16第27章相似综合达标训练测评卷 新人教版九年级下29

合集下载

人教版九年级下册数学第27章 相似 单元综合测试卷(Word版,含答案)

人教版九年级下册数学第27章 相似 单元综合测试卷(Word版,含答案)

人教版九年级下册数学第27章相似单元综合测试卷一.选择题(共8小题,满分40分)1.若x﹣3y=0且y≠0,则的值为()A.11B.﹣C.D.﹣112.已知线段AB=2,点P是线段AB的黄金分割点(AP>BP),则线段AP的长为()A.+1B.﹣1C.D.3.下列图形一定是相似图形的是()A.任意两个菱形B.任意两个正三角形C.两个等腰三角形D.两个矩形4.如图,已知直线l1∥l2∥l3,直线m、n分别与直线l1、l2、l3分别交于点A、B、C、D、E、F,若DE=3,DF=8,则的值为()A.B.C.D.5.如图,下面图形及各个选项均是由边长为1的小方格组成的网格,三角形的顶点均在小方格的顶点上,下列四个选项中哪一个阴影部分的三角形与已知△ABC相似()A.B.C.D.6.如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,点H为AF与DG的交点.若AC=9,则DH为()A.1B.2C.D.37.如图,CD是Rt△ABC斜边AB上的高,CD=6,BD=4,则AB的长为()A.10B.11C.12D.138.如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,并把△ABC的边长放大到原来的2倍,设点B的横坐标是a,则点B的对应点B′的横坐标是()A.﹣2a+3B.﹣2a+1C.﹣2a+2D.﹣2a﹣2二.填空题(共8小题,满分40分)9.已知:=,则=.10.已知A、B两地的实际距离为100千米,地图上的比例尺为1:2000000,则A、B两地在地图上的距离是cm.11.在△OAB中,OA=OB,点C在直线AB上,BC=3AC,点E为OA边的中点,连接OC,射线BE交OC于点G,则的值为.12.如图,AB⊥BD,CD⊥BD,AB=6,CD=4,BD=14.点P在BD上移动,当以P,C,D为顶点的三角形与△ABP相似时,则PB的长为.13.如图,△ABC中,CE⊥AB,BF⊥AC,若∠A=60°,EF=2,则BC=.14.如图,Rt△ABC中,∠ABC=90°,∠ACB=60°,BC=4cm,D为BC的中点,若动点E以1cm/s的速度从点A出发,沿着A→C→A的方向运动,设点E的运动时间为秒(0≤t≤12),连接DE,当△CDE是直角三角形时,t的值为.15.△ABC中,∠ACB=90°,CD是高,点E在AB边上,∠BEC=2∠ABC,若AB=9,DE=1,则AD的长为.16.如图,线段CD两个端点的坐标分别为C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的两倍,得到线段AB,则线段AB的中点E的坐标为.三.解答题(共6小题,满分40分)17.阅读理解:已知:a,b,c,d都是不为0的数,且=,求证:=.证明:∵=,∴+1=+1.∴=.根据以上方法,解答下列问题:(1)若=,求的值;(2)若=,且a≠b,c≠d,证明=.18.某校九年级数学兴趣小组在探究相似多边形问题时,他们提出了下面两个观点:观点一:将外面大三角形按图1的方式向内缩小,得到新三角形,它们对应的边间距都为1,则新三角形与原三角形相似.观点二:将邻边为6和10的矩形按图2的方式向内缩小,得到新的矩形,它们对应的边间距都为1,则新矩形与原矩形相似.请回答下列问题:(1)你认为上述两个观点是否正确?请说明理由.(2)如图3,已知△ABC,AC=6,BC=8,AB=10,将△ABC按图3的方式向外扩张,得到△DEF,它们对应的边间距都为1,DE=15,求△DEF的面积.19.如图,已知△ABC∽△DEC,∠D=45°,∠ACB=60°,AC=3cm,BC=4cm,CE=6cm.求:(1)∠B的度数;(2)AD的长.20.阅读与计算,请阅读以下材料,并完成相应的问题.角平分线分线段成比例定理,如图1,在△ABC中,AD平分∠BAC,则=.下面是这个定理的部分证明过程.证明:如图2,过C作CE∥DA.交BA的延长线于E.…任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图3,已知Rt△ABC中,AB=3,BC=4,∠ABC=90°,AD平分∠BAC,则△ABD的周长是.21.如图所示,以长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上.(1)求AM,DM的长;(2)点M是AD的黄金分割点吗?为什么?22.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是多少?参考答案一.选择题(共8小题,满分40分)1.解:∵x﹣3y=0且y≠0,∴x=3y,∴==.故选:C.2.解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=×AB=×2=﹣1,故选:B.3.解:A、任意两个菱形,对应边成比例,对应角不一定相等,不符合相似的定义,故不符合题意;B、任意两个等边三角形,对应角相等,对应边一定成比例,符合相似的定义,故符合题意;C、两个两个等腰三角形,无法确定形状是否相等,故不符合题意;D、两个矩形,对应角相等,对应边不一定成比例,故不符合题意.故选:B.4.解:∵l1∥l2∥l3,∴,∵DE=3,DF=8,∴,即=,故选:B.5.解:根据题意得:AC==,AB==,BC=1,∴BC:AB:AC=1::,A、三边之比为1::,选项A符合题意;B、三边之比::3,选项B不符合题意;C、三边之比为2::,选项C不符合题意;D、三边之比为::4,选项D不符合题意.故选:A.6.解:∵D、E为边AB的三等分点,EF∥DG∥AC,∴BE=DE=AD,BF=GF=CG,AH=HF,∴AB=3BE,DH是△AEF的中位线,∴DH=EF,∵EF∥AC,∴△BEF∽△BAC,∴=,即=,解得:EF=3,∴DH=EF=×3=,故选:C.7.解:根据射影定理,CD2=AD•BD,∴AD=9,∴AB=AD+BD=13.故选:D.8.解:设点B′的横坐标为x,则B、C间的水平距离为a﹣1,B′、C间的水平距离为﹣x+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(a﹣1)=﹣x+1,解得:x=﹣2a+3,故选:A.二.填空题(共8小题,满分40分)9.解:∵=,∴=,设a=2k,b=3k,∴===﹣,故答案为:﹣.10.解:根据比例尺=图上距离:实际距离.100千米=10000000厘米得:A,B两地的图上距离为10000000÷2000000=5cm,故答案为:5.11.解:如图1,点C在线段AB上,过E作EF∥AB交OC于F,∵点E为OA边的中点,EF∥AB,∴OF=CF,∴EF=AC,∵BC=3AC,∴BC=6EF,∵EF∥AB,∴,∴CG=6FG,∴FC=OF=7FG,∴OG=OF+FG=8FG,∴==;如图2,点C在线段BA的延长线上,过E作ED∥BC交OC于D,∵点E为OA边的中点,ED∥BC,∴OD=CD,∴DE=AC,即AC=2DE,∵BC=3AC,∴BC=6DE,∵ED∥BC,∴,∴CG=6DG,∴CD=OD=5DG,∴OG=OD﹣DG=4DG,∴==;故答案为:或.12.解:设DP=x,则BP=BD﹣x=14﹣x,∵AB⊥BD于B,CD⊥BD于D,∴∠B=∠D=90°,∴当时,△ABP∽△CDP,即;解得x=,BP=14﹣=8.4;当时,△ABP∽△PDC,即;整理得x2﹣14x+24=0,解得x1=2,x2=12,BP=14﹣2=12,BP=14﹣12=2,∴当BP为8.4或2或12时,以C、D、P为顶点的三角形与以P、B、A为顶点的三角形相似.故答案为:8.4或2或12.13.解:∵CE⊥AB,BF⊥AC,∴∠AFB=∠AEC=90°,又∵∠A=∠A,∴△AFB∽△AEC,∴,即,又∵∠A=∠A,∴△AEF∽△ACB,∴,∵BF⊥AC,且∠A=60°,∴∠ABF=30°,∴AF=AB,∴BC=2EF=4.故答案为:4.14.解:在Rt△ABC中,∠ABC=90°,∠ACB=60°,BC=4cm,∴AC=2BC=8cm,∵D为BC中点,∴CD=2cm,∵0≤t≤12,∴E点的运动路线为从A到C,再从C到AC的中点,按运动时间分为0≤t≤8和8<t≤12两种情况,①当0≤t≤8时,AE=tcm,CE=BC﹣AE=(8﹣t)cm,当∠EDC=90°时,则有AB∥ED,∵D为BC中点,∴E为AC中点,此时AE=4cm,可得t=4;当∠DEC=90°时,∵∠DEC=∠B,∠C=∠C,∴△CED∽△BCA,∴,即,解得t=7;②当8<t≤12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;当t=12时,此时E点在AC的中点,DE∥AB,此时△CDE是直角三角形.综上可知t的值为4或7或9或12,故答案为:4或7或9或1215.解:以C为圆心,CE长为半径画弧,交AB于F,则CE=CF,∴∠CFE=∠BEC=2∠ABC,∵∠CFE=∠ABC+∠BCF,∴∠ABC=∠BCF,∴BF=CF,∵CD⊥AB,∴DF=DE=1,设BF=CF=x,∵AB=9,∴AD=8﹣x,∵∠ACB=∠ADC=∠BDC=90°,∴∠ACD+∠A=90°,∠ACD+∠BCD=90°,∴∠A=∠BCD,∴△ACD∽△CBD,∴CD2=AD•BD=x(8﹣x),又∵CD2=CF2﹣DF2=x2﹣12,∴x(8﹣x)=x2﹣12,解得:x1=﹣1(舍去),x2=,∴BF=,∴AD=AB﹣BF﹣DF=9﹣﹣1=.故答案为:.16.解:∵C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的两倍,∴A(6,6),B(8,2),∵E是AB中点,∴E(7,4),故答案为:(7,4).三.解答题(共6小题,满分40分)17.解:(1)∵=,∴=+1=+1=.(2)∵=,∴﹣1=﹣1,∴=,∵=,∴÷=÷,∴=.18.解:(1)观点一正确;观点二不正确.理由:①如图(1)连接并延长DA,交FC的延长线于点O,∵△ABC和△DEF对应的边的距离都为1,∴AB∥DE,AC∥DF,∴∠FDO=∠CAO,∠ODE=∠OAB,∴∠FDO+∠ODE=∠CAO+∠OAB,即∠FDE=∠CAB,同理∠DEF=∠ABC,∴△ABC∽△DEF,∴观点一正确;②如图(2)由题意可知,原矩形的邻边为6和10,则新矩形邻边为4和8,∵=,=,∴,∴新矩形于原矩形不相似,∴观点二不正确;(2)如图(3),延长DA、EB交于点O,∵A到DE、DF的距离都为1,∴DA是∠FDE的角平分线,同理,EB是∠DEF的角平分线,∴点O是△ABC的内心,∵AC=6,BC=8,AB=10,∴△ABC是直角三角形,设△ABC的内切圆的半径为r,则6﹣r+8﹣r=10,解得r=2,过点O作OH⊥DE于点H,交AB于G,∵AB∥DE,∴OG⊥AB,∴OG=r=2,∴==,同理===,∴DF=9,EF=12,∴△DEF的面积为:×9×12=54.19.解:(1)∵△ABC∽△DEC,∴∠B=∠E,∠A=∠D=45°,∵∠ACB=60°,∴∠B=180°﹣60°﹣45°=75°;(2)∵△ABC∽△DEC,∴=,∵AC=3cm,BC=4cm,CE=6cm,∴=,∴DC=(cm),故AD=3+=(cm).20.(1)证明:如图2,过C作CE∥DA.交BA的延长线于E,∵CE∥AD,∴=,∠2=∠ACE,∠1=∠E,∵∠1=∠2,∴∠ACE=∠E,∴AE=AC,∴=;(2)解:如图3,∵AB=3,BC=4,∠ABC=90°,∴AC=5,∵AD平分∠BAC,∴=,即=,∴BD=BC=,∴AD===,∴△ABD的周长=+3+=.故答案为.21.解:(1)在Rt△APD中,AP=1,AD=2,由勾股定理知PD===,∴AM=AF=PF﹣AP=PD﹣AP=﹣1,DM=AD﹣AM=3﹣.故AM的长为﹣1,DM的长为3﹣;(2)点M是AD的黄金分割点.由于=,∴点M是AD的黄金分割点.22.解:设运动了ts,根据题意得:AP=2tcm,CQ=3tcm,则AQ=AC﹣CQ=16﹣3t(cm),当△APQ∽△ABC时,,即,解得:t=;当△APQ∽△ACB时,,即,解得:t=4;故当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是:s或4s.。

人教版初3数学9年级下册 第27章(相似)综合素质评价 (含答案)

人教版初3数学9年级下册 第27章(相似)综合素质评价 (含答案)

第二十七章相似综合素质评价一、选择题(每题3分,共30分)1.在下列各组线段中,不成比例的是( ) A.a=3,b=6,c=2,d=4B.a=1,b=2,c=2,d=4C.a=4,b=6,c=5,d=10D.a=1,b=2,c=6,d=32.【教材P27习题T2变式】下列两个图形一定相似的是( )A.任意两个矩形B.任意两个等腰三角形C.任意两个正方形D.任意两个菱形3.如图,已知△ABC∽△DAC,∠B=36°,∠D=117°,∠BAD的度数为( ) A.36° B.117° C.143° D.153°(第3题) (第4题)4.【教材P29图27.2-2改编】如图,l1∥l2∥l3,直线a,b与l1,l2,l3分别相交于点A,B,C和点D,E,F,若ABBC =23,DE=6,则EF的长是( )A.8 B.9 C.10 D.125.【2022·湘潭】在△ABC中(如图),点D,E分别为AB,AC的中点,则S△ADE:S△ABC=( )A.1:1 B.1:2C.1:3 D.1:4(第5题) (第6题)6.如图,在△ABC中,点D,E分别在边AB,AC上,下列条件中不能判定△ABC ∽△AED的是( )A.∠AED=∠BB.∠ADE=∠CC.ADAE=ACABD.ADAB=DEBC7.【教材P42习题T3(1)变式】下列选项中的四个三角形,与如图中的三角形相似的是( )8.如图,以点O为位似中心,把△ABC的各边放大为原图形的2倍得到△A′B′C′,以下说法中错误的是( )A.△ABC∽△A′B′C′B.点C、点O、点C′三点在同一直线上C.AO:AA′=1:2D.AB∥A′B′(第8题) (第10题)9.【教材P57复习题T2改编】【2022·连云港】△ABC的三边长分别为2,3,4,另有一个与它相似的三角形DEF,其最长边为12,则△DEF的周长是( ) A.54 B.36 C.27 D.2110.【2021·淄博】如图,AB,CD相交于点E,且AC∥EF∥DB,点C,F,B在同一条直线上,已知AC=p,EF=r,DB=q,则p,q,r之间满足的数量关系式是( )A.1r+1q=1pB.1p+1r=2qC.1p+1q=1rD.1q+1r=2p二、填空题(每题3分,共24分)11.如果xy=25,那么y-xy+x=________.12.【教材P31练习T1变式】【2022·湖州】如图,已知在△ABC中,D,E分别是AB,AC上的点,DE∥BC,ADAB=13.若DE=2,则BC的长是________.(第12题) (第13题)13.如图,请添加一个条件,使△ADB∽△ABC,你添加的条件是______________.14.【2022·陕西】在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所作EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE·AB.已知AB为2米,则线段BE的长为__________米.(第14题) (第15题) (第16题)15.据《墨经》记载,在两千多年前,我国学者墨子和他的学生做了“小孔成像”实验,阐释了光的直线传播原理.小孔成像的示意图如图所示,光线经过小孔O,物体AB在幕布上形成倒立的实像CD(点A,B的对应点分别是C,D).若物体AB的高度为6 cm,实像CD的高度为3 cm,则小孔O到BC的距离OE为__________cm.16.如图,一条河的两岸有一段是平行的,在河的南岸岸边每隔5 m有一棵树,小华站在离南岸20 m的点P处,在两棵树之间的空隙中,恰好看见一条龙舟的龙头和龙尾(假设龙头、龙尾和小华的眼睛位于同一水平面内).已知龙舟的长为18.5 m,若龙舟行驶在河的中心,且龙舟与河岸平行,则河宽为________m.17.【教材P53材料变式】如图,在平面直角坐标系xOy中,点A在第一象限内,点B在x轴正半轴上,△OCD是以点O为位似中心,且与△OAB的相似比为1的位似图形,点A与点C对应.若点A的坐标为(3,2),则点C的坐标为3______________________.(第17题) (第18题)18.【2022·武威】如图,在矩形ABCD中,AB=6 cm,BC=9 cm,点E,F分别在边AB,BC上,AE=2 cm,BD,EF交于点G,若G是EF的中点,则BG的长为________cm.三、解答题(19题8分,22题10分,其余每题12分,共66分)19.【教材P31练习T2变式】如图,在△ABC中,D,E分别是AB,AC边上的点,且AD:AB=AE:AC=2:3.(1)求证:△ADE∽△ABC;(2)若DE=4,求BC的长.20.如图,△ABC在方格纸(小正方形的边长均为1)中.(1)请在方格纸上建立平面直角坐标系,使点A的坐标为(3,4),点C的坐标为(7,3),并求出点B的坐标;(2)以原点O为位似中心,相似比为2:1,在第一象限内将△ABC放大,画出放大后的位似图形△A′B′C′;(3)计算△A′B′C′的面积.21.如图,在Rt△ABC中,∠BAC=90°,AB=AC,E,D分别是BC,AC上的点,且∠AED=45°.(1)求证:△ABE∽△ECD;(2)若AB=4,BE=2,求CD的长.22.【教材P43习题T10变式】宝鸡电视塔是陕西省第二座水泥电视塔,是宝鸡地标建筑之一.如图,在一次数学课外实践活动中,老师要求测量宝鸡电视塔的高度BD.小辉先在地面上A处放置了一块平面镜,从A点向后退了2.4 m 至F处,他的眼睛E恰好看到了平面镜中电视塔顶端B的像;然后从点F处沿水平方向前进52.4 m到达C点,此时测得电视塔顶端B的仰角∠BCD是45°.已知D,C,A,F在同一水平线上,BD⊥FD,EF⊥FD,EF=1.8 m,求电视塔的高度BD(平面镜的大小忽略不计).23.【2022·滨州】如图,已知AC为⊙O的直径,直线PA与⊙O相切于点A,直线PD经过⊙O上的点B且∠CBD=∠CAB,连接OP交AB于点M.求证:(1)PD是⊙O的切线;(2)AM2=OM·PM.24.【2022·清华附中月考】【问题提出】(1)如图①,点C是线段AB上的一点,AC:CB=2:1.若AC=4,则AB的长为________.【问题探究】(2)如图②,在▱ABCD中,对角线AC与BD交于点M,且AC⊥CD,ABAC =34,四边形ABCD的周长是32,求线段AM的长.【问题解决】(3)①如图③是一个商场平面示意图,由一个▱ABCD和一个△CDE组成,已知AB=300 m,AD=500 m,AC⊥DC,点A,D,E在同一条直线上.因AB边所临的街道人流量较大,现要在AB边上找一点F作为商场大门,为了美观,需使得∠CED=∠CDF.设AE的长为x(m),BF的长为y(m),求y关于x的函数关系式.②当BF:FA=1:2时,求△CDE的面积.答案一、1.C 2. C 点易错:虽然矩形的四个角都是直角,但是长与宽的比不固定,所以任意两个矩形不一定相似;虽然菱形的四条边相等,但是内角不固定,所以任意两个菱形不一定相似;虽然等腰三角形两边相等,但是顶角不固定,所以任意两个等腰三角形不一定相似.3.D 4.B 5.D 6.D 7.B 8.C 9.C10.C 点拨:∵EF∥AC,∴△BEF∽△BAC.∴EFAC=BFBC.∵EF∥DB,∴△CEF∽△CDB.∴EFBD=CFBC.∴EFAC+EFBD=BFBC+CFBC=BF+CFBC=BCBC=1,即rp+rq=1.∴1p+1q=1r.二、11.37 12.6 13.∠A B D=∠C(答案不唯一)14.(-1+5) 15.2 16. 108  点思路:利用平行线得到三角形相似,从而得线段成比例,进而求解.17. (1,23)或(-1,-23) 点易错:注意点C有两处,分别在第一、第三象限,不要漏解.18.13 点拨:∵四边形ABCD是矩形,∴AB=CD=6 cm,∠ABC=∠C=90°,AB∥CD.∴∠ABD=∠BDC.∵AE=2 cm,∴BE=AB-AE=6-2=4(cm).∵G是EF的中点,∴EG=BG=12 EF.∴∠BEG=∠ABD.∴∠BEG=∠BDC.∴△EBF∽△DCB.∴EBDC=BFCB.∴46=BF9,解得BF=6 cm.∴EF=BE2+BF2=42+62=213(cm).∴BG=12EF=13cm.三、19.(1)证明:∵∠A=∠A,AD:AB=AE:AC=2:3,∴△ADE∽△ABC.(2)解:∵△ADE∽△ABC,∴ADAB=DEBC,即23=4BC,解得BC=6.20.解:(1)建立平面直角坐标系如图所示.点B的坐标为(3,2).(2)如图所示.(3)△A′B′C′的面积为12×4×8=16.21.(1)证明:在Rt△ABC中,∠BAC=90°,AB=AC,∴∠B=∠C=45°.∵∠AEC=∠B+∠BAE=∠AED+∠CED,∠AED=45°,∴∠BAE=∠CED.∴△ABE∽△ECD.(2)解:在Rt△ABC中,∠BAC=90°,AB=AC=4,∴BC=42.∵BE=2,∴EC=3 2.∵△ABE∽△ECD,∴ABEC=BECD,即432=2CD,解得CD=32.22.解:由题意得AF=2.4 m,CF=52.4 m,∴AC=50 m.设BD=x m.∵BD⊥FD,EF⊥FD,∴∠EFA=∠BDA=90°.∵∠BCD=45°,∴∠C B D=45°.∴CD=BD=x m.∵∠EFA=∠BDA,∠EAF=∠BAD,∴△EFA∽△BDA.∴EFAF=BDCD+AC,即1.82.4=xx+50,解得x=150.答:电视塔的高度BD为150 m. 23.证明:(1)如图,连接OB.∵OB=OC,∴∠OCB=∠OBC.∵AC 是⊙O 的直径,∴∠CBA =90°.∴∠CAB +∠OCB =90°.∵∠CBD =∠CAB ,∴∠CBD +∠OBC =90°.∴∠OBD =90°.又∵OB 是⊙O 的半径,∴PD 是⊙O 的切线.(2)由PD 是⊙O 的切线,直线PA 与⊙O 相切,易得PO 垂直平分AB .∴∠AMP =∠AMO =90°.∴∠APM +∠PAM =90°.∵∠OAP =90°,∴∠PAM +∠OAM =90°.∴∠APM =∠OAM .∴△OAM ∽△APM .∴AM PM =OM AM.∴AM 2=OM ·PM .24.解:(1)6(2)∵四边形ABCD 是平行四边形,对角线AC 与BD 交于点M ,∴AB =CD ,AD =BC ,AM =CM .∵AB AC =34,∴可设AB =CD =3x ,AC =4x .∵AC ⊥CD ,∴AD =AC 2+CD 2=5x .∵四边形ABCD 的周长是32,∴AD +CD =8x =16,解得x =2.∴AC =4x =8.∵AM =CM ,∴AM =12AC =4.(3)①∵四边形A B CD 是平行四边形,∴AB ∥DC .∴∠CDF =∠DFA ,∠CDE =∠DAF .∵∠CED =∠CDF ,∴∠CED =∠DFA .∴△CDE ∽△DAF .∴CD DA =DE AF ,即300500=x -500300-y,解得y =-53x +3 4003.∵{-53x +3 4003≥0,x -500>0,∴500<x ≤680.∴y 关于x 的函数关系式为y =-53x +3 4003(500<x ≤680).②∵B F :FA =1:2,且A B =300 m ,∴FA =200 m.∵AC ⊥CD ,且AD =500 m ,CD =AB =300 m ,∴AC =AD 2-CD 2=400 m.由①可得△CDE ∽△DAF ,∴CD DA =35.∴S △CDE S △DAF =925.∵S △DAF =12·AC ·AF =12×400×200=40 000(m 2),∴S △CDE =925×40 000=14 400(m 2).。

