半导体物理第三章PPT课件
半导体器件物理教案课件
半导体器件物理教案课件PPT第一章:半导体物理基础知识1.1 半导体的基本概念介绍半导体的定义、特点和分类解释n型和p型半导体的概念1.2 能带理论介绍能带的概念和能带结构解释导带和价带的概念讲解半导体的导电机制第二章:半导体材料与制备2.1 半导体材料介绍常见的半导体材料,如硅、锗、砷化镓等解释半导体材料的制备方法,如拉晶、外延等2.2 半导体器件的制备工艺介绍半导体器件的制备工艺,如掺杂、氧化、光刻等解释各种制备工艺的作用和重要性第三章:半导体器件的基本原理3.1 晶体管的基本原理介绍晶体管的结构和工作原理解释n型和p型晶体管的概念讲解晶体管的导电特性3.2 半导体二极管的基本原理介绍半导体二极管的结构和工作原理解释PN结的概念和特性讲解二极管的导电特性第四章:半导体器件的特性与测量4.1 晶体管的特性介绍晶体管的主要参数,如电流放大倍数、截止电流等解释晶体管的转移特性、输出特性和开关特性4.2 半导体二极管的特性介绍半导体二极管的主要参数,如正向压降、反向漏电流等解释二极管的伏安特性、温度特性和频率特性第五章:半导体器件的应用5.1 晶体管的应用介绍晶体管在放大电路、开关电路和模拟电路中的应用解释晶体管在不同应用电路中的作用和性能要求5.2 半导体二极管的应用介绍半导体二极管在整流电路、滤波电路和稳压电路中的应用解释二极管在不同应用电路中的作用和性能要求第六章:场效应晶体管(FET)6.1 FET的基本结构和工作原理介绍FET的结构类型,包括MOSFET、JFET等解释FET的工作原理和导电机制讲解FET的输入阻抗和输出阻抗6.2 FET的特性介绍FET的主要参数,如饱和电流、跨导、漏极电流等解释FET的转移特性、输出特性和开关特性分析FET的静态和动态特性第七章:双极型晶体管(BJT)7.1 BJT的基本结构和工作原理介绍BJT的结构类型,包括NPN型和PNP型解释BJT的工作原理和导电机制讲解BJT的输入阻抗和输出阻抗7.2 BJT的特性介绍BJT的主要参数,如放大倍数、截止电流、饱和电流等解释BJT的转移特性、输出特性和开关特性分析BJT的静态和动态特性第八章:半导体存储器8.1 动态随机存储器(DRAM)介绍DRAM的基本结构和工作原理解释DRAM的存储原理和读写过程分析DRAM的性能特点和应用领域8.2 静态随机存储器(SRAM)介绍SRAM的基本结构和工作原理解释SRAM的存储原理和读写过程分析SRAM的性能特点和应用领域第九章:半导体集成电路9.1 集成电路的基本概念介绍集成电路的定义、分类和特点解释集成电路的制造工艺和封装方式9.2 集成电路的设计与应用介绍集成电路的设计方法和流程分析集成电路在电子设备中的应用和性能要求第十章:半导体器件的测试与故障诊断10.1 半导体器件的测试方法介绍半导体器件测试的基本原理和方法解释半导体器件测试仪器和测试电路10.2 半导体器件的故障诊断介绍半导体器件故障的类型和原因讲解半导体器件故障诊断的方法和步骤第十一章:功率半导体器件11.1 功率二极管和晶闸管介绍功率二极管和晶闸管的结构、原理和特性分析功率二极管和晶闸管在电力电子设备中的应用11.2 功率MOSFET和IGBT介绍功率MOSFET和IGBT的结构、原理和特性分析功率MOSFET和IGBT在电力电子设备中的应用第十二章:光电器件12.1 光电二极管和太阳能电池介绍光电二极管和太阳能电池的结构、原理和特性分析光电二极管和太阳能电池在光电子设备中的应用12.2 光电晶体管和光开关介绍光电晶体管和光开关的结构、原理和特性分析光电晶体管和光开关在光电子设备中的应用第十三章:半导体传感器13.1 温度传感器和压力传感器介绍温度传感器和压力传感器的结构、原理和特性分析温度传感器和压力传感器在电子测量中的应用13.2 光传感器和磁传感器介绍光传感器和磁传感器的结构、原理和特性分析光传感器和磁传感器在电子测量中的应用第十四章:半导体器件的可靠性14.1 半导体器件的可靠性基本概念介绍半导体器件可靠性的定义、指标和分类解释半导体器件可靠性的重要性14.2 半导体器件可靠性的影响因素分析半导体器件可靠性受材料、工艺、封装等因素的影响14.3 提高半导体器件可靠性的方法介绍提高半导体器件可靠性的设计和工艺措施第十五章:半导体器件的发展趋势15.1 纳米晶体管和新型存储器介绍纳米晶体管和新型存储器的研究进展和应用前景15.2 新型半导体材料和器件介绍石墨烯、碳纳米管等新型半导体材料和器件的研究进展和应用前景15.3 半导体器件技术的未来发展趋势分析半导体器件技术的未来发展趋势和挑战重点和难点解析重点:1. 半导体的基本概念、分类和特点。
