初中数学各种常见几何图形的添辅助线的方法

合集下载

初中几何加辅助线方法

初中几何加辅助线方法

初中几何加辅助线方法
初中几何中,加辅助线是一种常用而有效的解决问题的方法。

它可以帮助我们更好地理解几何图形的特性,从而更快地求出问题的答案。

本文将介绍几种常见的加辅助线方法:
1. 垂线分割线段
当我们需要将一个线段平分为两段时,可以通过在线段的中点处作一条垂线,将线段分割为两个相等的部分。

这种方法在求解角平分线等问题中也很常见。

2. 平移图形
将一个图形平移一段距离,可以使得一些难以得到的关系变得清晰。

例如,在证明两角相等时,我们可以将其中一个角平移,使它与另一个角重合,从而得到它们相等的结论。

3. 对称图形
对称是几何中的一个重要概念,它可以帮助我们发现图形中的对称性质。

例如,在求解垂线问题时,我们可以通过对称性质找到垂线的另一条直线,从而解决问题。

4. 三角形高线
三角形的高线是连接三角形顶点与其对边垂足的线段。

在解决三角形问题时,我们可以通过画出三角形的高线,将三角形分割为更简单的几何图形,以便更好地求解。

以上是几种常见的加辅助线方法,它们可以帮助我们更好地理解并解决几何问题。

初中辅助线102种方法

初中辅助线102种方法

初中辅助线102种方法1.绘制直线段:在所给的两个点上画辅助线,连接两点即可获得直线段。

2.绘制垂直线:在给定直线上选取一点,作与该点不共线的直线,通过该点引垂直线即可。

3.绘制平行线:在给定直线上选取一点作线段,然后以该线段为半径作圆,在另一点处画一条线段,两条线段平行。

4.绘制等分线:在直线上选择两个点,作圆使其与直线交于两点,连接两点画线段。

5.绘制三等分线:在直线上选择三个不共线的点,分别与直线上的点相连接,形成三个等腰三角形的底面,在三个对应顶点之间画线段。

6.绘制中位线:在三角形的两边上选择两点,使其各自与一个端点形成中位线,在两点之间画线段。

7.绘制角平分线:在给定角的两边上选择两个点,以该点为圆心作圆相交于两点,然后连接两点即可。

8.绘制垂直平分线:对于给定线段,以其中一点为圆心作大于一半长度的圆,在另一端点处画线段,连接两点即可。

9.绘制等腰三角形的高:在一个顶角上选择一点,然后与两边的端点相连,两条线段相交的点就是等腰三角形的高。

10.绘制正方形的对角线:在正方形的两个对角线上选择相对的两点,连接两点即可。

11.绘制圆:以给定的圆心为圆心,以圆上两个点的距离作半径画圆。

12.绘制圆的切线:以切点为圆心,在圆上选择两个点,连接两点即可。

13.绘制圆的弦:在圆上选择两个点,连接两点即可。

14.绘制正多边形的对角线:在正多边形的两个对角线上选择相对的两点,连接两点即可。

15.绘制垂直于圆的切线:以圆心为圆心,在圆上选择两个点,作圆与圆外一点的连线,得到的直线即为切线。

16.绘制等边三角形的高:在等边三角形的一个顶点上选择一点,然后与底边上两个相对的顶点相连,两条线段相交的点即为高所在位置。

17.绘制与给定角相等的角:在给定角的两边上选择两个点,分别以这两个点为圆心与给定角的两边相交,连接两个交点即可。

18.绘制与给定线段等长的线段:在给定线段上选择一点,以该点为圆心作圆的交点即为与给定线段等长的线段的两端点。

初中数学辅助线做法(附辅助线记忆歌诀)

初中数学辅助线做法(附辅助线记忆歌诀)

