外文文献翻译及外文原文

合集下载

国际服务贸易外文文献翻译

国际服务贸易外文文献翻译

国际服务贸易外文翻译文献(含:英文原文及中文译文)文献出处:《World Development》,2015,12(1):35-44.英文原文The research of international service trade and economic growth theoryChakraborty Kavin1 IntroductionThe study of the relation between international trade and economic growth is one of the most active issues. Since 1980s, the world has been in transition from national economy orientating towards natural resources and manufacturing industry to global and regional economy orientating towards information resources and service industry. After the signature of GA TS in1994, the institutional arrangements on liberalizing service trade result in a world-wide involvement division and exchanges of service trade, and it is undoubtedly that the positive interaction between service trade and investment leads to economic growth. But the theoretical research on service trade lags behind practice.Is it a statistic phenomenon or a universal rule of economic growth? To approach the above two issues from theoretical and empirical perspective is of great value to policy-making.For the proposition of that "International service trade will drive economic growth". Theoretical analysis shows that although service tradeis not a direct interpretative variable to economic growth, it can effect economic growth indirectly through other growing factors and technology upgrade, but the ways and mechanisms are different in different stages. In a certain stage of economic development, service trade (including investment) will have static and dynamic effect on factors supply and technology upgrade in one county, which will lead to the domestic alteration of resources condition structure. It is the enterprises that select industry structure, technology structure and trade structure according to dynamic alteration way of comparative technology structure and trade structure, which will ultimately promote evolution of economic growth gradually. So far as operational mechanism of service trade and investment is concerned, service trade affects factors supply in one country by physical capital accumulating effect, human capital effect, technology upgrade effect, institutional transition effect, employment effect and externality of technology, then influences the upgrade of industrial structure, the upgrade of technological structure and the transition of mode of economic growth. It is obvious that dynamic effect is greater than static effect; that external effect is playing more important role than internal effect; and that technology spillover effect of foreign direct investment in service industry is greater than that of service trade in a narrow sense (including across-border supply, consumption abroad and movement of natural person).For the research of mechanism about how service trade drive economic growth. Firstly, the paper verifies the causality between service trade and economic growths concerning different economic bodies and the representative countries. The results show that there are causalities between international service trade and economic growth in the whole world, in the developed countries, in the US and in china. In the developing countries, service trade is the Granger cause of economic growth; In the whole world and the developing countries, economic growth is the Granger cause of service trade; In the US, service export is the Granger cause of economic growth, and economic growth is the Granger cause of service import. On this basis, it is concluded that the opening of service industry will benefit economic growth in one country. Secondly, in order to explore on how the service trade and investment act on economic growth, empirical studies are employed to explain the case of US and that of China. The results show that the routes by which service trade affects economic growth in the US can be rowed as follows from more significant to less: employment effect, human capital effect, physical capital effect, technology effect, institution effect. The results of empirical analysis of China can be summarized that: the routes by which service export affects economic growth can be rowed as follows: employment effect, physical capital effect, institution effect, human capital effect, technology effect; the routs by which service import affectseconomic growth can be rowed as follows: technology effect, institution effect, employment effect, human capital effect, physical capital effect; the routes by which FDI in service affects economic growth can be rowed as follows: technology effect, human capital effect, institution effect, employment effect, physical capital effect. Moreover, the effect of FDI in service is stronger than service import, and the effect of service import is stronger than service export.According to the empirical test in this paper, the conclusion can be drawn as follows: service trade in a narrow sense will have static and dynamic effects on factor supply in one country through import and export of service, FDI in service industry is one of the most important cross-border transactions and is another important channel which will affect the transition of advantages on factor supply in one country. It should be emphasized that the above-mentioned channels will have different effects on countries at different stages of economic development. Whether the roles can be brought into play or not depends on given restraints. The input output of factors themselves cannot form a clear function, but will interact together and act on economic growth hand in hand through numerous feedback chain.Chinese economy is now undergoing transformation from elementary age to middle age of industrialization. Service trade and investment in current period have both advantages and disadvantages.Based on these judgments, we propose that China should pursue a policy favoring protectionism on management of service trade and adopt relevant countermeasures as follows. Scientific development view should be formed with an eye to harmonizing development of three industries so as to lay a solid industries foundation for service trade; The strategic programming should be stipulated and the market of service trade should be opened gradually; The rule of international transfer of service trade should be mastered and environment of utilizing foreign investment on service industry should be improved.As the characteristics of the world's service-oriented economy have gradually emerged, service trade originating from the upgrading of industrial structure has developed rapidly, and the scale of service trade is rapidly expanding. From the statistical data, the total exports of world service trade rose rapidly from 365 billion U.S. dollars in 1980 to 377.779 billion U.S. dollars in 2008, an increase of 9.35 times. Compared with the trade of goods with a long history, service trade is a new form of trade. With the continuous increase in absolute size and relatively low levels, service trade has become a focus of attention in modern society.2 The impact of overall service trade on economic growthAccording to the WTO General Agreement on Trade in Services (GA TS), which was signed in 1994, trade in services includes Cross- border Supply, Consumption A broad, Commercial Presence, and naturalperson mobility. (Movement of Natural Persn) Four modes. The service trade of these four modes has completely different properties and characteristics. Therefore, it is difficult to establish a unified theoretical framework for service trade to affect economic growth. The corresponding literature is very rare. The only foreign documents are mainly Robinson et al. (2002), who simply regard service trade as a commodity. Trade, without taking into account differences in the four trade models, studied the economic growth effects of service trade liberalization using the Computable General Equilibrium (CGE) model.Using empirical methods to study the literature on the impact of overall service trade on economic growth is more, but such studies are mostly domestic scholars. Research shows that the average contribution of China's overall service trade to economic growth is 18.9%.3 Effect of Service Trade in Different Industries on Economic GrowthAt present, the literature on the impact of industry trade in service trade on economic growth is mostly concentrated in such service sectors as finance, telecommunications, and health care. These studies have basically reached a relatively unanimous conclusion that the opening of the service sector or the increase in productivity can significantly promote economic growth. . For example, studies by Beck et al. (1998), M urinde & Ryan (2003), and Eschenbach (2004) suggest that the opening of the financial sector has, to a certain extent, broken the monopoly of domesticfinancial markets and prompted the orderly competition of financial markets. On the normal development track, productivity has improved, and it has finally led to economic growth in the country. Kim (2000) studied the relationship between the development of service trade in the distribution sector and the growth of total factor productivity (TFP) using Korea's input-output data. The results show that the liberalization of service trade not only significantly promoted its own TFP. The promotion also promoted the improvement of total factor productivity in the related manufacturing sector. The total factor productivity growth brought about by service trade almost covered the entire economic sector.4 Effect of Service Trade on Economic Growth by Different Trading ModesThere are few literatures on specific transaction models and theoretical studies on the impact of trade in services on economic growth. Carr et al. (2001) & M arkusen et al. (2005) theoretically examined the commercial existence model by means of the CGE model. The impact of the trade in services on economic growth shows that the opening up of trade in services is an important source of the increase in economic welfare of a country. From the perspective of economic welfare, the opening up of trade in services is a general trend. Subsequently, the use of CGE models to theoretically examine the impact of service trade on economic growth began to prevail. For example, Rutherford et al. (2005)used the CGE model to evaluate Russia's WTO accession effects, and Ko nan &Maskus (2006) used CGE models. The potential effects of Tunisia's elimination of barriers to trade in services were studied. Their conclusions indicate that the increase in the level of economic welfare in one country can benefit from the opening up of the service market, while the elimination of FDI market access barriers in the service sector is a pattern of four trades. The most important liberalization measures are the main sources of increased welfare in a country. There are a lot of literatures on the relationship between service trade and economic growth in specific models using empirical methods. In the four modes of trade in services, commercial presence is the most important one, and from the point of view of data availability, although statistical data is still not very accurate, commercial existence of service trade is based on service industry FDI as a carrier. To achieve this, researchers can use service industry FDI data to characterize the scale of service trade in this model, and this type of trade model has received more attention. Among them, Markusen (1989) believes that the existence of commercial trade in services has two positive and negative effects. The positive effect is that competition in the service sector has led to an increase in domestic demand for the sector’s production factors, which is conducive to output growth. The effect of market size and negative effects means that the intensified competition in the domestic market of service industries has led to the withdrawal ofdomestic service-oriented enterprises from the market. The study by Markusen (1989) shows that the effect of market size after the opening of the service market far exceeds the crowding-out effect. After offsetting the crowding-out effect, it can still promote the productivity improvement of the non-service sector and further lead to the structure of domestic trade in goods. The changes, those sectors that were previously low in productivity and dependent on imports, will evolve into high-productivity export sectors, which is quite similar to the latest research findings on the interactive development of producer services and manufacturing. Hoekman (2006) and Hoekman (2006) used India as an example to examine the impact of the existence of commercial trade in services in the finance, telecommunications, and transportation sectors on the competitiveness of the goods export sector, and believe that these sectors have been liberalized. The level of soft facilities has been increased, which in turn has greatly reduced the operating costs of the downstream product manufacturing sector, which has increased the export competitiveness. With the inefficiency of the domestic service industry, the unfavorable pattern is reversed with the help of commercial presence of service trade. Feasible choice. Guerrieri et al. (2005) took the EU as the research object and analyzed the role of commercial trade in services for knowledge accumulation and economic growth. The study concluded that the openness of the service market or the relaxation of domesticservice regulations has positively promoted economic growth. It was found that the imported service items may be more able to promote economic growth than the domestic same service items due to high technological content.5 Possible Future Research DirectionsIt is not difficult to find from the above-mentioned documents that since the development of service trade started late, research on the growth of service trade began to rise gradually from the 1980s, and more than 20 years of research in this area is in the ascendant. With the further enhancement of the status of trade in services, the possible directions for future research will generally include the following aspects.From the point of view of research methodology, classification of service trade can be studied. As the theory of goods trade has gradually matured, the development practice of service trade still calls for the birth of the theory of service trade. Helpman and Markusen, international economists, expressed on different occasions that the difficulty in establishing the theoretical system of service trade lies in the fact that there are large differences in various types of service trades, and it is difficult for researchers to overcome the gap between them. Classifying service trade according to certain standards and exploring the impact of various types of service trade on economic growth is a possible direction for future research.From the perspective of the research subjects, it is possible to study China’s service trade and economic growth. China’s GDP has already ranked second in the world. However, the service industry’s added value accounted for only 40% of GDP, which is obviously not commensurate with the status of an economic power. In addition, the trade in services is still relatively small compared to the trade in goods. Under such a realistic background, what is the relationship between China's service trade and economic growth? How will service trade contribute to China's economic growth? What impact will service outsourcing have on China's economy? With China in In the next decade, how will China make service trade an engine of economic growth? From the academic point of view, economists from all countries are paying attention to China’s economic development, and China’s service trade will also be improved. It will become a research hotspot.From the perspective of research topics, it is possible to study the impact of service outsourcing on economic growth. In 2008, the scale of global service outsourcing market has reached 1.5 trillion US dollars. According to the UNCTAD (UNCT AD) speculation, the global service outsourcing market will increase by 30%-40% in the next 5-10 years.The surging service industry outsourcing is a new form of service trade. How does service outsourcing drive economic growth through employment, industrial structure upgrading, and technology spillovers?What are the differences in the impact of contracting and receiving services on economic growth in the service industry? Research on these issues will start with the development of service outsourcing to important theoretical guidance.中文译文国际服务贸易与经济增长理论与实证研究Chakraborty Kavin1 引言国际贸易与经济增长始终是国际经济学最生动的论题之一。

毕业论文(设计)外文文献翻译及原文

毕业论文(设计)外文文献翻译及原文

金融体制、融资约束与投资——来自OECD的实证分析R.SemenovDepartment of Economics,University of Nijmegen,Nijmegen(荷兰内梅亨大学,经济学院)这篇论文考查了OECD的11个国家中现金流量对企业投资的影响.我们发现不同国家之间投资对企业内部可获取资金的敏感性具有显著差异,并且银企之间具有明显的紧密关系的国家的敏感性比银企之间具有公平关系的国家的低.同时,我们发现融资约束与整体金融发展指标不存在关系.我们的结论与资本市场信息和激励问题对企业投资具有重要作用这种观点一致,并且紧密的银企关系会减少这些问题从而增加企业获取外部融资的渠道。

一、引言各个国家的企业在显著不同的金融体制下运行。

金融发展水平的差别(例如,相对GDP的信用额度和相对GDP的相应股票市场的资本化程度),在所有者和管理者关系、企业和债权人的模式中,企业控制的市场活动水平可以很好地被记录.在完美资本市场,对于具有正的净现值投资机会的企业将一直获得资金。

然而,经济理论表明市场摩擦,诸如信息不对称和激励问题会使获得外部资本更加昂贵,并且具有盈利投资机会的企业不一定能够获取所需资本.这表明融资要素,例如内部产生资金数量、新债务和权益的可得性,共同决定了企业的投资决策.现今已经有大量考查外部资金可得性对投资决策的影响的实证资料(可参考,例如Fazzari(1998)、 Hoshi(1991)、 Chapman(1996)、Samuel(1998)).大多数研究结果表明金融变量例如现金流量有助于解释企业的投资水平。

这项研究结果解释表明企业投资受限于外部资金的可得性。

很多模型强调运行正常的金融中介和金融市场有助于改善信息不对称和交易成本,减缓不对称问题,从而促使储蓄资金投着长期和高回报的项目,并且提高资源的有效配置(参看Levine(1997)的评论文章)。