半导体物理第三章
p0 = ∫
价带底能量
Ev
/ Ev
gv (E) [1 − f ( E )] dE V ( 2m ) h
* 3/ 2 p 3
= 4π
∫
Ev
/ Ev
e
E − EF kT 0
( Ev − E ) dE
1/ 2
令x = ( Ev − E ) /(k0T ) ( Ev − E )1/ 2 = (k0T )1/ 2 x1/ 2 d ( Ev − E ) = −(k0T )dx x' = ( Ev − Ev' ) /(k0T )
导带中大多数电子是在导带底附近,而价带中大多数空穴 则在价带顶附近。 1. 导带中电子浓度 在能量E~(E+dE)之间有: 量子态:dZ=gc(E)dE 电子占据能量为E的量子态的概率: 则电子数为:
29
f B (E) = e
E − EF − kT 0
dN = dZ ⋅ f B ( E ) ( 2m ) = 4πV h
利用前述方法可得:
k12 + k 2 2 k3 2 h E ( k ) = Ec + + 2 mt ml
2
电子态 密度有 15 效质量
2. 价带顶状态密度 在实际Si、Ge中,价带中起作用的能带是极值相重合的 两个能带,与这两个能带相对应的有轻空穴有效质量(mp)l和 重空穴有效质量(mp)h,因此价带顶附近状态密度应为这两个 能带的状态密度之和,称为价带顶空穴的状态密度有效质量 价带顶空穴的状态密度有效质量 (空穴态密度有效质量 空穴态密度有效质量)。价带顶状态密度式子与球形等能面情 空穴态密度有效质量 况下的价带状态密度式(5)有相同的形式,
半导体物理第三章03
Ev EF p0 NV exp( ) k0T
都是由费米能级EF和温度T表示出来的,通 常把温度T作为已知数,因此这两个方程式 中还含有 n0, p0, EF三个未知数。
第三章03
2/56
为了求得它们,还应再增加一个方程 式。从3.3节(本征半导体的载流子浓度) 及3.4节(杂质半导体的载流子浓度)中 看到这第三个方程式就是在具体情况 下的电中性条件 (或称为电荷中性方程 式)。 无论是在本征情况还是只含一种杂质 的情况下,都是利用电中性条件求得 费米能级EF,然后确定本征的或只含 一种杂质的情况下的载流子统计分布 。
第三章03
19/56
式(3-85)就是施主杂质未完全电离情况下载流子浓 度的普遍公式。对此式再讨论如下两种情况: ①极低温时,N’c很小,而NA很大, N’C <<NA。 则得 (N N ) 4N (N N ) N N
n0
' ' 2 ' c A
2
c
A
c
D
A
2 4 Nc' 1 (ND N A ) N A2 2
这就是同时含有一种施主杂质和一种受主 杂质情况下的电中性条件。
第三章03
8/56
它的意义是半导体中单位体积内 的正电荷数 (价带中的空穴浓度与 电离施主杂质浓度之和)等于单位 体积中的负电荷数 (导带中的电子 浓度与电离受主杂质浓度之和)。
第三章03
9/56
当半导体中存在着若干种施主杂质和若干 种受主杂质时,电中性条件显然是:
上式表明在低温弱电离区内,导带中电子浓度与 (ND-NA)以及导带底有效状态密度Nc都成正比关系, 并随温度升高而指数增大。
半导体物理第3章课件
9
第三章 半导体中载流子的统计分布 思考题
16、某含有一些施主的p型半导体在极低温度 下(即T→0时)电子在各种能级上的分布 情况如何?定性说明随温度升高分布将如 何改变? 17、什么叫载流子的简并化?试说明其产生 的原因。有一重掺杂半导体,当温度升高 到某一值时,导带中电子开始进入简并。 当温度继续升高时简并能否解除?