初中数学辅助线做法(附辅助线记忆歌诀)夏夏之前在辅导一个初中的孩子时发现,她在做代数题的时候,还算轻松。

比如求一元二次方程的解,求二次函数的解析式,这样的题目按照基本的公式和步骤做起来还比较轻松。

是一到几何图形题就有点困难。

比如解关于平行四边形的问题,她可以把关于平行四边形的性质和判定都说出来,可是就是不知道怎么做题。

后来我总结了一下,出现这种情况一个很大的原因是,她没法把问题和条件之间建立起联系。

那么这个联系在哪里呢,对于很多图形题来说,是辅助线,有时候图形题做上辅助线就会豁然开朗了。

今天给大家整理总结了一些,希望能帮到你萌哦!1、三角形中常见辅助线的添加1. 与角平分线有关的(1)可向两边作垂线。

(2)可作平行线,构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形2. 与线段长度相关的(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。

(4)遇到中点,考虑中位线或等腰等边中的三线合一。

3. 与等腰等边三角形相关的(1)考虑三线合一(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 °2、四边形中常见辅助线的添加特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线。

下面介绍一些辅助线的添加方法。

1. 和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。

(1)利用一组对边平行且相等构造平行四边形(2)利用两组对边平行构造平行四边形(3)利用对角线互相平分构造平行四边形2. 与矩形有辅助线作法(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.3. 和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.(1)作菱形的高(2)连结菱形的对角线4. 与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线5. 与梯形有关的辅助线的作法和梯形有关的辅助线的作法是较多的.主要涉及以下几种类型:(1)作一腰的平行线构造平行四边形和特殊三角形(2)作梯形的高,构造矩形和直角三角形(3)作一对角线的平行线,构造直角三角形和平行四边形(4)延长两腰构成三角形(5)作两腰的平行线等3、圆中常见辅助线的添加1. 遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。