因而我们预期用于更加发达的金融体制的国家的企业将更容易获得外部融资.几位学者已经指出建立企业和金融中介机构可进一步缓解金融市场摩擦。

外文文献及翻译

外文文献及翻译

外文文献原稿和译文原稿DATABASEA database may be defined as a collection interrelated data store together with as little redundancy as possible to serve one or more applications in an optimal fashion .the data are stored so that they are independent of programs which use the data .A common and controlled approach is used in adding new data and in modifying and retrieving existing data within the data base .One system is said to contain a collection of database if they are entirely separate in structure .A database may be designed for batch processing , real-time processing ,or in-line processing .A data base system involves application program, DBMS, and database.THE INTRODUCTION TO DATABASE MANAGEMENT SYSTEMSThe term database is often to describe a collection of related files that is organized into an integrated structure that provides different people varied access to the same data. In many cases this resource is located in different files in different departments throughout the organization, often known only to the individuals who work with their specific portion of the total information. In these cases, the potential value of the information goes unrealized because a person in other departments who may need it does not know it or it cannot be accessed efficiently. In an attempt to organize their information resources and provide for timely and efficient access, many companies have implemented databases.A database is a collection of related data. By data, we mean known facts that can be recorded and that have implicit meaning. For example, the names, telephone numbers, and addresses of all the people you know. You may have recorded this data in an indexed address book, or you may have stored it on a diskette using a personalcomputer and software such as DBASE Ⅲor Lotus 1-2-3. This is a collection of related data with an implicit meaning and hence is a database.The above definition of database is quite general. For example, we may consider the collection of words that made up this page of text to be usually more restricted. A database has the following implicit properties:● A database is a logically coherent collection of data with some inherent meaning. A random assortment of data cannot be referred to as a database.● A database is designed, built, and populated with data for a specific purpose. It has an intended group of user and some preconceived applications in which these users are interested.● A database represents some aspect of the real world, sometimes called the miniworld. Changes to the miniworld are reflected in the database.In other words, a database has some source from which data are derived, some degree of interaction with events in the real world, and an audience that is actively interested in the contents of the database.A database management system (DBMS) is composed of three major parts: (1) a storage subsystem that stores and retrieves data in files; (2)a modeling and manipulation subsystem that provides the means with which to organize the data and to add, delete, maintain, and update the data; and (3) an interface between the DBMS and its users. Several major trends are emerging that enhance the value and usefulness of database management systems.●Managers who require more up-to-date information to make effective decisions.●Customers who demand increasingly sophisticated information services and more current information about the status of their orders, invoices, and accounts.●Users who find that they can develop custom applications with database systems in a fraction of the time it takes to use traditional programming languages.●Organizations that discover information has a strategic value; they utilize their database systems to gain an edge over their competitors.A DBMS can organize, process, and present selected data elements from the database. This capability enables decision makers to search, probe, and query database contents in order to extract answers to nonrecurring and unplanned questions that aren’t available in regular reports. These questions might initially be vague and/or p oorly defined, but people can “browse” through the database until they have the needed information. In short, the DBMS will “mange” the stored data items and assemble the needed items from the common database in response to the queries of those who aren’t programmers. In a file-oriented system, user needing special information may communicate their needs to a programmer, who, when time permits, will write one or more programs to extract the data and prepare the information. The availability of a DBMS, however, offers users a much faster alternative communications path.DATABASE QUERYIf the DBMS provides a way to interactively enter and update the database ,as well as interrogate it ,this capability allows for managing personal database. However, it does not automatically leave an audit trail of actions and does not provide the kinds of controls necessary in a multi-user organization .There controls are only available when a set of application programs is customized for each data entry and updating function.Software for personal computers that perform some of the DBMS functions has been very popular .Individuals for personal information storage and processing intended personal computers for us .Small enterprises, professionals like doctors, architects, engineers, lawyers and so on have also used these machines extensively. By the nature of intended usage ,database system on there machines are except from several of the requirements of full-fledged database systems. Since data sharing is not intended, concurrent operations even less so ,the software can be less complex .Security and integrity maintenance are de-emphasized or absent .as data volumes will be small, performance efficiency is also less important .In fact, the only aspect of a database system that is important is data independence. Data independence ,as stated earlier ,means that application programs and user queries need not recognize physical organization of data on secondary storage. The importance of this aspect , particularly for the personal computer user ,is that this greatly simplifies database usage . The user can store ,access and manipulate data at ahigh level (close to the application)and be totally shielded from the low level (close to the machine )details of data organization.DBMS STRUCTURING TECHNIQUESSpatial data management has been an active area of research in the database field for two decades ,with much of the research being focused on developing data structures for storing and indexing spatial data .however, no commercial database system provides facilities for directly de fining and storing spatial data ,and formulating queries based on research conditions on spatial data.There are two components to data management: history data management and version management .Both have been the subjects of research for over a decade. The troublesome aspect of temporal data management is that the boundary between applications and database systems has not been clearly drawn. Specifically, it is not clear how much of the typical semantics and facilities of temporal data management can and should be directly incorporated in a database system, and how much should be left to applications and users. In this section, we will provide a list of short-term research issues that should be examined to shed light on this fundamental question.The focus of research into history data management has been on defining the semantics of time and time interval, and issues related to understanding the semantics of queries and updates against history data stored in an attribute of a record. Typically, in the context of relational databases ,a temporal attribute is defined to hold a sequence of history data for the attribute. A history data consists of a data item and a time interval for which the data item is valid. A query may then be issued to retrieve history data for a specified time interval for the temporal attribute. The mechanism for supporting temporal attributes is to that for supporting set-valued attributes in a database system, such as UniSQL.In the absence of a support for temporal attributes, application developers who need to model and history data have simply simulated temporal attributes by creating attribute for the time interval ,along with the “temporal” attribute. This of course may result in duplication of records in a table, and more complicated search predicates in queries. The one necessary topic of research in history data management is to quantitatively establish the performance (and even productivity) differences betweenusing a database system that directly supports attributes and using a conventional database system that does not support either the set-valued attributes or temporal attributes.Data security, integrity, and independenceData security prevents unauthorized users from viewing or updating the database. Using passwords, users are allowed access to the entire database of the database, called subschemas. For example, an employee database can contain all the data about an individual employee, but one group of users may be authorized to view only payroll data, while others are allowed access to only work history and medical data.Data integrity refers to the accuracy, correctness, or validity of the data in the database. In a database system, data integrity means safeguarding the data against invalid alteration or destruction. In large on-line database system, data integrity becomes a more severe problem and two additional complications arise. The first has to do with many users accessing the database concurrently. For example, if thousands of travel agents book the same seat on the same flight, the first agent’s booking will be lost. In such cases the technique of locking the record or field provides the means for preventing one user from accessing a record while another user is updating the same record.The second complication relates to hardware, software or human error during the course of processing and involves database transaction which is a group of database modifications treated as a single unit. For example, an agent booking an airline reservation involves several database updates (i.e., adding the passenger’s name and address and updating the seats-available field), which comprise a single transaction. The database transaction is not considered to be completed until all updates have been completed; otherwise, none of the updates will be allowed to take place.An important point about database systems is that the database should exist independently of any of the specific applications. Traditional data processing applications are data dependent.When a DMBS is used, the detailed knowledge of the physical organization of the data does not have to be built into every application program. The application program asks the DBMS for data by field name, for example, a coded representationof “give me customer name and balance due” would be sent to the DBMS. Without a DBMS the programmer must reserve space for the full structure of the record in the program. Any change in data structure requires changes in all the applications programs.Data Base Management System (DBMS)The system software package that handles the difficult tasks associated with creating ,accessing and maintaining data base records is called a data base management system (DBMS). A DBMS will usually be handing multiple data calls concurrently.It must organize its system buffers so that different data operations can be in process together .It provides a data definition language to specify the conceptual schema and most likely ,some of the details regarding the implementation of the conceptual schema by the physical schema.The data definition language is a high-level language, enabling one to describe the conceptual schema in terms of a “data model “.At the present time ,there are four underling structures for database management systems. They are :List structures.Relational structures.Hierarchical (tree) structures.Network structures.Management Information System(MIS)An MIS can be defined as a network of computer-based data processing procedures developed in an organization and integrated as necessary with manual and other procedures for the purpose of providing timely and effective information to support decision making and other necessary management functions.One of the most difficult tasks of the MIS designer is to develop the information flow needed to support decision making .Generally speaking ,much of the information needed by managers who occupy different levels and who have different levels and have different responsibilities is obtained from a collection of exiting information system (or subsystems)Structure Query Language (SQL)SQL is a data base processing language endorsed by the American NationalStandards Institute. It is rapidly becoming the standard query language for accessing data on relational databases .With its simple ,powerful syntax ,SQL represents a great progress in database access for all levels of management and computing professionals.SQL falls into two forms : interactive SQL and embedded SQL. Embedded SQL usage is near to traditional programming in third generation languages .It is the interactive use of SQL that makes it most applicable for the rapid answering of ad hoc queries .With an interactive SQL query you just type in a few lines of SQL and you get the database response immediately on the screen.译文数据库数据库可以被定义为一个相互联系的数据库存储的集合。

外文文献翻译(图片版)

外文文献翻译(图片版)

本科毕业论文外文参考文献译文及原文学院经济与贸易学院专业经济学(贸易方向)年级班别2007级 1 班学号3207004154学生姓名欧阳倩指导教师童雪晖2010 年 6 月 3 日目录1 外文文献译文(一)中国银行业的改革和盈利能力(第1、2、4部分) (1)2 外文文献原文(一)CHINA’S BANKING REFORM AND PROFITABILITY(Part 1、2、4) (9)1概述世界银行(1997年)曾声称,中国的金融业是其经济的软肋。

当一国的经济增长的可持续性岌岌可危的时候,金融业的改革一直被认为是提高资金使用效率和消费型经济增长重新走向平衡的必要(Lardy,1998年,Prasad,2007年)。

事实上,不久前,中国的国有银行被视为“技术上破产”,它们的生存需要依靠充裕的国家流动资金。

但是,在银行改革开展以来,最近,强劲的盈利能力已恢复到国有商业银行的水平。

但自从中国的国有银行在不久之前已经走上了改革的道路,它可能过早宣布银行业的改革尚未取得完全的胜利。

此外,其坚实的财务表现虽然强劲,但不可持续增长。

随着经济增长在2008年全球经济衰退得带动下已经开始软化,银行预计将在一个比以前更加困难的经济形势下探索。

本文的目的不是要评价银行业改革对银行业绩的影响,这在一个完整的信贷周期后更好解决。

相反,我们的目标是通过审查改革的进展和银行改革战略,并分析其近期改革后的强劲的财务表现,但是这不能完全从迄今所进行的改革努力分离。

本文有三个部分。

在第二节中,我们回顾了中国的大型国有银行改革的战略,以及其执行情况,这是中国银行业改革的主要目标。

第三节中分析了2007年的财务表现集中在那些在市场上拥有浮动股份的四大国有商业银行:中国工商银行(工商银行),中国建设银行(建行),对中国银行(中银)和交通银行(交通银行)。

引人注目的是中国农业银行,它仍然处于重组上市过程中得适当时候的后期。

第四节总结一个对银行绩效评估。

外文文献翻译译稿和原文

外文文献翻译译稿和原文

外文文献翻译译稿1卡尔曼滤波的一个典型实例是从一组有限的,包含噪声的,通过对物体位置的观察序列(可能有偏差)预测出物体的位置的坐标及速度。

在很多工程应用(如雷达、计算机视觉)中都可以找到它的身影。

同时,卡尔曼滤波也是控制理论以及控制系统工程中的一个重要课题。

例如,对于雷达来说,人们感兴趣的是其能够跟踪目标。

但目标的位置、速度、加速度的测量值往往在任何时候都有噪声。

卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响,得到一个关于目标位置的好的估计。

这个估计可以是对当前目标位置的估计(滤波),也可以是对于将来位置的估计(预测),也可以是对过去位置的估计(插值或平滑)。

命名[编辑]这种滤波方法以它的发明者鲁道夫.E.卡尔曼(Rudolph E. Kalman)命名,但是根据文献可知实际上Peter Swerling在更早之前就提出了一种类似的算法。