14
第三章 半导体中载流子的统计分布 思考题
25、已知温度为500K时,硅ni= 4×1014cm-3 , 如电子浓度为2×1016cm-3,空穴浓度为 2×1014cm-3,该半导体是否处于热平衡状态?
15
第三章 半导体中载流子的统计分布 思考题
26、定性说明下图对应的半导体极性和掺杂状况
16
1
第三章 半导体中载流子的统计分布 思考题
2、什么叫统计分布函数?费米分布和玻尔兹 曼分布的函数形式有何区别?在怎样的条件 下前者可以过渡为后者?为什么半导体中载 流子分布可以用波尔兹曼分布描述? 3、说明费米能级EF的物理意义。根据EF位置 如何计算半导体中电子和空穴浓度?如何理 解费米能级EF是掺杂类型和掺杂程度的标志?
13
第三章 半导体中载流子的统计分布 思考题
23、定性讨论如下掺杂硅单晶费米能级位置 相对于纯单晶硅材料的改变,及随温度变化 时如何改变: (1)含有1016cm-3的硼; (2)含有1016cm-3的硼和9×1015cm-3的P; (3)含有1015cm-3的硼和9×1015cm-3的P; 24、说明两种测定施主和受主杂质浓度的实 验方法的原理?
10
第三章 半导体中载流子的统计分布 思考题
18、有四块含有不同施主浓度的Ge样品。在 室温下分别为: (1)高电导n-Ge; (2)低电导n-G;(3) 高电导p-Ge; (4)低电导p-Ge;比较四 块样品EF的位置的相对高低。分别说明它们 达到全部杂质电离或本征导电时的温度的高 低? 杂质浓度愈高,全部电离时的温度将愈高; 相应达到本征激发为主的温度也愈高。
半导体物理课件1-7章(第三章)
V
dN 2 2
2mn* 3
2
exp
E EF k0T
E
1
Ec 2 dE
积分
E
' c
导带顶能量
3
n0
dN
V
1 Ec'
Ec 2 2
2mn* 3
2
exp
E EF k0T
E Ec
1
2 dE
热平衡3状2 态下非简并半导体的导带电子浓度n0
3
n0
dN V
1 Ec'
Ec 2 2
3.2费米能级和载流子的统计分布
3.2.1 费米分布函数
⑴把半导体中的电子看作是近独立体系,即认为电子之间的相互 作用很微弱. ⑵大量电子的运动是服从量子力学规律的,用量子态描述它们的 运动状态.电子的能量是量子化的,即其中一个量子态被电子占据, 不影响其他的量子态被电子占据.并且每一能级可以认为是双重 简并的,这对应于自旋的两个容许值. ⑶在量子力学中,认为同一体系中的电子是全同的,不可分辨的. ⑷电子在状态中的分布,要受到泡利不相容原理的限制.
电子在允许的量子态上如何分布的一个统计分布
函数。
f E
1
1 exp( E EF )
k0T
EF:费米能级或费米能量,与温度、半导体材料的导电类
型、杂质的含量以及能量零点的选取有关。
一个很重要的物理参数
在一定温度下电子在各量子 态上的统计分布完全确定
17
将半导体中大量电子的集体看成一个热力系统, 由统计理论证明,费米能级EF是系统的化学势:
•半导体的导电性受温度影响剧烈。
本章讨论: 1、热平衡情况下载流子在各种能级上的分 布情况 2、计算导带电子和价带空穴的浓度,分析 它们与半导体中杂质含量和温度的关系.
高中物理第三章固体和液体2半导体课件教科选修33教科高二选修33物理课件
12/9/2021
第十五页,共二十五页。
解析 答案
二、各种特殊(tèshū)性能的半导体器件
[导学探究(tànjiū)]
请列举(lièjǔ)一些半导体器件. 答案 热敏电阻、光敏电阻等.