初中数学辅助线的添加方法

初中数学辅助线的添加方法

初中数学辅助线的添加方法添加辅助线是数学解题中的一个重要方法,它有助于我们更好地理解问题,分析问题,解决问题。

辅助线可以将复杂的问题化简为简单的几何关系,从而使题目的解决过程更加清晰明了。

下面,我将详细介绍初中数学中常见的几种辅助线的添加方法。

一、加分割线1.正方形的割线:在正方形的任一对相对边上,添加一条相等的线段。

通过这条线段,我们可以将正方形分割为两个直角三角形,从而可以更好地利用直角三角形的性质解题。

2.长方形的割线:在长方形的相邻两个顶点上,添加一条线段。

通过这条线段,我们可以将长方形分割为两个等腰三角形,从而可以更好地利用等腰三角形的性质解题。

3.平行四边形的割线:在平行四边形的相邻两个顶点上,添加一条线段。

通过这条线段,我们可以将平行四边形分割为两个三角形,从而可以更好地运用几何关系解题。

二、连接中点在图形的两条边上,通过它们的中点,用直线将这两条边连接起来。

通过连接中点,我们可以更好地利用平行线的性质解题,同时也有助于我们观察和发现其他几何关系。

三、作垂线1.作垂线求中点:在一个线段的两个端点上作垂线,再将垂线的交点与线段的两个端点相连,连接后的线段即为线段的中点。

通过作垂线求中点,我们可以更好地利用垂直线段的性质解题,同时也有助于我们观察和发现其他几何关系。

2.作垂线求直角:在一个直线上作垂线,使直线与垂线互相垂直。

通过作垂线求直角,我们可以更好地利用垂直线的性质解题。

四、加角辅助线1.加角度平分线:在一个角的两边上,分别取两个点,再将这两个点与角的顶点相连,并使相连线段的夹角相等。

通过加角度平分线,我们可以更好地利用角度平分线的性质解题,同时也有助于我们观察和发现其他几何关系。

2.加圆心角辅助线:在圆的弧上选取两个点,再将这两个点与圆心相连,并使相连线段的夹角相等。

通过加圆心角辅助线,我们可以更好地利用圆心角的性质解题。

五、作垂直平分线在一个线段上作一条垂直平分线,将线段平分为两个相等的部分。

几何证明例题及常见的添加辅助线方法

几何证明例题及常见的添加辅助线方法

几何证明例题及常见的添加辅助线方法几何证明是数学中的一个重要分支,通过使用几何定理和性质,以及一些常见的辅助线方法,来证明几何命题的正确性。

下面将提供几个几何证明的例题,并介绍一些常见的添加辅助线方法:1.证明等边三角形的高线与垂直平分线重合。

添加辅助线方法:连接等边三角形的顶点与底边的中点,将三角形分为两个等腰三角形。

然后,通过利用等腰三角形的性质,可以证明三角形的高线与垂直平分线重合。

2.证明等腰梯形的对角线垂直。

添加辅助线方法:在等腰梯形的两个腰上各取一个点,使得这两个点与梯形的底边相连,形成两个等边三角形。

通过证明这两个等边三角形的高线与底边的中线相垂直,可以得出对角线垂直的结论。

3.证明一个四边形是平行四边形的充要条件是其对角线互相垂直。

添加辅助线方法:对四边形的两个对角线进行延长,连接延长线的交点与四边形的两个相邻顶点,形成两个三角形。

通过证明这两个三角形是直角三角形,可以得出对角线互相垂直的结论。

4.证明正方形的对角线互相垂直。

添加辅助线方法:连接正方形的相邻顶点,形成两个等腰三角形。

通过证明这两个等腰三角形的高线与底边的中线相垂直,可以得出对角线互相垂直的结论。

5.证明一个三角形的内心到三边的距离和边长的乘积是相等的。

添加辅助线方法:通过从三角形的顶点向内切圆引垂线,连接垂足与内心,形成三个小三角形。

通过证明这三个小三角形是相似三角形,可以得出内心到三边的距离和边长的乘积相等的结论。

以上是几个常见的几何证明例题及其对应的添加辅助线方法。

在几何证明中,添加辅助线是一种常用的方法,可以将原始图形分解成更简单的图形,以便于应用几何定理和性质进行证明。

但需要注意的是,添加辅助线时应选择合适的位置和方式,以确保辅助线的添加不会引入其他不必要的情况,更好地辅助证明目标命题的正确性。

初中数学常见辅助线做法

初中数学常见辅助线做法

初中数学常用辅助线一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线*(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。

中考数学点对点-几何问题辅助线添加技巧(解析版)

中考数学点对点-几何问题辅助线添加技巧(解析版)

专题29 几何问题辅助线添加技巧专题知识点概述全国各地每年的中考试卷里都会出现考查几何的证明和计算问题,在解答试题过程中,我们发现当题设条件不够,必须添加辅助线,把分散条件集中,建立已知和未知的桥梁,结合学过的知识,采用一定的数学方法,把问题转化为自己能解决的问题。

学会添加辅助线技巧,是培养学生科学思维、科学探究的重要途径。

所以希望大家学深学透添加辅助线的技巧和方法。

一、以基本图形为切入点研究添加辅助线的技巧策略1.三角形问题方法1:有关三角形中线的题目,常将中线加倍。

含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。

方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。

方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。

方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。

2.平行四边形问题平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形;(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线;(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;(5)过顶点作对角线的垂线,构成线段平行或三角形全等。

3.梯形问题梯形是一种特殊的四边形。

它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。

初中数学做辅助线方法

初中数学做辅助线方法

初中数学做辅助线方法在初中数学中,使用辅助线是一种常见的解题方法,它可以帮助我们更好地理解问题和解题思路。

以下是一些常见的辅助线方法以及它们的应用。

1. 分割线法:当我们需要求一个几何图形的面积或长度时,有时可以使用一条或多条辅助线将图形分割成几个简单的几何图形,然后再计算每个简单图形的面积或长度,最后相加得到所求解。

2. 割线法:当我们需要找到一个几何图形内部的一些特殊点时,可以通过引入一条辅助线,将该点和图形的某些已知点连接起来,然后利用几何性质来得出所求点的位置。

3. 三角形连接线法:在三角形的题目中,如果我们需要求解三角形的面积、周长或者证明某些三角形特性时,可以引入一条或多条辅助线,将三角形分割成一些已知的几何图形,然后再进行计算或证明。