(完整版)人教版九年级数学下《第27章相似》专项训练含答案,推荐文档

(完整版)人教版九年级数学下《第27章相似》专项训练含答案,推荐文档
(1)求直线 BD 和抛物线对应的函数解析式; (2)在第一象限内的抛物线上,是否存在一点 M,作 MN 垂直于 x 轴,垂足 为点 N,使得以 M,O,N 为顶点的三角形与△BOC 相似?若存在,求出点 M 的坐 标;若不存在,请说明理由.
(第 3 题) 相似三角形与反比例函数 4.如图,矩形 OABC 的顶点 A,C 分别在 x 轴和 y 轴上,点 B 的坐标为
1 DE=2BC.
建议收藏下载本文,以便随时学习!
(第 3 题)
4.如图,AM 为△ABC 的角平分线,D 为 AB 的中点,CE∥AB,CE 交 DM 的延 长线于 E.
求证:AC=2CE.
(第 4 题)
证明两线段的位置关系 类型1:证明两线段平行 5.如图,已知点 D 为等腰直角三角形 ABC 的斜边 AB 上一点,连接 CD,DE⊥CD,DE=CD,连接 CE,AE.求证:AE∥BC.
k (2,3),双曲线 y=x(x>0)经过 BC 的中点 D,且与 AB 交于点 E,连接 DE.
(1)求 k 的值及点 E 的坐标; (2)若点 F 是 OC 边上一点,且△FBC∽△DEB,求直线 FB 对应的函数解析 式.
(第 4 题)
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙
(第 1 题) 2.如图,一直线和△ABC 的边 AB,AC 分别交于点 D,E,和 BC 的延长线交 于点 F,且 AECE=BFCF. 求证:AD=DB.
(第 2 题) 类型2:证明两线段的倍分关系
我去人3也.如就图,有在人△AB!C 中为,BUD⊥R扼AC 于腕点入D,站CE⊥内AB 信于点不E,存∠A在=6向0°,你求偶证:同意调剖沙
建议收藏下载本文,以便随时学习! (第 11 题)

人教新版九年级(下)第27章-相似单元测试卷含解析

人教新版九年级(下)第27章-相似单元测试卷含解析
解:由题意 , ,


当 时, ,

解得 .
当 时, ,

解得 ,
故答案为3或 .
三.解答题(共8小题)
21.已知: , ,求: (化成最简整数比)
解: , ,

22.如图,在 中, , ,
(1)求 的长;
(2)若点 在 的直角边上,点 在斜边 上,当 时,求 的长.
解:(1)在 中, ,

设 , ,则 ,
四边形 是平行四边形,
, ,
是 的中点,
, ,
, ,

与 等高,

设 , ,则
是 中点,
故选: .
6.如图,直线 ,直线 、 、 分别和直线 交于点 、 、 ,和直线 交于点 、 、 ,若 , , ,则线段 的长为
A.2B.3C.4D.6
解: ,

即 ,


故选: .
7.如图,已知 ,任取一点 ,连 , , ,并取它们的中点 , , ,得 ,则下列说法正确的个数是
A.1B.1.2C.2D.2.5
解: ,
,即 ①,

,即 ②,
① ②,得 ,
解得 .
故选: .
9.如图,正方形 边长为6, 是 的中点,连接 ,以 为边在正方形内部作 ,边 交 于 ,连接 .则下列说法正确的有
① ② ③ ④
A.①②③B.②④C.①④D.②③④
【解答】证明:延长 到 ,使 ,连接 .如图所示:
① 与 是位似图形;
② 与 是相似图形;
③ 与 的周长比为 ;
④ 与 的面积比为 .
A.1B.2C.3D.4
解:根据位似性质得出① 与 是位似图形,

人教新版 九年级下学期 第27章 相似 单元测试卷 含解析

人教新版 九年级下学期 第27章 相似 单元测试卷 含解析

九年级(下)第二学期第27章相似单元测试卷一、选择题1.若,则A.B.C.D.2.若与△相似且对应中线之比为,则周长之比和面积比分别是A.,B.,C.,D.,3.如图,下列条件中不能判定的是A.B.C.D.4.如图,四边形和四边形是以点为位似中心的位似图形,若,则四边形和四边形的面积比为A.B.C.D.5.如图,在中,,,垂足为点,如果,,那么的长是A.4B.6C.D.6.如图,已知直线,直线、与、、分别交于点、、、、、,若,,,则的值是A.14B.15C.16D.177.如图,在矩形中,点是边的中点,则A.B.C.D.8.如图,在中,,分别是,上的点,,的平分线交于点,若,则A.B.C.D.9.如图,在中,,且,则等于A.B.C.D.10.如图,点是正方形的边延长线一点,连接交于,作,交的延长线于,连接,当时,作于,连接,则的长为A.B.C.D.二.填空题(共11小题)11.已知,,,是成比例线段,,,,则线段的长为.12.如果在比例尺的滨海区地图上,招宝山风景区与郑氏十七房的距离约是,则它们之间的实际距离约为千米.13.若点是线段的黄金分割点,,则较长线段的长是.14.如图,将矩形沿折叠,使点落在边上的点处,若与相似,则和的数量关系为.15.如图,,、相交于点,过作交于点,如果,,那么的长等于.16.在中,,,,是边上的一点,,是边上的一点与端点不重合),如果以、、为顶点的三角形与相似,那么的长是.17.如图,在中,点、分别在的两边、上,且,如果,,,那么线段的长是.18.有一块直角边,的的铁片,现要将它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为.19.如图.等边的边长为5,点、、分别在三边、、上,且,,,则的长为.20.如图,四边形中,,,,,是上一点,若以、、为顶点的三角形与相似,则.21.如图,,△,△是全等的等边三角形,点,,,在同一条直线上,连接交于点,交于点,则的值为.三.解答题(共7小题)22.如图,边长为6的正方形中,,,连接和交于点,求的长.23.如图,在中,为上一点,为延长线上一点,且,,求证:.24.如图,在中,,为边上的中线,于点.(1)请你写出图中所有与相似的三角形;(2)若,,求的长.25.如图所示:在中,,,,分别为.边上一点,,(1)求证:;(2)与是否相等?请说明理由;(3)若,求的长.26.如图,在中,,,.点为的中点,联结,过点作,交的垂线于点,分别交、于点、.(1)求的长;(2)求的面积.27.在中,,,点从点出发,速度为4个单位每秒,同时点从点出发,以个单位每秒的速度向运动.当有一个点到达点时,点,同时停止运动.设运动时间为.(1)若,,求的面积.(2)若在运动过程中,始终平行于,求的值.28.如图,已知抛物线经过点,点.点在线段上(与点,不重合),过点作轴的垂线与线段交于点,与抛物线交于点,联结.(1)求抛物线表达式;(2)联结,当时,求的长度;(3)当为等腰三角形时,求的值.参考答案一.选择题(共10小题)1.若,则A.B.C.D.解:,,,,故选:.2.若与△相似且对应中线之比为,则周长之比和面积比分别是A.,B.,C.,D.,解:与△相似,且对应中线之比为,其相似比为,与△周长之比为,与△面积比为,故选:.3.如图,下列条件中不能判定的是A.B.C.D.解:、由,可得,此选项不符合题意;、由不能判定,此选项符合题意;、由,可得,此选项不符合题意;、由,即,且可得,此选项不符合题意;故选:.4.如图,四边形和四边形是以点为位似中心的位似图形,若,则四边形和四边形的面积比为A.B.C.D.解:四边形和是以点为位似中心的位似图形,,,四边形与四边形的面积比为:.故选:.5.如图,在中,,,垂足为点,如果,,那么的长是A.4B.6C.D.解:,,,,,又,,,,,即,解得,,,解得,,,故选:.6.如图,已知直线,直线、与、、分别交于点、、、、、,若,,,则的值是A.14B.15C.16D.17解:,,,,,即,解得.故选:.7.如图,在矩形中,点是边的中点,则A.B.C.D.解:点是边的中点,,四边形是矩形,,,,,;故选:.8.如图,在中,,分别是,上的点,,的平分线交于点,若,则A.B.C.D.解:,,,,,.故选:.9.如图,在中,,且,则等于A.B.C.D.解:,,,,设的面积是,则和的面积分别是,,则和分别是,,.故选:.10.如图,点是正方形的边延长线一点,连接交于,作,交的延长线于,连接,当时,作于,连接,则的长为A.B.C.D.解:过点作于点,如图所示:四边形是正方形,,,,,在与中,,,,在与中,,,,即,延长交于点,作,,,,,,在中,,.,,,.在与中,,,,,,.在等腰直角与等腰直角中,,,在和中,,△,,,四边形是正方形,,为的中位线,,,,,,故选:.二.填空题(共11小题)11.已知,,,是成比例线段,,,,则线段的长为9.解:已知,,,是成比例线段,根据比例线段的定义得:,代入,,,解得:,故答案为:9.12.如果在比例尺的滨海区地图上,招宝山风景区与郑氏十七房的距离约是,则它们之间的实际距离约为19千米.解:设它们之间的实际距离为,,解得.千米.所以它们之间的实际距离为19千米.故答案为19.13.若点是线段的黄金分割点,,则较长线段的长是.解:是线段的黄金分割点,,,而,;故答案为:.14.如图,将矩形沿折叠,使点落在边上的点处,若与相似,则和的数量关系为.解:矩形沿折叠,使点落在边上的点处,,,,,当时,与相似,则,不合题意舍去;当时,与相似,,此时,在中,,,在中,,,四边形为矩形,,,.故答案为.15.如图,,、相交于点,过作交于点,如果,,那么的长等于15.解:,,,,,,,,,故答案为15.16.在中,,,,是边上的一点,,是边上的一点与端点不重合),如果以、、为顶点的三角形与相似,那么的长是或.解:,,,,,,三点组成的三角形与相似,或,,或,或,解得:,或,故答案为:或.17.如图,在中,点、分别在的两边、上,且,如果,,,那么线段的长是.解:,,,,,故答案为.18.有一块直角边,的的铁片,现要将它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为.解:如图,过点作,垂足为,交于.,.,,,,.设,则有:,解得,故答案为:.19.如图.等边的边长为5,点、、分别在三边、、上,且,,,则的长为.解:是等边三角形,,,,,,,,,,,过作于,,,,,,,中,,故答案为:.20.如图,四边形中,,,,,是上一点,若以、、为顶点的三角形与相似,则2或3.解:设.则以,,为顶点的三角形与以,,为顶点的三角形相似,①当时,解得或3.②当时,,解得,当,,为顶点的三角形与以,,为顶点的三角形相似,的值为2或3.故答案为2或3.21.如图,,△,△是全等的等边三角形,点,,,在同一条直线上,连接交于点,交于点,则的值为.解:,△,△是全等的等边三角形,,,,△,,,同理:,,,,故答案为:.三.解答题(共7小题)22.如图,边长为6的正方形中,,,连接和交于点,求的长.解:边长为6的正方形中,,,,,,作,交于,,,,,,,,即,.23.如图,在中,为上一点,为延长线上一点,且,,求证:.【解答】证明:,,,,,,,,四边形平行四边形,.24.如图,在中,,为边上的中线,于点.(1)请你写出图中所有与相似的三角形;(2)若,,求的长.【解答】(1)解:,为边上的中线,,,,,,,,,,,即图中所有与相似的三角形有,,;(2)解:,由(1)得,,,.25.如图所示:在中,,,,分别为.边上一点,,(1)求证:;(2)与是否相等?请说明理由;(3)若,求的长.【解答】(1)证明:,,,,即;(2),,,,;(3),,,,即,解得,,由(1)得,,则.26.如图,在中,,,.点为的中点,联结,过点作,交的垂线于点,分别交、于点、.(1)求的长;(2)求的面积.解:(1),,,,,,又,,,,.(2),,,.,,又,.27.在中,,,点从点出发,速度为4个单位每秒,同时点从点出发,以个单位每秒的速度向运动.当有一个点到达点时,点,同时停止运动.设运动时间为.(1)若,,求的面积.(2)若在运动过程中,始终平行于,求的值.解:(1),,点从点出发,速度为4个单位每秒,,,,的面积为:.答:的面积为8.(2)始终平行于始终平行于不妨取解得:答:的值为3.28.如图,已知抛物线经过点,点.点在线段上(与点,不重合),过点作轴的垂线与线段交于点,与抛物线交于点,联结.(1)求抛物线表达式;(2)联结,当时,求的长度;(3)当为等腰三角形时,求的值.解:(1)将,分别代入抛物线解析式,得.解得.故该抛物线解析式是:;(2)设直线的解析式是:,把,分别代入,得.解得,.则该直线方程为:.故设,.则,.,.,...又,.于是,即.解得,(舍去).;(3)由两点间的距离公式知,,,.①若,,解得,(舍去).即符合题意.②若,,解得,(舍去).即符合题意.③若,,解得.综上所述,的值为1或或2.。

人教版九年级下第27章相似质量评估试卷(含答案)

人教版九年级下第27章相似质量评估试卷(含答案)

人教版九年级下第27章相似质量评估试卷(含答案)一、选择题(每小题3分,共30分)1.如果x∶(x+y)=3∶5,那么xy=()A.32 B.38C.23 D.852.如图1,AD∥BE∥CF,直线l1,l2与三条平行线分别交于点A,B,C 和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()图1A.4 B.5C.6 D.83.如图2,点D,E分别为△ABC的边AB,AC上的中点,则△ADE的面积与四边形BCED的面积的比为()图2A.1∶2 B.1∶3C.1∶4 D.1∶14.两相似三角形的最短边长分别是5 cm和3 cm,它们的面积之差为32 cm2,那么小三角形的面积为()A.10 cm2B.14 cm2C.16 cm2D.18 cm25.如图3,在平行四边形ABCD中,EF∥AB交AD于点E,交BD于点F,DE∶EA=3∶4,EF=3,则CD的长为(B)图3A .4B .7C .3D .126.如图4,线段AB 两个端点的坐标分别为A (4,4),B (6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 和D 的坐标分别为( )图4A .(2,2),(3,2)B .(2,4),(3,1)C .(2,2),(3,1)D .(3,1),(2,2)【解析】 ∵线段AB 两个端点的坐标分别为A (4,4),B (6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,∴端点C 和D 的坐标分别为(2,2),(3,1).7.如图5,P 是△ABC 的边AC 上一点,连接BP ,以下条件中不能判定△ABP ∽△ACB 的是( )图5A.AB AP =AC ABB.AC AB =BC BPC .∠ABP =∠CD .∠APB =∠ABC8.如图6,在直角梯形ABCD 中,AD ∥BC ,∠B =90°,E 为AB 上一点,且ED 平分∠ADC ,EC 平分∠BCD ,则下列结论中错误的是( C )图6A.∠ADE=∠CDEB.DE⊥ECC.AD·BC=BE·DED.CD=AD+BC9.如图7所示,点E是平行四边形ABCD的边CB延长线上的点,AB与DE相交于点F,则图中相似三角形共有()图7A.5对B.4对C.3对D.2对10.如图8,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动,记P A=x,点D到直线P A的距离为y,则y关于x的函数大致图象是()图8A BC D二、填空题(每小题4分,共24分)11.如图9,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD=3,DB=2,BC=6,则DE的长为.图912.如图10,在▱ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形_________________________________________.图1013.如图11,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC 相似时,线段CE的长为.图1114.如图12,铁道口的栏杆短臂长为1 m,长臂长为16 m,当短臂端点下降0.5 m时,长臂端点升高m(杆的宽度忽略不计).图1215.如图13,矩形ABCD中,AB=3,BC=6,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于点F,则CFCD=.图1316.如图14,已知矩形ABCD的顶点A,D分别落在x轴、y轴上,OD=2OA=6,AD∶AB=3∶1,则点C的坐标是.图14三、解答题(共66分)17.(10分)如图15,已知∠ACB=∠CBD=90°,AC=b,CB=a,当BD与a,b之间满足怎样的关系时,△ACB∽△CBD?图1518.(10分)如图16,CD,BE分别是锐角△ABC中AB,AC边上的高线,垂足为D,E.(1)证明:△ADC∽△AEB.(2)连接DE,则△AED与△ABC能相似吗?说说你的理由.图1619.(10分)如图17,在△ABC中,AB=AC,点D在BC上,且DE∥AC交AB于E,点F在AC上,且DF=DC.求证:(1)△DCF∽△ABC;(2)BD·DC=DE·CF.图1720.(12分)如图18,在平面直角坐标系网格中,将△ABC进行位似变换得到△A1B1C1.(1)△A1B1C1与△ABC的位似比是;(2)画出△A1B1C1关于y轴对称的△A2B2C2;(3)设点P(a,b)为△ABC内一点,则依上述两次变换后,点P在△A2B2C2内的对应点P2的坐标是(-2a,2b).图1821.(12分)如图19,四边形ABCD内接于⊙O,AB=AC,AD,BC的延长线交于点E,显然△EAB∽△ECD.在不添加辅助线的情况下,请你在图中再找出一对相似三角形,并加以证明.图1922.(12分)如图20,在Rt△ABC中,∠ACB=90°,AC=5 cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2 cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒 3 cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN,若△MBN与△ABC相似,求t的值.图20参考答案第二十七章质量评估试卷1.A2.C3.B4.D5.B6.C7.B8.C9.B10.D11.18 512.答案不唯一,如:△DCF∽△EBF13. 3或4 314. 815.1 316. (2,7)17. 解:∵∠ACB=∠CBD=90°,∴当ACBC=BCBD时,即当ba=aBD时,△ACB∽△CBD.∴当BD=a2b时,△ACB∽△CBD.18. 解:(1)证明:∵如图,CD,BE分别是锐角△ABC中AB,AC边上的高线,∴∠ADC=∠AEB=90°,又∵∠A=∠A,∴△ADC∽△AEB.(2)△AED∽△ABC.理由如下:由(1)知,△ADC∽△AEB,则AD∶AE=AC∶AB,又∵∠A=∠A,∴△AED∽△ABC.19. 证明:(1)∵DF=DC,∴∠DFC=∠C,又AB=AC,∴∠C=∠B,∴△DCF∽△ABC.(2)由(1)得DFAC=CFBC,即ACBC=DFCF,又DE∥AC,∴△BCA∽△BDE,∴ACED=BCBD,即ACBC=EDBD,∴EDBD=DFCF,∴BD·DF=ED·CF. 又∵DF=CD,∴BD·DC=DE·CF.20. 解:(1)△A1B1C1与△ABC的位似比等于A1B1AB=42=2.(2)如答图所示.第20题答图(3)点P(a,b)为△ABC内一点,依次经过上述两次变换后,点P的对应点的坐标为(-2a,2b).21. 解:△AEC∽△ACD.证明:如答图,在△AEC和△ACD中,∠1是公共角,第21题答图∠2是圆内接四边形ABCD的外角,∴∠2=∠B,又∵AB=AC,∴∠3=∠B,∴∠2=∠3,由等角的补角相等,得∴∠ACE=∠ADC,∴△AEC∽△ACD.22. 解:①当△MBN∽△ABC时,∴MBAB=BNBC,即2t10=53-3t53,解得t=52;②当△NBM∽△ABC时,∴NBAB=BMBC,即53-3t10=2t53,解得t=157.∴当t=52或t=157时,△MBN与△ABC相似.人教版九年级下册第二十七章《相似》单元测试一、选择题1、已知=,则的值是( )A. B. C. D.2、如图,在四边形ABCD中,E,F分别在AD和BC上,AB∥EF∥DC,且DE=3,DA=5,CF=4,则FB等于()A. B. C.5 D.63、已知x:y=2:3,则(x+y):y的值为()A.2:5 B.5:2 C.5:3 D.3:54、如图所示的三个矩形中,是相似的是()A.甲与乙 B.乙与丙 C.甲与丙 D.甲乙丙都相似5、下列各组线段中,成比例线段的组是( )A.3cm,4cm,5cm,8cm B.1cm,3cm,4cm,8cmC.2.1cm,3.2cm,5.4cm,6.5cm D.0.15cm,0.18cm,4cm,4.8cm.6、如图,AB∥CD∥EF,AD=4,BC=DF=3,则BE的长为( )A. B. C.4 D.67、.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则的值为()A. B. C. D.8、如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2); B.(3,1); C.(2,2); D.(4,2);9、为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()A.1组 B.2组 C.3组 D.4组10、如图,在△ABC中,DE∥BC,,DE=4,则BC的长是()A.8 B.10 C.11 D.1211、如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是().A. B. C. D.12、如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A. 60mB. 40mC. 30mD. 20m13、如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是( )A.(-2,3)B.(2,-3)C.(3,-2)或(-2,3)D.(-2,3)或(2,-3)14、如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是 ( )。