12/9/2021
第十六页,共二十五页。
答案
[知识(zhī shi)深化] 1.热敏电阻的电阻率随温度(wēndù)升高可减小也可增大,光敏电阻在光照条件下电 阻率迅速下降.
(4)分类:N型半导体和P型半导体.
12/9/2021
第五页,共二十五页。
2.晶体管和集成电路
(1)晶体管
①二极管:由PN结构成,具有
单导向电(d性ān x.iànɡ)
②三极管:具有 或放开大、(f关àngd电à)信流号(diànliú)的作用.
(2)集成电路:由成千上万个 二极、管 三极管、电阻和电容等元件构成的芯
A.固体材料分两类,一类是导体,另一类是绝缘体
B.半导体就是一半导电,即正方向为导体,反方向为绝缘体 C.半导体的电阻率与温度成线性关系,即随温度升高而均匀增大
√D.利用半导体的特性,可以制成各种不同性能的器件
解析 半导体的导电性能介于导体与绝缘体之间,故A、B错; 半导体的电阻率与温度的关系较为复杂,负温度系数热敏电阻的阻值随温度 升高而减小.利用半导体的特性,可以制成各种不同性能的器件,故C错,D对.
2.光电池 特性:将太阳辐射直接转换成电能.
应用:为卫星、计算器等提供能量. 3.发光二极管(LED)
特性:通电后能发光. 优点:效率高、寿命长,不易破损.
12/9/2021
第十七页,共二十五页。
例2 (多选)如图1所示,R1、R2为定值电阻,L为小灯泡,R3为光敏电阻,当照射
半导体物理 第三章
积分后可得热平衡状态下非 简并半导体的导带电子浓度
30
导带顶能量
n0
/ Ec
Ec
(2m ) 4 h
* 3/ 2 n 3
e
E EF kT 0
( E Ec ) dE
1/ 2
令x ( E Ec ) /(k0T ) ( E Ec )1/ 2 (k0T )1/ 2 x1/ 2 d ( E Ec ) (k0T )dx x' ( Ec' Ec ) /(k0T )
33
p0 4
(2m ) h
* 3/ 2 p 3
e
Ev EF kT 0
Hale Waihona Puke x'0
x1/ 2e x dx
2
(,Ev' )的空穴数 极少,忽略不计
* p 0 3
0
x e dx
Ev EF kT 0
1/ 2 x
p0 2
其中,μ:系统的化学势;
半导体能带内所有量子 态中被电子占据的量子 态数等于电子总数
F: 系统的自由能; N:电子总数,决定费米能级的条件是: f ( Ei ) N
i
上式的意义是:当系统处于热平衡状态,也不对外界作
功的情况下,系统中增加一个电子所引起系统自由能的变 化,等于系统的化学势,也就是等于系统的费米能级。
f B ( E ) g c ( E )dE e
E EF kT 0
( E Ec )1/ 2 dE
单位体积中的电子数即电子浓度
(2m ) dN dn 4 V h
半导体物理学课件4 半导体中载流子的统计分布
由导带底至导带顶积分就得
到了导带的电子浓度。
半导体中载流子 电子空穴的平衡分布
假设电子空穴有效质量相等,则EF位于禁带中线
半导体中载流子 n0 p0的方程
热平衡时的电子浓度n0 这里假设费米能级始终位于禁带中。
n0 gc E fF E dE
积分下限:Ec;积分上限:这里设为无穷大。
电子占据施主能级E D的几率f D
E
1
1
1
gD E
ED EF
e k0T
1
空穴占据受主能级E A的几率f A
E
1
1
1
gA E
EF EA
e k0T
2
gD E和gA E分别是施主和受主基态简并度
施主浓度:ND 受主浓度: NA
(1)杂质能级上未离化的载流子浓度nD和pA :
施主能级上的电子浓度nD NDfD E 3
因此对导带或价带中所有量子态来说,电子或 空穴都可以用玻耳兹曼统计分布描述。
由于分布几率随能量呈指数衰减,因此导带绝 大部分电子分布在导带底附近,价带绝大部分 空穴分布在价带顶附近,即起作用的载流子都 在能带极值附近。
例:四个电子处于宽度为a=10埃的一维无 限深势阱中,假设质量为自由电子质量,求 T=0K时的费米能级.