4. 外接圆法:当我们需要证明一个几何图形的性质时,有时可以通过引入一个外接圆,将几何图形与圆相切或相交,利用圆的性质来进行推导和证明。

5. 成比例辅助线法:在一些比例相关的问题中,可以通过引入成比例的辅助线来简化计算或证明的过程。

6. 平行线法:当我们需要证明两条线段平行或两个角相等时,可以通过引入一条或多条辅助线,建立起平行关系或等角关系,再利用几何性质进行证明。

除了以上的常见方法,还有许多其他的辅助线方法可以用来解决初中数学中的问题。

在使用辅助线方法时,我们需要注意以下几点:1. 想清楚目的:在引入辅助线之前,我们需要明确引入辅助线的目的是什么,是为了简化计算、证明一个定理,还是找到问题的关键点。

2. 利用已知条件:在选择引入辅助线的位置时,我们要利用已知的条件和题目中给出的信息,选择合适的辅助线,这样可以更好地利用已知条件进行计算或证明。

3. 注意合理性:在引入辅助线时,需要注意辅助线与已知条件的联系,辅助线的引入应该是自然合理的,避免引入没有必要的辅助线,以免使问题复杂化。

4. 利用几何性质:在引入辅助线后,我们需要灵活运用几何性质,结合已知条件和辅助线的位置,进行计算或证明。

初中数学各类几何题辅助线添加技巧

初中数学各类几何题辅助线添加技巧

初中数学各类几何题辅助线添加技巧►三角形中常见辅助线的添加1.与角平分线有关的(1)可向两边作垂线。

(2)可作平行线,构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形2.与线段长度相关的(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。

(4)遇到中点,考虑中位线或等腰等边中的三线合一。

3.与等腰等边三角形相关的(1)考虑三线合一(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60°►四边形中常见辅助线的添加特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线。

下面介绍一些辅助线的添加方法。

1.和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。

(1)利用一组对边平行且相等构造平行四边形(2)利用两组对边平行构造平行四边形(3)利用对角线互相平分构造平行四边形2.与矩形有辅助线作法(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.3.和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.(1)作菱形的高(2)连结菱形的对角线4.与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线5.与梯形有关的辅助线的作法和梯形有关的辅助线的作法是较多的.主要涉及以下几种类型:(1)作一腰的平行线构造平行四边形和特殊三角形(2)作梯形的高,构造矩形和直角三角形(3)作一对角线的平行线,构造直角三角形和平行四边形(4)延长两腰构成三角形(5)作两腰的平行线等►圆中常见辅助线的添加1.遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。

初中数学几何图形的辅助线添加方法大全

初中数学几何图形的辅助线添加方法大全

初中数学添加辅助线的方法汇总作辅助线的基本方法一:中点、中位线,延长线,平行线。

如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。

二:垂线、分角线,翻转全等连。

如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。

其对称轴往往是垂线或角的平分线。

三:边边若相等,旋转做实验。

如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。

其对称中心,因题而异,有时没有中心。

故可分“有心”和“无心”旋转两种。

四:造角、平、相似,和、差、积、商见。

如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。

在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。

故作歌诀:“造角、平、相似,和差积商见。

”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。

如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。

六:两圆相切、离,连心,公切线。

如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。

七:切线连直径,直角与半圆。

如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。

即切线与直径互为辅助线。

如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。

即直角与半圆互为辅助线。

八:弧、弦、弦心距;平行、等距、弦。

如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。

初中数学几何图形辅助线添加方法大全

初中数学几何图形辅助线添加方法大全

初中数学添加辅助线的方法汇总作辅助线的基本方法一:中点、中位线,延长线,平行线。

如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。

二:垂线、分角线,翻转全等连。

如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。

其对称轴往往是垂线或角的平分线。

三:边边若相等,旋转做实验。

如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。

其对称中心,因题而异,有时没有中心。

故可分“有心”和“无心”旋转两种。

四:造角、平、相似,和、差、积、商见。

如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。

在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。

故作歌诀:“造角、平、相似,和差积商见。

”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。

如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。

六:两圆相切、离,连心,公切线。

如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。

七:切线连直径,直角与半圆。

如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。

即切线与直径互为辅助线。

如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。

即直角与半圆互为辅助线。

八:弧、弦、弦心距;平行、等距、弦。

如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。

初中数学常用辅助线添加技巧

初中数学常用辅助线添加技巧

初中数学常用辅助线添加技巧人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。

初中数学常用辅助线添加技巧一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形; 当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