斯坦利。

施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。

卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑便使用了这种滤波器。

关于这种滤波器的论文由Swerling(1958)、Kalman (1960)与Kalman and Bucy(1961)发表。

目前,卡尔曼滤波已经有很多不同的实现。

卡尔曼最初提出的形式现在一般称为简单卡尔曼滤波器。

除此以外,还有施密特扩展滤波器、信息滤波器以及很多Bierman, Thornton开发的平方根滤波器的变种。

也许最常见的卡尔曼滤波器是锁相环,它在收音机、计算机和几乎任何视频或通讯设备中广泛存在。

以下的讨论需要线性代数以及概率论的一般知识。

卡尔曼滤波建立在线性代数和隐马尔可夫模型(hidden Markov model)上。

其基本动态系统可以用一个马尔可夫链表示,该马尔可夫链建立在一个被高斯噪声(即正态分布的噪声)干扰的线性算子上的。

系统的状态可以用一个元素为实数的向量表示。

纳米材料与微型机器外文文献翻译、中英文翻译

纳米材料与微型机器外文文献翻译、中英文翻译

外文资料Nanotechnology and Micro-machine原文(一):NanomaterialNanomaterials and nanotechnology have become a magic word in modern society.Nanomaterials represent today’s cutting edge in the development of novel advanced materials which promise tailor-made functionality and unheard applications in all key technologies. So nanomaterials are considered as a great potential in the 21th century because of their special properties in many fields such as optics, electronics, magnetics, mechanics, and chemistry. These unique properties are attractive for various high performance applications. Examples include wear resistant surfaces, low temperature sinterable high-strength ceramics, and magnetic nanocomposites. Nanostructures materials present great promises and opportunities for a new generation of materials with improved and marvelous properties.It is appropriate to begin with a brief introduction to the history of the subject. Nanomaterials are found in both biological systems and man-made structures. Nature has been using nanomaterials for millions of years,as Disckson has noted: “Life itself could be regarded as a nanophase system”.Examples in which nanostructured elements play a vital role are magnetotactic bacteria, ferritin, and molluscan teeth. Several species of aquatic bacteria use the earth’s magnetic field to orient thenselves. They are able to do this because they contain chains of nanosized, single-domain magnetite particles. Because they have established their orientation, they are able to swim down to nutriments and away from what is lethal to them ,oxygen. Another example of nanomaterials in nature is that herbivorous mollusks use teeth attached to a tonguelike organ, the radula, to scrape their food. These teeth have a complexstructure containing nanocrystalline needles. We can utilize biological templates formaking nanomaterials. Apoferritin has been used as a confined reaction environmentfor the synthesis of nanosized magnetite particles. Some scholars consider biologicalnanomaterials as model systems for developing technologically useful nanomaterials.Scientific work on this subject can be traced back over 100 years.In 1861 theBritish chemist Thomas Graham coined the term colloid to describe a solutioncontaining 1 to 100 nm diameter particles in suspension. Around the turn of thecentury, such famous scientists as Rayleigh, Maxwell, and Einstein studied colloids.In 1930 the Langmuir-Blodgett method for developing monolayer films wasdeveloped. By 1960 Uyeda had used electron microscopy and diffraction to studyindividual particles. At about the same time, arc, plasma, and chemical flame furnaceswere employed to prouduce submicron particles. Magnetic alloy particles for use inmagnetic tapes were produced in 1970.By 1980, studies were made on clusterscontaining fewer than 100 atoms .In 1985, a team led by Smalley and Kroto foundC clusters were unusually stable. In 1991, Lijima spectroscopic evidence that 60reported studies of graphitic carbon tube filaments.Research on nanomaterials has been stimulated by their technologicalapplications. The first technological uses of these materials were as catalysts andpigments. The large surface area to volume ratio increases the chemicalactivity.Because of this increased activity, there are significant cost advantages infabricating catalysts from nanomaterials. The peoperties of some single-phasematerials can be improved by preparing them as nanostructures. For example, thesintering temperature can be decreased and the plasticity increased on single-phase,structural ceramics by reducing the grain size to several nanometers. Multiphasenanostructured materials have displayed novel behavior resulting from the small sizeof he individual phases.Technologically useful properties of nanomaterials are not limited to theirstructural, chemical, or mechanical behavior. Multilayers represent examples ofmaterials in which one can modify of tune a property for a specific application bysensitively controlling the individual layer thickness. It was discovered that the resistance of Fe-Cr multilayered thin films exhibited large changes in an applied magnetic field of several tens of kOe.This effect was given the name giant magnetoresistance (GMR). More recently, suitably annealed magnetic multilayers have been developed that exhibit significant magnetoresistance effects even in fields as low as 5 to10 Oe (Oersted). This effect may prove to be of great technological importance for use in magnetic recording read heads.In microelectronics, the need for faster switching times and ever larger integration has motivated considerable effort to reduce the size of electronic components. Increasing the component density increases the difficulty of satisfying cooling requirements and reduces the allowable amount of energy released on switching between states. It would be ideal if the switching occurred with the motion of a single electron. One kind of single-electron device is based on the change in the Coulombic energy when an electron is added or removed from a particle. For a nanoparticle this enery change can be large enough that adding a single electron will effectively blocks the flow of other electrons. The use of Coulombic repulsion in this way is called Coulomb blockade.In addition to technology, nanomaterials are also interesting systems for basic scientific investigations .For example, small particles display deviations from bulk solid behavior such as reductios in the melting temperature and changes (usually reductions) in the lattice parameter. The changes n the lattice parameter observed for metal and semiconductor particles result from the effect of the surface free energy. Both the surface stress and surface free energy are caused by the reduced coordination of the surface atoms. By studying the size dependence of the properties of particles, it is possible to find the critical length scales at which particles behave essentially as bulk matter. Generally, the physical properties of a nanoparticle approach bulk values for particles containing more than a few hundred atoms.New techniques have been developed recently that have permitted researchers to produce larger quantities of other nanomaterials and to better characterize these materials.Each fabrication technique has its own set of advantages anddisadvantages.Generally it is best to produce nanoparticles with a narrow size distribution. In this regard, free jet expansion techniques permit the study of very small clusters, all containing the same number of atoms. It has the disadvantage of only producing a limited quantity of material.Another approach involves the production of pellets of nanostructured materials by first nucleating and growing nanoparticles in a supersaturated vapor and then using a cold finger to collect the nanoparticle. The nanoparticles are then consolidated under vacuum. Chemical techniques are very versatile in that they can be applied to nearly all materials (ceramics, semiconductors, and metals) and can usually produce a large amount of material. A difficulty with chemical processing is the need to find the proper chemical reactions and processing conditions for each material. Mechanical attrition, which can also produce a large amount of material, often makes less pure material. One problem common to all of these techniques is that nanoparticles often form micron-sized agglomerates. If this occurs, the properties of the material may be determined by the size of the agglomerate and not the size of the individual nanoparticles. For example, the size of the agglomerates may determine the void size in the consolidated nanostructured material.The ability to characterize nanomaterials has been increased greatly by the invention of the scanning tunneling microscope (STM) and other proximal probes such as the atomic force microscope (AFM), the magnetic force microscope, and the optical near-field microscope.SMT has been used to carefully place atoms on surfaces to write bits using a small number of atmos. It has also been employed to construct a circular arrangement of metal atoms on an insulating surface. Since electrons are confined to the circular path of metal atoms, it serves ad a quantum ‘corral’of atoms. This quantum corral was employed to measure the local electronic density of states of these circular metallic arrangements. By doing this, researchers were able to verify the quantum mechanical description of electrons confined in this way.Other new instruments and improvements of existing instruments are increasingly becoming important tools for characterizing surfaces of films, biological materials, and nanomaterials.The development of nanoindentors and the improvedability to interpret results from nanoindentation measurements have increased our ability to study the mechanical properties of nanostructured materials. Improved high-resolution electron microscopes and modeling of the electron microscope images have improved our knowledges of the structure of the the particles and the interphase region between particles in consolidated nanomaterials.Nanotechnology1. IntroductionWhat id nanotechnology? it is a term that entered into the general vocabulary only in the late 1970’s,mainly to describe the metrology associated with the development of X-ray,optical and other very precise components.We defined nanotechnology as the technology where dimensions and tolerances in the range 0.1~100nm(from the size of the atom to the wavelength of light) play a critical role.This definition is too all-embracing to be of practical value because it could include,for example,topics as diverse as X-ray crystallography ,atomic physics and indeed the whole of chemistry.So the field covered by nanotechnology is later narrowed down to manipulation and machining within the defined dimensional range(from 0.1nm to 100nm) by technological means,as opposed to those used by the craftsman,and thus excludes,for example,traditional forms of glass polishing.The technology relating to fine powders also comes under the general heading of nanotechnology,but we exclude observational techniques such as microscopy and various forms of surface analysis.Nanotechnology is an ‘enabling’ technology, in that it provides the basis for other technological developments,and it is also a ‘horizontal’or ‘cross-sectional’technology in that one technological may,with slight variations,be applicable in widely differing fields. A good example of this is thin-film technology,which is fundamental to electronics and optics.A wide range of materials are employed in devices such as computer and home entertainment peripherals, including magnetic disc reading heads,video cassette recorder spindles, optical disc stampers and ink jet nozzles.Optical and semiconductor components include laser gyroscope mirrors,diffraction gratings,X-ray optics,quantum-well devices.2. Materials technologyThe wide scope of nanotechnology is demonstrated in the materials field,where materials provide a means to an end and are not an end in themseleves. For example, in electronics,inhomogeneities in materials,on a very fine scale, set a limit to the nanometre-sized features that play an important part in semiconductor technology, and in a very different field, the finer the grain size of an adhesive, the thinner will be the adhesive layer, and the higher will be the bond strength.(1) Advantages of ultra-fine powders. In general, the mechanical, thermal, electrical and magnetic properties of ceramics, sintered metals and composites are often enhanced by reducing the grain or fiber size in the starting materials. Other properties such as strength, the ductile-brittle transition, transparency, dielectric coefficient and permeability can be enhanced either by the direct influence of an ultra-fine microstructure or by the advantages gained by mixing and bonding ultra-fine powders.Oter important advantages of fine powders are that when they are used in the manufacture of ceramics and sintered metals, their green (i.e, unfired) density can be greatly increased. As a consequence, both the defects in the final produce and the shrinkage on firing are reduced, thus minimizing the need for subsequent processing.(2)Applications of ultra-fine powders.Important applications include:Thin films and coatings----the smaller the particle size, the thinner the coating can beElectronic ceramics ----reduction in grain size results in reduced dielectric thicknessStrength-bearing ceramics----strength increases with decreasing grain sizeCutting tools----smaller grain size results in a finer cutting edge, which can enhance the surface finishImpact resistance----finer microstructure increases the toughness of high-temperature steelsCements----finer grain size yields better homogeneity and densityGas sensors----finer grain size gives increased sensitivityAdhesives----finer grain size gives thinner adhesive layer and higher bond strength3. Precision machining and materials processingA considerable overlap is emerging in the manufacturing methods employed in very different areas such as mechanical engineering, optics and electronics. Precision machining encompasses not only the traditional techniques such as turning, grinding, lapping and polishing refined to the nanometre level of precision, but also the application of ‘particle’ beams, ions, electrons and X-rays. Ion beams are capable of machining virtually any material and the most frequent applications of electrons and X-rays are found in the machining or modification of resist materials for lithographic purposes. The interaction of the beams with the resist material induces structural changes such as polymerization that alter the solubility of the irradiated areas.(1) Techniques1) Diamond turning. The large optics diamond-turning machine at the Lawrence Livermore National Laboratory represents a pinnacle of achievement in the field of ultra-precision machine tool engineering. This is a vertical-spindle machine with a face plate 1.6 m in diameter and a maximum tool height of 0.5m. Despite these large dimensions, machining accuracy for form is 27.5nm RMS and a surface roughness of 3nm is achievable, but is dependent both on the specimen material and cutting tool.(2) GrindingFixed Abrasive Grinding The term“fixed abrasive” denotes that a grinding wheel is employed in which the abrasive particles, such as diamond, cubic boron nitride or silicon carbide, are attached to the wheel by embedding them in a resin or a metal. The forces generated in grinding are higher than in diamond turning and usually machine tools are tailored for one or the other process. Some Japanese work is in the vanguard of precision grinding, and surface finishes of 2nm (peak-to-valley) have been obtained on single-crystal quartz samples using extremely stiff grinding machinesLoose Abrasive Grinding The most familiar loose abrasive grinding processes are lapping and polishing where the workpiece, which is often a hard material such asglass, is rubbed against a softer material, the lap or polisher, with abrasive slurry between the two surfaces. In many cases, the polishing process occurs as a result of the combined effects of mechanical and chemical interaction between the workpiece, slurry and polished.Loose abrasive grinding techniques can under appropriate conditions produce unrivalled accuracy both in form and surface finish when the workpiece is flat or spherical. Surface figures to a few nm and surface finishes bettering than 0.5nm may be achieved. The abrasive is in slurry and is directed locally towards the workpiece by the action of a non-contacting polyurethane ball spinning at high speed, and which replac es the cutting tool in the machine. This technique has been named “elastic emission machining” and has been used to good effect in the manufacture of an X-ray mirror having a figure accuracy of 10nm and a surface roughness of 0.5nm RMS.3)Thin-film production. The production of thin solid films, particularly for coating optical components, provides a good example of traditional nanotechnology. There is a long history of coating by chemical methods, electro-deposition, diode sputtering and vacuum evaporation, while triode and magnetron sputtering and ion-beam deposition are more recent in their wide application.Because of their importance in the production of semiconductor devices, epitaxial growth techniques are worth a special mention. Epitaxy is the growth of a thin crystalline layer on a single-crystal substrate, where the atoms in the growing layer mimic the disposition of the atoms in the substrate.The two main classes of epitaxy that have ben reviewed by Stringfellow (1982) are liquid-phase and vapour-phase epitaxy. The latter class includes molecular-beam epitaxy (MBE), which in essence, is highly controlled evaporation in ultra high vacuum. MBE may be used to grow high quality layered structures of semiconductors with mono-layer precision, and it is possible to exercise independent control over both the semiconductor band gap, by controlling the composition, and also the doping level. Pattern growth is possible through masks and on areas defined by electron-beam writing.4. ApplicationsThere is an all-pervading trend to higher precision and miniaturization, and to illustrate this a few applications will be briefly referred to in the fields of mechanical engineering,optics and electronics. It should be noted however, that the distinction between mechanical engineering and optics is becoming blurred, now that machine tools such as precision grinding machines and diamond-turning lathes are being used to produce optical components, often by personnel with a backgroud in mechanical engineering rather than optics. By a similar token mechanical engineering is also beginning to encroach on electronics particularly in the preparation of semiconductor substrates.(1) Mechanical engineeringOne of the earliest applications of diamond turning was the machining of aluminum substrates for computer memory discs, and accuracies are continuously being enhanced in order to improve storage capacity: surface finishes of 3nm are now being achieved. In the related technologies of optical data storage and retrieval, the toler ances of the critical dimensions of the disc and reading head are about 0.25 μm. The tolerances of the component parts of the machine tools used in their manufacture, i.e.the slideways and bearings, fall well within the nanotechnology range.Some precision components falling in the manufacturing tolerance band of 5~50nm include gauge blocks, diamond indenter tips, microtome blades, Winchester disc reading heads and ultra precision XY tables (Taniguchi 1986). Examples of precision cylindrical components in two very different fields, and which are made to tolerances of about 100 nm, are bearing for mechanical gyroscopes and spindles for video cassette recorders.The theoretical concept that brittle materials may be machined in a ductile mode has been known for some time. If this concept can be applied in practice it would be of significant practical importance because it would enable materials such as ceramics, glasses and silicon to be machined with minimal sub-surface damage, and could eliminate or substantially reduce the need for lapping and polishing.Typically, the conditions for ductile-mode machining require that the depth of cutis about 100 nm and that the normal force should fall in the range of 0.1~0.01N. These machining conditons can be realized only with extremely precise and stiff machine tools, such as the one described by Yoshioka et al (1985), and with which quartz has been ground to a surface roughness of 2 nm peak-to-valley. The significance of this experimental result is that it points the way to the direct grinding of optical components to an optical finish. The principle can be extended to other materials of significant commercial importance, such as ceramic turbine blades, which at present must be subjected to tedious surface finishing procedures to remove the structure-weakening cracks produced by the conventional grinding process.(2) OpticsIn some areas in optics manufacture there is a clear distinction between the technological approach and the traditional craftsman’s approach, particul arly where precision machine tools are employed. On the other hand, in lapping and polishing, there is a large grey area where the two approaches overlap. The large demand for infrared optics from the 1970s onwards could not be met by the traditional suppliers, and provided a stimulus for the development and application of diamond-turning machines to optic manufacture. The technology has now progressed and the surface figure and finishes that can be obtained span a substantial proportion of the nanotechnology range. Important applications of diamond-turned optics are in the manufacture of unconventionally shaped optics, for example axicons and more generelly, aspherics and particularly off-axis components. Such as paraboloids.The mass production(several million per annum) of the miniature aspheric lenses used in compact disc players and the associated lens moulds provides a good example of the merging of optics and precision engineering. The form accuracy must be better than 0.2μm and the surface roughness m ust be below 20 nm to meet the criterion for diffraction limited performance.(3) ElectronicsIn semiconductors, nanotechnology has long been a feature in the development of layers parallel to the substrate and in the substrate surface itself, and the need for precision is steadily increasing with the advent of layered semiconductor structures.About one quarter of the entire semiconductor physics community is now engaged in studying aspects of these structures. Normal to the layer surface, the structure is produced by lithography, and for research purposes ar least, nanometre-sized features are now being developed using X-ray and electron and ion-beam techniques.5. A look into the futureWith a little imagination, it is not difficult to conjure up visions of future developments in high technology, in whatever direction one cares to look. The following two examples illustrate how advances may take place both by novel applications and refinements of old technologies and by development of new ones.(1) Molecular electronicsLithography and thin-film technology are the key technologies that have made possible the continuing and relentless reduction in the size of integrated circuits, to increase both packing density and operational speed. Miniaturization has been achieved by engineering downwards from the macro to the micro scale. By simple extrapolation it will take approximately two decades for electronic switches to be reduced to molecular dimensions. The impact of molecular biology and genetic engineering has thus provided a stimulus to attempt to engineer upwards, starting with the concept that single molecules, each acting as an electronic device in their own right, might be assembled using biotechnology, to form molecular electronic devices or even biochip computers.Advances in molecular electronics by downward engineering from the macro to the micro scale are taking place over a wide front. One fruitful approach is by way of the Langmure-Biodgett (LB) film using a method first described by Blodgett (1935).A multi-layer LB structure consists of a sequence of organic monolayers made by repeatedly dipping a substrate into a trough containing the monolayer floating on a liquid (usually water), one layer being added at a time. The classical film forming materials were the fatty acids such as stearic acid and their salts. The late 1950s saw the first widespread and commercially important application of LB films in the field of X-ray spectroscopy (e.g, Henke 1964, 1965). The important properties of the films that were exploited in this application were the uniform thickness of each film, i.e.one molecule thick, and the range of thickness, say from 5to 15nm, which were available by changing the composition of the film material. Stacks of fifty or more films were formed on plane of curved substrates to form two-dimensional diffraction gratings for measuring the characteristic X-ray wavelengths of the elements of low atomic number for analytical purposes in instruments such as the electron probe of X-ray micro-analyzer.(2) Scanning tunneling engineeringIt was stated that observational techniques such as microscopy do mot, at least for the purposes of this article, fall within the domain of nanotechnology. However,it is now becoming apparent that scanning tunneling microscopy(STM) may provide the basis of a new technology, which we shall call scanning tunneling engineering.In the STM, a sharp stylus is positioned within a nanometre of the surface of the sample under investigation. A small voltage applied between the sample and the stylus will cause a current to foow through the thin intervening insulating medium (e.g.air, vacum, oxide layer). This is the tunneling electron current which is exponentially dependent on the sample-tip gap. If the sample is scanned in a planr parallel to ies surface and if the tunneling current is kept cnstant by adjusting the height of the stylus to maintain a constant gap, then the displacement of the stylus provides an accurate representation of the surface topographyu of the sample. It is relevant to the applications that will be discussed that individual atoms are easily resolved by the STM, that the stylus tip may be as small as a single atom and that the tip can be positioned with sub-atomic dimensional accuracy with the aid of a piezoelectric transducer.The STM tip has demonstrated its ability to draw fine lines, which exhibit nanometre-sized struture, and hence may provide a new tool for nanometre lithography.The mode of action was not properly understood,but it was suspected that under the influence of the tip a conducting carbon line had been drawn as the result of polymerizing a hydrocarbon film, the process being assisted by the catalytic activity of the tungsten tip. By extrapolating their results the authors believed that it would be possible to deposit fine conducting lines on an insulating film. The tip would operatein a gaseous environment that contained the metal atoms in such a form that they could either be pre-adsorbed on the film or then be liberated from their ligands or they would form free radicals at the location of the tip and be transferred to the film by appropriate adjustment of the tip voltage.Feynman proposed that machine tools be used to make smaller machine tools which in turn would make still smaller ones, and so on all the way down to the atomic level. These machine tools would then operate via computer control in the nanometre domain, using high resolution electron microscopy for observation and control. STM technology has short-cricuired this rather cumbrous concept,but the potential applications and benefits remain.原文(二)Micro-machine1. IntroductionFrom the beginning, mankind seems instinctively to have desired large machines and small machines. That is, “large” and “small” in comp arison with human-scale. Machines larger than human are powerful allies in the battle against the fury of nature; smaller machines are loyal partners that do whatever they are told.If we compare the facility and technology of manufacturing larger machines, common sense tells us that the smaller machines are easier to make. Nevertheless, throughout the history of technology, larger machines have always stood ort. The size of the restored models of the water-mill invented by Vitruvius in the Roman Era, the windmill of the middle Ages, and the steam engine invented by Watt is overwhelming. On the other hand, smaller machined in history of technology are mostly tools. If smaller machines are easier to make, a variety of such machined should exist, but until modern times, no significant small machines existed except for guns and clocks.This fact may imply that smaller machines were actually more difficult to make. Of course, this does not mean simply that it was difficult to make a small machine; it means that it was difficult to invent a small machine that would be significant to human beings.。