导带中有效电子能态密度:
4
gc E
2mn* h3
32
E - Ec
价带中有效电子能态密度:
4
gv E
2m*p h3
32
Ev - E
3.2 统计力学
在一定温度下,半导体中的大量电子不停地 作无规则热运动,从一个电子来看,它所具 有的能量时大时小,经常变化。但是,从大 量电子的整体来看,在热平衡状态下,电子 按能量大小具有一定的统计分布规律性,即 电子在不同能量的量子态上统计分布几率是 一定的。
教科版高中物理选修3-3课件 3 半导体课件
【解析】 半导体的导电性能受温度、光照及掺入杂质的 影响,故A错误,B、C正确;掺入杂质后半导体的导电性能会 大大增强,故D错误,E正确.
1、导体永远是导体,绝缘体永远是绝缘体吗? 导体和绝缘体之间没有不可逾越的鸿沟。导体和绝缘体 的区分主要是内部能自由移动的电荷的数量,然而也跟外部 条件(如电压、温度等)有关。右图中表示常温下各种物体的 导电和绝缘能力的排列顺序,导体和绝缘体之间并没有绝对 的界限。在常温下绝缘的物体,当温度升高到相当的程度, 由于可自由移动的电荷数量的增加,会转化成导体。
(3)为了将热敏电阻放置在某蔬菜大棚内检测大棚内温度的变化,请用图 313乙中的器材(可增加元件)设计一个电路.
图313
【解析】 温度升高,热敏电阻阻值变小,电流变大, 指针右偏;很显然,热敏电阻与电流表应是相互影响,所 以它们之间应串联.
【答案】 (1)小 (2)右 (3)如图所示
热敏电阻在温度变化时,其电阻能迅速改变, 故可以用它来测量很小范围内的温度变化.
3.二极管的单向导电性 (1)二极管的符号是 ,接入电路时“+”与电源正极相连, 表示加正向电压,此时二极管导通,正向电阻很小. (2)二极管加反向电压时,电阻很大,但通常仍会有很小的电 流,叫做漂移电流.
7.半导体就是导电性能介于导体和绝缘体之间的物质,以下关于其导电性能的 说法中正确的是( )
1.在极低的温度下,纯净的半导体仍能很好地导电.(×) 2.在有光照射时,有的半导体可以导电.(√) 3.掺入一定杂质后,半导体的导电性能一定会变差.(×)
半导体物理学第三章半导体中载流子统计分布 96页
3.1.1 k空间中量子态的分布
每个允许的能量状态在k空间中与由整 数组(nx,ny,nz)决定的一个代表点 ( kx,ky,kZ )相对应
对于边长为L的立方晶体
kx = 2πnx/L (nx = 0, ±1, ±2, …) ky = 2π ny/L (ny = 0, ±1, ±2, …) kz = 2π nz/L (nz = 0, ±1, ±2, …)
当系统处于热平衡状态,也不对外界做功的情况 下,系统中增加一个电子所引起的系统的自由能 的变化等于系统的化学势也即为系统的费米能级
处于热平衡状态的系统有统一的化学势,则处于 热平衡的状态的电子系统有统一的费米能级
2、费米能级EF的意义
T=0: 当E<EF时, fF(E)=1, 当E>EF时,fF(E)=0, T>0: 当E<EF时, 1/2< fF(E)<1 当E=EF时, fF(E)=1/2 当E>EF时,0<fF(E)<1/2
k空间状态分布
在k空间中,每一代表点(一个能量状态)的体
积= (2π)3/L3= (2π)3/V,则K空间中代表点的密 度为V/8π3 ,即电子允许的能量状态密度为 V/8π3 。
一个能量状态能容纳 自旋相反的两个量子 态。则在k空间中,电 子的允许量子态密度 是2 V/8π3 。此时一 个量子态只能容纳一 个电子
在室温下(300K) k0T0.02e6v
它与半导体的禁带宽度相比还是很小的,如: Si的Eg=1.12 eV。
例: 室温时硅(Si)的Ei就位于禁带中央之下约为 0.01eV的地方.也有少数半导体,Ei相对于禁带 中央的偏离较明显.如 InS,b
在室温下,本征费米能级移向导带
西安电子科技大学半导体物理课件——第三章 半导体中的载流子