人教版九年级数学下册第27章相似单元达标训练试题(含答案)

人教版九年级数学下册第27章相似单元达标训练试题(含答案)

人教版九年级数学下册第27章相似单元达标训练一.选择题1.下面给出了一些关于相似的命题,其中真命题有( )(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似.A.1个 B.2个 C.3个 D.4个2.图K-9-2中的四个三角形与图K-9-1中的三角形相似的是( )图K-9-1图K-9-23.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点到位似中心的距离之比等于相似比.其中正确的序号是( )A.②③ B.①②C.③④ D.②③④4.五边形ABCDE相似于五边形A′B′C′D′E′,若对应边AB与A′B′的长分别为50厘米和40厘米,则五边形A′B′C′D′E′与五边形ABCDE的相似比是( ) A.5∶4 B.4∶5 C.5∶2 5 D.25∶55. 如图,在△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为( )A.4 B.4 2 C.6 D.4 36.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形,如图,则小鱼上的点(a,b)对应大鱼上的点( )A.(-2a,-2b) B.(-a,-2b)C.(-2b,-2a) D.(-2a,-b)7.图K-6-4中与图K-6-3相似的图形是( )图K-6-3图K-6-48.如图K-10-6,已知矩形ABCD的顶点A,D分别落在x轴、y轴上,OD=2OA=6,AD∶AB=3∶1,则点C的坐标是( )图K-10-6A.(2,7) B.(3,7) C.(3,8) D.(4,8)9.如图K-14-4所示,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4∶9,则OB′∶OB为( )图K-14-4A.2∶3 B.3∶2C.4∶5 D.4∶910.观察图K-6-1中各组图形,其中相似的图形有( )图K -6-1A .3组B .4组C .5组D .6组 二、填空题11.如图K -15-4,△ABO 三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是________.图K -15-412.如图K -9-5,D 是△ABC 内的一点,连接BD 并延长到点E ,连接AD ,AE ,若AD AB=DE BC =AEAC,且∠CAE =29°,则∠BAD =________°.图K -9-513.如图K -7-2,已知在矩形ABCD 中,AB =1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使点B 落在AD 上的点F 处.若四边形FDCE 与矩形ABCD 相似,则AD =________.图K -7-214.在平面直角坐标系中,点C ,D 的坐标分别为C(2,3),D(1,0).现以原点为位似中心,将线段CD 放大得到线段AB ,若点D 的对应点B 在x 轴上且OB =2,则点C 的对应点A 的坐标为__________.15.如图K -11-8,Rt △AOB 的一条直角边OB 在x 轴上,双曲线y =kx(x >0)经过斜边OA 的中点C ,与另一条直角边交于点D .若S △OCD =9,则S △OBD 的值为________.图K -11-816.放大镜下的图形和原来的图形________相似图形;哈哈镜中的图形和原来的图形________相似图形.(填“是”或“不是”)三、解答题17.如图K -6-6是用相似图形设计的图案.图K -6-6(1)想一想:各个图案的基本图形是什么?(2)做一做:自己设计几个漂亮有趣的图案(至少两个).18.如图K -11-11所示,在▱ABCD 中,E 是CD 延长线上的一点,BE 与AD 交于点F ,DE =12CD .(1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积.图K -11-1119.如图K -14-11,矩形ABCD 与矩形AB ′C ′D ′是位似图形,点A 为位似中心,已知矩形ABCD 的周长为24,BB ′=4,DD ′=2,求AB ,AD 的长.图K -14-1120.如图K-12-8是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA=15 mm,DO=24 mm,DC=10 mm,我们知道铁夹的侧面是轴对称图形,请求出A,B两点间的距离.图K-12-821. 如图K-7-4是学校内的一矩形花坛,四周修筑的小路中相对的两条小路的宽均相等.已知AB=20米,AD=30米,试问当小路的宽x与y的比值为多少时,能使小路四周所围成的矩形A′B′C′D′与矩形ABCD相似?(A′B′与AB是对应边)图K-7-422.如图K-12-9 所示,小明想测量电线杆AB的高度,发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD与地面成30°的角,且此时测得1米高的标杆的影长为2米,求电线杆的高度(精确到0.1米).图K-12-9参考答案一、选择题1.下面给出了一些关于相似的命题,其中真命题有( C )(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似.A.1个 B.2个 C.3个 D.4个2.图K-9-2中的四个三角形与图K-9-1中的三角形相似的是( B )图K-9-1图K-9-23.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点到位似中心的距离之比等于相似比.其中正确的序号是( A )A.②③ B.①②C.③④ D.②③④4.五边形ABCDE相似于五边形A′B′C′D′E′,若对应边AB与A′B′的长分别为50厘米和40厘米,则五边形A′B′C′D′E′与五边形ABCDE的相似比是( B ) A.5∶4 B.4∶5 C.5∶2 5 D.25∶55. 如图,在△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为( B )A.4 B.4 2 C.6 D.4 36.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形,如图,则小鱼上的点(a,b)对应大鱼上的点( A )A.(-2a,-2b) B.(-a,-2b)C.(-2b,-2a) D.(-2a,-b)7.图K-6-4中与图K-6-3相似的图形是( D )图K-6-3图K -6-48.如图K -10-6,已知矩形ABCD 的顶点A ,D 分别落在x 轴、y 轴上,OD =2OA =6,AD ∶AB =3∶1,则点C 的坐标是( A )图K -10-6A .(2,7)B .(3,7)C .(3,8)D .(4,8)9.如图K -14-4所示,△A ′B ′C ′是△ABC 以点O 为位似中心经过位似变换得到的,若△A ′B ′C ′的面积与△ABC 的面积比是4∶9,则OB ′∶OB 为( A )图K -14-4A .2∶3B .3∶2C .4∶5D .4∶910.观察图K -6-1中各组图形,其中相似的图形有( B )图K -6-1A .3组B .4组C .5组D .6组 二、填空题11.如图K -15-4,△ABO 三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到△A′B′O,已知点B′的坐标是(3,0),则点A′的坐标是________.图K -15-4[答案] (1,2)12.如图K -9-5,D 是△ABC 内的一点,连接BD 并延长到点E ,连接AD ,AE ,若AD AB=DE BC =AEAC,且∠CAE =29°,则∠BAD =________°.图K -9-5[答案] 2913.如图K -7-2,已知在矩形ABCD 中,AB =1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使点B 落在AD 上的点F 处.若四边形FDCE 与矩形ABCD 相似,则AD =________.图K -7-2[答案].5+1214.在平面直角坐标系中,点C ,D 的坐标分别为C(2,3),D(1,0).现以原点为位似中心,将线段CD 放大得到线段AB ,若点D 的对应点B 在x 轴上且OB =2,则点C 的对应点A 的坐标为__________.[答案] (4,6)或(-4,-6)15.如图K -11-8,Rt △AOB 的一条直角边OB 在x 轴上,双曲线y =kx(x >0)经过斜边OA 的中点C ,与另一条直角边交于点D .若S △OCD =9,则S △OBD 的值为________.图K -11-8[答案] 616.放大镜下的图形和原来的图形________相似图形;哈哈镜中的图形和原来的图形________相似图形.(填“是”或“不是”)[答案] 是 不是 三、解答题17.如图K -6-6是用相似图形设计的图案.图K -6-6(1)想一想:各个图案的基本图形是什么?(2)做一做:自己设计几个漂亮有趣的图案(至少两个).解:(1)各个图案的基本图形分别是直角三角形、正方形、正五边形. (2)答案不唯一,只要是用相似图形做的,都符合要求.如图:18.如图K -11-11所示,在▱ABCD 中,E 是CD 延长线上的一点,BE 与AD 交于点F ,DE =12CD .(1)求证:△ABF ∽△CEB ;(2)若△DEF 的面积为2,求▱ABCD 的面积.图K -11-11[解析] (1)由平行四边形的对角相等,对边平行,证得△ABF ∽△CEB ;(2)由△DEF ∽△CEB ,△DEF ∽△ABF ,根据相似三角形的面积比等于相似比的平方可以求出△ABF 和△BCE 的面积,从而▱ABCD 的面积可求.解:(1)证明:∵四边形ABCD 是平行四边形, ∴∠A =∠C ,AB ∥CD , ∴∠ABF =∠CEB , ∴△ABF ∽△CEB.(2)∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB 綊CD ,∴△DEF ∽△CEB ,△DEF ∽△ABF.∵DE =12CD ,∴EC =3DE ,∴S △DEF S △CEB =(DE EC )2=19,S △DEF S △ABF =(DE AB )2=14. ∵S △DEF =2,∴S △CEB =18,S △ABF =8,∴S 四边形BCDF =S △CEB -S △DEF =16,∴S ▱ABCD =S 四边形BCDF +S △ABF =16+8=24.19.如图K -14-11,矩形ABCD 与矩形AB ′C ′D ′是位似图形,点A 为位似中心,已知矩形ABCD 的周长为24,BB ′=4,DD ′=2,求AB ,AD 的长.图K -14-11解:∵矩形ABCD 的周长为24, ∴AB +AD =12.设AB =x ,则AD =12-x ,AB′=x +4,AD′=14-x. ∵矩形ABCD 与矩形AB′C′D′是位似图形, ∴AB AB′=AD AD′, 即x x +4=12-x 14-x, 解得x =8,∴AB =8,AD =12-8=4.20.如图K -12-8是一个常见铁夹的侧面示意图,OA ,OB 表示铁夹的两个面,C 是轴,CD ⊥OA 于点D ,已知DA =15 mm ,DO =24 mm ,DC =10 mm ,我们知道铁夹的侧面是轴对称图形,请求出A ,B 两点间的距离.图K -12-8解:如图,连接AB ,同时连接OC 并延长交AB 于点E ,∵铁夹的侧面是轴对称图形,故OE 是对称轴,∴OE ⊥AB ,AE =BE. ∵∠COD =∠AOE ,∠CDO =∠AEO =90°,∴Rt △OCD ∽Rt △OAE ,∴OC OA =CDAE ,而OC =OD 2+DC 2=242+102=26,∴2624+15=10AE ,∴AE =39×1026=15,∴AB =2AE =30(mm).答:A ,B 两点间的距离为30 mm.21. 如图K -7-4是学校内的一矩形花坛,四周修筑的小路中相对的两条小路的宽均相等.已知AB =20米,AD =30米,试问当小路的宽x 与y 的比值为多少时,能使小路四周所围成的矩形A ′B ′C ′D ′与矩形ABCD 相似?(A ′B ′与AB 是对应边) 图K -7-4[解析] 若矩形A′B′C′D′与矩形ABCD 相似,由相似多边形的性质可知,这两个矩形的对应边成比例,即可求出相似比,再由相似比求出x 与y 的比值.解:由题意可知,矩形A′B′C′D′与矩形ABCD 相似(A′B′与AB 是对应边),则应有AB A′B′=BC B′C′,即2020+2y =3030+2x ,从而有20(30+2x)=30(20+2y),解得x y =32.22.如图K -12-9 所示,小明想测量电线杆AB 的高度,发现电线杆的影子恰好落在土坡的坡面CD 和地面BC 上,量得CD =4米,BC =10米,CD 与地面成30°的角,且此时测得1米高的标杆的影长为2米,求电线杆的高度(精确到0.1米).图K -12-9解:如图所示,过点D 作DF ⊥BC 交BC 的延长线于点F ,延长AD 交BC 的延长线于点E.∵∠DCF =30°,∴DF =12CD =2米,CF =CD 2-DF 2=2 3 米. 根据已知条件,1米高的标杆的影长为2米,可求得EF =2DF =4米,∴BE =(14+2 3)米.∵DF ⊥BE ,AB ⊥BE ,∴△DFE ∽△ABE ,∴DF AB =EF BE,∴2AB =4BE, ∴AB =12BE =7+3≈8.7(米). 即电线杆的高度约为8.7米.1、只要朝着一个方向奋斗,一切都会变得得心应手。

人教版九年级数学下册第27章(精选)相似测试卷及答案【新】

人教版九年级数学下册第27章(精选)相似测试卷及答案【新】

第二十七章 相似全章测试一、选择题1.如图所示,在△ABC 中,DE ∥BC ,若AD =1,DB =2,则BCDE的值为( )第1题图A .32B .41C .31 D .212.如图所示,△ABC 中DE ∥BC ,若AD ∶DB =1∶2,则下列结论中正确的是( )第2题图A .21=BC DEB .21=∆∆的周长的周长ABC ADE C .的面积的面积ABC ADE ∆∆31=D .的周长的周长ABC ADE ∆∆31=3.如图所示,在△ABC 中∠BAC =90°,D 是BC 中点,AE ⊥AD 交CB 延长线于E 点,则下列结论正确的是( )第3题图A .△AED ∽△ACB B .△AEB ∽△ACDC .△BAE ∽△ACED .△AEC ∽△DAC4.如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,6=BC ,AC =3,则CD长为( )第4题图A .1B .23 C .2 D .25 5.若P 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过点P 作直线截△ABC ,截得的三角形与原△ABC 相似,满足这样条件的直线共有( ) A .1条 B .2条 C .3条 D .4条6.如图所示,△ABC 中若DE ∥BC ,EF ∥AB ,则下列比例式正确的是( )第6题图A .BC DEDB AD =B .AD EF BC BF = C .FC BF EC AE =D .BCDE AB EF =7.如图所示,⊙O 中,弦AB ,CD 相交于P 点,则下列结论正确的是( )第7题图A .P A ·AB =PC ·PB B .P A ·PB =PC ·PD C .P A ·AB =PC ·CD D .P A ∶PB =PC ∶PD 8.如图所示,△ABC 中,AD ⊥BC 于D ,对于下列中的每一个条件第8题图①∠B +∠DAC =90° ②∠B =∠DAC ③CD :AD =AC :AB ④AB 2=BD ·BC 其中一定能判定△ABC 是直角三角形的共有( ) A .3个 B .2个 C .1个D .0个二、填空题9.如图9所示,身高1.6m 的小华站在距路灯杆5m 的C 点处,测得她在灯光下的影长CD 为2.5m ,则路灯的高度AB 为______.图910.如图所示,△ABC 中,AD 是BC 边上的中线,F 是AD 边上一点,且61=EB AE ,射线CF 交AB 于E 点,则FDAF等于______.第10题图11.如图所示,△ABC中,DE∥BC,AE∶EB=2∶3,若△AED的面积是4m2,则四边形DEBC 的面积为______.第11题图12.若两个相似多边形的对应边的比是5∶4,则这两个多边形的周长比是______.三、解答题13.已知,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)作DE∥AB交AC于点E,请再写出另一个与△ABD相似的三角形,并直接写出DE的长.14.已知:如图,AB是半圆O的直径,CD⊥AB于D点,AD=4cm,DB=9cm,求CB的长.15.如图所示,在由边长为1的25个小正方形组成的正方形网格上有一个△ABC,试在这个网格上画一个与△ABC相似,且面积最大的△A1B1C1(A1,B1,C1三点都在格点上),并求出这个三角形的面积.16.如图所示,在5×5的方格纸上建立直角坐标系,A(1,0),B(0,2),试以5×5的格点为顶点作△ABC与△OAB相似(相似比不为1),并写出C点的坐标.17.如图所示,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D点,OC交AB于E点.(1)求∠D的度数;(2)求证:AC2=AD·CE.18.已知:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式;(3)当△ADE是等腰三角形时,求AE的长.19.已知:如图,△ABC 中,AB =4,D 是AB 边上的一个动点,DE ∥BC ,连结DC ,设△ABC的面积为S ,△DCE 的面积为S ′.(1)当D 为AB 边的中点时,求S ′∶S 的值;(2)若设,,y SS x AD ='=试求y 与x 之间的函数关系式及x 的取值范围.20.已知:如图,抛物线y =x 2-x -1与y 轴交于C 点,以原点O 为圆心,OC 长为半径作⊙O ,交x 轴于A ,B 两点,交y 轴于另一点D .设点P 为抛物线y =x 2-x -1上的一点,作PM ⊥x 轴于M 点,求使△PMB ∽△ADB 时的点P 的坐标.21.在平面直角坐标系xOy 中,已知关于x 的二次函数y =x 2+(k -1)x +2k -1的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,-3). 求这个二次函数的解析式及A ,B 两点的坐标.22.如图所示,在平面直角坐标系xOy 内已知点A 和点B 的坐标分别为(0,6),(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P ,Q 移动的时间为t 秒. (1)求直线AB 的解析式;(2)当t 为何值时,△APQ 与△ABO 相似? (3)当t 为何值时,△APQ 的面积为524个平方单位?23.已知:如图,□ABCD 中,AB =4,BC =3,∠BAD =120°,E 为BC 上一动点(不与B 点重合),作EF ⊥AB 于F ,FE ,DC 的延长线交于点G ,设BE =x ,△DEF 的面积为S . (1)求证:△BEF ∽△CEG ;(2)求用x 表示S 的函数表达式,并写出x 的取值范围; (3)当E 点运动到何处时,S 有最大值,最大值为多少?第二十七章 相似全章测试答案与提示1.C . 2.D . 3.C . 4.C . 5.C . 6.C . 7.B . 8.A .9.4.8m . 10.⋅3111.21m 2. 12.5∶4.13.(1),BABDCB AB =CBA ABD ∠=∠,得△HBD ∽△CBA ;(2)△ABC ∽△CDE ,DE =1.5. 14..cm 133提示:连结AC .15.提示:.52,10,25111111===C B B A C A △A 1B 1C 1的面积为5. 16.C (4,4)或C (5,2).17.提示:(1)连结OB .∠D =45°.(2)由∠BAC =∠D ,∠ACE =∠DAC 得△ACE ∽△DAC .18.(1)提示:除∠B =∠C 外,证∠ADB =∠DEC .(2)提示:由已知及△ABD ∽△DCE 可得.22x x CE -=从而y =AC -CE =x 2-.12+x (其中20<<x ).(3)当∠ADE 为顶角时:.22-=AE 提示:当△ADE 是等腰三角形时, △ABD ≌△DCE .可得.12-=x当∠ADE 为底角时:⋅=21AE19.(1)S '∶S =1∶4;(2)).40(41162<<+-=x x x y 20.提示:设P 点的横坐标x P =a ,则P 点的纵坐标y P =a 2-a -1.则PM =|a 2-a -1|,BM =|a -1|.因为△ADB 为等腰直角三角形,所以欲使△PMB ∽△ADB ,只要使PM =BM .即|a 2-a -1|=|a -1|.不难得a 1=0..2.2.2432-===a a a∴P 点坐标分别为P 1(0,-1).P 2(2,1).).21,2().21,2(43+--P P 21.(1)y =x 2-2x -3,A (-1,0),B (3,0);(2))49,43(-D 或D (1,-2). 22.(1);643+-=x y (2)1130=t 或;1350(3)t =2或3. 23.(1)略;(2));30(8311832≤<+-=x x x S (3)当x =3时,S 最大值33=.。