包豪斯工业设计外文翻译文献

包豪斯工业设计外文翻译文献

外文文献翻译(含:英文原文及中文译文)英文原文Germany Bauhaus design and Future Design TrendAbstractGerman Bauhaus had a significant influence on the modern design education, meanwhile, it established the foundation of the leading position in the world for German industrial design. Through analyzing on current industrial design conditions from different countries, art design is considered as the main part of industrial design. This paper reviewed the last 10 years’ development of industrial design program in Zhejiang University of Science and Technology. The industrial design program have taken considerable achievements in many fields, such as the practice of Germany model, disciplines construction, teaching reform, manufactures & college cooperation, project teaching and design competitions. And Y ou cannot ignore the industrial design ten trend Keywords: Bauhaus, industrial design, project teaching, practice , 10 Industrial Design Trends1. German Bauhaus and industrial designGerman Bauhaus Design and Future Design TrendsAbstractGerman Bauhaus has a significant influence. At the same time, modern design education laid the foundation for the world's leading German industrial design. By analyzing the current industrial design conditions in different countries, artistic design is considered as the main industrial design. This article reviews the process of developing industrial designs in the last 10 years. Industrial design programs have taken considerable success in many areas such as the German practice model, professional construction, teaching reform, collaboration between production and engineering colleges, teaching and design competitions and ten trends in industrial design that you cannot ignore.Key words: ten trends of Bauhaus, industrial design, project teaching, practice, industrial design1. German Bauhaus and Industrial DesignIn 1919, the school had built Bauhaus Weimar, Germany. This is known as the “cradle of world industrial design” and the history of this milestone art design. Bauhaus believes that the most important thing is to allow students to explore their own ways of designing, rather than teaching their teachers; to cultivate students' ability to think independently and critically, instead of putting certain design styles on them. Compared with other schools with similar design education, Bauhaus philosophy has a unique philosophy of education. It took a thorough reform of the traditional art design education system andestablished art design as a new professional discipline. At the same time, Walter Gropius, the founder of Bauhaus, put forward the "unified art and technology" as the leading design philosophy of education.One of Bauhaus's works is a general industrial product that actively purifies the form. Bauhaus stressed that the design of the product's shape should be based on basic geometric models such as cubes, squares, and circles. The form of the product, and outlined should be simple and varied in different ways and follow abstract forms of principles and aesthetics. Because of Bauhaus's bravery and active exploration and reform, he took a major influence on the formation of the modernist artistic style and enabled Bauhaus to design a world-class reputation. Therefore Bauhaus became a milestone in the history of modern design art.The American artist Jose Sinel first mentioned the industrial design of the term in 1919. However, in China, until 1983, the Ministry of Education had met the industrial design disciplines and sample major ordinary universities. The original name was "The main product formation was" students for the arts. In 1998, the national priority category was adjusted to be integrated into international conventions. The “major” product formation has long since focused on the human-product-environment relationship in the field of product morphology and other research. This name has replaced "industrial design" and some of the major schools for engineering and art education.Bauhaus has many top European artists during this time, such as Kandinsky and Kerry. They are famous abstract painters. Their teaching trains students and leads to Bauhaus's 20th-century art design. The most famous industrial designers such as Philip Starck behar Marc Newson and Maca graduated from the School of Art Design. Their success proves that industrial design education in art design education is effective. The product form design is still an important aspect. Industrial design in undergraduate industrial design research is currently an important part of the famous Art Design School.The Academy of Art and Design of the Norwegian Royal Academy of Arts, the University Politecnico Duisburg-Esse Milan, the applied sciences and arts of Hannover University (Hanover Industrial Design Division), all of whom belong to the School of Art and Design.According to a survey: the American Association of Industrial Designers (IDSA organized by the United States) in 1998, there are 49 colleges, which have industrial design undergraduate or graduate programs registered on the IDSA-sponsored list. Typical industrial design students are usually set up in art schools and can obtain bachelor degree or above, fine arts or related majors. Most people are accredited to the school NASAD (National Association of Arts and Design). Only 15 - schools are not certified. After five years o f IDSA’s announcement, only registered industrial design students can be recognized. Among them are37 industrial design majors in universities, 6 in design colleges, and 4 in art schools. This situation has not changed in the current year.Asia: In Japan, industrial design majors also set in art schools or independent industrial design faculties, such as Tokyo Zokei University, Musashino Art University, Tama Art University, and University of Tsukuba etc. In Hongkong, The Hong Kong Polytechnic University has famous industrial design programs. In Taiwan, Shih Chien University, National Cheng Kung University, National Yunlin University of Science & Technology have famous industrial design programs. In mainland of China, Jiangnan University, Tsinghua University, Hunan University, Tongji University and the Guangzhou academic of fine arts all have their industrial design departments in the art design schools or departments.2 10 Industrial Design Trends Y ou Can't Ignore2.1 Design For A CauseCompanies including Herman Miller and American Apparel are promoting their ideals through design. Y ves Béhar's leaf lamp for Herman Miller (shown) uses a biomorphic grid of LEDs, which consume 40% percent less energy than fluorescent lights and last for 100,000 hours. And Nike plans to make its entire footwear line out of sustainable materials by 2010.2.2 SimplexitySteve McCallion, executive creative director of Portland, Ore.-basedindustrial design firm Ziba Design, says there's a trend toward "simplexity," products that have many functions but are approachable, ergonomically correct and easy to use--like Apple's iPhone. The baby boomers have also propelled simplexity; as the generation ages, the need for easy-to-use, at-home medical equipment becomes greater. Ami V erhalen, director of industrial design at Madison, Wis.-based Design Concepts, says that in-home health care will be a huge driver for product innovation in the upcoming decade.2.3 PersonalizationFrom Nike ID shoes to Build-a-Bear teddies, retailers are adding a "build your own" element to brands. Do it yourself--or DIY--serves as an important element of this trend. Publications like Ready Made magazine and books like designer Wendy Mullin's Sew U encourage consumers to put their own spin on things.2.4 GlobalizationLike other industries, outsourcing has affected international design. Today a designer in Delhi might be working with a manufacturer in Columbus. Steve McCallion says that the globalization of product design has created Internet communities that enable more people to participate in the design process. Companies like Kid Robot can employ toy designers from Tokyo to Tucson with greater ease than ever.2.5 OrnamentationIn fashion design, we're seeing a return to minimalism, but in home decor, ornate details are in fashion. For the first time in decades, wallpaper is in fashion, and the details are rich--brocades, velvets and jewel-tone colors. Long-forgotten textile designers like Florence Broadhurst and V era Neumann are receiving attention from a new generation of design-savvy consumers.2.6 Polarization Of DesignBig-box or luxury retailer? Many experts say that design has been polarized, with innovative products available at both the very high end (Neiman Marcus, Moss) and the very low end (Target, Ikea). Meanwhile, midrange retailers like Macy's suffer from lack of fresh, on-trend ideas. That isolates the huge chunk of the population that can afford something higher-end than the $200 Malm bed at Ikea but scoff at the price of a $16,000 Hastens mattress.2.7 Pink DesignGadgets are a guy's game, right? Not if you consider the latest products with feminine mystique. Motorola released a lipstick pink Razr cellphone, and more recently, LG released a Prada phone. More and more manufacturers are creating sleeker, feminized versions of their clunky, chunky products, and both men and women are biting. Want proof of the feminization of product design? Just check out , which rates several items a day as "Geek chic" or "Just Plain Geeky."2.8 Mass ImperfectionSome designers are creating intentionally flawed pieces, like designer Jason Miller's duct tape chair or Bodum's Pavina glassware collection, which uses mouth-blown double-walled glass, giving each piece a slight variation in height, thickness and weight. Whiskered and weathered textiles--on denim as well as furniture and tapestries--are more recognizable examples of intentional imperfection in production.2.9 CraftAs mass retailers like Target become more design-focused, there's a countertrend of independent manufacturers and designers creating one-off, heirloom pieces. Where to find these limited-edition treasures? Artisan e-commerce sites like , classical craft companies like Heath Ceramics and modernist design houses such as Design Within Reach.2.10 Focus On The Other 90%Anthony Pannozzo, vice president of design strategy at Waltham, Mass.-based firm Herbst LaZar Bell, says that well-designed products are available to only 10% of the world's population. However, more and more designers are starting to cater to consumers in Africa, Asia and Latin America.中文译文德国包豪斯设计与未来设计趋势摘要德国包豪斯有显著的影响, 与此同时, 现代设计教育奠定了基础, 它处于世界领先地位的德国工业设计。

外文文献及翻译

外文文献及翻译

外文文献及翻译1. 文献:"The Effects of Exercise on Mental Health"翻译:运动对心理健康的影响Abstract: This article explores the effects of exercise on mental health. The author discusses various studies that have been conducted on this topic, and presents evidence to support the claim that exercise can have positive impacts on mental well-being. The article also examines the mechanisms through which exercise affects mental health, such as the release of endorphins and the reduction of stress hormones. Overall, the author concludes that exercise is an effective strategy for improving mental health and recommends incorporating physical activity into daily routines.摘要:本文探讨了运动对心理健康的影响。

作者讨论了在这个主题上进行的各种研究,并提出证据支持运动对心理健康有积极影响的观点。

该文章还探讨了运动如何影响心理健康的机制,如内啡肽的释放和压力激素的减少。

总的来说,作者得出结论,运动是改善心理健康的有效策略,并建议将体育活动纳入日常生活。

2. 文献: "The Benefits of Bilingualism"翻译:双语能力的好处Abstract: This paper examines the benefits of bilingualism. The author presents research findings that demonstrate the cognitiveadvantages of being bilingual, such as enhanced problem-solving skills and improved attention control. The article also explores the social and cultural benefits of bilingualism, such as increased cultural awareness and the ability to communicate with people from different backgrounds. Additionally, the author discusses the positive effects of bilingualism on mental health, highlighting its role in delaying the onset of cognitive decline and in providing a buffer against age-related memory loss. Overall, the author concludes that bilingualism offers a range of advantages and recommends promoting bilingual education and language learning. 摘要:本文研究了双语能力的好处。

电气工程及其自动化专业外文文献英文文献外文翻译方面

电气工程及其自动化专业外文文献英文文献外文翻译方面

1、 外文原文(复印件)A: Fundamentals of Single-chip MicrocomputerT h e sin gle -ch ip mi c ro co m p u t e r is t h e cu lm in at io n of b ot h t h e d e ve lo p me nt of t h e d ig ita l co m p u t e r a n d t h e i nte g rated c ircu it a rgu ab l y t h e to w mo st s ign if i cant i nve nt i o n s of t h e 20t h c e nt u ry [1].T h ese to w t yp e s of arch ite ct u re are fo u n d in s in gle -ch ip m i cro co m p u te r. S o m e e mp l oy t h e sp l it p ro gra m /d at a m e m o r y of t h e H a r va rd arch ite ct u re , s h o wn in -5A , ot h e rs fo l lo w t h e p h i lo so p hy, wid e l y ad a p ted fo r ge n e ral -p u rp o se co m p u te rs an d m i cro p ro ce ss o rs , of m a kin g n o l o g i ca l d i st in ct i o n b et we e n p ro gra m an d d ata m e m o r y as in t h e P rin c eto n a rch ite ct u re , sh o wn in -5A.In ge n e ra l te r m s a s in g le -ch ip m ic ro co m p u t e r is ch a ra cte r ized b y t h e in co r p o rat io n of all t h e u n its of a co mp u te r into a s in gle d e vi ce , as s h o w n in F i g3-5A-3.-5A-1A Harvard type-5A. A conventional Princeton computerProgrammemory Datamemory CPU Input& Output unitmemoryCPU Input& Output unitResetInterruptsPowerFig3-5A-3. Principal features of a microcomputerRead only memory (ROM).RO M is u su a l l y fo r t h e p e r m an e nt , n o n -vo lat i le sto rage of an ap p l i cat io n s p ro g ram .M a ny m i c ro co m p u te rs a n d m i cro co nt ro l le rs are inte n d ed fo r h i gh -vo lu m e ap p l i cat io n s a n d h e n ce t h e e co n o m i cal man u fa c t u re of t h e d e vi ces re q u ires t h at t h e co nt e nts of t h e p ro gra m me mo r y b e co mm i ed p e r m a n e nt l y d u r in g t h e m a n u fa ct u re of c h ip s . C lea rl y, t h i s imp l ies a r i go ro u s ap p ro a ch to ROM co d e d e ve lo p m e nt s in ce ch an ges can n o t b e mad e af te r m an u fa ct u re .T h i s d e ve l o p m e nt p ro ces s m ay i nvo l ve e mu l at i o n u sin g a so p h ist icated d e ve lo p m e nt syste m wit h a h ard wa re e mu l at i o n capab i l it y as we ll as t h e u s e of p o we rf u l sof t war e to o l s.So m e m an u fa ct u re rs p ro vi d e ad d it i o n a l ROM o p t io n s b y in clu d in g in t h e i r ran ge d e v ic es w it h (o r inte n d ed fo r u s e wit h ) u se r p ro g ram m a b le m e mo r y. T h e s im p lest of t h e se i s u su a l l y d e v i ce wh i ch can o p e rat e in a m i cro p ro ce s so r mo d e b y u s in g s o m e of t h e in p u t /o u t p u t l in es as an ad d res s a n d d ata b u s fo r a cc es sin g exte rn a l m e m o r y. T h is t yp e o f d e vi ce can b e h ave f u n ct i o n al l y as t h e s in gle ch ip m i cro co m p u t e r f ro m wh i ch it i s d e ri ved a lb e it wit h re st r icted I/O an d a m o d if ied exte rn a l c ircu it. T h e u s e of t h e se RO M le ss d e vi ces i s co mmo n e ve n in p ro d u ct io n circu i ts wh e re t h e vo lu m e d o e s n ot ju st if y t h e d e ve lo p m e nt co sts of cu sto m o n -ch ip ROM [2];t h e re ca n st i ll b e a si gn if i cant sav in g in I/O an d o t h e r ch ip s co m pared to a External Timing components System clock Timer/ Counter Serial I/O Prarallel I/O RAM ROMCPUco nve nt io n al m i c ro p ro ces so r b ased circ u it. M o re exa ct re p l a ce m e nt fo rRO M d e v ice s can b e o b tain ed in t h e fo rm of va ria nts w it h 'p i g g y-b a c k'E P ROM(E rasab le p ro gramm ab le ROM )s o cket s o r d e v ice s w it h E P ROMin stead of ROM 。

外文翻译范例

外文翻译范例

外文翻译范例在全球化日益加深的今天,外文翻译的重要性愈发凸显。

无论是学术研究、商务交流,还是文化传播,准确而流畅的外文翻译都起着至关重要的桥梁作用。

下面为大家呈现几个不同领域的外文翻译范例,以帮助大家更好地理解和掌握外文翻译的技巧与要点。

一、科技文献翻译原文:The development of artificial intelligence has brought about revolutionary changes in various fields, such as healthcare, finance, and transportation译文:人工智能的发展给医疗保健、金融和交通运输等各个领域带来了革命性的变化。

在这个范例中,翻译准确地传达了原文的意思。

“artificial intelligence”被准确地翻译为“人工智能”,“revolutionary changes”翻译为“革命性的变化”,“various fields”翻译为“各个领域”,用词准确、贴切,符合科技文献严谨、客观的语言风格。

二、商务合同翻译原文:This Agreement shall commence on the effective date and shall continue in force for a period of five years, unless earlier terminated in accordance with the provisions herein译文:本协议自生效日起生效,并将持续有效五年,除非根据本协议的规定提前终止。

商务合同的翻译需要格外注重准确性和专业性。

上述译文中,“commence”翻译为“生效”,“in force”翻译为“有效”,“terminated”翻译为“终止”,清晰准确地表达了合同条款的含义,避免了可能的歧义。

三、文学作品翻译原文:The sun was setting, painting the sky with hues of orange and pink, as if nature were a master artist at work译文:太阳正在西沉,把天空涂成了橙色和粉色,仿佛大自然是一位正在创作的艺术大师。

论文外文文献翻译

论文外文文献翻译

论文外文文献翻译以下是一篇700字左右的论文外文文献翻译:原文题目:The Role of Artificial Intelligence in Medical Diagnostics: A Review原文摘要:In recent years, there has been a growing interest in the use of artificial intelligence (AI) in the field of medical diagnostics. AI has the potential to improve the accuracy and efficiency of medical diagnoses, and can assist clinicians in making treatment decisions. This review aims to examine the current state of AI in medical diagnostics, and discuss its advantages and limitations. Several AI techniques, including machine learning, deep learning, and natural language processing, are discussed. The review also examines the ethical and legal considerations associated with the use of AI in medical diagnostics. Overall, AI has shown great promise in improving medical diagnostics, but further research is needed to fully understand its potential benefits and limitations.AI在医学诊断中发挥的作用:一项综述近年来,人工智能(AI)在医学诊断领域的应用引起了越来越多的关注。

外文参考文献(带中文翻译)

外文参考文献(带中文翻译)