(2)费米能级和多子浓度
当温度很低时,杂质电离很弱,此时有
Ⅷ、低温弱电离区(续)
(3)费米能级与温度的关系
I)
当温度T 0K时,有 可知,当温度升至使
II) 由
这说明,当温度从低温极限开始上升时, 费米能级很快上升;当温度上升到Nc=0.11ND 时,费米能级上升到极大值;当温度继续上升 时,费米能级又开始下降。 费米能级随温度的变化关系如右图所示。
常见的分布函数
1. 麦克斯韦速度分布率 2. 波尔兹曼分布率(古典统计) ——粒子可区分! 3. 费米-狄拉克统计分布
f(v) m ⎛ ⎞ = 4π ⎜ ⎟ ⎝ 2 π kT ⎠
2
3 2
v 2e
−
−
mv 2kT
2
f B (u k ) =
π
(kT )
−
3 2
uke
uk kT
f
FD
(u)
=
1 1 + e 1
状态密度
导带底E(k)与k的关系
h2k 2 E (k ) = E c + * 2m n
能量E~(E+dE)间的量子态数
dZ = 2V × 4π k dk
2
可得
(2m ) ( E − Ec ) k= h
* n 2 1 1 2 * m n dE , kdk = h2
状态密度
代入可得
(2m ) dZ = 4π V h
E (k ) = E c k 32 h 2 k 12 + k 22 + + ( ) mt ml 2
3
设导带底的状态有s个,根据同样方法可求得
(2m ) g c ( E ) = 4π V h
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
2. 求解n0和p0的方程
对于本征半导体材料来说,其费米能级的位置 通常位于禁带的中心位置附近。热平衡状态下的导带 电子浓度为:
对于本征半导体材料来说,费米-狄拉克统计分布可 以简化为玻尔兹曼分布函数,即:
.
.
其中NC称为导带的有效态密度函数,若取 mn*=m0,则当T=300K时, NC=2.5X1019cm-3, 对于大多数半导体材料来说,室温下NC确实是在 1019cm-3的数量级。
.
根据上式计算出的室 温下硅材料本征载流 子浓度为 ni=6.95X109cm-3,这 与实测的本征载流子 浓度为 ni=1.5X1010cm-3有很 大偏离,原因在于: 电子和空穴的有效质 量,以及态密度函数与 实际情况有一定偏离。
.
4. 本征费米能级的位置 在本征半导体材料中,费米能级EF通常位
第四章 热平衡状态下的半导体 本章学习要点: 1. 掌握求解热平衡状态下半导体材料中两种载
流子浓度的方法; 2. 了解半导体材料中掺杂带来的影响; 3. 建立非本征半导体的概念,熟悉热平衡状态
下半导体材料中两种载流子浓度与能量之间 的函数关系;
.
4. 掌握两种载流子的浓度与能量、温度之间函 数关系的统计规律;
其中费米能级EF位置位于
禁带中心附近。当电子的 1
0
态密度有效质量与空穴的
态密度有效质量相等时,
则gC(E)与gV(E)关于禁带 中心线相对称。
.
右图中曲线围着的面积即为导带中总的电子浓度 n0,它是由gC(E)fF(E)对整个导带的能量区间进 行积分求得,即单位体积内的导带电子数量
.
右图中曲线围着的面积为价带中总的空穴浓度 p0,由gV(E)[1-fF(E)]对整个价带的能量区间 进行积分求得,即单位体积内的价带空穴数量
5. 掌握热平衡状态下半导体材料中两种载流子 浓度与掺杂之间的函数关系;
6. 熟悉费米能级位置与半导体材料中掺杂浓度 之间的函数关系;
.
所谓热平衡状态:不受外加作用力影响的状 态,即半导体材料不受外加电压、电场、磁场、 温度梯度、光照等的影响。此时半导体材料的 各种特性均不随时间变化,即与时间无关。它 是我们分析各种稳态和瞬态问题的起点
电的磷离子则在晶体中形成固定的正电荷中心。 Ed就是施主电子在半导体中引入的能级,叫做施主能级。
施主能级位于禁带中靠近导带底部的位置,通常将其
表示为虚线。
.