人教版九年级数学下《第27章相似》专项训练含答案.doc

人教版九年级数学下《第27章相似》专项训练含答案.doc

第27章 相似 专项训练专训1 证比例式或等积式的技巧名师点金:证比例式或等积式,若所遇问题中无平行线或相似三角形,则需构造平行线或相似三角形,得到成比例线段;若比例式或等积式中的线段分布在两个三角形或不在两个三角形中,可尝试证这两个三角形相似或先将它们转化到两个三角形中再证两三角形相似,若在两个明显不相似的三角形中,可运用中间比代换.构造平行线法1.如图,在△ABC 中,D 为AB 的中点,DF 交AC 于点E ,交BC 的延长线于点F ,求证:AE·CF=BF·EC.(第1题)2.如图,已知△ABC 的边AB 上有一点D ,边BC 的延长线上有一点E ,且AD =CE ,DE 交AC 于点F ,试证明:AB·DF=BC·EF.(第2题)三点找三角形相似法3.如图,在▱ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F. 求证:DC AE =CF AD.(第3题)4.如图,在△ABC中,∠BAC=90°,M为BC的中点,DM⊥BC交CA的延长线于D,交AB于E.求证:AM2=MD·ME.(第4题)构造相似三角形法5.如图,在等边三角形ABC中,点P是BC边上任意一点,AP的垂直平分线分别交AB,AC于点M,N.求证:BP·CP=BM·CN.(第5题)等比过渡法6.如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG·DF=DB·EF.(第6题)7.如图,CE是Rt△ABC斜边上的高,在EC的延长线上任取一点P,连接AP,作BG⊥AP于点G,交CE于点D.求证:CE2=DE·PE.(第7题)两次相似法8.如图,在Rt △ABC 中,AD 是斜边BC 上的高,∠ABC 的平分线BE 交AC 于E ,交AD 于F.求证:BF BE =ABBC.(第8题)9.如图,在▱ABCD 中,AM ⊥BC ,AN ⊥CD ,垂足分别为M ,N.求证: (1)△AMB ∽△AND ; (2)AM AB =MN AC.(第9题)等积代换法10.如图,在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F. 求证:AE AF =AC AB.(第10题)等线段代换法11.如图,等腰△ABC中,AB=AC,AD⊥BC于点D,点P是AD上一点,CF ∥AB,延长BP交AC于点E,交CF于点F,求证:BP2=PE·PF.(第11题)12.已知:如图,AD平分∠BAC,AD的垂直平分线EP交BC的延长线于点P.求证:PD2=PB·PC.(第12题)专训2巧用“基本图形”探索相似条件名师点金:几何图形大多数由基本图形复合而成,因此熟悉三角形相似的基本图形,有助于快速、准确地识别相似三角形,从而顺利找到解题思路和方法.相似三角形的四类结构图:1.平行线型.2.相交线型.3.子母型.4.旋转型.平行线型1.如图,在△ABC 中,BE 平分∠ABC 交AC 于点E ,过点E 作ED ∥BC 交AB 于点D.(1)求证:AE·BC=BD·AC;(2)如果S △ADE =3,S △BDE =2,DE =6,求BC 的长.(第1题)相交线型2.如图,点D ,E 分别为△ABC 的边AC ,AB 上的点,BD ,CE 交于点O ,且EO BO=DOCO,试问△ADE 与△ABC 相似吗?请说明理由.(第2题)子母型3.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 的中点,ED 的延长线交AB 的延长线于点F.求证:AB AC =DF AF.(第3题)旋转型4.如图,已知∠DAB =∠EAC ,∠ADE =∠ABC. 求证:(1)△ADE ∽△ABC ; (2)AD AE =BD CE.(第4题)专训3 利用相似三角形巧证线段的数量和位置关系名师点金:判断两线段之间的数量和位置关系是几何中的基本题型之一.由角的关系推出“平行或垂直”是判断位置关系的常用方法,由相似三角形推出“相等”是判断数量关系的常用方法.证明两线段的数量关系 类型1:证明两线段的相等关系1.如图,已知在△ABC 中,DE ∥BC ,BE 与CD 交于点O ,直线AO 与BC 边交于点M ,与DE 交于点N.求证:BM =MC.(第1题)2.如图,一直线和△ABC 的边AB ,AC 分别交于点D ,E ,和BC 的延长线交于点F ,且AE CE =BF CF.求证:AD =DB.(第2题)类型2:证明两线段的倍分关系3.如图,在△ABC 中,BD ⊥AC 于点D ,CE ⊥AB 于点E ,∠A =60°,求证:DE =12BC.(第3题)4.如图,AM 为△ABC 的角平分线,D 为AB 的中点,CE ∥AB ,CE 交DM 的延长线于E.求证:AC =2CE.(第4题)证明两线段的位置关系 类型1:证明两线段平行5.如图,已知点D 为等腰直角三角形ABC 的斜边AB 上一点,连接CD ,DE ⊥CD ,DE =CD ,连接CE ,AE.求证:AE ∥BC.(第5题)6.在△ABC 中,D ,E ,F 分别为BC ,AB ,AC 上的点,EF ∥BC ,DF ∥AB ,连接CE 和AD ,分别交DF ,EF 于点N ,M.(1)如图①,若E 为AB 的中点,图中与MN 平行的直线有哪几条?请证明你的结论;(2)如图②,若E 不为AB 的中点,写出与MN 平行的直线,并证明.(第6题)类型2:证明两线垂直7.如图,在△ABC 中,D 是AB 上一点,且AC 2=AB·AD,BC 2=BA·BD,求证:CD ⊥AB.(第7题)8.如图,已知矩形ABCD ,AD =13AB ,点E ,F 把AB 三等分,DF 交AC 于点G ,求证:EG ⊥DF.(第8题)专训4 相似三角形与函数的综合应用名师点金:解涉及相似三角形与函数的综合题时,由于这类题的综合性强,是中考压轴题重点命题形式之一,因此解题时常结合方程思想、分类讨论思想进行解答.相似三角形与一次函数1.如图,在平面直角坐标系xOy 中,直线y =-x +3与x 轴交于点C ,与直线AD 交于点A ⎝ ⎛⎭⎪⎫43,53,点D 的坐标为(0,1).(1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当△BOD 与△BCE 相似时,求点E 的坐标.(第1题)相似三角形与二次函数2.如图,直线y =-x +3交x 轴于点A ,交y 轴于点B ,抛物线y =ax 2+bx +c 经过A ,B ,C(1,0)三点.(1)求抛物线对应的函数解析式;(2)若点D 的坐标为(-1,0),在直线y =-x +3上有一点P ,使△ABO 与△ADP 相似,求出点P 的坐标.(第2题)3.如图,直线y =2x +2与x 轴交于点A ,与y 轴交于点B ,把△AOB 沿y 轴翻折,点A 落到点C ,过点B 的抛物线y =-x 2+bx +c 与直线BC 交于点D(3,-4).(1)求直线BD 和抛物线对应的函数解析式;(2)在第一象限内的抛物线上,是否存在一点M ,作MN 垂直于x 轴,垂足为点N ,使得以M ,O ,N 为顶点的三角形与△BOC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.(第3题)相似三角形与反比例函数4.如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3),双曲线y=kx(x>0)经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB对应的函数解析式.(第4题)专训5全章热门考点整合应用名师点金:本章主要内容为:平行线分线段成比例,相似三角形的判定及性质,位似图形及其画法等,涉及考点、考法较多,是中考的高频考点.其主要考点可概括为:3个概念、2个性质、1个判定、2个应用、1个作图、1个技巧.3个概念概念1:成比例线段1.下列各组线段,是成比例线段的是( )A.3 cm,6 cm,7 cm,9 cmB.2 cm,5 cm,0.6 dm,8 cmC.3 cm,9 cm,1.8 dm,6 cmD.1 cm,2 cm,3 cm,4 cm2.有一块三角形的草地,它的一条边长为25 m,在图纸上,这条边的长为5 cm,其他两条边的长都为4 cm,则其他两边的实际长度都是________m.概念2:相似多边形3.如图,已知∠1′=∠1,∠2′=∠2,∠3′=∠3,∠4′=∠4,∠D′=∠D,试判断四边形A′B′C′D′与四边形ABCD是否相似,并说明理由.(第3题)概念3:位似图形4.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边放大到原来的2倍,记所得的像是△A′B′C.设点B的对应点B′的坐标是(a,b),求点B的坐标.(第4题)2个性质性质1:平行线分线段成比例的性质5.如图,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE的长为y.(1)求出y关于x的函数解析式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积有最大值,最大值为多少?(第5题)性质2:相似三角形的性质6.如图,已知D是BC边上的中点,且AD=AC,DE⊥BC,DE与BA相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;=5,BC=10,求DE的长.(2)若S△FCD(第6题)1个判定——相似三角形的判定7.如图,△ACB为等腰直角三角形,点D为斜边AB上一点,连接CD,DE ⊥CD,DE=CD,连接AE,过C作CO⊥AB于O.求证:△ACE∽△OCD.(第7题)8.如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过点C作AB的垂线l交⊙O于另一点D,垂足为点E.设P是上异于点A,C的一个动点,射线AP 交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,=,求PD的长.(第8题)2个应用应用1:测高的应用9.如图,在离某建筑物CE 4 m处有一棵树AB,在某时刻,1.2 m的竹竿FG垂直地面放置,影子GH长为2 m,此时树的影子有一部分落在地面上,还有一部分落在建筑物的墙上,墙上的影子CD高为 2 m,那么这棵树的高度是多少?(第9题)应用2:测宽的应用10.如图,一条小河的两岸有一段是平行的,在河的一岸每隔 6 m有一棵树,在河的对岸每隔60 m有一根电线杆,在有树的一岸离岸边30 m处可看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,并且在这两棵树之间还有三棵树,求河的宽度.(第10题)1个作图——作一个图形的位似图形11.如图,在方格纸中(每个小方格的边长都是1个单位长度)有一点O和△ABC.请以点O为位似中心,把△ABC缩小为原来的一半(不改变方向),画出△ABC的位似图形.(第11题)1个技巧——证明四条线段成比例的技巧12.如图,已知△ABC,∠BAC的平分线与∠DAC的平分线分别交BC及BC 的延长线于点P,Q.(1)求∠PAQ的度数;(2)若点M为PQ的中点,求证:PM2=CM·BM.(第12题)答案专训1(第1题)1.证明:如图,过点C 作CM ∥AB 交DF 于点M. ∵CM ∥AB ,∴△CMF ∽△BDF. ∴BF CF =BD CM. 又∵CM ∥AD ,∴△ADE ∽△CME.∴AE EC =ADCM.∵D 为AB 的中点, ∴BD CM =AD CM .∴BF CF =AEEC ,即AE·CF=BF·EC. 2.证明:过点D 作DG ∥BC ,交AC 于点G , ∴△DGF ∽△ECF ,△ADG ∽△ABC. ∴EF DF =CE DG ,AB BC =AD DG. ∵AD =CE ,∴CE DG =AD DG .∴AB BC =EF DF, 即AB·DF=BC·EF.点拨:过某一点作平行线,构造出“A ”型或“X ”型的基本图形,通过相似三角形转化线段的比,从而解决问题.3.证明:∵四边形ABCD是平行四边形.∴AE∥DC,∠A=∠C.∴∠CDF=∠E,∴△DAE∽△FCD,∴DCAE=CFAD.4.证明:∵DM⊥BC,∠BAC=90°,∴∠B+∠BEM=90°,∠D+∠DEA=90°.∵∠BEM=∠DEA,∴∠B=∠D.又∵M为BC的中点,∠BAC=90°,∴BM=AM. ∴∠B=∠BAM.∴∠BAM=∠D.又∵∠AME=∠DMA.∴△AME∽△DMA.∴AMMD=MEAM.∴AM2=MD·ME.(第5题)5.证明:如图,连接PM,PN.∵MN是AP的垂直平分线,∴MA=MP,NA=NP.∴∠1=∠2,∠3=∠4.又∵△ABC是等边三角形,∴∠B=∠C=∠1+∠3=60°.∴∠2+∠4=60°.∴∠5+∠6=120°.又∵∠6+∠7=180°-∠C=120°.∴∠5=∠7.∴△BPM∽△CNP.∴BPCN=BMCP,即BP·CP=BM·CN.6.证明:(1)∵AB=AC,∴∠ABC=∠ACB.∵DE∥BC,∴∠ABC+∠BDE=180°,∠ACB+∠CED=180°,∴∠CED=∠BDE.又∵∠EDF=∠ABE,∴△DEF ∽△BDE.(2)由△DEF∽△BDE得DEBD=EFDE,∴DE2=DB·EF.又由△DEF∽△BDE,得∠BED=∠DFE.∵∠GDE=∠EDF,∴△GDE∽△EDF.∴DGDE=DEDF,∴DE2=DG·DF,∴DG·DF=DB·EF.7.证明:∵BG⊥AP,PE⊥AB,∴∠AEP=∠BED=∠AGB=90°.∴∠P+∠PAB=90°,∠PAB+∠ABG=90°.∴∠P=∠ABG.∴△AEP∽△DEB.∴AEDE=PEBE,即AE·BE=PE·DE.又∵CE⊥AB,∴∠CEA=∠BEC=90°,∴∠CAB+∠ACE=90°.又∵∠ACB=90°,∴∠CAB+∠CBE=90°.∴∠ACE=∠CBE.∴△AEC∽△CEB.∴AECE=CEBE,即CE2=AE·BE.∴CE2=DE·PE.8.证明:易得∠BAC=∠BDF=90°.∵BE平分∠ABC,∴∠ABE=∠DBF,∴△BDF∽△BAE,得BDAB=BFBE.∵∠BAC=∠BDA=90°,∠ABC=∠DBA.∴△ABC∽△DBA,得ABBC=BDAB,∴BFBE=ABBC.9.证明:(1)∵四边形ABCD为平行四边形.∴∠B=∠D. ∵AM⊥BC,AN⊥CD,∴∠AMB=∠AND=90°,∴△AMB∽△AND.(2)由△AMB∽△AND得AMAN=ABAD,∠BAM=∠DAN.又AD=BC,∴AMAN=ABBC.∵AM⊥BC,AD∥BC,∴∠AMB=∠MAD=90°.∴∠B+∠BAM=∠MAN+∠NAD=90°,∴∠B=∠MAN.∴△AMN∽△BAC,∴AMAB=MNAC.10.证明:∵AD⊥BC,DE⊥AB,∴∠ADB=∠AED=90°.又∵∠BAD=∠DAE,∴△ADE∽△ABD,得AD2=AE·AB,同理可得AD2=AF·AC,∴AE·AB=AF·AC,∴AEAF=ACAB.11.证明:连接PC,如图.∵AB=AC,AD⊥BC,∴AD垂直平分BC,∠ABC =∠ACB,∴BP=CP,∴∠1=∠2,∴∠ABC-∠1=∠ACB-∠2,即∠3=∠4.∵CF∥AB,∴∠3=∠F,∴∠4=∠F.又∵∠CPF=∠CPE,∴△CPF∽△EPC,∴CP PE =PFCP,即CP 2=PF·PE.∵BP =CP ,∴BP 2=PE·PF.(第11题)(第12题)12.证明:如图,连接PA ,则PA =PD ,∴∠PDA =∠PAD. ∴∠B +∠BAD =∠DAC +∠CAP.又∵AD 平分∠BAC ,∴∠BAD =∠DAC.∴∠B =∠CAP. 又∵∠APC =∠BPA ,∴△PAC ∽△PBA ,∴PA PB =PC PA, 即PA 2=PB·PC,∴PD 2=PB·PC.专训21.(1)证明:∵ED ∥BC ,∴△ADE ∽△ABC.∴AE AC =DE BC . ∵BE 平分∠ABC ,∴∠DBE =∠EBC. ∵ED ∥BC ,∴∠DEB =∠EBC. ∴∠DBE =∠DEB.∴DE =BD.∴AE AC =BD BC, 即AE·BC=BD·AC.(2)解:设h △ADE 表示△ADE 中DE 边上的高, h △BDE 表示△BDE 中DE 边上的高, h △ABC 表示△ABC 中BC 边上的高. ∵S △ADE =3,S △BDE =2,∴S △ADE S △BDE =h △ADE h △BDE =32. ∴h △ADE h △ABC =35.∵△ADE∽△ABC,∴DEBC=h△ADEh△ABC=35.∵DE=6,∴BC=10.2.解:相似.理由如下:因为EOBO=DOCO,∠BOE=∠COD,∠DOE=∠COB,所以△BOE∽△COD,△DOE∽△COB.所以∠EBO=∠DCO,∠DEO=∠CBO.因为∠ADE =∠DCO+∠DEO,∠ABC=∠EBO+∠CBO.所以∠ADE=∠ABC.又因为∠A=∠A,所以△ADE∽△ABC.3.证明:∵∠BAC=90°,AD⊥BC于点D,∴∠BAC=∠ADB=90°.又∵∠CBA=∠ABD(公共角),∴△ABC∽△DBA.∴ABAC=DBDA,∠BAD=∠C.∵AD⊥BC于点D,E为AC的中点,∴DE=EC. ∴∠BDF=∠CDE=∠C.∴∠BDF=∠BAD.又∵∠F=∠F,∴△DBF∽△ADF.∴DBAD=DFAF.∴ABAC=DFAF.(第3题)点拨:当所证等积式或比例式运用“三点定型法”不能定型或能定型而不相似,条件又不具备成比例线段时,可考虑用中间比“搭桥”,称为“等比替换法”,有时还可用“等积替换法”,例如:如图,在△ABC中,AD⊥BC于点D,DE⊥AB于点E,DF⊥AC于点F,求证:AE·AB=AF·AC.可由两组“射影图”得AE·AB=AD2,AF·AC=AD2,∴AE·AB=AF·AC.4.证明:(1)∵∠DAB=∠EAC,∴∠DAE=∠BAC.又∵∠ADE=∠ABC,∴△ADE∽△ABC.(2)∵△ADE∽△ABC,∴ADAE=ABAC.∵∠DAB=∠EAC,∴△ADB∽△AEC.∴ADAE=BDCE.专训31.证明:∵DE∥BC.∴△NEO∽△MBO.∴NEMB=ONOM.同理可得DNMC=ONOM.∴DNMC=NEBM.∴DNNE=MCBM.∵DE∥BC,∴△ANE∽△AMC.∴ANAM=NEMC.同理可得ANAM=DNBM,∴DNBM=NEMC.∴DNNE=BMMC.∴MCBM=BMMC.∴MC2=BM2.∴BM=MC.(第2题)2.证明:如图,过C作CG∥AB交DF于G点.∵CG∥AB,∴ADCG=AECE,BDCG=BFCF,∵AECE=BFCF,∴ADCG=BDCG,∴AD=BD.3.证明:∵BD⊥AC,CE⊥AB,∠A=60°,∠ABD=∠ACE=30°,∴AD AB=1 2,AEAC=12,∴ADAB=AEAC.又∠A=∠A,∴△ADE∽△ABC,∴DEBC=ADAB=12,∴DE=12BC.4.证明:如图,延长CE,交AM的延长线于F.∵AB∥CF,∴∠BAM=∠F,△BDM∽△CEM,△BAM∽△CFM,∴BDCE=BMMC,BACF=BMMC,∴BDCE=BACF.又∵BA=2BD,∴CF=2CE.又AM平分∠BAC,∴∠BAM=∠CAM,∴∠CAM=∠F,∴AC=CF,∴AC=2CE.(第4题)(第5题)5.证明:如图,过点C 作CO ⊥AB 于点O.∵DE =CD ,DE ⊥CD ,∴∠ECD =∠CED =45°.∵△ABC 是等腰直角三角形,∴∠CAB =∠B =45°.∴∠CAB =∠CED.又∵∠AOC =∠EDC =90°,∴△ACO ∽△ECD.∴AC CO =EC CD. 又∵∠ACE +∠ECO =∠OCD +∠ECO =45°,∴∠ACE =∠OCD.∴△ACE ∽△OCD.∴∠CAE =∠COD =90°.又∵∠ACB =90°,∴∠CAE +∠ACB =180°.∴AE ∥BC.6.解:(1)MN ∥AC ∥ED.证明如下:∵EF ∥BC ,∴△AEM ∽△ABD ,△AMF ∽△ADC ,∴EM BD =AM AD =MFDC.∵E 为AB 的中点,EF ∥BC ,∴F 为AC 的中点.又∵DF ∥AB ,∴D 为BC 的中点,∴EM =MF.∵F 为AC 的中点,FN ∥AE ,∴N 为EC 的中点,从而MN ∥AC.又∵D 为BC 的中点,E 为AB 的中点,∴ED ∥AC ,∴MN ∥AC ∥ED.(2)MN ∥AC.证明如下:∵EF ∥BC ,∴△AEM ∽△ABD ,△AMF ∽△ADC ,∴EM BD=AM AD =MF DC ,∴EM MF =BD DC .又∵DF ∥AB ,∴BD DC =EN NC ,∴EM MF =EN NC ,∴EM EF =ENEC .又∵∠MEN =∠FEC ,∴△MEN ∽△FEC.∴∠EMN =∠EFC.∴MN ∥AC.7.证明:∵AC 2=AB·AD,∴AC AD =ABAC.又∵∠A =∠A , ∴△ACD ∽△ABC.∴∠ADC =∠ACB. 又∵BC 2=BA·BD,∴BC BD =BABC.又∵∠B =∠B , ∴△BCD ∽△BAC.∴∠BDC =∠BCA. ∴∠ADC =∠BDC.∵∠BDC +∠ADC =180°,∴∠ADC =∠BDC =90°.∴CD ⊥AB.8.证明:∵AD =13AB ,点E ,F 把AB 三等分,∴设AE =EF =FB =AD =k ,则AB =CD =3k. ∵CD ∥AB ,∴∠DCG =∠FAG ,∠CDG =∠AFG. ∴△AFG ∽△CDG ,∴FG DG =AF CD =23. 设FG =2m ,则DG =3m ,∴DF =FG +DG =2m +3m =5m. 在Rt △AFD 中,DF 2=AD 2+AF 2=5k 2,∴DF =5k. ∴5m =5k.∴m =55k.∴FG =255k.∴AF FG =2k 255k =5,DF EF =5k k = 5.∴AF FG =DFEF. 又∠AFD =∠GFE ,∴△AFD ∽△GFE. ∴∠EGF =∠DAF =90°.∴EG ⊥DF.专训41.解:(1)设直线AD 的解析式为y =kx +b(k ≠0) 将D(0,1) A ⎝ ⎛⎭⎪⎫43,53代入解析式得:⎩⎨⎧b =153=43k +b 解得⎩⎨⎧b =1k =12∴直线AD 的解析式为y =12x +1.(2)直线AD 的解析式为y =12x +1.令y =0,得x =-2.得B(-2,0),即OB =2. 直线AC 为y =-x +3. 令y =0,得∴x =3.得C(3,0),即BC =5 设E ⎝ ⎛⎭⎪⎫x ,12x +1①当E 1C ⊥BC 时,如图,∠BOD =∠BCE 1=90°,∠DBO =∠E 1BC.∴△BOD ∽△BCE 1.此时点C 和点E 1的横坐标相同.将x =3代入y =12x +1,解得y =52.∴E 1⎝⎛⎭⎪⎫3,52.②当CE 2⊥AD 时,如图,∠BOD =∠BE 2C =90°,∠DBO =∠CBE 2, ∴△BOD ∽△BE 2C.过点E 2作EF ⊥x 轴于点F ,则∠E 2FC =∠BFE 2=90°. 又∵∠E 2BF +∠BE 2F =90°, ∠CE 2F +∠BE 2F =90°. ∴∠E 2BF =∠CE 2F. ∴△E 2BF ∽△CE 2F ,则E 2F BF =CF E 2F. 即E 2F 2=CF·BF.⎝ ⎛⎭⎪⎫12x +12=(3-x)(x +2)解得:x 1=2,x 2=-2(舍去)∴E 2(2,2)当∠EBC =90°时,此情况不存在. 综上所述:E 1⎝⎛⎭⎪⎫3,52或E 2(2,2).(第1题)(第2题)2.解:(1)由题意得A(3,0),B(0,3),∵抛物线经过A ,B ,C 三点,∴把A(3,0),B(0,3),C(1,0)三点的坐标分别代入y =ax 2+bx +c ,得方程组⎩⎨⎧9a +3b +c =0,c =3,a +b +c =0,解得⎩⎨⎧a =1,b =-4,c =3,∴抛物线对应的函数解析式为y =x 2-4x +3. (2)如图,由题意可得△ABO 为等腰直角三角形.若△ABO ∽△AP 1D ,则AOAD=OBDP 1,∴DP 1=AD =4,∴P 1(-1,4);若△ABO ∽△ADP 2,过点P 2作P 2M ⊥x 轴于M ,∵△ABO 为等腰直角三角形,∴△ADP 2是等腰直角三角形,由三线合一可得DM =AM =2=P 2M ,即点M 与点C 重合,∴P 2(1,2),∴点P 的坐标为(-1,4)或(1,2).3.解:(1)易得A(-1,0),B(0,2),C(1,0). 设直线BD 对应的函数解析式为y =kx +m.把B(0,2),C(1,0)的坐标分别代入y =kx +m ,得⎩⎨⎧m =2,k +m =0,解得⎩⎨⎧k =-2,m =2.∴直线BD 对应的函数解析式为y =-2x +2. ∵抛物线对应的函数解析式为y =-x 2+bx +c.∴把B(0,2),D(3,-4)的坐标分别代入y =-x 2+bx +c , 得⎩⎨⎧c =2,-9+3b +c =-4,解得⎩⎨⎧b =1,c =2.∴抛物线对应的函数解析式为y =-x 2+x +2.(2)存在,①如图①,当△MON ∽△BCO 时,ON CO =MN BO ,即ON 1=MN2,∴MN =2ON.设ON =a ,则M(a ,2a),∴-a 2+a +2=2a ,解得a 1=-2(不合题意,舍去),a 2=1,∴M(1,2);②如图②,当△MON ∽△CBO 时,ON BO =MN CO ,即ON 2=MN1,∴MN =12ON.设ON =n ,则M ⎝ ⎛⎭⎪⎫n ,12n ,∴-n 2+n +2=n 2,解得n 1=1-334(不合题意,舍去),n 2=1+334,∴M(1+334,1+338).∴存在这样的点M(1,2)或⎝ ⎛⎭⎪⎫1+334,1+338.(第3题)4.解:(1)在矩形OABC 中,∵点B 的坐标为(2,3),∴BC 边的中点D 的坐标为(1,3).∵双曲线y =k x 经过点D(1,3),∴3=k 1,∴k =3,∴y =3x .∵点E在AB 上,∴点E 的横坐标为2.又∵双曲线y =3x 经过点E ,∴点E 的纵坐标为y=32,∴点E 的坐标为⎝⎛⎭⎪⎫2,32. (2)易得BD =1,BE =32,CB =2.∵△FBC ∽△DEB ,∴BD CF =BE CB ,即1CF =322,∴CF =43,∴OF =53,即点F 的坐标为⎝⎛⎭⎪⎫0,53.设直线FB 对应的函数解析式为y =k 1x +b ,而直线FB 经过B(2,3),F ⎝ ⎛⎭⎪⎫0,53,∴k 1=23,b =53,∴直线FB 对应的函数解析式为y =23x +53.专训5 1.C 2.203.解:四边形ABCD 与四边形A′B′C′D′相似.由已知条件知,∠DAB =∠D′A′B′,∠B =∠B′,∠BCD =∠B′C′D′,∠D =∠D′,且ABA′B′=BC B′C′=CD C′D′=DA D′A′=56,所以四边形ABCD 与四边形A′B′C′D′相似. 4.解:如图,过点B 作BM ⊥x 轴于点M ,过点B′作B′N⊥x 轴于点N ,则△CBM ∽△CB′N.所以MC NC =BM B ′N =BC B ′C.又由已知条件知NC =a +1,B′N=-b ,BC B ′C =12,所以MC (a +1)=BM (-b)=1 2.所以MC =12(a +1),BM =-b 2.所以MO =12(a +1)+1=a +32.所以点B 的坐标为⎝⎛⎭⎪⎫-a +32,-b 2.(第4题)5.解:(1)∵DE ∥BC ,∴AD AB =AE AC ,∴8-2x 8=y 6,∴y =-32x +6(0≤x ≤4). (2)∵S △BDE =12·2x·y=12·2x·⎝⎛⎭⎪⎫6-32x =-32(x -2)2+6,∴当x =2时,S △BDE有最大值,最大值为6.6.(1)证明:如图,∵D 是BC 边上的中点,DE ⊥BC , ∴EB =EC ,∴∠B =∠1.又∵AD =AC ,∴∠ACD =∠2,∴△ABC ∽△FCD. (2)解:如图,过点A 作AM ⊥CB 于点M. ∵D 是BC 边上的中点,∴BC =2CD. 由(1)知△ABC ∽△FCD ,∴S △ABC S △FCD =⎝ ⎛⎭⎪⎫BC CD 2=41.又∵S △FCD =5,∴S △ABC =20.∵S △ABC =12BC·AM,∴AM =2S △ABC BC =2×2010=4.∵DE ⊥BC ,AM ⊥BC ,∴DE ∥AM , ∴△BDE ∽△BMA.∴DE AM =BDBM. 由AD =AC ,AM ⊥BC ,知DM =12CD =14BC =52.∴DE 4=55+52,∴DE =83. 点拨:从复杂的图形中分析线段的特点和联系,找到切入点是解较复杂问题的关键.(第6题)7.证明:∵△ACB 为等腰直角三角形,AB 为斜边, ∴∠CAB =45°.∵CO ⊥AB.∴∠AOC =90°.又∵DE ⊥CD ,DE =CD ,∴∠CED =45°,∠CDE =90°. ∴∠CAO =∠CED ,∠AOC =∠EDC. ∴△ACO ∽△ECD.∴∠ACO =∠ECD ,AC CO =CE CD. ∴∠ACE =∠OCD.∴△ACE ∽△OCD.8.(1)证明:由四边形APCB 内接于圆O ,得∠FPC =∠B. 又∠B =∠ACE =90°-∠BCE ,∠ACE =∠APD ,所以∠APD =∠FPC ,所以∠APD +∠DPC =∠FPC +∠DPC , 即∠APC =∠FPD. 又∠PAC =∠PDC , 所以△PAC ∽△PDF.(2)解:由(1)知△PAC ∽△PDF ,所以∠PCA =∠PFD. 又∠PAC =∠CAF ,所以△PAC ∽△CAF ,所以△CAF ∽△PDF , 所以PD AC =DFAF,则PD·AF=AC·DF. 由AB =5,AC =2BC ,∠ACB =90°,知BC =5,AC =2 5. 由OE ⊥CD ,∠ACB =90°知CB 2=BE·AB,CE =DE. 所以BE =CB 2AB =55=1.所以AE =4,CE =CB 2-BE 2=5-1=2, 所以DE =2.又=,∠AFD =∠PCA ,所以∠AFD =∠PCA =45°. 所以FE =AE =4,AF =42,所以PD=AC·DFAF=25×(4+2)42=3102.9.解:(方法一:作延长线)延长AD,与地面交于点M,如图①.(第9题)由AM∥FH知∠AMB=∠FHG.又因为AB⊥BG,FG⊥BG,DC⊥BG,所以△ABM∽△DCM∽△FGH,所以ABBM=CDCM=FGGH.因为CD=2 m,FG=1.2 m,GH=2 m,所以2CM=1.22,解得CM=103m.因为BC=4 m,所以BM=BC+CM=4+103=223(m).所以AB223=1.22,解得AB=4.4 m.故这棵树的高度是4.4 m.(方法二:作垂线)过点D作DM⊥AB于点M,如图②.所以AMDM=FGGH.而DM=BC=4 m,AM=AB-CD=AB-2(m),FG=1.2 m,GH=2 m,所以AB-24=1.22,解得AB=4.4 m.故这棵树的高度是4.4 m.10.解:如图,过点A作AF⊥DE,垂足为F,并延长交BC于点G. ∵DE∥BC,∴△ADE∽△ABC.∵AF⊥DE,DE∥BC,∴AG⊥BC,∴AFAG=DEBC,∴30AG=2460.解得AG=75,∴FG=AG-AF=75-30=45,即河的宽度为45 m.(第10题)(第11题)11.思路导引:本题位似中心为O ,先连接CO ,因为要把原三角形缩小为原来的一半,可确定C′O=12CO ,由其确定出C′的位置,再根据同样的方法确定出另外两个点.解:画出图形,如图中的△A′B′C′即为所求作的图形.点拨:抓住位似图形的性质,根据位似中心与三角形对应点的关系及位似比的大小确定所画位似图形的对应点,再画出图形.12.思路导引:(1)由角平分线的定义及∠BAD 为平角直接可得.(2)由于线段PM ,CM ,BM 在同一条直线上,所以必须把某条线段转化为另一相等的线段,构造相似三角形,因此可证PM =AM ,从而证明△ACM 与△ABM 相似即可.(1)解:∵AP 平分∠BAC ,∴∠PAC =12∠BAC.又∵AQ 平分∠CAD ,∴∠CAQ =12∠CAD.∴∠PAC +∠CAQ =12∠BAC +12∠CAD =12(∠BAC +∠CAD).又∵∠BAC +∠CAD =180°,∴∠PAC +∠CAQ =90°,即∠PAQ =90°. (2)证明:由(1)知∠PAQ =90°, 又∵M 是线段PQ 的中点, ∴PM =AM ,∴∠APM =∠PAM.∵∠APM =∠B +∠BAP ,∠PAM =∠CAM +∠PAC , ∠BAP =∠PAC , ∴∠B =∠CAM.又∵∠AMC =∠BMA ,∴△ACM ∽△BAM.∴CMAM=AMBM,∴AM2=CM·BM,即PM2=CM·BM.点拨:本题运用了转化思想,在证明等积式时,常把它转化成比例式,寻找相似三角形进行求解.。

