 的零点,记为1x . 因为01a <<,所以log 20a <,又002x<,所以10x <与“0是函数()g x 的唯一零点”矛盾. 若00x >,同理可得,在02x 和log 2a 之间存在()g x 的非0的零点,矛盾. 因此,00x =. 于是ln 1ln ab-=,故ln ln 0a b +=,所以1ab =. 20.(1)由已知得1*13,n n a a n N -=•∈.于是当{2,4}T =时,2411132730r S a a a a a =+=+=. 又30r S =,故13030a =,即11a =. 所以数列{}n a 的通项公式为1*3,n n a n N -=∈. (2)因为{1,2,,}T k ⊆,1*30,n n a n N -=>∈,所以1121133(31)32k k k r k S a a a -≤+++=+++=-<.因此,1r k S a +<.(3)下面分三种情况证明. ①若D 是C 的子集,则2C C DC D D D D S S S S S S S +=+≥+=. ②若C 是D 的子集,则22C CDC C CD S S S S S S +=+=≥.③若D 不是C 的子集,且C 不是D 的子集. 令U E CC D =,U F D C C =则E φ≠,F φ≠,EF φ=.于是C E C D S S S =+,D F CD S S S =+,进而由C D S S ≥,得E F S S ≥.设k 是E 中的最大数,l 为F 中的最大数,则1,1,k l k l ≥≥≠.由(2)知,1E k S a +<,于是1133l k l F E k a S S a -+=≤≤<=,所以1l k -<,即l k ≤. 又k l ≠,故1l k ≤-, 从而1121131133222l l k E F l a S S a a a ----≤+++=+++==≤,故21E F S S ≥+,所以2()1C C DD CDS S S S -≥-+,即21C CDD S S S +≥+.综合①②③得,2C C DD S S S +≥.21.A 证明:在ADB ∆和ABC ∆中, 因为90,,ABC BD AC A ∠=⊥∠为公共角, 所以ADB ∆∽ABC ∆,于是ABD C ∠=∠.在Rt BDC ∆中,因为E 是BC 的中点, 所以ED EC =,从而EDC C ∠=∠. 所以EDC ABD ∠=∠.B .解:设a b B c d ⎡⎤=⎢⎥⎣⎦,则1110120102a b B B c d ⎡⎤-⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 即1110220122a c b d cd ⎡⎤--⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦, 故1121022021a c b d c d ⎧-=⎪⎪⎪-=⎨⎪=⎪⎪=⎩,解得114012a b c d ⎧⎪⎪=⎪⎪=⎨⎪=⎪⎪⎪=⎩,所以114102B ⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦.因此,15112144021012AB⎡⎤⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦.C.解:椭圆C的普通方程为2214yx+=,将直线l的参数方程112x ty⎧=+⎪⎪⎨⎪=⎪⎩,代入2214yx+=,得22)12(1)124t++=,即27160t t+=,解得1t=,2167t=-.所以1216||7AB t t=-=.21D.证明:因为|1|,|2|33a ax y-<-<所以|24||2(1)(2)|2|1||2|2.33a ax y x y x y a+-=-+-≤-+-<⨯+=22.解:(1)抛物线2:y2(0)C px p=>的焦点为(,0)2p由点(,0)2p在直线:20l x y--=上,得0202p--=,即 4.p=所以抛物线C的方程为28.y x=(2)设1122(x,y),(x,y)P Q,线段PQ的中点00(x,y)M因为点P和Q关于直线l对称,所以直线l垂直平分线段PQ,于是直线PQ的斜率为1-,则可设其方程为.y x b=-+①由22y pxy x b⎧=⎨=-+⎩消去x得2220(*)y py pb+-=因为P 和Q是抛物线C上的相异两点,所以12,y y≠从而2(2)4(2)0p pb∆=-->,化简得20p b+>.方程(*)的两根为1,2y p=-12.2y yy p+==-因为00(x,y)M在直线l上,所以2.x p=-因此,线段PQ的中点坐标为(2,).p p--②因为M(2,).p p--在直线y x b=-+上所以(2)b p p -=--+,即22.b p =-由①知20p b +>,于是2(22)0p p +->,所以4.3p < 因此p 的取值范围为4(0,).323.解:(1)3467654765474740.3214321C C ⨯⨯⨯⨯⨯-=⨯-⨯=⨯⨯⨯⨯⨯(2)当n m =时,结论显然成立,当n m >时11(1)!(1)!(1)(1)(1),1,2,,.!()!(1)![(k 1)(m 1)]!m m k k k k k k C m m C k m m n m k m m +++⋅++==+=+=++-++-+又因为122112,m m m k k k C C C +++++++=所以2221(1)(1)(),k m 1,m+2,n.m m m k k k k C m C C +++++=+-=+,因此12122222222232432122(1)(2)(3)(n 1)(1)[(2)(3)(n 1)](1)(1)[()()()](1)m m m mm m m nm m m mm m m n m m m m m m m m m m m m n n m n m C m C m C C m C m C m C C m Cm CCCCCCm C +++++++++++++++++++++++++++=+++++++=+++-+-+-=+。