外文资料原文涂敏之会计学 8051208076Title:Future of SME finance(c)Background – the environment for SME finance has changedFuture economic recovery will depend on the possibility of Crafts, Trades and SMEs to exploit their potential for growth and employment creation.SMEs make a major contribution to growth and employment in the EU and are at the heart of the Lisbon Strategy, whose main objective is to turn Europe into the most competitive and dynamic knowledge-based economy in the world. However, the ability of SMEs to grow depends highly on their potential to invest in restructuring, innovation and qualification. All of these investments need capital and therefore access to finance.Against this background the consistently repeated complaint of SMEs about their problems regarding access to finance is a highly relevant constraint that endangers the economic recovery of Europe.Changes in the finance sector influence the behavior of credit institutes towards Crafts, Trades and SMEs. Recent and ongoing developments in the banking sector add to the concerns of SMEs and will further endanger their access to finance. The main changes in the banking sector which influence SME finance are:•Globalization and internationalization have increased the competition and the profit orientation in the sector;•worsening of the economic situations in some institutes (burst of the ITC bubble, insolvencies) strengthen the focus on profitability further;•Mergers and restructuring created larger structures and many local branches, which had direct and personalized contacts with small enterprises, were closed;•up-coming implementation of new capital adequacy rules (Basel II) will also change SME business of the credit sector and will increase its administrative costs;•Stricter interpretation of State-Aide Rules by the European Commission eliminates the support of banks by public guarantees; many of the effected banks are very active in SME finance.All these changes result in a higher sensitivity for risks and profits in the financesector.The changes in the finance sector affect the accessibility of SMEs to finance.Higher risk awareness in the credit sector, a stronger focus on profitability and the ongoing restructuring in the finance sector change the framework for SME finance and influence the accessibility of SMEs to finance. The most important changes are: •In order to make the higher risk awareness operational, the credit sector introduces new rating systems and instruments for credit scoring;•Risk assessment of SMEs by banks will force the enterprises to present more and better quality information on their businesses;•Banks will try to pass through their additional costs for implementing and running the new capital regulations (Basel II) to their business clients;•due to the increase of competition on interest rates, the bank sector demands more and higher fees for its services (administration of accounts, payments systems, etc.), which are not only additional costs for SMEs but also limit their liquidity;•Small enterprises will lose their personal relationship with decision-makers in local branches –the credit application process will become more formal and anonymous and will probably lose longer;•the credit sector will lose more and more i ts “public function” to provide access to finance for a wide range of economic actors, which it has in a number of countries, in order to support and facilitate economic growth; the profitability of lending becomes the main focus of private credit institutions.All of these developments will make access to finance for SMEs even more difficult and / or will increase the cost of external finance. Business start-ups and SMEs, which want to enter new markets, may especially suffer from shortages regarding finance. A European Code of Conduct between Banks and SMEs would have allowed at least more transparency in the relations between Banks and SMEs and UEAPME regrets that the bank sector was not able to agree on such a commitment.Towards an encompassing policy approach to improve the access of Crafts, Trades and SMEs to financeAll analyses show that credits and loans will stay the main source of finance for the SME sector in Europe. Access to finance was always a main concern for SMEs, but the recent developments in the finance sector worsen the situation even more.Shortage of finance is already a relevant factor, which hinders economic recovery in Europe. Many SMEs are not able to finance their needs for investment.Therefore, UEAPME expects the new European Commission and the new European Parliament to strengthen their efforts to improve the framework conditions for SME finance. Europe’s Crafts, Trades and SMEs ask for an encompassing policy approach, which includes not only the conditions for SMEs’ access to l ending, but will also strengthen their capacity for internal finance and their access to external risk capital.From UEAPME’s point of view such an encompassing approach should be based on three guiding principles:•Risk-sharing between private investors, financial institutes, SMEs and public sector;•Increase of transparency of SMEs towards their external investors and lenders;•improving the regulatory environment for SME finance.Based on these principles and against the background of the changing environment for SME finance, UEAPME proposes policy measures in the following areas:1. New Capital Requirement Directive: SME friendly implementation of Basel IIDue to intensive lobbying activities, UEAPME, together with other Business Associations in Europe, has achieved some improvements in favour of SMEs regarding the new Basel Agreement on regulatory capital (Basel II). The final agreement from the Basel Committee contains a much more realistic approach toward the real risk situation of SME lending for the finance market and will allow the necessary room for adaptations, which respect the different regional traditions and institutional structures.However, the new regulatory system will influence the relations between Banks and SMEs and it will depend very much on the way it will be implemented into European law, whether Basel II becomes burdensome for SMEs and if it will reduce access to finance for them.The new Capital Accord form the Basel Committee gives the financial market authorities and herewith the European Institutions, a lot of flexibility. In about 70 areas they have room to adapt the Accord to their specific needs when implementing itinto EU law. Some of them will have important effects on the costs and the accessibility of finance for SMEs.UEAPME expects therefore from the new European Commission and the new European Parliament:•The implementation of the new Capital Requirement Directive will be costly for the Finance Sector (up to 30 Billion Euro till 2006) and its clients will have to pay for it. Therefore, the implementation – especially for smaller banks, which are often very active in SME finance –has to be carried out with as little administrative burdensome as possible (reporting obligations, statistics, etc.).•The European Regulators must recognize traditional instruments for collaterals (guarantees, etc.) as far as possible.•The European Commission and later the Member States should take over the recommendations from the European Parliament with regard to granularity, access to retail portfolio, maturity, partial use, adaptation of thresholds, etc., which will ease the burden on SME finance.2. SMEs need transparent rating proceduresDue to higher risk awareness of the finance sector and the needs of Basel II, many SMEs will be confronted for the first time with internal rating procedures or credit scoring systems by their banks. The bank will require more and better quality information from their clients and will assess them in a new way. Both up-coming developments are already causing increasing uncertainty amongst SMEs.In order to reduce this uncertainty and to allow SMEs to understand the principles of the new risk assessment, UEAPME demands transparent rating procedures –rating procedures may not become a “Black Box” for SMEs: •The bank should communicate the relevant criteria affecting the rating of SMEs.•The bank should inform SMEs about its assessment in order to allow SMEs to improve.The negotiations on a European Code of Conduct between Banks and SMEs , which would have included a self-commitment for transparent rating procedures by Banks, failed. Therefore, UEAPME expects from the new European Commission and the new European Parliament support for:•binding rules in the framework of the new Capital Adequacy Directive,which ensure the transparency of rating procedures and credit scoring systems for SMEs;•Elaboration of national Codes of Conduct in order to improve the relations between Banks and SMEs and to support the adaptation of SMEs to the new financial environment.3. SMEs need an extension of credit guarantee systems with a special focus on Micro-LendingBusiness start-ups, the transfer of businesses and innovative fast growth SMEs also depended in the past very often on public support to get access to finance. Increasing risk awareness by banks and the stricter interpretation of State Aid Rules will further increase the need for public support.Already now, there are credit guarantee schemes in many countries on the limit of their capacity and too many investment projects cannot be realized by SMEs.Experiences show that Public money, spent for supporting credit guarantees systems, is a very efficient instrument and has a much higher multiplying effect than other instruments. One Euro form the European Investment Funds can stimulate 30 Euro investments in SMEs (for venture capital funds the relation is only 1:2).Therefore, UEAPME expects the new European Commission and the new European Parliament to support:•The extension of funds for national credit guarantees schemes in the framework of the new Multi-Annual Programmed for Enterprises;•The development of new instruments for securitizations of SME portfolios;•The recognition of existing and well functioning credit guarantees schemes as collateral;•More flexibility within the European Instruments, because of national differences in the situation of SME finance;•The development of credit guarantees schemes in the new Member States;•The development of an SBIC-like scheme in the Member States to close the equity gap (0.2 – 2.5 Mio Euro, according to the expert meeting on PACE on April 27 in Luxemburg).•the development of a financial support scheme to encourage the internalizations of SMEs (currently there is no scheme available at EU level: termination of JOP, fading out of JEV).4. SMEs need company and income taxation systems, whichstrengthen their capacity for self-financingMany EU Member States have company and income taxation systems with negative incentives to build-up capital within the company by re-investing their profits. This is especially true for companies, which have to pay income taxes. Already in the past tax-regimes was one of the reasons for the higher dependence of Europe’s SMEs on bank lending. In future, the result of rating w ill also depend on the amount of capital in the company; the high dependence on lending will influence the access to lending. This is a vicious cycle, which has to be broken.Even though company and income taxation falls under the competence of Member States, UEAPME asks the new European Commission and the new European Parliament to publicly support tax-reforms, which will strengthen the capacity of Crafts, Trades and SME for self-financing. Thereby, a special focus on non-corporate companies is needed.5. Risk Capital – equity financingExternal equity financing does not have a real tradition in the SME sector. On the one hand, small enterprises and family business in general have traditionally not been very open towards external equity financing and are not used to informing transparently about their business.On the other hand, many investors of venture capital and similar forms of equity finance are very reluctant regarding investing their funds in smaller companies, which is more costly than investing bigger amounts in larger companies. Furthermore it is much more difficult to set out of such investments in smaller companies.Even though equity financing will never become the main source of financing for SMEs, it is an important instrument for highly innovative start-ups and fast growing companies and it has therefore to be further developed. UEAPME sees three pillars for such an approach where policy support is needed:Availability of venture capital•The Member States should review their taxation systems in order to create incentives to invest private money in all forms of venture capital.•Guarantee instruments for equity financing should be further developed.Improve the conditions for investing venture capital into SMEs•The development of secondary markets for venture capital investments in SMEs should be supported.•Accounting Standards for SMEs should be revised in order to easetransparent exchange of information between investor and owner-manager.Owner-managers must become more aware about the need for transparency towards investors•SME owners will have to realise that in future access to external finance (venture capital or lending) will depend much more on a transparent and open exchange of information about the situation and the perspectives of their companies.•In order to fulfil the new needs for transparency, SMEs will have to use new information instruments (business plans, financial reporting, etc.) and new management instruments (risk-management, financial management, etc.).外文资料翻译涂敏之会计学 8051208076题目:未来的中小企业融资背景:中小企业融资已经改变未来的经济复苏将取决于能否工艺品,贸易和中小企业利用其潜在的增长和创造就业。

外文文献免费范文精选

外文文献免费范文精选

英文原文1:《Professional C# Third Edition》Simon Robinson,Christian Nagel, Jay Glynn, Morgan Skinner, Karli Watson, Bill Evjen. Wiley Publishing, Inc. 2006 Where C# Fits InIn one sense, C# can be seen as being the same thing to programming languages is to the Windows environment. Just as Microsoft has been adding more and more features to Windows and the Windows API over the past decade. Visual Basic andC++ have undergone expansion. Although Visual Basic and C++ have ended up as hugely powerful languages as a result of this, both languages also suffer from problems due to the legacies of how they have evolved.In the case of Visual Basic 6 and earlier, the main strength of the language was the fact that it was simple to understand and didn't make many programming tasks easy, largely hiding the details of the Windows APT and the COM component infrastructure from the developer. The downside to this was that Visual Basic was never truly object-oriented, so that large applications quickly become disorganized and hard to maintain. As well as this, because Visual Basic's syntax was inherited from early versions of BASIC (which, in turn, was designed to be intuitively simple for beginning programmers to understand, rather than lo write large commercial applications), it didn't really lend itself to well-structured or object-oriented programs.C++, on the other hand, has its roots in the ANSI C++ language definition. It isn’t completely ANSI compliant for the simple reason that Microso ft first wrote itsC++ compiler before the ANSI definition had become official, but it conics close. Unfortunately, this has led to two problems. First, ANSI C++ has its roots in a decade-old state of technology, and this shows up in a lack of support for modern 1 外文文献-中文翻译-c#concepts (such as Unicode strings and generating XML documentation), and in some archaic syntax structures designed for the compilers of yesteryear (such as the separation of declaration from definition of member functions). Second, Microsoft has been simultaneously trying to evolve C++ into a language that is designed for high-performance (asks on Windows, and in order to achieve that they've been forced to add a huge number of Microsoft-specific keywords as well as various libraries to the language.The result is that on Windows, the language has become a complete mess. Just ask C++ developers how many definitions for a string they can think of: char*, LPTSTR, string, CString (MFC version), CString (WTL version), wchar_l*, OLECHAR*, and so on.Now completely new environment that is going to involve new extensions to both languages. Microsoft has gotten around this by adding yet more Microsoft-specific keywords to C++, and by completely revamping Visual Basic into Visual a language that retains some of the basic VB syntax but that is so different in design that we can consider it to be, for all practical purposes, a new language. It?s in this context that Microsoft has decided to give developers an alternative—a language designed specifically and designed with a clean slate. Visual C# .NET is the result. Officially, Microsoft describes C# as a ''simple, modern, object-oriented, and type-safe programming language derived from C and C++.” Most independent observers would probably change Chat to '"derived from C, C++, and Java.^ Such descriptions are technically accurate but do little to convey the beauty or elegance of the language. Syntactically, C# is very similar to both C++ and Java, to such 2an extent that many keywords are (he same, and C# also shares the same block structure with braces ({}) to mark blocks of code, and semicolons to separate statements. The first impression of a piece of C# code is that it looks quite like C++ or Java code. Behind that initial similarity, however, C# is a lot easier to learn than C++, and of comparable difficulty to Java. Its design is more in tune with modern developer tools than both of those other languages, and it has been designed to give us, simultaneously, the ease of use of Visual Basic, and the high performance, low-level memory access of C++ if required. Some of the features of C# arc:LI Full support for classes and object-oriented programming, including both interface and implementation inheritance, virtual functions, and operator overloading.□ A consistent and well-defined set of basic types.□ Built-in support for automatic generation of XML documentation.□ Automatic cleanup of dynamically allocated memory.□ The facility to mark classes or methods with user-defined attributes. This can be useful for documentation and can have some effects on compilation (for example, marking methods to be compiled only in debug builds).□ Full access to base class library, as well as easy access to the Windows AP I (if you really need it, which won’t be all that often).□ Pointers and direct memory access are available if required, but the language has been designed in such a way that you can work without them in almost all cases. □ Support for properties and eve nts in the style of Visual Basic.LJ Just by changing the compiler options, you can compile either to an executable or to a library components that can be called up by other code in the same way as 3外文文献-中文翻译-c#ActiveX controls (COM components).LI C# can be used to write dynamic Web pages and XMLWeb services.Most of the above statements, it should be pointed out. do also apply to Visual and Managed C++. The fact that C# is designed from the start to work however, means that its support for the features is both more complete, and offered within the context of a more suitable syntax than for those other languages. While the C# language itself is very similar to Java, there are some improvements: in particular. Java is not designed to work with environment.Before we leave the subject, we should point out a couple of limitations of C#. The one area the language is not designed for is time-critical or extremely high performance code—the kind where you really are worried about whether a loop takes 1.000 or 1,050 machine cycles to run through, and you need to clean up your resources the millisecond they arc no longer needed. C++ is likely to continue to reign supreme among low-level languages in this area. C# lacks certain key facilities needed for extremely high performance apps, including the ability to specify inline functions and destructors that are guaranteed to run at particular points in the code. However, the proportions of applications that fall into this category are very low.4外文文献-中文翻译-c#中文译文1:《C#的优点》C#在某种程度上k可以打作足.NET面向Windows环境的种编程语言。

5、外文文献翻译(附原文)产业集群,区域品牌,Industrial cluster ,Regional brand

5、外文文献翻译(附原文)产业集群,区域品牌,Industrial cluster ,Regional brand

外文文献翻译(附原文)外文译文一:产业集群的竞争优势——以中国大连软件工业园为例Weilin Zhao,Chihiro Watanabe,Charla-Griffy-Brown[J]. Marketing Science,2009(2):123-125.摘要:本文本着为促进工业的发展的初衷探讨了中国软件公园的竞争优势。

产业集群深植于当地的制度系统,因此拥有特殊的竞争优势。

根据波特的“钻石”模型、SWOT模型的测试结果对中国大连软件园的案例进行了定性的分析。

产业集群是包括一系列在指定地理上集聚的公司,它扎根于当地政府、行业和学术的当地制度系统,以此获得大量的资源,从而获得产业经济发展的竞争优势。

为了成功驾驭中国经济范式从批量生产到开发新产品的转换,持续加强产业集群的竞争优势,促进工业和区域的经济发展是非常有必要的。

关键词:竞争优势;产业集群;当地制度系统;大连软件工业园;中国;科技园区;创新;区域发展产业集群产业集群是波特[1]也推而广之的一个经济发展的前沿概念。

作为一个在全球经济战略公认的专家,他指出了产业集群在促进区域经济发展中的作用。

他写道:集群的概念,“或出现在特定的地理位置与产业相关联的公司、供应商和机构,已成为了公司和政府思考和评估当地竞争优势和制定公共决策的一种新的要素。

但是,他至今也没有对产业集群做出准确的定义。

最近根据德瑞克、泰克拉[2]和李维[3]检查的关于产业集群和识别为“地理浓度的行业优势的文献取得了进展”。

“地理集中”定义了产业集群的一个关键而鲜明的基本性质。

产业由地区上特定的众多公司集聚而成,他们通常有共同市场、,有着共同的供应商,交易对象,教育机构和其它像知识及信息一样无形的东西,同样地,他们也面临相似的机会和威胁。

在全球产业集群有许多种发展模式。

比如美国加州的硅谷和马萨诸塞州的128鲁特都是知名的产业集群。

前者以微电子、生物技术、和风险资本市场而闻名,而后者则是以软件、计算机和通讯硬件享誉天下[4]。

文学作品中英文对照外文翻译文献

文学作品中英文对照外文翻译文献

文学作品中英文对照外文翻译文献
本文旨在汇总文学作品中的英文和中文对照外文翻译文献,共有以下几篇:
1. 《傲慢与偏见》
翻译:英文原版名为“Pride and Prejudice”,中文版由钱钟书翻译。