人教版九年级数学下册第二十七章相似单元测试试题(含答案)[1]

人教版九年级数学下册第二十七章相似单元测试试题(含答案)[1]

人教版九年级数学下册第二十七章相似单元测试试题(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版九年级数学下册第二十七章相似单元测试试题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版九年级数学下册第二十七章相似单元测试试题(含答案)(word版可编辑修改)的全部内容。

第二十七章相似一、选择题(本大题共7小题,每小题4分,共28分)1.如图1,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F。

已知AB=1,BC=3,DE=2,则EF的长为()图1A.4 B.5 C.6 D.82.如图2,点D,E分别为△ABC的边AB,AC的中点,则△ADE的面积与四边形BCED的面积的比为( )图2A.1∶2 B.1∶3C.1∶4 D.1∶13.如图3所示,P是△ABC的边AC上的一点,连接BP,以下条件中不能判定△ABP∽△ACB 的是()图3A.错误!=错误!B.错误!=错误!C.∠ABP=∠C D.∠APB=∠ABC4.已知△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的相似比是1∶2,△ABC的面积是3,则△A ′B ′C ′的面积是( )A .3B .6C .9D .125.如图4所示,在△ABC 中,若DE ∥BC ,EF ∥AB ,则下列比例式正确的是( )图4A.错误!=错误!B 。

错误!=错误! C.错误!=错误!D 。

错误!=错误!6.如图5所示,∠A =∠B =90°,AB =7,AD =2,BC =3,在边AB 上取一点P ,使得△PAD 与△PBC 相似,则这样的点P 共有( )图5A .1个B .2个C .3个D .4个7.若两个扇形满足弧长的比等于它们半径的比,则称这两个扇形相似.如图6,如果扇形OAB 与扇形O 1A 1B 1相似,且半径OA ∶O 1A 1=k (k 为不等于0的常数),连接AB ,A 1B 1。

人教版九年级数学下册 27章:相似 质量检测(有答案)

人教版九年级数学下册  27章:相似  质量检测(有答案)

C
【解答】
解:矩形甲的长宽比为:2: 3; 矩形甲的长宽比为:3: 5; 矩形甲的长宽比为:2: 3; 故矩形甲和丙为相似图形. 故选 .
5. 【答案】
C
【解答】
解:① + + = 0 时, + =− , 所以, = + = − =− 1;
② + + ≠ 0 时, + = + = + = + + + + + = 2( + + ) = 2,
=
5−1 2
【解答】
= 5 − 1,
=
3− 2
5
= 3 − 5.
解:(1)∵
=
3,
5
∴ 可设 = 3 ,则 = 5 ,

+
=
3
+5 5
=
8;
5
(2)∵ 点 是线段 的黄金分割点,

= 5−1 = 5 − 1, = 3− 5
2
2
> , = 2, = 3 − 5.
23.
【答案】
解:(1)∵
=
2,
3

− +
解:∵ 24: = : 54, ∴ 2 = 24 × 54 = 1296, ∴ = 36( )( =− 36 舍去). ∴ 和 的比例中项是 36.
20.
【答案】