这是因为杂质浓度一般比较低(相比于硅晶 格原子而言),施主电子的波函数之间尚无相 互作用,因此杂质能级还没有发生分裂,也没 有形成杂质能带。
我们把这种能够向半导体导带中提供导电电 子的杂质称作施主杂质,由施主杂质形成的这 种半导体材料称为N型半导体。(即以带负电 荷的电子导电为主的半导体材料)
于禁带的中心位置附近。因为本征半导体材料 中电子和空穴的浓度相等,故有:
.
可以定义:
因此得到:
可见,只有当导带电子和价带空穴的态密度有 效质量相等时,本征费米能级才正好位于禁带 中心位置。如果价带空穴的态密度有效质量大 于导带电子的态密度有效质量,则本征费米能 级略高于禁带中心位置;反之,……
.Leabharlann §4.2 掺杂原子及其能级 实际的半导体材料往往要进行掺杂,以改变其 导电特性,这种掺杂的半导体材料称为非本征 半导体材料。 1. 半导体中掺杂情况的定性描述
.
与此类似,我们也可以向本征硅晶体材料 中掺入少量代位型的III族元素杂质(例如硼原 子),硼原子共有三个价电子,代替一个硅原 子形成共价键之后,则会在其价带中产生一个 空位。相邻硅原子的价电子要想占据这个空位, 必须要获得一些额外的能量。
§4.1 半导体中的荷电载流子 电流是由电荷的定向流动而形成的,在半导
体材料中,形成电流的荷电载流子有两种,即电 子和空穴。
.
1. 电子和空穴的热平衡浓度分布 热平衡状态下,电子在导带中的分布情况
由导带态密度和电子在不同量子态上的填充几 率的乘积决定,即:
n(E)的单位是cm-3eV-1。导带中总的电子浓 度n则由上式对整个导带的能量区间进行积分即 可求得,n的单位是cm-3,即单位体积内的电子 数量。
.
.
.
其中NV称为价带的有效态密度函数,若取mp*=m0,则 当T=300K时, NV=2.5X1019cm-3 。
热平衡状态下电子和空穴的浓度直接取决于导 带和价带的有效态密度以及费米能级的位置。
.
在一定温度下,对于给定的半导体材料来 说,NC和NV都是常数。下表给出了室温下( T=300K)硅、砷化镓锗材料中的导带有效态密 度函数、价带有效态密度函数以及电子和空穴 的有效态密度质量。
右图所示为纯净 半导体材料中的 共价键
.
向本征硅晶体材料中掺入少量代位型的V族 元素杂质(例如磷原子),磷原子共有五个价 电子,代替一个硅原子之后,其四个价电子与 硅原子形成共价键结构,多余的第五个价电子 则比较松散地束缚在磷原子的周围。把这第五 个价电子称作施主电子。
.
在正常温度下,将这个施主电子激发到导带上所需的能 量显然要远远低于将共价键中的某个电子激发到导带所需的 能量。施主电子进入导带之后就可以参与导电,而留下带正
.
热平衡状态下,空穴在价带中的分布情况 则由下式决定:
其中gV(E)是价带中的量子态密度, 1−fF(E)反 映的是价带中的量子态未被电子填充的几率。 p(E)的单位也是cm-3eV-1。价带中总的空穴浓度 p则由上式对整个价带的能量区间进行积分即可 求得,p的单位是cm-3,即单位体积内的空穴数 量。
.
3. 本征载流子浓度 在本征半导体材料中,导带中的电子浓度
与价带中的空穴浓度相等,称为本征载流子浓 度,表示为ni,本征半导体材料的费米能级EF 则称为本征费米能级,表示为EFi.
.
上式可进一步简化为:
由上式可见,本征载流子浓度ni只与温度 有关。室温下实测得到的几种常见半导体材料 如下表所示。
.
➢费米能级EF的位置的确定 对于本征半导体材料(即纯净的半导体材料,
既没有掺杂,也没有晶格缺陷)来说,在绝对零 度条件下,所有价带中的能态都已填充电子,所 有导带中的能态都是空的,费米能级EF一定位于 导带底EC和价带顶EV之间的某个位置。
.
gC(E)与gV(E)以及费 米分布函数的变化曲线,