该小说是英国作家简.奥斯汀的代表作之一,描绘了19世纪英国中上层社会的生活和爱情故事。

2. 《了不起的盖茨比》
翻译:英文原版名为“The Great Gatsby”,中文版由杨绛翻译。

小说主要讲述了一个居住在纽约长岛的年轻白领盖茨比为了追求他的旧爱黛西而付出的努力,是20世纪美国文学的经典之作。

3. 《麦田里的守望者》
翻译:英文原版名为“The Catcher in the Rye”,中文版由施蛰存翻译。

该小说主人公霍尔顿是美国现代文学中最为知名的反英雄形象之一,作品深刻地揭示了青少年内心的孤独和矛盾。

4. 《1984》
翻译:英文原版名为“1984”,中文版由李敬瑞翻译。

该小说是英国作家乔治.奥威尔的代表作之一,描绘了一个虚构的极权主义社会。

以上是部分文学作品的中英文对照外文翻译文献,可以帮助读者更好地理解和学习相关文学作品。

外文文献翻译原文+译文

外文文献翻译原文+译文

外文文献翻译原文Analysis of Con tin uous Prestressed Concrete BeamsChris BurgoyneMarch 26, 20051、IntroductionThis conference is devoted to the development of structural analysis rather than the strength of materials, but the effective use of prestressed concrete relies on an appropriate combination of structural analysis techniques with knowledge of the material behaviour. Design of prestressed concrete structures is usually left to specialists; the unwary will either make mistakes or spend inordinate time trying to extract a solution from the various equations.There are a number of fundamental differences between the behaviour of prestressed concrete and that of other materials. Structures are not unstressed when unloaded; the design space of feasible solutions is totally bounded;in hyperstatic structures, various states of self-stress can be induced by altering the cable profile, and all of these factors get influenced by creep and thermal effects. How were these problems recognised and how have they been tackled?Ever since the development of reinforced concrete by Hennebique at the end of the 19th century (Cusack 1984), it was recognised that steel and concrete could be more effectively combined if the steel was pretensioned, putting the concrete into compression. Cracking could be reduced, if not prevented altogether, which would increase stiffness and improve durability. Early attempts all failed because the initial prestress soon vanished, leaving the structure to be- have as though it was reinforced; good descriptions of these attempts are given by Leonhardt (1964) and Abeles (1964).It was Freyssineti’s observations of the sagging of the shallow arches on three bridges that he had just completed in 1927 over the River Allier near Vichy which led directly to prestressed concrete (Freyssinet 1956). Only the bridge at Boutiron survived WWII (Fig 1). Hitherto, it had been assumed that concrete had a Young’s modulus which remained fixed, but he recognised that the de- ferred strains due to creep explained why the prestress had been lost in the early trials. Freyssinet (Fig. 2) also correctly reasoned that high tensile steel had to be used, so that some prestress would remain after the creep had occurred, and alsothat high quality concrete should be used, since this minimised the total amount of creep. The history of Freyssineti’s early prestressed concrete work is written elsewhereFigure1:Boutiron Bridge,Vic h yFigure 2: Eugen FreyssinetAt about the same time work was underway on creep at the BRE laboratory in England ((Glanville 1930) and (1933)). It is debatable which man should be given credit for the discovery of creep but Freyssinet clearly gets the credit for successfully using the knowledge to prestress concrete.There are still problems associated with understanding how prestressed concrete works, partly because there is more than one way of thinking about it. These different philosophies are to some extent contradictory, and certainly confusing to the young engineer. It is also reflected, to a certain extent, in the various codes of practice.Permissible stress design philosophy sees prestressed concrete as a way of avoiding cracking by eliminating tensile stresses; the objective is for sufficient compression to remain after creep losses. Untensionedreinforcement, which attracts prestress due to creep, is anathema. This philosophy derives directly from Freyssinet’s logic and is primarily a working stress concept.Ultimate strength philosophy sees prestressing as a way of utilising high tensile steel as reinforcement. High strength steels have high elastic strain capacity, which could not be utilised when used as reinforcement; if the steel is pretensioned, much of that strain capacity is taken out before bonding the steel to the concrete. Structures designed this way are normally designed to be in compression everywhere under permanent loads, but allowed to crack under high live load. The idea derives directly from the work of Dischinger (1936) and his work on the bridge at Aue in 1939 (Schonberg and Fichter 1939), as well as that of Finsterwalder (1939). It is primarily an ultimate load concept. The idea of partial prestressing derives from these ideas.The Load-Balancing philosophy, introduced by T.Y. Lin, uses prestressing to counter the effect of the permanent loads (Lin 1963). The sag of the cables causes an upward force on the beam, which counteracts the load on the beam. Clearly, only one load can be balanced, but if this is taken as the total dead weight, then under that load the beam will perceive only the net axial prestress and will have no tendency to creep up or down.These three philosophies all have their champions, and heated debates take place between them as to which is the most fundamental.2、Section designFrom the outset it was recognised that prestressed concrete has to be checked at both the working load and the ultimate load. For steel structures, and those made from reinforced concrete, there is a fairly direct relationship between the load capacity under an allowable stress design, and that at the ultimate load under an ultimate strength design. Older codes were based on permissible stresses at the working load; new codes use moment capacities at the ultimate load. Different load factors are used in the two codes, but a structure which passes one code is likely to be acceptable under the other.For prestressed concrete, those ideas do not hold, since the structure is highly stressed, even when unloaded. A small increase of load can cause some stress limits to be breached, while a large increase in load might be needed to cross other limits. The designer has considerable freedom to vary both the working load and ultimate load capacities independently; both need to be checked.A designer normally has to check the tensile and compressive stresses, in both the top and bottom fibre of the section, for every load case. The critical sections are normally, but not always, the mid-span and the sections over piers but other sections may become critical ,when the cable profile has to be determined.The stresses at any position are made up of three components, one of which normally has a different sign from the other two; consistency of sign convention is essential.If P is the prestressing force and e its eccentricity, A and Z are the area of the cross-section and its elastic section modulus, while M is the applied moment, then where ft and fc are the permissible stresses in tension and compression.c e t f ZM Z P A P f ≤-+≤Thus, for any combination of P and M , the designer already has four in- equalities to deal with.The prestressing force differs over time, due to creep losses, and a designer isusually faced with at least three combinations of prestressing force and moment;• the applied moment at the time the prestress is first applied, before creep losses occur,• the maximum applied moment after creep losses, and• the minimum applied moment after creep losses.Figure 4: Gustave MagnelOther combinations may be needed in more complex cases. There are at least twelve inequalities that have to be satisfied at any cross-section, but since an I-section can be defined by six variables, and two are needed to define the prestress, the problem is over-specified and it is not immediately obvious which conditions are superfluous. In the hands of inexperienced engineers, the design process can be very long-winded. However, it is possible to separate out the design of the cross-section from the design of the prestress. By considering pairs of stress limits on the same fibre, but for different load cases, the effects of the prestress can be eliminated, leaving expressions of the form:rangestress e Perm issibl Range Mom entZ These inequalities, which can be evaluated exhaustively with little difficulty, allow the minimum size of the cross-section to be determined.Once a suitable cross-section has been found, the prestress can be designed using a construction due to Magnel (Fig.4). The stress limits can all be rearranged into the form:()M fZ PA Z e ++-≤1 By plotting these on a diagram of eccentricity versus the reciprocal of the prestressing force, a series of bound lines will be formed. Provided the inequalities (2) are satisfied, these bound lines will always leave a zone showing all feasible combinations of P and e. The most economical design, using the minimum prestress, usually lies on the right hand side of the diagram, where the design is limited by the permissible tensile stresses.Plotting the eccentricity on the vertical axis allows direct comparison with the crosssection, as shown in Fig. 5. Inequalities (3) make no reference to the physical dimensions of the structure, but these practical cover limits can be shown as wellA good designer knows how changes to the design and the loadings alter the Magnel diagram. Changing both the maximum andminimum bending moments, but keeping the range the same, raises and lowers the feasible region. If the moments become more sagging the feasible region gets lower in the beam.In general, as spans increase, the dead load moments increase in proportion to the live load. A stage will be reached where the economic point (A on Fig.5) moves outside the physical limits of the beam; Guyon (1951a) denoted the limiting condition as the critical span. Shorter spans will be governed by tensile stresses in the two extreme fibres, while longer spans will be governed by the limiting eccentricity and tensile stresses in the bottom fibre. However, it does not take a large increase in moment ,at which point compressive stresses will govern in the bottom fibre under maximum moment.Only when much longer spans are required, and the feasible region moves as far down as possible, does the structure become governed by compressive stresses in both fibres.3、Continuous beamsThe design of statically determinate beams is relatively straightforward; the engineer can work on the basis of the design of individual cross-sections, as outlined above. A number of complications arise when the structure is indeterminate which means that the designer has to consider, not only a critical section,but also the behaviour of the beam as a whole. These are due to the interaction of a number of factors, such as Creep, Temperature effects and Construction Sequence effects. It is the development of these ideas whichforms the core of this paper. The problems of continuity were addressed at a conference in London (Andrew and Witt 1951). The basic principles, and nomenclature, were already in use, but to modern eyes concentration on hand analysis techniques was unusual, and one of the principle concerns seems to have been the difficulty of estimating losses of prestressing force.3.1 Secondary MomentsA prestressing cable in a beam causes the structure to deflect. Unlike the statically determinate beam, where this motion is unrestrained, the movement causes a redistribution of the support reactions which in turn induces additional moments. These are often termed Secondary Moments, but they are not always small, or Parasitic Moments, but they are not always bad.Freyssinet’s bridge across the Marne at Luzancy, started in 1941 but not completed until 1946, is often thought of as a simply supported beam, but it was actually built as a two-hinged arch (Harris 1986), with support reactions adjusted by means of flat jacks and wedges which were later grouted-in (Fig.6). The same principles were applied in the later and larger beams built over the same river.Magnel built the first indeterminate beam bridge at Sclayn, in Belgium (Fig.7) in 1946. The cables are virtually straight, but he adjusted the deck profile so that the cables were close to the soffit near mid-span. Even with straight cables the sagging secondary momentsare large; about 50% of the hogging moment at the central support caused by dead and live load.The secondary moments cannot be found until the profile is known but the cablecannot be designed until the secondary moments are known. Guyon (1951b) introduced the concept of the concordant profile, which is a profile that causes no secondary moments; es and ep thus coincide. Any line of thrust is itself a concordant profile.The designer is then faced with a slightly simpler problem; a cable profile has to be chosen which not only satisfies the eccentricity limits (3) but is also concordant. That in itself is not a trivial operation, but is helped by the fact that the bending moment diagram that results from any load applied to a beam will itself be a concordant profile for a cable of constant force. Such loads are termed notional loads to distinguish them from the real loads on the structure. Superposition can be used to progressively build up a set of notional loads whose bending moment diagram gives the desired concordant profile.3.2 Temperature effectsTemperature variations apply to all structures but the effect on prestressed concrete beams can be more pronounced than in other structures. The temperature profile through the depth of a beam (Emerson 1973) can be split into three components for the purposes of calculation (Hambly 1991). The first causes a longitudinal expansion, which is normally released by the articulation of the structure; the second causes curvature which leads to deflection in all beams and reactant moments in continuous beams, while the third causes a set of self-equilibrating set of stresses across the cross-section.The reactant moments can be calculated and allowed-for, but it is the self- equilibrating stresses that cause the main problems for prestressed concrete beams. These beams normally have high thermal mass which means that daily temperature variations do not penetrate to the core of the structure. The result is a very non-uniform temperature distribution across the depth which in turn leads to significant self-equilibrating stresses. If the core of the structure is warm, while the surface is cool, such as at night, then quite large tensile stresses can be developed on the top and bottom surfaces. However, they only penetrate a very short distance into the concrete and the potential crack width is very small. It can be very expensive to overcome the tensile stress by changing the section or the prestress。

工业工程英文文献及外文翻译

工业工程英文文献及外文翻译

附录附录1:英文文献Line Balancing in the Real WorldAbstract:Line Balancing (LB) is a classic, well-researched Operations Research (OR) optimization problem of significant industrial importance. It is one of those problems where domain expertise does not help very much: whatever the number of years spent solving it, one is each time facing an intractable problem with an astronomic number of possible solutions and no real guidance on how to solve it in the best way, unless one postulates that the old way is the best way .Here we explain an apparent paradox: although many algorithms have been proposed in the past, and despite the problem’s practical importance, just one commercially available LB software currently appears to be available for application in industries such as automotive. We speculate that this may be due to a misalignment between the academic LB problem addressed by OR, and the actual problem faced by the industry.Keyword:Line Balancing, Assembly lines, OptimizationLine Balancing in the Real WorldEmanuel FalkenauerOptimal DesignAv. Jeanne 19A boîte2, B-1050 Brussels, Belgium+32 (0)2 646 10 741 IntroductionAssembly Line Balancing, or simply Line Balancing (LB), is the problem of assigning operations to workstations along an assembly line, in such a way that the assignment be optimal in some sense. Ever since Henry Ford’s introduction of assembly lines, LB has been an optimization problem of significant industrial importance: the efficiency difference between an optimal and a sub-optimal assignment can yield economies (or waste) reaching millions of dollars per year.LB is a classic Operations Research (OR) optimization problem, having been tackled by OR over several decades. Many algorithms have been proposed for the problem. Yet despite the practical importance of the problem, and the OR efforts that have been made to tackle it, little commercially available software is available to help industry in optimizing their lines. In fact, according to a recent survey by Becker and Scholl (2023), there appear to be currently just two commercially available packages featuring both a state of the art optimization algorithm and auser-friendly interface for data management. Furthermore, one of those packages appears to handle only the “clean” formulation of the problem (Simple Assembly Line Balancing Problem, or SALBP), which leaves only one package available for industries such as automotive. This situation appears to be paradoxical, or at least unexpected: given the huge economies LB can generate, one would expect several software packages vying to grab a part of those economies.It appears that the gap between the available OR results and their dissemination in Today’s industry, is probably due to a misalignment between the academic LB problem addressed by most of the OR approaches, and the actual problem being faced by the industry. LB is a difficult optimization problem even its simplest forms are NP-hard – see Garry and Johnson, 1979), so the approach taken by OR has typically been to simplify it, in order to bring it to a level of complexity amenable to OR tools. While this is a perfectly valid approach in general, in the particular case of LB it led some definitions of the problem hat ignore many aspects of the real-world problem.Unfortunately, many of the aspects that have been left out in the OR approach are in fact crucial to industries such as automotive, in the sense that any solution ignoring (violating) those aspects becomes unusable in the industry.In the sequel, we first briefly recall classic OR definitions of LB, and then review how the actual line balancing problem faced by the industry differs from them, and why a solution to the classic OR problem maybe unusable in some industries.2 OR Definitions of LBThe classic OR definition of the line balancing problem, dubbed SALBP (Simple Assembly Line Balancing Problem) by Becker and Scholl (2023), goes as follows. Given a set of tasks of various durations, a set of precedence constraints among the tasks, and a set of workstations, assign each task to exactly one workstation in such a way that no precedence constraint is violated and the assignment is optimal. The optimality criterion gives rise to two variants of the problem: either a cycle time is given that cannot be exceeded by the sum of durations of all tasks assigned to any workstation and the number of workstations is to be minimized, or the number of workstations is fixed and the line cycle time, equal to the largest sum of durations of task assigned to a workstation, is to be minimized.Although the SALBP only takes into account two constraints (the precedence constraints plus the cycle time, or the precedence constraints plus the number of workstations), it is by far the variant of line balancing that has been the most researched. We have contributed to that effort in Falkenauer and Delchambre (1992), where we proposed a Grouping Genetic Algorithm approach that achieved some of the best performance in the field. The Grouping Genetic Algorithm technique itself was presented in detail in Falkenauer (1998).However well researched, the SALBP is hardly applicable in industry, as we will see shortly. The fact has not escaped the attention of the OR researches, and Becker and Scholl (2023) define many extensions to SALBP, yielding a commondenomination GALBP (Generalized Assembly Line Balancing Problem). Each of the extensions reported in their authoritative survey aims to handle an additional difficulty present in real-world line balancing. We have tackled one of those aspects in Falkenauer (1997), also by applying the Grouping Genetic Algorithm.The major problem with most of the approaches reported by Becker and Scholl (2023) is that they generalize the simple SALBP in just one or two directions. The real world line balancing, as faced in particular by the automotive industry, requires tackling many of those generalizations simultaneously.3 What Differs in the Real World?Although even the simple SALBP is NP-hard, it is far from capturing the true complexity of the problem in its real-world incarnations. On the other hand, small instances of the problem, even though they are difficult to solve to optimality, are a tricky target for line balancing software, because small instances of the problem can be solved closet optimality by hand. That is however not the case in the automotive and related industries (Bus, truck, aircraft, heavy machinery, etc.), since those industries routinely feature Assembly lines with dozens or hundreds of workstations, and hundreds or thousands of Operations. Those industries are therefore the prime targets for line balancing software.Unfortunately, those same industries also need to take into account many of the GALBP extensions at the same time, which may explain why, despite the impressive OR Work done on line balancing; only one commercially available software seemstube currently available for those industries.We identify below some of the additional difficulties (with respect to SALBP) that must be tackled in a line balancing tool, in order to be applicable in those industries.3.1 Do Not Balance but Re-balanceMany of the OR approaches implicitly assume that the problem to be solved involves a new, yet-to-be-built assembly line, possibly housed in a new, yet-to-be-built factory. To our opinion, this is the gravest oversimplification of the classic OR approach, for in practice, this is hardly ever the case. The vast majority of real-world line balancing tasks involve existing lines, housed in existing factories – infect, the target line typically needs tube rebalanced rather than balanced, the need arising from changes in the product or the mix of models being assembled in the line, the assembly technology, the available workforce, or the production targets. This has some far-reaching implications, outlined below.3.2 Workstations Have IdentitiesAs pointed out above, the vast majority of real-world line balancing tasks involves existing lines housed in existing factories. In practice, this seemingly “uninteresting” observation has one far-reaching consequence, namely that each workstation in the line does have its own identity. This identity is not due to any “incapacity of abstraction” on part of the process engineers, but rather to the fact that the workstations are indeed not identical: each has its own space constraints (e.g. a workstation below a low ceiling cannot elevate the car above the operators’ heads),its own heavy equipment that cannot be moved spare huge costs, its own capacity of certain supplies (e.g. compressed air), its own restrictions on the operations that can be carried out there (e.g. do not place welding operations just beside the painting shop), etc.3.3 Cannot Eliminate WorkstationsSince workstations do have their identity (as observed above), it becomes obvious that a real-world LB tool cannot aim at eliminating workstations. Indeed, unless the eliminated workstations were all in the front of the line or its tail, their elimination would create gaping holes in the line, by virtue of the other workstations’ retaining of their identities, including their geographical positions in the workshop. Also, it softens the case that many workstations that could possibly be eliminated by the algorithm are in fact necessary because of zoning constraints.4 ConclusionsThe conclusions inspection 3 stems from our extensive contacts with automotive and related industries, and reflects their true needs. Other “exotic” constraints may apply in any given real-world assembly line, but line balancing tool for those industries must be able to handle at least those aspects of the problem. This is very far from the “clean” academic SALBP, as well as most GALBP extensions reported by Becker and Scholl (2023). In fact, such a tool must simultaneously solve several-hard problems:• Find a feasible defined replacement for all undefined (‘ANY’) ergonomicconstraints on workstations, i.e. One compatible with the ergonomic constraints and precedence constraints defined on operations, as well as zoning constraints and possible drifting operations• Solve the within-workstation scheduling problem on all workstations, for all products being assembled on the line• Assign the operations to workstations to achieve the best average balance, while keeping the peak times at a manageable level. Clearly, the real-world line balancing problem described above is extremely difficult to solve. This is compounded byte size of the problem encountered in the target industries, which routinely feature assembly lines with dozens or hundreds of workstations with multiple operators, and hundreds or thousands of operations.We’ve identified a number of aspects of the line balancing problem that are vital in industries such as automotive, yet that have been either neglected in the OR work on the problem, or handled separately from each other. According to our experience, a line balancing to applicable in those industries must be able to handle all of them simultaneously. That gives rise to an extremely complex optimization problem.The complexity of the problem, and the need to solve it quickly, may explain why there appears to be just one commercially available software for solving it, namely outline by Optimal Design. More information on Outline, including its rich graphic user interface, is available at .References1 Becker C. and Scholl, A. (2023) `A survey on problems and methods in generalized assemblyline balancing', European Journal of Operations Research, in press. Available online at :10.1016/j.ejor.2023.07.023. Journal article.2 Falkenauer, E. and Delchambre, A. (1992) `Genetic Algorithm for Bin Packing and Line Balancing', Proceedings of the 1992 IEEE International Conference on Robotics and Automation, May10-15, 1992, Nice, France. IEEE Computer Society Press, Los Alamitos, CA. Pp. 1186-1192. Conference proceedings.3 Falkenauer, E. (1997) `A Grouping Genetic Algorithm for Line Balancing with Resource Dependent Task Times', Proceedings of the Fourth International Conference on Neural Information Processing (ICONIP’97), University of Otego, Dunedin, New Zealand, November 24-28, 1997. Pp. 464-468. Conference proceedings.4 Falkenauer, E. (1998) Genetic Algorithms and Grouping Problems, John Wiley& Sons, Chi Chester, UK. Book.5 Gary. R. and Johnson D. S. (1979) Computers and Intractability - A Guide to the Theory of NP-completeness, Co., San Francisco, USA. Book.附录2:中文文献生产线平衡在现实世界摘要:生产线平衡(LB)是一种经典旳,精心研究旳明显工业重要性旳运筹学(OR)优化问题。