【解答】
解:∵ 、 、 分别是 、 、
∴ △ ∽△ ,△ ∽△

; = : ,; =

: =: =:
∴ 答案填:是.
的中点 ;
13 / 55

人教版九年级数学下《第27章相似》专项训练含答案

人教版九年级数学下《第27章相似》专项训练含答案

人教版九年级数学下《第27章相似》专项训练含答案专训1证比例式或等积式的技巧名师点金:证比例式或等积式,若所遇问题中无平行线或相似三角形,则需构造平行线或相似三角形,得到成比例线段;若比例式或等积式中的线段分布在两个三角形或不在两个三角形中,可尝试证这两个三角形相似或先将它们转化到两个三角形中再证两三角形相似,若在两个明显不相似的三角形中,可运用中间比代换.构造平行线法1.如图,在△ABC中,D为AB的中点,DF交AC于点E,交BC的延长线于点F,求证:AE·CF=BF·EC.(第1题)2.如图,已知△ABC的边AB上有一点D,边BC的延长线上有一点E,且AD =CE,DE交AC于点F,试证明:AB·DF=BC·EF.(第2题)三点找三角形相似法3.如图,在▱ABCD中,E是AB延长线上的一点,DE交BC于F.求证:DCAE=CFAD.(第3题)4.如图,在△ABC中,∠BAC=90°,M为BC的中点,DM⊥BC交CA的延长线于D,交AB于E.求证:AM2=MD·ME.(第4题)构造相似三角形法5.如图,在等边三角形ABC中,点P是BC边上任意一点,AP的垂直平分线分别交AB,AC于点M,N.求证:BP·CP=BM·CN.(第5题)等比过渡法6.如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG·DF=DB·EF.(第6题)7.如图,CE是Rt△ABC斜边上的高,在EC的延长线上任取一点P,连接AP,作BG⊥AP于点G,交CE于点D.求证:CE2=DE·PE.(第7题)两次相似法8.如图,在Rt△ABC中,AD是斜边BC上的高,∠ABC的平分线BE交AC 于E,交AD于F.求证:BFBE=ABBC.(第8题)9.如图,在▱ABCD中,AM⊥BC,AN⊥CD,垂足分别为M,N.求证:(1)△AMB∽△AND;(2)AMAB=MNAC.(第9题)等积代换法10.如图,在△ABC中,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F.求证:AEAF=ACAB.(第10题)等线段代换法11.如图,等腰△ABC中,AB=AC,AD⊥BC于点D,点P是AD上一点,CF ∥AB,延长BP交AC于点E,交CF于点F,求证:BP2=PE·PF.(第11题)12.已知:如图,AD平分∠BAC,AD的垂直平分线EP交BC的延长线于点P.求证:PD2=PB·PC.(第12题)专训2巧用“差不多图形”探究相似条件名师点金:几何图形大多数由差不多图形复合而成,因此熟悉三角形相似的差不多图形,有助于快速、准确地识别相似三角形,从而顺利找到解题思路和方法.相似三角形的四类结构图:1.平行线型.2.相交线型.3.子母型.4.旋转型.平行线型1.如图,在△ABC 中,BE 平分∠ABC 交AC 于点E ,过点E 作ED ∥BC 交AB 于点D.(1)求证:AE·BC=BD·AC;(2)假如S △ADE =3,S △BDE =2,DE =6,求BC 的长.(第1题)相交线型2.如图,点D ,E 分别为△ABC 的边AC ,AB 上的点,BD ,CE 交于点O ,且EO BO=DOCO,试问△ADE 与△ABC 相似吗?请说明理由.(第2题)子母型3.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 的中点,ED 的延长线交AB 的延长线于点F.求证:AB AC =DF AF.(第3题)旋转型4.如图,已知∠DAB=∠EAC,∠ADE=∠ABC. 求证:(1)△ADE∽△ABC;(2)ADAE=BDCE.(第4题)专训3利用相似三角形巧证线段的数量和位置关系名师点金:判定两线段之间的数量和位置关系是几何中的差不多题型之一.由角的关系推出“平行或垂直”是判定位置关系的常用方法,由相似三角形推出“相等”是判定数量关系的常用方法.证明两线段的数量关系类型1:证明两线段的相等关系1.如图,已知在△ABC中,DE∥BC,BE与CD交于点O,直线AO与BC边交于点M,与DE交于点N.求证:BM=MC.(第1题)2.如图,一直线和△ABC的边AB,AC分别交于点D,E,和BC的延长线交于点F,且AE CE=BF CF.求证:AD=DB.(第2题)类型2:证明两线段的倍分关系3.如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,∠A=60°,求证:DE=12 BC.(第3题)4.如图,AM为△ABC的角平分线,D为AB的中点,CE∥AB,CE交DM的延长线于E.求证:AC=2CE.(第4题)证明两线段的位置关系类型1:证明两线段平行5.如图,已知点D为等腰直角三角形ABC的斜边AB上一点,连接CD,DE ⊥CD,DE=CD,连接CE,AE.求证:AE∥BC.(第5题)6.在△ABC中,D,E,F分别为BC,AB,AC上的点,EF∥BC,DF∥AB,连接CE和AD,分别交DF,EF于点N,M.(1)如图①,若E为AB的中点,图中与MN平行的直线有哪几条?请证明你的结论;(2)如图②,若E不为AB的中点,写出与MN平行的直线,并证明.(第6题)类型2:证明两线垂直7.如图,在△ABC中,D是AB上一点,且AC2=AB·AD,BC2=BA·BD,求证:CD⊥AB.(第7题)8.如图,已知矩形ABCD,AD=13AB,点E,F把AB三等分,DF交AC于点G,求证:EG⊥DF.(第8题)专训4 相似三角形与函数的综合应用名师点金:解涉及相似三角形与函数的综合题时,由于这类题的综合性强,是中考压轴题重点命题形式之一,因此解题经常结合方程思想、分类讨论思想进行解答.相似三角形与一次函数1.如图,在平面直角坐标系xOy 中,直线y =-x +3与x 轴交于点C ,与直线AD 交于点A ⎝ ⎛⎭⎪⎫43,53,点D 的坐标为(0,1).(1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当△BOD 与△BCE 相似时,求点E 的坐标.(第1题)相似三角形与二次函数2.如图,直线y =-x +3交x 轴于点A ,交y 轴于点B ,抛物线y =ax 2+bx +c 通过A ,B ,C(1,0)三点.(1)求抛物线对应的函数解析式;(2)若点D 的坐标为(-1,0),在直线y =-x +3上有一点P ,使△ABO 与△ADP 相似,求出点P 的坐标.(第2题)3.如图,直线y =2x +2与x 轴交于点A ,与y 轴交于点B ,把△AOB 沿y 轴翻折,点A 落到点C ,过点B 的抛物线y =-x 2+bx +c 与直线BC 交于点D(3,-4).(1)求直线BD 和抛物线对应的函数解析式;(2)在第一象限内的抛物线上,是否存在一点M ,作MN 垂直于x 轴,垂足为点N ,使得以M ,O ,N 为顶点的三角形与△BOC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.(第3题)相似三角形与反比例函数4.如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3),双曲线y=kx(x>0)通过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB对应的函数解析式.(第4题)专训5全章热门考点整合应用名师点金:本章要紧内容为:平行线分线段成比例,相似三角形的判定及性质,位似图形及其画法等,涉及考点、考法较多,是中考的高频考点.其要紧考点可概括为:3个概念、2个性质、1个判定、2个应用、1个作图、1个技巧.3个概念概念1:成比例线段1.下列各组线段,是成比例线段的是( )A.3 cm,6 cm,7 cm,9 cmB.2 cm,5 cm,0.6 dm,8 cmC.3 cm,9 cm,1.8 dm,6 cmD.1 cm,2 cm,3 cm,4 cm2.有一块三角形的草地,它的一条边长为25 m,在图纸上,这条边的长为5 cm,其他两条边的长都为4 cm,则其他两边的实际长度差不多上________m.概念2:相似多边形3.如图,已知∠1′=∠1,∠2′=∠2,∠3′=∠3,∠4′=∠4,∠D′=∠D,试判定四边形A′B′C′D′与四边形ABCD是否相似,并说明理由.(第3题)概念3:位似图形4.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边放大到原先的2倍,记所得的像是△A′B′C.设点B的对应点B′的坐标是(a,b),求点B的坐标.(第4题)2个性质性质1:平行线分线段成比例的性质5.如图,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B动身,沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE∥BC 交AC于点E,设动点D运动的时刻为x秒,AE的长为y.(1)求出y关于x的函数解析式,并写出自变量x的取值范畴;(2)当x为何值时,△BDE的面积有最大值,最大值为多少?(第5题)性质2:相似三角形的性质6.如图,已知D是BC边上的中点,且AD=AC,DE⊥BC,DE与BA相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;=5,BC=10,求DE的长.(2)若S△FCD(第6题)1个判定——相似三角形的判定7.如图,△ACB为等腰直角三角形,点D为斜边AB上一点,连接CD,DE ⊥CD,DE=CD,连接AE,过C作CO⊥AB于O.求证:△ACE∽△OCD.(第7题)8.如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过点C作AB的垂线l交⊙O于另一点D,垂足为点E.设P是上异于点A,C的一个动点,射线AP 交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,=,求PD的长.(第8题)2个应用应用1:测高的应用9.如图,在离某建筑物CE 4 m处有一棵树AB,在某时刻,1.2 m的竹竿FG垂直地面放置,影子GH长为2 m,现在树的影子有一部分落在地面上,还有一部分落在建筑物的墙上,墙上的影子CD高为2 m,那么这棵树的高度是多少?(第9题)应用2:测宽的应用10.如图,一条小河的两岸有一段是平行的,在河的一岸每隔6 m有一棵树,在河的对岸每隔60 m有一根电线杆,在有树的一岸离岸边30 m处可看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,同时在这两棵树之间还有三棵树,求河的宽度.(第10题)1个作图——作一个图形的位似图形11.如图,在方格纸中(每个小方格的边长差不多上1个单位长度)有一点O 和△ABC.请以点O为位似中心,把△ABC缩小为原先的一半(不改变方向),画出△ABC的位似图形.(第11题)1个技巧——证明四条线段成比例的技巧12.如图,已知△ABC,∠BAC的平分线与∠DAC的平分线分别交BC及BC 的延长线于点P,Q.(1)求∠PAQ的度数;(2)若点M为PQ的中点,求证:PM2=CM·BM.(第12题)答案专训1(第1题) 1.证明:如图,过点C作CM∥AB交DF于点M. ∵CM∥AB,∴△CMF∽△BDF.∴BFCF=BDCM.又∵CM∥AD,∴△ADE∽△CME.∴AEEC=ADCM.∵D为AB的中点,∴BDCM=ADCM.∴BFCF=AEEC,即AE·CF=BF·EC.2.证明:过点D作DG∥BC,交AC于点G,∴△DGF∽△ECF,△ADG∽△ABC.∴EFDF=CEDG,ABBC=ADDG.∵AD=CE,∴CEDG=ADDG.∴ABBC=EFDF,即AB·DF=BC·EF.点拨:过某一点作平行线,构造出“A”型或“X”型的差不多图形,通过相似三角形转化线段的比,从而解决问题.3.证明:∵四边形ABCD是平行四边形.∴AE∥DC,∠A=∠C.∴∠CDF=∠E,∴△DAE∽△FCD,∴DCAE=CFAD.4.证明:∵DM⊥BC,∠BAC=90°,∴∠B+∠BEM=90°,∠D+∠DEA=90°.∵∠BEM=∠DEA,∴∠B=∠D.又∵M为BC的中点,∠BAC=90°,∴BM=AM. ∴∠B=∠BAM.∴∠BAM=∠D.又∵∠AME=∠DMA.∴△AME∽△DMA.∴AMMD=MEAM.∴AM2=MD·ME.(第5题) 5.证明:如图,连接PM,PN.∵MN是AP的垂直平分线,∴MA=MP,NA=NP.∴∠1=∠2,∠3=∠4.又∵△ABC是等边三角形,∴∠B=∠C=∠1+∠3=60°.∴∠2+∠4=60°.∴∠5+∠6=120°.又∵∠6+∠7=180°-∠C=120°.∴∠5=∠7.∴△BPM∽△CNP.∴BPCN=BMCP,即BP·CP=BM·CN.6.证明:(1)∵AB=AC,∴∠ABC=∠ACB.∵DE∥BC,∴∠ABC+∠BDE=180°,∠ACB+∠CED=180°,∴∠CED=∠BDE.又∵∠EDF=∠ABE,∴△DEF ∽△BDE.(2)由△DEF∽△BDE得DEBD=EFDE,∴DE2=DB·EF.又由△DEF∽△BDE,得∠BED=∠DFE.∵∠GDE=∠EDF,∴△GDE∽△EDF.∴DGDE=DEDF,∴DE2=DG·DF,∴DG·DF=DB·EF.7.证明:∵BG⊥AP,PE⊥AB,∴∠AEP=∠BED=∠AGB=90°.∴∠P+∠PAB=90°,∠PAB+∠ABG=90°.∴∠P=∠ABG.∴△AEP∽△DEB.∴AEDE=PEBE,即AE·BE=PE·DE.又∵CE ⊥AB ,∴∠CEA =∠BEC =90°,∴∠CAB +∠ACE =90°. 又∵∠ACB =90°,∴∠CAB +∠CBE =90°. ∴∠ACE =∠CBE.∴△AEC ∽△CEB. ∴AE CE =CEBE ,即CE 2=AE·BE.∴CE 2=DE·PE. 8.证明:易得∠BAC =∠BDF =90°. ∵BE 平分∠ABC ,∴∠ABE =∠DBF , ∴△BDF ∽△BAE ,得BD AB =BF BE. ∵∠BAC =∠BDA =90°,∠ABC =∠DBA. ∴△ABC ∽△DBA ,得AB BC =BD AB ,∴BF BE =AB BC. 9.证明:(1)∵四边形ABCD 为平行四边形.∴∠B =∠D.∵AM ⊥BC ,AN ⊥CD ,∴∠AMB =∠AND =90°, ∴△AMB ∽△AND. (2)由△AMB ∽△AND 得AM AN =ABAD,∠BAM =∠DAN. 又AD =BC ,∴AM AN =AB BC. ∵AM ⊥BC ,AD ∥BC ,∴∠AMB =∠MAD =90°. ∴∠B +∠BAM =∠MAN +∠NAD =90°, ∴∠B =∠MAN. ∴△AMN ∽△BAC ,∴AM AB =MN AC. 10.证明:∵AD ⊥BC ,DE ⊥AB ,∴∠ADB =∠AED =90°.又∵∠BAD =∠DAE ,∴△ADE ∽△ABD ,得AD 2=AE·AB,同理可得AD 2=AF·AC,∴AE·AB=AF·AC,∴AE AF =AC AB. 11.证明:连接PC ,如图.∵AB =AC ,AD ⊥BC ,∴AD 垂直平分BC ,∠ABC =∠ACB ,∴BP =CP ,∴∠1=∠2,∴∠ABC -∠1=∠ACB -∠2,即∠3=∠4.∵CF ∥AB ,∴∠3=∠F ,∴∠4=∠F.又∵∠CPF =∠CPE ,∴△CPF ∽△EPC ,∴CPPE =PFCP,即CP 2=PF·PE.∵BP =CP ,∴BP 2=PE·PF.(第11题)(第12题)12.证明:如图,连接PA,则PA=PD,∴∠PDA=∠PAD. ∴∠B+∠BAD=∠DAC+∠CAP.又∵AD平分∠BAC,∴∠BAD=∠DAC.∴∠B=∠CAP.又∵∠APC=∠BPA,∴△PAC∽△PBA,∴PAPB=PCPA,即PA2=PB·PC,∴PD2=PB·PC.专训21.(1)证明:∵ED∥BC,∴△ADE∽△ABC.∴AEAC=DEBC.∵BE平分∠ABC,∴∠DBE=∠EBC. ∵ED∥BC,∴∠DEB=∠EBC.∴∠DBE=∠DEB.∴DE=BD.∴AEAC=BDBC,即AE·BC=BD·AC.(2)解:设h△ADE表示△ADE中DE边上的高,h△BDE表示△BDE中DE边上的高,h△ABC表示△ABC中BC边上的高.∵S△ADE =3,S△BDE=2,∴S△ADES△BDE=h△ADEh△BDE=32.∴h△ADEh△ABC=35.∵△ADE∽△ABC,∴DEBC=h△ADEh△ABC=35.∵DE=6,∴BC=10.2.解:相似.理由如下:因为EOBO=DOCO,∠BOE=∠COD,∠DOE=∠COB,因此△BOE∽△COD,△DOE∽△COB.因此∠EBO=∠DCO,∠DEO=∠CBO.因为∠ADE =∠DCO+∠DEO,∠ABC=∠EBO+∠CBO.因此∠ADE=∠ABC.又因为∠A=∠A,因此△ADE∽△ABC.3.证明:∵∠BAC=90°,AD⊥BC于点D,∴∠BAC=∠ADB=90°.又∵∠CBA=∠ABD(公共角),∴△ABC∽△DBA.∴ABAC=DBDA,∠BAD=∠C.∵AD⊥BC于点D,E为AC的中点,∴DE=EC. ∴∠BDF=∠CDE=∠C.∴∠BDF=∠BAD.又∵∠F=∠F,∴△DBF∽△ADF.∴DBAD=DFAF.∴ABAC=DFAF.(第3题)点拨:当所证等积式或比例式运用“三点定型法”不能定型或能定型而不相似,条件又不具备成比例线段时,可考虑用中间比“搭桥”,称为“等比替换法”,有时还可用“等积替换法”,例如:如图,在△ABC中,AD⊥BC于点D,DE⊥AB于点E,DF⊥AC于点F,求证:AE·AB=AF·AC.可由两组“射影图”得AE·AB=AD2,AF·AC=AD2,∴AE·AB=AF·AC.4.证明:(1)∵∠DAB=∠EAC,∴∠DAE=∠BAC.又∵∠ADE=∠ABC,∴△ADE∽△ABC.(2)∵△ADE∽△ABC,∴ADAE=ABAC.∵∠DAB=∠EAC,∴△ADB∽△AEC.∴ADAE=BDCE.专训31.证明:∵DE∥BC.∴△NEO∽△MBO.∴NEMB=ONOM.同理可得DN MC =ON OM .∴DN MC =NE BM .∴DN NE =MC BM. ∵DE ∥BC ,∴△ANE ∽△AMC.∴AN AM =NEMC .同理可得AN AM =DN BM ,∴DN BM =NE MC .∴DN NE =BM MC. ∴MC BM =BMMC.∴MC 2=BM 2.∴BM =MC.(第2题)2.证明:如图,过C 作CG ∥AB 交DF 于G 点. ∵CG ∥AB ,∴AD CG =AE CE ,BD CG =BF CF, ∵AE CE =BF CF ,∴AD CG =BD CG, ∴AD =BD.3.证明:∵BD ⊥AC ,CE ⊥AB ,∠A =60°,∠ABD =∠ACE =30°,∴AD AB =12,AE AC =12,∴AD AB =AE AC .又∠A =∠A ,∴△ADE ∽△ABC ,∴DE BC =AD AB =12,∴DE =12BC. 4.证明:如图,延长CE ,交AM 的延长线于F.∵AB ∥CF ,∴∠BAM =∠F ,△BDM ∽△CEM ,△BAM ∽△CFM ,∴BD CE =BM MC ,BA CF =BM MC ,∴BD CE =BACF.又∵BA =2BD ,∴CF =2CE.又AM 平分∠BAC ,∴∠BAM =∠CAM ,∴∠CAM =∠F ,∴AC =CF ,∴AC=2CE.(第4题)(第5题)5.证明:如图,过点C 作CO ⊥AB 于点O.∵DE =CD ,DE ⊥CD ,∴∠ECD =∠CED =45°.∵△ABC 是等腰直角三角形,∴∠CAB =∠B =45°.∴∠CAB =∠CED.又∵∠AOC =∠EDC =90°,∴△ACO ∽△ECD.∴AC CO =ECCD .又∵∠ACE +∠ECO =∠OCD +∠ECO =45°,∴∠ACE =∠OCD.∴△ACE ∽△OCD.∴∠CAE =∠COD =90°.又∵∠ACB =90°,∴∠CAE +∠ACB =180°.∴AE ∥BC.6.解:(1)MN ∥AC ∥ED.证明如下:∵EF ∥BC ,∴△AEM ∽△ABD ,△AMF ∽△ADC ,∴EM BD =AM AD =MFDC .∵E 为AB 的中点,EF ∥BC ,∴F 为AC 的中点.又∵DF ∥AB ,∴D 为BC 的中点,∴EM =MF.∵F 为AC 的中点,FN ∥AE ,∴N 为EC 的中点,从而MN ∥AC.又∵D 为BC 的中点,E 为AB 的中点,∴ED ∥AC ,∴MN ∥AC ∥ED.(2)MN ∥AC.证明如下:∵EF ∥BC ,∴△AEM ∽△ABD ,△AMF ∽△ADC ,∴EM BD=AM AD =MF DC ,∴EM MF =BD DC .又∵DF ∥AB ,∴BD DC =EN NC ,∴EM MF =EN NC ,∴EM EF =ENEC .又∵∠MEN =∠FEC ,∴△MEN ∽△FEC.∴∠EMN =∠EFC.∴MN ∥AC.7.证明:∵AC 2=AB·AD,∴AC AD =ABAC.又∵∠A =∠A , ∴△ACD ∽△ABC.∴∠ADC =∠ACB. 又∵BC 2=BA·BD,∴BC BD =BABC.又∵∠B =∠B , ∴△BCD ∽△BAC.∴∠BDC =∠BCA. ∴∠ADC =∠BDC.∵∠BDC +∠ADC =180°,∴∠ADC =∠BDC =90°. ∴CD ⊥AB.8.证明:∵AD =13AB ,点E ,F 把AB 三等分,∴设AE =EF =FB =AD =k ,则AB =CD =3k. ∵CD ∥AB ,∴∠DCG =∠FAG ,∠CDG =∠AFG.∴△AFG ∽△CDG ,∴FG DG =AF CD =23. 设FG =2m ,则DG =3m ,∴DF =FG +DG =2m +3m =5m. 在Rt △AFD 中,DF 2=AD 2+AF 2=5k 2,∴DF =5k. ∴5m =5k.∴m =55k.∴FG =255k. ∴AF FG =2k 255k =5,DF EF =5k k = 5.∴AF FG =DFEF. 又∠AFD =∠GFE ,∴△AFD ∽△GFE. ∴∠EGF =∠DAF =90°.∴EG ⊥DF.专训41.解:(1)设直线AD 的解析式为y =kx +b(k ≠0) 将D(0,1) A ⎝ ⎛⎭⎪⎫43,53代入解析式得:⎩⎨⎧b =153=43k +b 解得⎩⎨⎧b =1k =12∴直线AD 的解析式为y =12x +1.(2)直线AD 的解析式为y =12x +1.令y =0,得x =-2.得B(-2,0),即OB =2. 直线AC 为y =-x +3. 令y =0,得∴x =3. 得C(3,0),即BC =5 设E ⎝ ⎛⎭⎪⎫x ,12x +1①当E 1C ⊥BC 时,如图,∠BOD =∠BCE 1=90°,∠DBO =∠E 1BC.∴△BOD ∽△BCE 1.现在点C 和点E 1的横坐标相同. 将x =3代入y =12x +1,解得y =52.∴E 1⎝⎛⎭⎪⎫3,52. ②当CE 2⊥AD 时,如图,∠BOD =∠BE 2C =90°,∠DBO =∠CBE 2, ∴△BOD ∽△BE 2C.过点E 2作EF ⊥x 轴于点F ,则∠E 2FC =∠BFE 2=90°. 又∵∠E 2BF +∠BE 2F =90°, ∠CE 2F +∠BE 2F =90°. ∴∠E 2BF =∠CE 2F. ∴△E 2BF ∽△CE 2F ,则E 2F BF =CF E 2F. 即E 2F 2=CF·BF.⎝ ⎛⎭⎪⎫12x +12=(3-x)(x +2)解得:x 1=2,x 2=-2(舍去)∴E 2(2,2)当∠EBC =90°时,此情形不存在. 综上所述:E 1⎝⎛⎭⎪⎫3,52或E 2(2,2).(第1题)(第2题)2.解:(1)由题意得A(3,0),B(0,3),∵抛物线通过A ,B ,C 三点,∴把A(3,0),B(0,3),C(1,0)三点的坐标分别代入y =ax 2+bx +c ,得方程组⎩⎨⎧9a +3b +c =0,c =3,a +b +c =0,解得⎩⎨⎧a =1,b =-4,c =3,∴抛物线对应的函数解析式为y =x 2-4x +3. (2)如图,由题意可得△ABO 为等腰直角三角形.若△ABO ∽△AP 1D ,则AOAD=OBDP 1,∴DP 1=AD =4,∴P 1(-1,4);若△ABO ∽△ADP 2,过点P 2作P 2M ⊥x 轴于M ,∵△ABO 为等腰直角三角形,∴△ADP 2是等腰直角三角形,由三线合一可得DM =AM =2=P 2M ,即点M 与点C 重合,∴P 2(1,2),∴点P 的坐标为(-1,4)或(1,2).3.解:(1)易得A(-1,0),B(0,2),C(1,0). 设直线BD 对应的函数解析式为y =kx +m.把B(0,2),C(1,0)的坐标分别代入y =kx +m ,得⎩⎨⎧m =2,k +m =0,解得⎩⎨⎧k =-2,m =2.∴直线BD 对应的函数解析式为y =-2x +2. ∵抛物线对应的函数解析式为y =-x 2+bx +c.∴把B(0,2),D(3,-4)的坐标分别代入y =-x 2+bx +c , 得⎩⎨⎧c =2,-9+3b +c =-4,解得⎩⎨⎧b =1,c =2. ∴抛物线对应的函数解析式为y =-x 2+x +2.(2)存在,①如图①,当△MON ∽△BCO 时,ON CO =MN BO ,即ON 1=MN2,∴MN =2ON.设ON =a ,则M(a ,2a),∴-a 2+a +2=2a ,解得a 1=-2(不合题意,舍去),a 2=1,∴M(1,2);②如图②,当△MON ∽△CBO 时,ON BO =MN CO ,即ON 2=MN1,∴MN=12ON.设ON =n ,则M ⎝ ⎛⎭⎪⎫n ,12n ,∴-n 2+n +2=n 2,解得n 1=1-334(不合题意,舍去),n 2=1+334,∴M(1+334,1+338).∴存在如此的点M(1,2)或⎝ ⎛⎭⎪⎫1+334,1+338.(第3题)4.解:(1)在矩形OABC 中,∵点B 的坐标为(2,3),∴BC 边的中点D 的坐标为(1,3).∵双曲线y =k x 通过点D(1,3),∴3=k 1,∴k =3,∴y =3x .∵点E在AB 上,∴点E 的横坐标为2.又∵双曲线y =3x 通过点E ,∴点E 的纵坐标为y=32,∴点E 的坐标为⎝⎛⎭⎪⎫2,32. (2)易得BD =1,BE =32,CB =2.∵△FBC ∽△DEB ,∴BD CF =BE CB ,即1CF =322,∴CF =43,∴OF =53,即点F 的坐标为⎝⎛⎭⎪⎫0,53.设直线FB 对应的函数解析式为y =k 1x +b ,而直线FB 通过B(2,3),F ⎝ ⎛⎭⎪⎫0,53,∴k 1=23,b =53,∴直线FB 对应的函数解析式为y =23x +53.专训5 1.C 2.203.解:四边形ABCD 与四边形A′B′C′D′相似.由已知条件知,∠DAB =∠D′A′B′,∠B =∠B′,∠BCD =∠B′C′D′,∠D =∠D′,且AB A′B′=BCB′C′=CD C′D′=DA D′A′=56,因此四边形ABCD 与四边形A′B′C′D′相似. 4.解:如图,过点B 作BM ⊥x 轴于点M ,过点B′作B′N⊥x 轴于点N ,则△CBM ∽△CB′N.因此MC NC =BM B ′N =BC B ′C.又由已知条件知NC =a +1,B′N=-b ,BC B ′C =12,因此MC (a +1)=BM (-b)=1 2.因此MC =12(a +1),BM =-b 2.因此MO =12(a +1)+1=a +32.因此点B 的坐标为⎝⎛⎭⎪⎫-a +32,-b 2.(第4题)5.解:(1)∵DE ∥BC ,∴AD AB =AE AC ,∴8-2x 8=y 6,∴y =-32x +6(0≤x ≤4). (2)∵S △BDE =12·2x·y=12·2x·⎝⎛⎭⎪⎫6-32x =-32(x -2)2+6,∴当x =2时,S △BDE有最大值,最大值为6.6.(1)证明:如图,∵D 是BC 边上的中点,DE ⊥BC , ∴EB =EC ,∴∠B =∠1.又∵AD =AC ,∴∠ACD =∠2,∴△ABC ∽△FCD. (2)解:如图,过点A 作AM ⊥CB 于点M. ∵D 是BC 边上的中点,∴BC =2CD. 由(1)知△ABC ∽△FCD ,∴S △ABC S △FCD =⎝ ⎛⎭⎪⎫BC CD 2=41.又∵S △FCD =5,∴S △ABC =20.∵S △ABC =12BC·AM,∴AM =2S △ABC BC =2×2010=4.∵DE ⊥BC ,AM ⊥BC ,∴DE ∥AM , ∴△BDE ∽△BMA.∴DE AM =BDBM. 由AD =AC ,AM ⊥BC ,知DM =12CD =14BC =52.∴DE4=55+52,∴DE=83.点拨:从复杂的图形中分析线段的特点和联系,找到切入点是解较复杂问题的关键.(第6题)7.证明:∵△ACB为等腰直角三角形,AB为斜边,∴∠CAB=45°.∵CO⊥AB.∴∠AOC=90°.又∵DE⊥CD,DE=CD,∴∠CED=45°,∠CDE=90°.∴∠CAO=∠CED,∠AOC=∠EDC.∴△ACO∽△ECD.∴∠ACO=∠ECD,ACCO=CECD.∴∠ACE=∠OCD.∴△ACE∽△OCD.8.(1)证明:由四边形APCB内接于圆O,得∠FPC=∠B. 又∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,因此∠APD=∠FPC,因此∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.又∠PAC=∠PDC,因此△PAC∽△PDF.(2)解:由(1)知△PAC∽△PDF,因此∠PCA=∠PFD.又∠PAC=∠CAF,因此△PAC∽△CAF,因此△CAF∽△PDF,因此PDAC=DFAF,则PD·AF=AC·DF.由AB=5,AC=2BC,∠ACB=90°,知BC=5,AC=2 5. 由OE⊥CD,∠ACB=90°知CB2=BE·AB,CE=DE.因此BE=CB2AB=55=1.因此AE=4,CE=CB2-BE2=5-1=2,因此DE=2.又=,∠AFD=∠PCA,因此∠AFD=∠PCA=45°.因此FE=AE=4,AF=42,因此PD=AC·DFAF=25×(4+2)42=3102.9.解:(方法一:作延长线)延长AD,与地面交于点M,如图①.(第9题)由AM∥FH知∠AMB=∠FHG.又因为AB⊥BG,FG⊥BG,DC⊥BG,因此△ABM∽△DCM∽△FGH,因此ABBM=CDCM=FGGH.因为CD=2 m,FG=1.2 m,GH=2 m,因此2CM=1.22,解得CM=103m.因为BC=4 m,因此BM=BC+CM=4+103=223(m).因此AB223=1.22,解得AB=4.4 m.故这棵树的高度是4.4 m.(方法二:作垂线)过点D作DM⊥AB于点M,如图②.因此AMDM=FGGH.而DM=BC=4 m,AM=AB-CD=AB-2(m),FG=1.2 m,GH=2 m,因此AB-24=1.22,解得AB=4.4 m.故这棵树的高度是4.4 m.10.解:如图,过点A作AF⊥DE,垂足为F,并延长交BC于点G. ∵DE∥BC,∴△ADE∽△ABC.∵AF⊥DE,DE∥BC,∴AG⊥BC,∴AFAG=DEBC,∴30AG=2460.解得AG=75,∴FG=AG-AF=75-30=45,即河的宽度为45 m.(第10题)(第11题)11.思路导引:本题位似中心为O,先连接CO,因为要把原三角形缩小为原先的一半,可确定C′O=12CO,由其确定出C′的位置,再依照同样的方法确定出另外两个点.解:画出图形,如图中的△A′B′C′即为所求作的图形.点拨:抓住位似图形的性质,依照位似中心与三角形对应点的关系及位似比的大小确定所画位似图形的对应点,再画出图形.12.思路导引:(1)由角平分线的定义及∠BAD为平角直截了当可得.(2)由于线段PM,CM,BM在同一条直线上,因此必须把某条线段转化为另一相等的线段,构造相似三角形,因此可证PM=AM,从而证明△ACM与△ABM相似即可.(1)解:∵AP平分∠BAC,∴∠PAC=12∠BAC.又∵AQ平分∠CAD,∴∠CAQ=12∠CAD.∴∠PAC+∠CAQ=12∠BAC+12∠CAD=12(∠BAC+∠CAD).又∵∠BAC+∠CAD=180°,∴∠PAC+∠CAQ=90°,即∠PAQ=90°.(2)证明:由(1)知∠PAQ=90°,又∵M是线段PQ的中点,∴PM=AM,∴∠APM=∠PAM.∵∠APM=∠B+∠BAP,∠PAM=∠CAM+∠PAC,∠BAP=∠PAC,∴∠B=∠CAM.又∵∠AMC=∠BMA,∴△ACM∽△BAM.∴CMAM=AMBM,∴AM2=CM·BM,即PM2=CM·BM.点拨:本题运用了转化思想,在证明等积式时,常把它转化成比例式,查找相似三角形进行求解.。