初中数学辅助线的九种添加方法

初中数学辅助线的九种添加方法

初中数学辅助线的九种添加方法况种助1添辅线有二情按定义添辅助线:1;证线段倍半关系可倍相交后证交角为如证明二直线垂直可延长使它们,90°线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

按基本图形添辅助线:2把它叫做基本图形,添辅助我们每个几何定理都有与它相对应的几何图形,添线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“!这样可防止乱添线,添辅助线也有规律可循。

举例如下:”补图应该叫做线”“)平行线是个基本图形:1(当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线)等腰三角形是个简单的基本图形:(2当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

)等腰三角形中的重要线段是个重要的基本图形:3(.出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

)直角三角形斜边上中线基本图形(4出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

)三角形中位线基本图形5(几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中当有中位线三角形不完整时则需补完整三角形;点没有中位线时则添中位线,当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

)全等三角形:(6全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

.当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线)相似三角形:7(相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当)可添加平行线得平行出现相比线段重叠在一直线上时(中点可看成比为1线型相似三角形。

初中数学常用4种几何辅助线添加方法

初中数学常用4种几何辅助线添加方法

初中数学常用4种几何辅助线添加方法初中数学常用几何辅助线添加方法
•1、连接
•2、延长
•3、平行
•4、垂直
目录1
目录2
将两个点用线段连接起来的辅助线的添加方法叫作连接。