(完整word版)外文文献及翻译doc

(完整word版)外文文献及翻译doc

Criminal Law1.General IntroductionCriminal law is the body of the law that defines criminal offenses, regulates the apprehension, charging, and trial of suspected offenders,and fixes punishment for convicted persons. Substantive criminal law defines particular crimes, and procedural law establishes rules for the prosecution of crime. In a democratic society, it is the function of the legislative bodies to decide what behavior will be made criminal and what penalties will be attached to violations of the law.Capital punishment may be imposed in some jurisdictions for the most serious crimes. And physical or corporal punishment may still be imposed such as whipping or caning, although these punishments are prohibited in much of the world. A convict may be incarcerated in prison or jail and the length of incarceration may vary from a day to life.Criminal law is a reflection of the society that produce it. In an Islamic theocracy, such as Iran, criminal law will reflect the religious teachings of the Koran; in an Catholic country, it will reflect the tenets of Catholicism. In addition, criminal law will change to reflect changes in society, especially attitude changes. For instance, use of marijuana was once considered a serious crime with harsh penalties, whereas today the penalties in most states are relatively light. As severity of the penaltieswas reduced. As a society advances, its judgments about crime and punishment change.2.Elements of a CrimeObviously, different crimes require different behaviors, but there are common elements necessary for proving all crimes. First, the prohibited behavior designated as a crime must be clearly defined so that a reasonable person can be forewarned that engaging in that behavior is illegal. Second, the accused must be shown to have possessed the requisite intent to commit the crime. Third, the state must prove causation. Finally, the state must prove beyond a reasonable doubt that the defendant committed the crime.(1) actus reusThe first element of crime is the actus reus.Actus is an act or action and reus is a person judicially accused of a crime. Therefore, actus reus is literally the action of a person accused of a crime. A criminal statute must clearly define exactly what act is deemed “guilty”---that is, the exact behavior that is being prohibited. That is done so that all persons are put on notice that if they perform the guilty act, they will be liable for criminal punishment. Unless the actus reus is clearly defined, one might not know whether or not on e’s behavior is illegal.Actus reus may be accomplished by an action, by threat of action,or exceptionally, by an omission to act, which is a legal duty to act. For example, the act of Cain striking Abel might suffice, or a parent’s failure to give to a young child also may provide the actus reus for a crime.Where the actus reus is a failure to act, there must be a duty of care. A duty can arise through contract, a voluntary undertaking, a blood relation, and occasionally through one’s official position. Duty also can arise from one’s own creation of a dangerous situation.(2)mens reaA second element of a crime is mens rea. Mens rea refers to an individual’s state of mind when a crime is committed. While actus reus is proven by physical or eyewitness evidence, mens rea is more difficult to ascertain. The jury must determine for itself whether the accused had the necessary intent to commit the act.A lower threshold of mens rea is satisfied when a defendant recognizes an act is dangerous but decides to commit it anyway. This is recklessness. For instance, if Cain tears a gas meter from a wall, and knows this will let flammable gas escape into a neighbor’s house, he could be liable for poisoning. Courts often consider whether the actor did recognise the danger, or alternatively ought to have recognized a danger (though he did not) is tantamount to erasing intent as a requirement. In this way, the importance of mens rea hasbeen reduced in some areas of the criminal law.Wrongfulness of intent also may vary the seriousness of an offense. A killing committed with specific intent to kill or with conscious recognition that death or serious bodily harm will result, would be murder, whereas a killing affected by reckless acts lacking such a consciousness could be manslaughter.(3)CausationThe next element is causation. Often the phrase “but for”is used to determine whether causation has occurred. For example, we might say “Cain caused Abel”, by which we really mean “Cain caused Abel’s death. ”In other words, ‘but for Cain’s act, Abel would still be alive.” Causation, then, means “but for” the actions of A, B would not have been harmed. In criminal law, causation is an element that must be proven beyond a reasonable doubt.(4) Proof beyond a Reasonable DoubtIn view of the fact that in criminal cases we are dealing with the life and liberty of the accused person, as well as the stigma accompanying conviction, the legal system places strong limits on the power of the state to convict a person of a crime. Criminal defendants are presumed innocent. The state must overcome this presumption of innocence by proving every element of the offense charged against the defendant beyond a reasonable doubt to thesatisfaction of all the jurors. This requirement is the primary way our system minimizes the risk of convicting an innocent person.The state must prove its case within a framework of procedural safeguards that are designed to protect the accused. The state’s failure to prove any material element of its case results in the accused being acquitted or found not guilty, even though he or she may actually have committed the crime charged.3. Strict LiabilityIn modern society, some crimes require no more mens rea, and they are known as strict liability offenses. For in stance, under the Road Traffic Act 1988 it is a strict liability offence to drive a vehicle with an alcohol concentration above the prescribed limit.Strict liability can be described as criminal or civil liability notwithstanding the lack mens rea or intent by the defendant. Not all crimes require specific intent, and the threshold of culpability required may be reduced. For example, it might be sufficient to show that a defendant acted negligently, rather than intentionally or recklessly.1. 概述刑法是规定什么试犯罪,有关犯罪嫌疑人之逮捕、起诉及审判,及对已决犯处以何种刑罚的部门法。

外文文献及外文翻译 1

外文文献及外文翻译 1

The Stereo Garage1.1 An overview of the stereo garageVehicles parked nowhere is the problem of the urban social, economic and transport development to a certain extent the result, Garage Equipment development in foreign countries, especially in Japan nearly 30-40 years. Whether technically or in terms of experience had been a success. China is also in the beginning of the 1990s developed mechanical parking equipment, which was 10 years in the past. Because a lot of new residents in the district with the ratio of 1:1. To address the size of parking spaces for tenants and business areas contradictions 3D mechanical parking equipment with an average size of a small motorcycle's unique characteristics, the majority of users have been accepted.Compared with the traditional natural underground garage, Machinery garage demonstrates its superiority in many respects. First, the mechanical garage has a prominent section of superiority. Past due to the underground garage must elapse enough lanes, the average car will occupy an area of 40 square meters, If the use of double-mechanical garage, which would enable ground to improve the utilization rate of around 80% to 90%, If using ground multi-storey (21 storey), three-dimensional garage, 50 square meters of land area will be placed on the 40 cars, which can greatly save the limited land resources, Civil and save development costs.To underground garage, Mechanical garage can be more effective to ensure personal and vehicle safety in the garage or car kept prospective location, the entire electronic control equipment would not operate. It should be said that the mechanical garage from the management can do a thorough separation of people and vehicles.In the underground garage using mechanical parking, it also can remove the heating ventilation; therefore, Operation of the power consumption than workers in the management of underground garage is much lower. Mechanical garage don't usually do complete system, but as a single machine containers. This will give full play to its small space, the advantages of decentralized, Each of the residential areas or groups downstairs to make a complete circuit can be set up random mechanicalparking building. This garage of the district can solve the shortage of parking difficulty in providing convenient conditions right now.Currently, three-dimensional garage mainly in the following forms: lifting and transferring,aisle stacking garage, vertical garage, vertical cycle, box-level cycle, the level of circulating round.1.1.1 Lifting and transferringLifting and transferring Garage modular design, each module can be designed into two, three, four levels, the five-story, semi-submerged in various forms, such as the number of parking spaces from a few to hundreds. Three-dimensional garage applies to the ground and underground car parks, configuration flexibility and cost is low.1. Product features:1) Save land, the configuration flexibility, and shorter construction period.2) Low prices, firefighting and exterior decoration, with a total investment on small foundations.3) Use automatic control, simple structure, safe and reliable.4) Access to a quick, short waiting time.5) Run a smooth, low noise.6) Applies to commercial, offices, and residential quarters supporting the use of car parks.2. Safety devices: anti-dropping device, a photoelectric sensor, spacing protectors, emergency stop switch.1.1.2 Aisle stacking garageAisle stacking garage used as a stacking machine tool access vehicles. All vehicles are stacking machine access, so the technical requirements for stacker higher, a single stacker cost is higher. So aisle stacking apply to the parking garage needs a few more customers.1.1.3 Vertical GarageVertical Garage Elevator similar to the principle that both sides of the hoist layout spaces. Generally need a ground vehicle rotary tables can be saved by the driver away. Vertical Garage generally higher high (tens of meters), safety equipment, Installation precision machining requirements are very high, high cost, but has the smallest area.1.1.4 Vertical cycleProduct features:1) covers an area of small; two berths area can stop 6-10 vehicles.2) The decoration can be added only roof, fire hydrants available.3) Low prices, foundation, external decoration, fire and other small investment, short construction periods.4) Use automatic control, safe and reliable operation.2.2.1 The stereo garage automatic control systemThe modern large-scale building mainstream is intelligent mansion and community. So, automated parking equipment or garage automatic control system will become intelligent mansion and an important part of community. Simple, fast, easy to use, safe, reliable, and less maintenance, to provide users with a safe, easy to use environment, This is auto-parking feature of the basic equipment. All parking equipment operating conditions, vehicles parked in time, vehicle storage Malaysia, garage storage capacity. Vehicles kept high and low peaks, and other information can be transmitted through the network of intelligent control center through intelligent control center operator, and the broadcasting system and the management office of the Division linked related to early release control, management information, thus achieving all the intelligent management. Building and the Community through the intelligent control of the center could also associate with social networking functions. Information released to the collection coming out or expands utilization of the garage social and economic benefits. This will be the automation of the development direction of the garage. Solid Garage automation control system include the following five major subsystems: automatic toll collection management system automatic access systems for remote diagnosis system, automatic Gate, control security system.Subsystems are more unified control of the central control room, for customers planning Garage form of management, Published garage inventory capacity, traffic control program.2.1.1 Automatic Toll Management SystemAutomatic charge adopts contactless IC card. IC card points long-term card and the stored-card. For fixed users, the issue of long-term cards, the cost of fixed users pays management fees paid together; on the temporary users, issue stored-value cards, namely: the user feespaid cards exist within each parking card reader automatically deducted from the cost.2.1.2 Automatic vehicle access systemAutomatic vehicle access system is generally controlled by small PLC. Including the identification card number and mobile disc contains two cars process. Users enter the garage at the entrance to Swiping cards, reader data automatically transmitted to the PLC control system, PLC system through the judgment card number and automatically set the corresponding site mobile trucks and vehicles to the handover location, the garage door opened, shorten the time access to cars. Truck drivers light signals in accordance with the guidelines created only when vehicles parked in a safe location, Parking will be normal light-Kai. Access car after the completion of the garage doors shut down automatically. Mobile site contains car, the system in strict accordance with the various signal detection mobile state, including long signal detection, Detection in place, the position detection limit, officers hit detection, emergency stop signal detection. If cars are running plate is not in place or vehicle length in excess of the permitted length of the garage, all vehicles disc will contain no action, If detected emergency stop signal to stop all action until the emergency stop signal disappeared. Above signals are hardware signals, in addition, the software can also be installed to control signal protection, such as the protection of the time, to ensure that the damage due to hardware failure to signal equipment and the main guarantee for the safety of vehicles.2.1.3 Remote diagnosis systemControllers can spot card, hubs and other network equipment and control center connected to the LAN, MODEN through remote management, monitoring the operation of the scene, when the scene failure, in the control center can be addressed to facilitate the management, e-office security personnel.2.1.4 Automatic GateIn the garage entrance of the no-contact reader, and the Gate of coil users in the garage entrances Swiping cards, the system automatically discriminates validity of the card, if valid, the Gateopen automatically, through induction coils, Automatic self-closing fence; If invalid, the Gate is not open, and sound and light alarm.2.1.5 Monitoring security systemMonitoring security system is in the central control room for monitoring and controlling the operation of the garage scene conditions. It has motion detection, license plate recognition, network connections, different types of alarm systems linkage, and other functions, can be achieved unguarded.System catalog:Video monitoring function : the garage entrances, and the duty, the main segments within the garage installation focusing cameras, On the larger spaces installation spherical platforms, in order to achieve all-round garage on real-time monitoring. If the garage light conditions of the poor would use black-and-white cameras.Motion Detection functions: setting up the night in the garage of motion detection region, detecting when there are a moving target, Motion Detection and Alarm function remind staffs.LPR functions: it can set up the garage light vehicle license plates, vehicle. When the light vehicles entering the garage regional surveillance, the system automatically cross-referenced with images of a very odd situation, issued a warning signal and automatic switching and record their images.Alarm linkage functions: all can move even the police mainframe, if activated Relay acousto-optic warning issued notice of security personnel to voluntarily disarm Gate interception of vehicular access.Digital video functions : it with a continuous record of what happened in the garage, can be synchronized intervals over images arbitrary choice of the overall image to enlarge and local amplification, recording, playback, backup can be conducted all kinds of information.Reportedly, has begun an increasing number of residential quarters began to use a mechanical garage. Taking into account the cost and maintenance, the majority of the district is a multi-storey lifting and transferring parking equipment, mass storage mechanical garage also rarely. Lifting and transferring Garage Equipment parking flow indicate the following:1、The sense of light yellow instructions garage operationRed lamp was ongoing operating instructions, please wait; Green light is currently no operating instructions, can operate; yellow light instructions were to fail, the garage can not work.2、The operationDrivers of vehicles enter from the garage entrance. At the entrance of non-contact sensors Reader former regional shaken following their IC cards, induction process completed, the fence automatically rises driver drove into the garage. The fence shut down automatically after vehicles entering. Card is the controller to read spaces, corresponding to the parking garage containing cars moved to the site automatically transfer vehicle location, Automatic garage door open units. Car drivers entering and parking in place, Latin hand brake, alighted out of the garage, using IC cards in the garage exit Huang about IC cards Garage door modules to shut down automatically. Completed deposit truck operators.3、Collect the car operationDrivers entering the garage at the entrance to the non-contact sensors Reader former regional shaken following their IC cards Controller automatically read spaces, corresponding to the parking garage containing cars moved to the site automatically transfer vehicle location, Automatic garage door open modules, drivers entering the garage and drive out, in the garage exit of the automatic reader before induction regional dazzle your own IC cards, sensors finished, the reader receive information, Host controller automatically recorded, prepaid, automatically raising the fence, the driver drove the playing field, appeared after fencing to shut down automatically. Meanwhile, Controller automatically read spaces, corresponding to the garage door unit shut down automatically. Vehicle operation finished.The garage has a complete self-protection device in the course of operation. A series of photoelectric switches, proximity switches, trip switches and other vehicles on site contains accurate operation in place to play a decisive role; falling unique defense installations, broken rope warning device, speeding vehicle protection device to protect the security role played. Detection of long vehicles, vehicle parking is not in place detection, and personnel into a detection signal of vehicles and the safety play a decisive role.翻译立体车库1.1 立体车库概述车辆无处停放的问题是城市的社会、经济、交通发展到一定程度产生的结果,立体停车设备的发展在国外,尤其在日本已有近3040年的历史,无论在技术上还是在经验上均已获得了成功。