人教版九年级数学下册 第27章 相似 综合测试卷(含答案)

人教版九年级数学下册  第27章   相似  综合测试卷(含答案)

人教版九年级数学下册第27章 相似 综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1. 要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5 cm ,6 cm 和9 cm ,另一个三角形的最短边长为2.5 cm ,则它的最长边为( ) A .3 cm B .4 cm C .4.5 cm D .5 cm2.如图,D ,E 分别是△ABC 边AB ,AC 上的点,∠ADE =∠ACB ,若AD =2,AB =6,AC =4,则AE 的长是( ) A .1 B .2 C .3 D .43. 如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,则图中相似三角形共有( ) A .1对 B .2对 C .3对 D .4对4. 已知△ABC ∽△A′B′C′,AB =8,A′B′=6,则BCB′C′=( ) A .2 B .43 C .3 D .1695.如图,在▱ABCD 中,F 为BC 中点,延长AD 至E ,使DE ∶AD =1∶3,连接EF 交DC 于点G ,则S △DEG ∶S △CFG =( )A .2∶3B .3∶2C .9∶4D .4∶96.如图,是小孔成像原理的示意图,根据图中标注的数据,蜡烛在暗盒中所成像CD 的长为( ) A.16 cm B.13 cm C.12cm D .1 cm7. 如图,在△ABC中,点D,E分别在AB,AC边上,DE∥BC,∠ACD=∠B,若AD=2BD,BC =6,则线段CD的长为( )A.2 3 B.3 2 C.2 6 D.58.如图,将△DEF缩小为原来的一半,操作方法如下:任意取一点P,连接DP,取DP的中点A,再连接EP,FP,取它们的中点B,C,得到△ABC,则下列说法正确的有( )①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF的周长比是1∶2;④△ABC与△DEF的面积比是1∶2.A.1个B.2个C.3个D.4个9. .如图所示,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20 m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5 m,两个路灯的高度是9 m,则两路灯之间的距离是()A.24 m B.25 m C.28 m D.30 m10. 如图,在正方形ABCD中,点O是对角线AC,BD的交点,过点O作射线OM,ON分别交BC,CD于点E,F,且∠EOF=90°,OC,EF交于点G.给出下列结论:①△COE≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG·OC.其中正确的是( ) A.①②③④B.①②③C.①②④D.③④二.填空题(共8小题,3*8=24)11. 如图,△ABC中,点D,E分别在AB,AC上,DE∥BC,AD∶DB=1∶2,则△ADE与△ABC 的面积的比为______.12. 如图,以点O 为位似中心,将△OAB 放大后得到△OCD ,OA =2,AC =3,则ABCD=______.13. 如图,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6,CD ∥AB ,∠ABC 的平分线BD 交AC 于点E ,DE =_______.14. 如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO 的顶点坐标分别为A(-2,-1),B(-2,-3),O(0,0),△A 1B 1O 1的顶点坐标分别为A 1(1,-1),B 1(1,-5),O 1(5,1),△ABO 与△A 1B 1O 1是以点P 为位似中心的位似图形,则P 点的坐标为______________.15.如图,为了测量一池塘的宽DE ,在岸边找到一点C ,测得CD =30 m ,在DC 的延长线上找一点A ,测得AC =5 m ,过点A 作AB ∥DE 交EC 的延长线于点B ,测出AB =6 m ,则池塘的宽DE 为________.16. 如图,在△ABC 中,AC =2,BC =4,D 为BC 边上的一点,且∠CAD =∠B.若△ADC 的面积为a ,则△ABD 的面积为________.17. 《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为________.18. 如图,AB 为⊙O 的直径,点P 为AB 延长线上的一点,过点P 作⊙O 的切线PE ,切点为M ,过A ,B 两点分别作PE 的垂线AC ,BD ,垂足分别为C ,D ,连接AM ,则下列结论正确的是___________.(写出所有正确结论的序号)①AM 平分∠CAB ;②AM 2=AC·AB ;③若AB =4,∠APE =30°,则BM ︵的长为π3;④若AC =3,BD=1,则有CM =DM = 3.三.解答题(共7小题, 66分)19.(8分)如图,在△ABC 中,点D 在AB 上,∠ACD =∠ABC ,若AD =2,AB =6,求AC 的长.20.(8分)如图,在矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于点F.已知AB =6,AD =12,BE =8,求DF 的长.21.(8分) 一般的室外放映的电影胶片上每一个图片的规格是3.5 cm×3.5 cm ,放映的荧屏的规格是2 m×2 m ,若放映机的光源距胶片20 cm ,问:荧屏放在距离光源多远的地方时,放映的图像刚好布满整个荧屏?22.(10分) 如图,在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转得到△OC′D′.已知∠AOB=40°,CD∥AB,AC′与BD′交于点E,与BO交于点F.求∠AEB的度数.23. (10分)如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.(1)求证:AE·BC=BD·AC;(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.24.(10分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=12,AD=4,BC=9,点P是AB 上一动点.若△PAD与△PBC是相似三角形,求AP的长.25.(12分)如图,在四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)求证∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE∶CP=2∶3,求AE的长.参考答案1-5 CCCBD 6-10 DCCDB 11. 1∶9 12. 2513.955 14. (-5,-1) 15.36 m 16.3a 17.四丈五尺 18. ①②④19. 解:∵∠ACD =∠ABC ,∠A =∠A ,∴△ACD ∽△ABC , ∴AD AC =AC AB, ∵AD =2,AB =6,∴2AC =AC6,∴AC 2=12,∴AC =2 320. 解:∵四边形ABCD 为矩形,DF ⊥AE , ∴∠ABE =∠AFD =90°,AD ∥BC , ∴∠AEB =∠DAF ,∴△ABE ∽△DFA , ∴AE AD =AB DF, ∵在Rt △ABE 中,AB =6,BE =8, ∴AE =10,∴DF =AB·AD AE =6×1210=7.2 21. 解:由题意得四边形ABCD(胶片)与四边形A′B′C′D′(荧屏)是位似图形,且相似比为3.5200=7400.设四边形A′B′C′D′距光源O 的距离为x cm. 则有20x =7400,得x =80007 cm =807 m .即荧屏距光源807m 时,图像刚好布满整个荧屏22. 解:∵△OCD 旋转到△OC′D′,∴OC =OC′,OD =OD′,∠AOC′=∠BOD′, ∵CD ∥AB ,∴OC OA =OD OB ,∴OC′OA =OD′OB ,∴OC′OD′=OAOB,∴△AOC′∽△BOD′, ∴∠OAC′=∠OBD′,又∠AFO =∠BFE ,∴∠AEB =∠AOB =40° 23. 解:(1)∵BE 平分∠ABC ,∴∠ABE =∠CBE , ∵DE ∥BC ,∴∠DEB =∠CBE , ∴∠ABE =∠DEB ,∴BD =DE. ∵DE ∥BC ,∴△ADE ∽△ABC , ∴AE AC =DE BC ,∴AE AC =BD BC, ∴AE·BC =BD·AC(2)设△ABE 中边AB 上的高为h , ∴S △ADE S △BDE =12AD·h12BD·h =AD BD =32, ∵△ADE ∽△ABC ,∴DE BC =ADAB ,∴6BC =35,∴BC =10 24. 解:∵∠B =90°,AD ∥BC ,∴∠A =180°-∠B =90°, ∴∠PAD =∠PBC =90°.设AP 的长为x ,则BP =12-x.若AB 边上存在P 点,使△PAD 与△PBC 相似,那么分两种情况: ① 若△APD ∽△BPC ,则AP ∶BP =AD ∶BC , 即x ∶(12-x)=4∶9,解得x =4813;② 若△APD ∽△BCP ,则AP ∶BC =AD ∶BP , 即x ∶9=4∶(12-x),解得x =6.综上可知,AP 的长为4813或6时,△PAD 与△PBC 是相似三角形25. (1)证明:∵AB =AD ,AC 平分∠BAD , ∴AC ⊥BD ,则∠ACD +∠BDC =90°. ∵AC =AD ,∴∠ACD =∠ADC. ∴∠ADC +∠BDC =90°.又∵PD ⊥AD ,∴∠ADC +∠PDC =90°. ∴∠BDC =∠PDC.(2)解:如图,过点C 作CM ⊥PD 于点M.∵∠BDC =∠PDC ,CM ⊥PD ,AC ⊥BD ,∴CE =CM. ∵∠CMP =∠ADP =90°,∠P =∠P ,∴△CPM ∽△APD.∴CM AD =PCPA.设CM =CE =x ,∵CE ∶CP =2∶3,∴PC =32x.∵AB =AD =AC =1,∴x1=32x 32x +1.解得x =13(x =0不合题意,舍去),即CE =13.经检验,x =13是方程的解且符合题意.故AE =AC -CE =1-13=23.。

2022-2023学年人教版九年级数学下册《第27章相似》单元综合达标测试题(附答案)

2022-2023学年人教版九年级数学下册《第27章相似》单元综合达标测试题(附答案)