连接是最简单,最常用的辅助线添加方法之一。

通过这种辅助线来构造我们需要的图形的方法有很多,需要平时多积累,多应用,才能达到熟能生巧的境界。

最具代表性的有“截长补短”和“倍长中线”两类通常,延长之后还要用连接来组成一个完整的图形。

平行是一种应用广泛的辅助线添加方式。

过平面内一点作已知直线的垂线的辅助线添加方法叫作垂直线。

有了垂线,直角三角形、勾股定理等等各种性质都会纷至沓来。

666。

初中几何15中添加辅助线的方法

初中几何15中添加辅助线的方法

初中几何15中添加辅助线的方法在初中几何中,辅助线是解题时常常会使用的一种方法。

辅助线能够帮助我们理清思路,找到问题的关键,从而更容易解决问题。

在这里,我将介绍15种常见的添加辅助线的方法。

1.平行线辅助法:在平行的直线上添加一条辅助线,以便能够利用平行线的性质解题。

2.垂直线辅助法:在垂直的直线上添加一条辅助线,以便能够利用垂直线的性质解题。

3.切线辅助法:在圆和直线的切点处添加一条切线作为辅助线,以便能够利用切线的性质解题。

4.相等辅助法:在等长的线段上添加相等辅助线,以便能够利用线段相等的性质解题。

5.相似辅助法:在相似的图形中添加相似辅助线,以便能够利用相似图形的性质解题。

6.对称辅助法:在对称的图形中添加对称辅助线,以便能够利用对称图形的性质解题。

7.中垂线辅助法:在三角形的顶点处添加中垂线作为辅助线,以便能够利用中垂线的性质解题。

8.重心辅助法:在三角形的顶点处添加重心作为辅助线,以便能够利用重心的性质解题。

9.垂心辅助法:在三角形的顶点处添加垂心作为辅助线,以便能够利用垂心的性质解题。

10.外心辅助法:在三角形的顶点处添加外心作为辅助线,以便能够利用外心的性质解题。

11.内心辅助法:在三角形的顶点处添加内心作为辅助线,以便能够利用内心的性质解题。

12.中位线辅助法:在三角形的边上添加中位线作为辅助线,以便能够利用中位线的性质解题。

13.角平分线辅助法:在角的两边上添加角平分线作为辅助线,以便能够利用角平分线的性质解题。

14.高线辅助法:在三角形的一个顶点上添加高线作为辅助线,以便能够利用高线的性质解题。

15.弦辅助法:在圆上添加弦作为辅助线,以便能够利用弦的性质解题。

这些辅助线添加的方法,有助于我们在初中几何中更好地理解和解决问题。

当我们遇到几何问题时,可以灵活运用这些辅助线的方法,寻找问题的关键点,从而更轻松地解题。

通过多练习和实践,我们可以在初中几何中熟练地运用这些方法,从而提高解题的效率和准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学各种常见几何图形的添辅助线的方法
J添加中线,在等腰三角形中,一般添加一种就可以得出很多,添加中线,可得角平分等,这是最常用的,可以根据公式,选择添加的,但添加之后要知道可得出什么结论,一般证全等,就要找出全等三角形,根据这个来找全等的条件,这样比较好做,遇上难题,我们可拆出简单图形,来找以前做过的基本图形,可先不想添加辅助线的方法,找出基本图形是很好的方法,根据需要来添加辅助线,不要盲目添加,否则越想越难,有角平分一定想垂直,在等腰中,要想三线合一
J人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,
延长中线等中线。

平行四边形出现,
对称中心等分点。

梯形里面作高线,
平移一腰试试看。

平行移动对角线,
补成三角形常见。

证相似,比线段,
添线平行成习惯。

等积式子比例换,
寻找线段很关键。

直接证明有困难,
等量代换少麻烦。

斜边上面作高线,
比例中项一大片。

半径与弦长计算,
弦心距来中间站。

圆上若有一切线,
切点圆心半径连。

切线长度的计算,
勾股定理最方便。

要想证明是切线,
半径垂线仔细辨。

是直径,成半圆,
想成直角径连弦。

弧有中点圆心连,
垂径定理要记全。

圆周角边两条弦,
直径和弦端点连。

弦切角边切线弦,
同弧对角等找完。

要想作个外接圆,
各边作出中垂线。

还要作个内接圆,
内角平分线梦圆
如果遇到相交圆,
不要忘作公共弦。

内外相切的两圆,
经过切点公切线。

若是添上连心线,
切点肯定在上面。

要作等角添个圆,
证明题目少困难。

辅助线,是虚线,
画图注意勿改变。

假如图形较分散,
对称旋转去实验。

基本作图很关键,
平时掌握要熟练。

解题还要多心眼,
经常总结方法显。

切勿盲目乱添线,
方法灵活应多变。

分析综合方法选,
困难再多也会减。

虚心勤学加苦练,
成绩上升成直线.
看懂了,理解一下就
行了
这样心中有底了,再
考也不怕了
正所谓;读书破万
卷,下笔便成文
J发下试卷来后,先利用3分钟时间审视题量,然后把握好时间分配,这是最主要的,考试不是让你解答难题的,而是拿高分的,至于辅助线一类的题一般是,“山重水复疑无路,柳暗花明又一村”,添加好了是至关重要的,重在实践和实践后的总结,不要只去背诵口诀。

希望老师的回答可以对你有所启发,祝你成功,前途无量。

J辅助线要依靠情况来定的,最好可以在三角行上做,线线之间最好加垂线,如果说是一个很乱的四边行的话,有辅助线把它边成一个好的四边行,平移是最好的啦,我中考的时候好象没有几题要加辅助线的
J1、角平分线:因为角平分线是是轴对称图形,所以基本上有以下两种
(1)角平分线那边有什么,另一部分也有什么(2)如果在角平分线上有一个直角,则要延长补全成等腰三角形2.中垂线。

见到中垂线,立即聊该线段的两端点,补全成等腰三角形。

往往,中出现也意味着中点3.中点要想到(1)直角三角形斜边中线为斜边一半(2)中位线(3)中线4。

中线:倍长中线。

相关文档
最新文档