2022-2023学年人教版九年级数学下册《第27章相似》单元综合达标测试题(附答案)一、选择题(本题共计10小题,共计30分,)1.在△ABC中,D、E分别是AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.2.如图,在△ABC中,CD,BE是△ABC的两条中线,则的值为()A.B.C.D.3.如图,四边形ABCD中,AD∥BC,AD=2,BC=5,点E,F分别是对角线AC,BD的中点,则EF的长为()A.1B.1.5C.2.5D.3.54.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=5.如图所示:∠CAB=∠BCD,AD=2,BD=4,则BC=()A.B.C.3D.66.如图,O为四边形ABCD内一点,E为CD中点,∠AOD+∠BOC=180°,∠OED=∠AOB,CD=4,则OC的长为()A.3B.C.D.7.如图,在△ABC中,∠BAC=90°,AB=AC=5,点D在AC上,且AD=2,点E是AB上的动点,连结DE,点F,G分别是BC和DE的中点,连结AG,FG,当AG=FG 时,线段DE长为()A.B.C.D.48.如图,有一块直角三角形余料ABC,∠BAC=90°,G,D分别是AB,AC边上的一点,现从中切出一条矩形纸条DEFG,其中E,F在BC上,若BF=4.5cm,CE=2cm,则GF 的长为()A.3cm B.2cm C.2.5cm D.3.5cm9.如图,在△ABC中,DE∥BC,=,则下列结论中正确的是()A.=B.=C.=D.=10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连接BE.记△ADE,△BCE的面积分别为S1,S2,()A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S2二、填空题(本题共计7小题,共计21分,)11.矩形ABCD中,长AB与宽BC分别是4cm和3cm,点E在直线AC上,且AE:AC=1:3,直线DE与直线BC相交于点F,则CF的长为.12.如图,D为Rt△ABC斜边AB上一点,AE⊥CD,垂足为E,AE=2CE.若AC=6,BC =8,则CD的长度为.13.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为.14.如图,DE是△ABC的中位线,AF是BC边上的中线,DE交AF于点M.下列结论:①△ADE∼△ABC;②MA=MF;③;④.其中正确的是(只填序号).15.如图,在△ABC中,∠ABC=45°,高AD,BE交于H点,若CD=5,则DH=.16.如图,在Rt△ABC中,∠ACB=90°,点D为AB中点,点E在BC边上,BE=AD,AE=6,∠AED=45°,则线段AC的长为.17.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且,下列结论:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.正确的结论有:.(注:填序号)三、解答题(本题共计8小题,共计69分,)18.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AD=2,CD=4.求BD的长.19.如图,已知梯形ABCD中,AD∥BC,AB=CD,点E在对角线AC上,且满足∠ADE =∠BAC.(1)求证:CD•AE=DE•BC;(2)以点A为圆心,AB长为半径画弧交边BC于点F,联结AF.求证:AF2=CE•CA.20.在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD与CE交于点F,AB=CF.(1)如图1,求证:DF=DB;(2)如图2,若AF=DF,在不添加任何辅助线和字母的情况下,请写出图中所有度数与3∠F AE的度数相等的角.21.如图1,在Rt△AOB中,∠AOB=90°,∠OAB=30°,点C在线段OB上,OC=2BC,AO边上的一点D满足∠OCD=30°.将△OCD绕点O逆时针旋转α度(90°<α<180°)得到△OC′D′,C,D两点的对应点分别为点C′,D′,连接AC′,BD′,取AC′的中点M,连接OM.(1)如图2,当C′D′∥AB时,α=°,此时OM和BD′之间的位置关系为;(2)画图探究线段OM和BD′之间的位置关系和数量关系,并加以证明.22.如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE和BF相交于点M.求证:AE=BF.23.在△ABC中,∠C=90°,AC=BC=2,将一块三角尺的直角顶点放在斜边AB的中点P处,将此三角尺绕点P旋转,三角尺的两直角边分别交射线AC,CB于点D,E,图1、图2、图3是三角尺逆时针旋转过程中得到的三种图形.(1)观察图1、图2、图3中线段PD和PE之间有怎样的大小关系,并以图2为例,加以说明;(2)△PBE是否能构成等腰三角形?若能,请求出∠PEB的度数;若不能,请说明理由.24.某数学“综合与实践”小组在研究等腰三角形时发现:如图,△AOB和△DOC为两个顶角相等的等腰三角形,其中AB=BO,CO=CD,∠ABO=∠DCO,连接AD,BC,M,N,P分别为OA,OD,BC的中点.(1)如图1,若A,O,C三点在同一直线上,且∠ABO=60°.①猜想:BC和AD的数量关系是;②试判断△PMN的形状,并说明理由;(2)如图2,若A,O,C三点在同一直线上,且∠ABO≠∠AOB,求证:△PMN∼△BAO;(3)如图3,固定△AOB,将△COD绕着点O旋转,若AB=OB=2,CD=OC=3,请求出PM的最大值.25.(1)[问题背景]如图1,在△ABC中,AB=AC,∠BAC=α°,D为BC边上一点(不与点B、C重合)将线段AD绕点A逆时针旋转α°得到AE,连接EC,则∠BCE=°(用含α的式子表示),线段BC,DC,EC之间满足的等量关系式为;(2)[探究证明]如图2,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B、C重合)将线段AD绕点A逆时针旋转90°得到线段AE,连接DE,求证:BD2+CD2=2AD2;(3)[拓展延伸]如图3,在四边形ABCF中,∠ABC=∠ACB=∠AFC=45°,BF=3,CF=1.将△ABF绕点A逆时针旋转90°,试画出旋转后的图形,并求出AF的长度.(不要求尺规作图)参考答案一、选择题(本题共计10小题,共计30分,)1.解:由题意得DE为△ABC的中位线,那么DE∥BC,DE:BC=1:2.∴△ADE∽△ABC∴△ADE与△ABC的周长之比为1:2,∴△ADE与△ABC的面积之比为1:4,即.故选:B.2.解:∵CD,BE分别是△ABC的边AB,AC上中线,∴D是AB的中点,E是AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△DEF∽△CBF,∴==,故选:D.3.解:∵取DC中点G,连结FG、EG,如图所示:∵点E,F分别是对角线AC,BD的中点,∴FG∥BC,EG∥AD,∵AD∥BC,∴EG∥BC,FG∥EG,∴E、F、G三点共线,∴FG是△BCD的中位线,∴FG=BC=2.5,∵AD∥BC,∴EG∥AD,∴EG是△ACD的中位线,∴EG=AD=1,∴EF=FG﹣EG=1.5.故选:B.4.解:(A)∵DE∥BC,∴△ADE∽△ABC,∴,故A错误;(B)∵DE∥BC,∴,故B错误;(C)∵DE∥BC,,故C正确;(D)∵DE∥BC,∴△AGE∽△AFC,∴=,故D错误;故选:C.5.解:∵∠B=∠B,∠CAB=∠BCD ∴△ABC∽△CBD∴BC:BD=AB:BC∴BC:BD=(AD+BD):BC即BC:4=(2+4):BC∴BC=2,故选:B.6.解:∵∠AOD+∠BOC=180°,∴∠AOB+∠DOC=180°;∵∠OED=∠AOB,∴∠OED+∠DOC=180°;∵∠OED+∠EDO+∠DOE=180°,∴∠CDO=∠COE,又∵∠DCO=∠OCE,∴△DCO∽△OCE,∴=,∴OC2=DC•CE;∵E为CD的中点,CD=4,∴CE=2,∴OC===2.故选:B.7.解:法一、如图,分别过点G,F作AB的垂线,垂足为M,N,过点G作GP⊥FN于点P,∴四边形GMNP是矩形,∴GM=PN,GP=MN,∵∠BAC=90°,AB=AC=5,∴CA⊥AB,又∵点G和点F分别是线段DE和BC的中点,∴GM和FN分别是△ADE和△ABC的中位线,∴GM==1,AM=AE,FN=AC=,AN=AB=,∴MN=AN﹣AM=﹣AE,∴PN=1,FP=,设AE=m,∴AM=m,GP=MN=﹣m,在Rt△AGM中,AG2=(m)2+12,在Rt△GPF中,GF2=(﹣m)2+()2,∵AG=GF,∴(m)2+12=(﹣m)2+()2,解得m=3,即AE=3,在Rt△ADE中,DE==.故选:A.法二、如图,连接DF,AF,EF,在△ABC中,AB=AC,∠CAB=90°,∴∠B=∠C=45°,∵点G是DE的中点,点F是BC的中点,∴AG=DG=EG,AF=BF,AF⊥BC,∠DAF=45°,∴∠DAF=∠B=45°,∵FG=AG,∴FG=DG=EG,∴△DFE是直角三角形,且∠DFE=90°,∵∠DF A+∠AFE=∠BFE+∠AFE=90°,∴∠DF A=∠EFB,在△AFD和△BFE中,∴△AFD≌△BFE(ASA),∴AD=BE=2,∴AE=3,在Rt△ADE中,DE==.故选:A.8.解:∵∠BAC=90°,∴∠AGD+∠ADC=90°,∵四边形GFDE是矩形,∴∠GDE=90°,∠GFB=∠DEC=90°,GD∥BC,GF=DE,∴∠ADG+∠EDC=90°,∠AGD=∠B,∴∠AGD=∠EDC,∴∠B=∠EDC,∴△BFG∽△DEC,∴DE:BF=CE:GF,∵BF=4.5cm,CE=2cm,∴GF:4.5=2:GF,∴GF=3cm,故选:A.9.解:∵DE∥BC,∴△ADE∽△ABC,∴,∵=,∵=,故A、B选项均错误;∵△ADE∽△ABC,∴==,=()2=,故C选项正确,D选项错误.故选:C.10.解:∵如图,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴=()2,∴若2AD>AB,即>时,>,此时3S1>S2+S△BDE,而S2+S△BDE<2S2.但是不能确定3S1与2S2的大小,故选项A不符合题意,选项B不符合题意.若2AD<AB,即<时,<,此时3S1<S2+S△BDE<2S2,故选项C不符合题意,选项D符合题意.故选:D.二、填空题(本题共计7小题,共计21分,)11.解:如图,当点E在线段AC上时,∵AE:AC=1:3,∴AE:EC=1:2,在矩形ABCD中,AD∥BC,AB=4cm,BC=3cm,∴=,∴=,∴CF=6(cm);如图,当点E在线段CA延长线上时,∵AE:AC=1:3,∴AE:EC=1:4,在矩形ABCD中,AD∥BC,∴=,∴=,∴CF=12(cm);∴CF=6cm或12cm.故答案为:6cm或12cm.12.解:如图,过点D作DF⊥BC于点F,∵AE⊥CD,∴∠AEC=∠CFD=90°,∴∠ACE+∠CAE=90°,∵∠ACE+∠DCF=90°,∴△CAE∽△DCF,∴=,∵AE=2CE,∴CF=2DF,∵AC=6,BC=8,BF=BC﹣CF=8﹣2DF,∴tan B====,∴=,解得DF=2.4,∴8﹣2DF=8﹣4.8=3.2,∴CF=2DF=4.8,在Rt△CDF中,根据勾股定理,得CD===.故答案为:.13.解:∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△BDE∽△BAC,△DOE∽△AOC,∴=,∴S△DOE:S△AOC=()2=;故答案为:.14.解:①如图,∵DE是△ABC的中位线,∴DE∥BC.∴△ADE∼△ABC,故①正确;②如图,由①知,DE∥BC,∴=,∴AM=AF,∴AM=FM.故②正确③如图,由②知,∴△ADM∽△ABF,∴=,则MD=BF.又AF是BC边上的中线,∴BF=CF=BC,∴MD=BC.故③正确;④∵由②知,△ADM∽△ABF,∴=()2=()2=,∴S△AMD=S△ABF.又∵AF是BC边上的中线,∴S△ABF=S△ABC,∴S△AMD=S△ABC.故④错误.综上所述,正确的结论是①②③,共3个.故答案为:①②③.15.解:∵∠ABC=45°,AD⊥BC,∴BD=AD,∵∠CAD+∠AHE=90°,∠CAD+∠C=90°,∠AHE=∠BHD,∴∠AHE=∠C,在△BDH和△ADC中,,∴△BDH≌△ADC(ASA),∴DH=CD=5.故答案为:5.16.解:如图,作AG⊥ED于G,BH⊥ED于H.∵AD=BD=BE,BH⊥DE,∴HD=HE,∵∠AGE=90°,∠AEG=45°,∴∠GAE=∠GEA=45°,∵AE=6,∴GA=GE=3,在△ADG和△BDH中,,∴△ADG≌△BDH,∴DH=DG=EH=,在Rt△ADG中,AD==2,∴AB=4,设AC=x,EC=y,则有,解得.∴AC=.故答案为.17.解:∵在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,∴∠B=∠C=90°,AB:EC=BE:CF=2:1.∴△ABE∽△ECF.∴AB:EC=AE:EF,∠AEB=∠EFC.∵BE=CE,∠FEC+∠EFC=90°,∴AB:AE=BE:EF,∠AEB+∠FEC=90°.∴∠AEF=∠B=90°.∴△ABE∽△AEF,AE⊥EF.∴②③正确.故答案为②③.三、解答题(本题共计8小题,共计69分,)18.解:∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∴△ACD∽△CBD,∴=,∵AD=2,CD=4,∴=,∴BD=8.19.证明(1)∵AD∥BC,∴∠DAE=∠ACB,∵∠ADE=∠BAC,∴△ADE∽△CAB,∴,∴AB•AE=DE•BC,∵AB=CD,∴CD•AE=DE•BC;(2)∵AD∥BC,AB=CD,∴∠ADC=∠DAB,∵∠ADE=∠BAC,又∵∠ADC=∠ADE+∠CDE,∠DAB=∠BAC+∠CAD,∴∠CDE=∠CAD,∵∠DCE=∠DCA,∴△CDE∽△CAD,∴,∴CD2=CE•CA,由题意,得AB=AF,AB=CD,∴AF=CD,∴AF2=CE•CA.20.证明:(1)∵AD⊥BC,CE⊥AB∴∠B+∠DAB=90°,∠B+∠∠DCE=90°∴∠DAB=∠DCE,且∠ADB=∠ADC=90°,CF=AB∴△ADB≌△CDF(AAS)∴DF=BD(2)∠CAB,∠ABC,∠DFC,∠AFE与3∠F AE的度数相等,理由如下:如图:连接BF,∵DF=DB,∠ADB=90°∴∠DFB=∠DBF=45°,BF=DF,且AF=DF∴AF=BF∴∠F AE=∠FBE∴∠DFB=2∠F AE=2∠ABF=45°∴∠F AE=∠FBE=22.5°∴∠ABD=∠DBF+∠ABF=67.5°∴∠ABD=3∠F AE∵△ADB≌△CDF∴∠DCF=∠ABD=∠AFE=67.5°=3∠F AE,AD=CD∴∠DAC=∠DCA=45°∴∠CAB=67.5°=3∠F AE21.解:(1)∵C′D′∥AB,∴∠ABD′+∠C′D′B=180°,∵∠ABO=∠C′D′O=60°,∴∠OBD′+∠BD′O=60°,∴∠BOD′=120°,∴∠BOC′=360°﹣90°﹣120°=150°,∴α=150°,此时OM⊥BD′,故答案为:150,垂直;(2)OM⊥BD′,OM=BD′,证明:取AO的中点E,连接ME,延长MO交BD′于N,∵AC′的中点M,∴EM∥OC′,EM=OC′,∴∠OEM+∠AOC′=180°,∵∠AOB=∠C′OD′=90°,∴∠BOD′+′AOC′=180°,∴∠OEM=∠BOD′,∵∠OAB=∠OC′D′=30°,∴===,∴,∴△EOM∽△OBD′,∴∠AOM=∠2,,即OM=BD′,∵∠AOB=90°,∴∠AOM+∠3=180°﹣∠AOB=90°,∴∠2+∠3=90°,∴OM⊥BD′.22.证明:在正方形ABCD中,AB=BC=CD=DA,∠ABE=∠BCF=90°,∵CE=DF,∴BE=CF,在△AEB与△BFC中,,∴△AEB≌△BFC(SAS),∴AE=BF.23.解:(1)PD=PE.如图,连接PC,∵△ABC是等腰直角三角形,P为斜边AB的中点,∴PC=PB,CP⊥AB,∠DCP=∠B=45°,又∵∠DPC+∠CPE=90°,∠CPE+∠EPB=90°,∴∠DPC=∠EPB,在△DPC和△EPB中,,∴△DPC≌△EPB(ASA),∴PD=PE;(2)能,①当EP=EB时,如图1,∴∠B=∠BPE=45°,∴∠PEB=90°;②当EP=PB时,如图2,点E在BC上,则点E和C重合,则∠PEB=∠B=45°;③当BE=BP时,如图3,若点E在BC上,∴∠E=∠BPE,又∵∠E+∠BPE=45°,∴∠PEB=22.5°.④如图4中,当BP=BE时,∠PEB=67.5°.综合以上可得∠PEB的度数为90°或45°或22.5°或67.5°.24.(1)解:①结论:AD=BC.理由:如图1,∵∠ABO=∠DCO=60°,∴△BAO和△COD都为等边三角形,∴∠COD=∠BOD=60°,∴B、O、D三点共线,∴∠BOC=∠AOD,∵OB=OA,OC=OD,∴△BOC≌△AOD(SAS),∴AD=BC.故答案为:AD=BC.②结论:△PMN是等边三角形.理由:如图1中,连接BM,CN.∵点M、N分别为OA、OD的中点,∴BM⊥OA,CN⊥OD,MN=AD,∵点P为BC的中点,∴PM=BC,PN=BC,∴PM=PN=MN,∴△PMN为等边三角形.(2)证明:如图2,∵∠ABO=∠DCO,而=,∴△BOA∽△COD,∴∠BOA=∠COD,=,∵∠BOC=∠AOD,∵=,∴△BOC∽△AOD,∴=,由(1)得PM=PN=BC,∴==,∴=,而BA=BO,PM=PN,∴==,∴△PMN∽△BAO.(3)解:取OB的中点Q,如图2,则QM=AB=1,QP=OC=,∵PM≤QP+QM(当P、Q、M共线时,取等号),∴PM的最大值为2.5.25.(1)解:如图1中,∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=(180°﹣α),∵∠ACB=∠B=(180°﹣α)∴∠BCE=180°﹣α,∴BC=BD+CD=CD+EC.故答案为:(180﹣α),BC=CD+EC.(2)证明:如图2,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,∴DE2=CE2+CD2,∵AD=AE,∠DAE=90°,∴DE=AD,∴2AD2=BD2+CD2.(3)如图3,将AF绕点A逆时针旋转90°至AG,连接CG、FG,则△F AG是等腰直角三角形,∴∠AFG=45°,∵∠AFC=45°,∴∠GFC=90°,由旋转得:△BAF≌△CAG,∴CG=BF=3,Rt△CGF中,∵CF=1,∴FG===2,∵△F AG是等腰直角三角形,∴AF==2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第27章相似综合达标训练测评卷 新人教
版九年级下
一、精心选一选
1.
如图,锐角三角形ABC 的高CD 和高BE 相交于O ,则与△DOB 相似的三角形个数是( ).
A.1 B.2 C.3 D.4
2. 下列说法中正确的是( )
A.两个平行四边形一定相似
B.两个菱形一定相似
C.两个矩形一定相似
D.两个等腰直角三角形一定相似
3.
如图,身高为1.6米的某学生想测量学校旗杆的高度,当她在C处时,她的影子正好与旗杆的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是( )
A.6.4米 B .7米 C .8米 D .9米
4.
如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC ∽△ADE 的是( ) A.AB AD =AC AE B.AB AD =BC DE
C.∠B =∠D D.∠C =∠AED
5. 如图,已知等边三角形ABC 的边长为2,DE 是它的中位线,则下面四个结论:
(1)DE=1,(2)△CDE ∽△CAB ,(3)△CDE 的面积与△CAB 的面积之比为1:4.其中正确的有:( )
A .0个
B .1个
C .2个
D .3个
6. 小明在暗室做小孔成像实验.如图1,固定光源(线段MN )发出的光经过小孔(动点K )成像(线段M'N')于足够长的固定挡板(直线l )上,其中MN//l .已知点K 匀速运动,其运动路径由AB ,BC ,CD ,DA ,AC ,BD 组成.记它的运动时间为x ,M'N'的长度为y ,若y 关于x 的函数图象大致如图2所示,则点K 的运动路径可能为( )
A .A→B→C→D→A
B .B→C→D→A→B
C .B→C→A→D→B
D .D→A→B→C→D
7.
如图,已知在等腰△ABC 中,顶角∠A =36°,BD 是∠ABC 的平分
线,则AD AC
的值为( ) A.12 B.5-12 C.1 D.5+12
8. 若两个相似三角形的面积之比为1:4,则它们的周长之比为( ).
A.1:2
B.1:4
C.1:5
D.1:16
9. 如图所示,在△ABC 中∠BAC =90°,D 是BC 中点,AE ⊥AD 交CB 延长线于E 点,则下列结论正确的是( )
A .△AED ∽△AC
B B .△AEB ∽△ACD
C .△BAE ∽△ACE
D .△AEC ∽△
DAC
二、细心填一填
10. 如图,要使和相似,已具备条件________,还需补充的条件是________,或________,或________.
11. 在平面直角坐标系中,已知A(6,3)、B(10,0)两点,以坐标原点O 为位似中心,相似比为13
,把线段AB 缩小后得到线段A /B /,则A /B /的长度等于____________.
12. 如图,直线AD ∥BE ∥CF ,BC=13AC ,DE=4,那么EF 的值是____________.
F
E
D
C B A
13. 如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,那么△ADE 与四边
形DBCE的面积之比是
__________.
14. 如图,BC平分∠ABD,AB=12,BD=15,如果∠ACB=∠D,那么BC
边的长为
_________.
15. 如图,在矩形ABCD中,点E是BC的中点,且DE⊥AC于点O
,则
CD
AD =________.
16. 若实数a、b、c满足
b +c
a

a+c
b

a+b
c
=k,则k=________.
三、用心做一做
17. 如图,在△ABC中,AB=8cm,BC=16cm,点P从点A开始沿AB边向点
B以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q同时出发,经过几秒钟后△PBQ与△ABC相似?
18.
已知:如图,在△ABC中,∠ACB=900,CD⊥AB,垂足是D,BC=,
BD=1。

求CD,AD的长。

19. 如图,梯形ABCD中.AB∥CD.且AB=2CD,E,F分别是AB,BC的中
点。

EF与BD相交于点M.
(1)求证:△EDM∽△FBM;
(2)若DB=9,求BM.
M
E
D
C
B
A
20. 如图,在梯形ABCD中,AD∥BC,∠BAD=90o对角线BD⊥DC.试问:
(1)△ABD与△DCB相似吗?请说明理由。

(2)如果AD=4,BC=9,你能求出BD的长吗?
21.
已知:如图,△ABC中,∠ABC=2∠C,BD平分∠ABC.求证:AB·BC=AC·CD.
22. 如图,已知矩形ABCD,AD=
3
AB,点E,F把AB三等分,DF交AC于点G,求证:EG⊥DF.
23. 解答题:(1)如图一,等边△ABC中,D是AB上的动点,以CD为一
边,向上作等边△EDC,连结AE。

求证:AE//BC;
(2)如图二,将(1)中等边△ABC的形状改成以BC为底边的等腰三角形。

所作△EDC改成相似于△ABC。

请问:是否仍有AE//BC?证明你的结论。

相关文档
最新文档