儿童教育外文翻译文献

儿童教育外文翻译文献

儿童教育外文翻译文献(文档含中英文对照即英文原文和中文翻译)原文:The Role of Parents and Community in the Educationof the Japanese ChildHeidi KnipprathAbstractIn Japan, there has been an increased concern about family and community participation in the child’s educat ion. Traditionally, the role of parents and community in Japan has been one of support and less one of active involvement in school learning. Since the government commenced education reforms in the last quarter of the 20th century, a more active role for parents and the community in education has been encouraged. These reforms have been inspired by the need to tackle various problems that had arisen, such as the perceived harmful elements of society’spreoccupation with academic achievement and the problematic behavior of young people. In this paper, the following issues are examined: (1) education policy and reform measures with regard to parent and community involvement in the child’s education; (2) the state of parent and community involvement at the eve of the 20th century.Key Words: active involvement, community, education reform, Japan, parents, partnership, schooling, supportIntroduction: The Discourse on the Achievement GapWhen western observers are tempted to explain why Japanese students attain high achievement scores in international comparative assessment studies, they are likely to address the role of parents and in particular of the mother in the education of the child. Education mom is a phrase often brought forth in the discourse on Japanese education to depict the Japanese mother as being a pushy, and demanding home-bound tutor, intensely involved in the child’s education due to severe academic competition. Although this image of the Japanese mother is a stereotype spread by the popular mass media in Japan and abroad, and the extent by which Japanese mothers are absorbed in their children is exaggerated (Benjamin, 1997, p. 16; Cummings, 1989, p. 297; Stevenson & Stigler, 1992, p. 82), Stevenson and Stigler (1992) argue that Japanese parents do play an indispensable role in the academic performance of their children. During their longitudinal and cross-national research project, they and their collaborators observed that Japanese first and fifth graders persistently achieved higher on math tests than American children. Besides reciting teacher’s teaching style, cultural beliefs, and organization of schooling, Stevenson and Stigler (1992) mention parent’s role in supporting the learning conditions of the child to explain differences in achievement between elementary school students of the United States and students of Japan. In Japan, children receive more help at home with schoolwork (Chen & Stevenson, 1989; Stevenson & Stigler, 1992), and tend to perform less household chores than children in the USA (Stevenson et al., 1990; Stevenson & Stigler, 1992). More Japanese parents than American parents provide space and a personal desk and purchase workbooks for their children to supplement their regular text-books at school (Stevenson et al., 1990; Stevenson & Stigler, 1992). Additionally, Stevenson and Stigler (1992) observed that American mothers are much more readily satisfied with their child’s performance than Asian parents are, have less realistic assessments of their child’s academic perform ance, intelligence, and other personality characteristics, and subsequently have lower standards. Based on their observation of Japanese, Chinese and American parents, children and teachers, Stevenson and Stigler (1992) conclude that American families can increase the academic achievement of their children by strengthening the link between school and home, creating a physical and psychological environment that is conducive to study, and by making realistic assessments and raising standards. Also Benjamin (1997), who performed ‘day-to-day ethnography’ to find out how differences in practice between American and Japanese schools affect differences in outcomes, discusses the relationship between home and school and how the Japanese mother is involved in the academic performance standards reached by Japanese children. She argues that Japanese parents are willing to pay noticeable amounts of money for tutoring in commercial establishments to improve the child’s performance on entrance examinations, to assist in ho mework assignments, to facilitate and support their children’s participation in school requirements and activities, and to check notebooks of teachers on the child’s progress and other school-related messages from the teacher. These booklets are read and written daily by teachers and parents. Teachers regularly provide advice and reminders to parents, and write about homework assignments of the child, special activities and the child’s behavior (Benjamin, 1997, p. 119, p. 1993–1995). Newsletters, parents’ v isits to school, school reports, home visits by the teacher and observation days sustain communication in later years at school. According toBenjamin (1997), schools also inform parents about how to coach their children on proper behavior at home. Shimahara (1986), Hess and Azuma (1991), Lynn (1988) and White (1987) also try to explain national differences in educational achievement. They argue that Japanese mothers succeed in internalizing into their children academic expectations and adaptive dispositions that facilitate an effective teaching strategy, and in socializing the child into a successful person devoted to hard work.Support, Support and SupportEpstein (1995) constructed a framework of six types of involvement of parents and the community in the school: (1) parenting: schools help all families establish home environments to support children as students; (2) communicating: effective forms of school-to-home and home-to-school communications about school programs and children’s progress; (3) volu nteering: schools recruit and organize parents help and support; (4) learning at home: schools provide information and ideas to families about how to help students at home with homework and other curriculum-related activities, decisions and planning; (5) decision making: schools include parents in school decisions, develop parent leaders and representatives; and (6) collaborating with the community: schools integrate resources and services from the community to strengthen school programs, family practices, and student learning and development. All types of involvement mentioned in studies of Japanese education and in the discourse on the roots of the achievement gap belong to one of Epstein’s first four types of involvement: the creation of a conducive learn ing environment (type 4), the expression of high expectations (type 4), assistance in homework (type 4), teachers’ notebooks (type 2), mother’s willingness to facilitate school activities (type3) teachers’ advice about the child’s behavior (type 1), observ ation days by which parents observe their child in the classroom (type 2), and home visits by the teachers (type 1). Thus, when one carefully reads Stevenson and Stigler’s, Benjamin’s and other’s writings about Japanese education and Japanese students’ high achievement level, one notices that parents’ role in the child’s school learning is in particular one of support, expected and solicited by the school. The fifth type (decision making) as well as the sixth type (community involvement) is hardly ever mentioned in the discourse on the achievement gap.In 1997, the OECD’s Center for Educational Research and Innovation conducted a cross-national study to report the actual state of parents as partners in schooling in nine countries, including Japan. In its report, OECD concludes that the involvement of Japanese parents in their schools is strictly limited, and that the basis on which it takes place tends to be controlled by the teacher (OECD, 1997, p. 167). According to OECD (1997), many countries are currently adopting policies to involve families closely in the education of their children because (1) governments are decentralizing their administrations; (2) parents want to be increasingly involved; and (3) because parental involvement is said to be associated with higher achievement in school (p. 9). However, parents in Japan, where students already score highly on international achievement tests, are hardly involved in governance at the national and local level, and communication between school and family tends to be one-way (Benjamin, 1997; Fujita, 1989; OECD, 1997). Also parent–teacher associations (PTA, fubo to kyoshi no kai ) are primarily presumed to be supportive of school learning and not to participate in school governance (cf. OECD, 2001, p. 121). On the directionsof the occupying forces after the second world war, PTA were established in Japanese schools and were considered with the elective education boards to provide parents and the community an opportunity to participate actively in school learning (Hiroki, 1996, p. 88; Nakata, 1996, p. 139). The establishment of PTA and elective education boards are only two examples of numerous reform measures the occupying forces took to decentralize the formal education system and to expand educational opportunities. But after they left the country, the Japanese government was quick to undo liberal education reform measures and reduced the community and parental role in education. The stipulation that PTA should not interfere with personnel and other administrative tasks of schools, and the replacement of elective education boards by appointed ones, let local education boards believe that parents should not get involved with school education at all (Hiroki, 1996, p. 88). Teachers were regarded to be the experts and the parents to be the laymen in education (Hiroki, 1996, p. 89).In sum, studies of Japanese education point into one direction: parental involvement means being supportive, and community involvement is hardly an issue at all. But what is the actual state of parent and community involvement in Japanese schools? Are these descriptions supported by quantitative data?Statistics on Parental and Community InvolvementTo date, statistics of parental and community involvement are rare. How-ever, the school questionnaire of the TIMSS-R study did include some interesting questions that give us a clue about the degree of involvement relatively compared to the degree of involvement in other industrialized countries. The TIMSS-R study measured science and math achievement of eighth graders in 38 countries. Additionally, a survey was held among principals, teachers and students. Principals answered questions relating to school management, school characteristics, and involvement. For convenience, the results of Japan are only compared with the results of those countries with a GNP of 20650 US dollars or higher according to World Bank’s indicators in 1999.Unfortunately, only a very few items on community involvement were measured. According to the data, Japanese principals spend on average almost eight hours per month on representing the school in the community (Table I). Australian and Belgian principals spend slightly more hours and Dutch and Singaporean principals spend slightly less on representing the school and sustaining communication with the community. But when it comes to participation from the community, Japanese schools report a nearly absence of involvement (Table II). Religious groups and the business community have hardly any influence on the curriculum of the school. In contrast, half of the principals report that parents do have an impact in Japan. On one hand, this seems a surprising result when one is reminded of the centralized control of the Ministry of Education. Moreover, this control and the resulting uniform curriculum are often cited as a potential explanation of the high achievement levels in Japan. On the other hand, this extent of parental impact on the curriculum might be an indicator of the pressure parents put on schools to prepare their children appropriately for the entrance exams of senior high schools.In Table III, data on the extent of other types of parental involvement in Japan and other countries are given. In Japan, parental involvement is most common in case of schools volunteering for school projects and programs, and schools expecting parents to make sure that thechild completes his or her homework. The former is together with patrolling the grounds of the school to monitor student behavior most likely materialized through the PTA. The kinds and degree of activities of PTA vary according to the school, but the activities of the most active and well-organized PTA’s of 395 elementary schools investigated by Sumida (2001)range from facilitating sport and recreation for children, teaching greetings, encouraging safe traffic, patrolling the neighborhood, publishing the PTA newspaper to cleaning the school grounds (pp. 289–350). Surprisingly, less Japanese principals expect from the parents to check one’s child’s completion of homework than principals of other countries. In the discourse on the achievement gap, western observers report that parents and families in Japan provide more assistance with their children’s homework than parents and families outside Japan. This apparent contradiction might be the result of the fact that these data are measured at the lower secondary level while investigations of the roots of Japanese students’ high achievement levels focus on childhood education and learning at primary schools. In fact, junior high school students are given less homework in Japan than their peers in other countries and less homework than elementary school students in Japan. Instead, Japanese junior high school students spend more time at cram schools. Finally, Japanese principals also report very low degrees of expectations toward parents with regard to serving as a teacher aid in the classroom, raising funds for the school, assisting teachers on trips, and serving on committees which select school personnel and review school finances. The latter two items measure participation in school governance.In other words, the data support by and large the descriptions of parental of community involvement in Japanese schooling. Parents are requested to be supportive, but not to mount the territory of the teacher nor to be actively involved in governance. Moreover, whilst Japanese principals spend a few hours per month on communication toward the community, involvement from the community with regard to the curriculum is nearly absent, reflecting the nearly absence of accounts of community involvement in studies on Japanese education. However, the reader needs to be reminded that these data are measured at the lower secondary educational level when participation by parents in schooling decreases (Epstein, 1995; OECD, 1997; Osakafu Kyoiku Iinkai, unpublished report). Additionally, the question remains what stakeholders think of the current state of involvement in schooling. Some interesting local data provided by the Osaka Prefecture Education Board shed a light on their opinion.ReferencesBenjamin, G. R. (1997). Japanese lessons. New York: New York University Press.Cave, P. (2003). Educational reform in Japan in the 1990s: ‘Individuality’ and other uncertainties. Comparative Education Review, 37(2), 173–191.Chen, C., & Stevenson, H. W. (1989). Homework: A cross-cultural examination. Child Development, 60(3), 551–561.Chuo Kyoiku Shingikai (1996). 21 seiki o tenbo shita wagakuni no kyoiku no arikata ni tsu-ite [First Report on the Model for Japanese Education in the Perspective of theCummings, W. K. (1989). The American perception of Japanese parative Education, 25(3), 293–302.Epstein, J. L. (1995). School/family/community partnerships. Phi Delta Kappan , 701–712.Fujita, M. (1989). It’s all mother’s fault: childcare and the socialization of working mothers in Japan. The Journal of Japanese Studies , 15(1), 67–91.Harnish, D. L. (1994). Supplemental education in Japan: juku schooling and its implication. Journal of Curriculum Studies , 26(3), 323–334.Hess, R. D., & Azuma, H. (1991). Cultural support for schooling, contrasts between Japanand the United States. Educational Researcher , 20(9), 2–8, 12.Hiroki, K. (1996). Kyoiku ni okeru kodomo, oya, kyoshi, kocho no kenri, gimukankei[Rights and duties of principals, teachers, parents and children in education. InT. Horio & T. Urano (Eds.), Soshiki toshite no gakko [School as an organization](pp. 79–100). Tokyo: Kashiwa Shobo. Ikeda, H. (2000). Chiiki no kyoiku kaikaku [Local education reform]. Osaka: Kaiho Shup-pansha.Kudomi, Y., Hosogane, T., & Inui, A. (1999). The participation of students, parents and the community in promoting school autonomy: case studies in Japan. International Studies in Sociology of Education, 9(3), 275–291.Lynn, R. (1988).Educational achievement in Japan. London: MacMillan Press.Martin, M. O., Mullis, I. V. S., Gonzalez, E. J., Gregory, K. D., Smith, T. A., Chrostowski,S. J., Garden, R. A., & O’Connor, K. M. (2000). TIMSS 1999 Intern ational science report, findings from IEA’s Repeat of the Third International Mathematics and ScienceStudy at the Eight Grade.Chestnut Hill: The International Study Center.Mullis, I. V. S., Martin, M. O., Gonzalez, E. J., Gregory, K. D., Garden, R. A., O’Connor, K. M.,Chrostowski, S. J., & Smith, T. A.. (2000). TIMSS 1999 International mathemat-ics report, findings from IEA’s Repeat of the Third International Mathematics and Science Study at the Eight Grade.Chestnut Hill: The International Study Center. Ministry of Education, Science, Sports and Culture (2000).Japanese government policies in education, science, sports and culture. 1999, educational reform in progress. Tokyo: PrintingBureau, Ministry of Finance.Monbusho Ed. (1999).Heisei 11 nendo, wagakuni no bunkyoshisaku : Susumu kaikaku [Japanese government policies in education, science, sports and culture 1999: Educational reform in progress]. Tokyo: Monbusho.Educational Research for Policy and Practice (2004) 3: 95–107 © Springer 2005DOI 10.1007/s10671-004-5557-6Heidi KnipprathDepartment of MethodologySchool of Business, Public Administration and TechnologyUniversity of Twente P.O. Box 2177500 AE Enschede, The Netherlands译文:家长和社区在日本儿童教育中的作用摘要在日本,人们越来越关心家庭和社区参与到儿童教育中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016届毕业论文(设计)外文文献翻译姓名陈圣君学号 201203110203年级 2012专业机械设计制造及其自动化系(院)机械工程学院指导教师李秋实2016年4月7日汽车变速器设计我们知道,汽车发动机在一定的转速下能够达到最好的状态,此时发出的功率比较大,燃油经济性也比较好。

因此,我们希望发动机总是在最好的状态下工作。

但是,汽车在使用的时候需要有不同的速度,这样就产生了矛盾。

这个矛盾要通过变速器来解决。

汽车变速器的作用用一句话概括,就叫做变速变扭,即增速减扭或减速增扭。

为什么减速可以增扭,而增速又要减扭矩呢?设发动机输出的功率不变,功率可以表示为N=wT,其中w是转动的角速度,T是扭矩。

当N固定的时候,w与T是成反比的。

所以增速必减扭矩,减速必增扭矩。

汽车变速器齿轮传动就根据变速变扭的原理,分成各个档位对应不同的传动比,以适应不同的运行状况。

一般的手动变速器内设置输入轴、中间轴和输出轴,又称三轴式,另外还有倒档轴。

三轴式是变速器的主体结构,输入轴的转速也就是发动机的转速,输出轴转速则是中间轴与输出轴之间不同齿轮啮合所产生的转速。

不同的齿轮啮合就有不同的传动比,也就有了不同的转速。

例如郑州日产ZN6481W2G型SUV车手动变速器,它的传动比分别是:1档3.704:1;2档2.202:1;3档1.414:1;4档1:1;5档(超速档)0.802:1。

当汽车启动司机选择1档时,拨叉将1/2档同步器向后接合1档齿轮并将它锁定输出轴上,动力经输入轴、中间轴和输出轴上的1档齿轮,1档齿轮带动输出轴,输出轴将动力传递到传动轴上(红色箭头)。

典型1档变速齿轮传动比是3:1,也就是说输入轴转3圈,输出轴转1圈。

当汽车增速司机选择2档时,拨叉将1/2档同步器与1档分离后接合2档齿轮并锁定输出轴上,动力传递路线相似,所不同的是输出轴上的1档齿轮换成2档齿轮带动输出轴。

典型2档变速齿轮传动比是2.2:1,输入轴转2.2圈,输出轴转1圈,比1档转速增加,扭矩降低。

当汽车加油增速司机选择3档时,拨叉使1/2档同步器回到空档位置,又使3/4档同步器移动直至将3档齿轮锁定在输出轴上,使动力可以从轴入轴—中间轴—输出轴上的3档变速齿轮,通过3档变速齿轮带动输出轴。

典型3档传动比是1.7:1,输入轴转1.7圈,输出轴转1圈,是进一步的增速。

当汽车加油增速司机选择4档时,拨叉将3/4档同步器脱离3档齿轮直接与输入轴主动齿轮接合,动力直接从输入轴传递到输出轴,此时传动比1:1,即输出轴与输入轴转速一样。

由于动力不经中间轴,又称直接档,该档传动比的传动效率最高。

汽车多数运行时间都用直接档以达到最好的燃油经济性。

换档时要先进入空档,变速器处于空档时变速齿轮没有锁定在输出轴上,它们不能带动输出轴转动,没有动力输出。

一般汽车手动变速器传动比主要分上述1-4档,通常设计者首先确定最低(1档)与最高(4档)传动比后,中间各档传动比一般按等比级数分配。

另外,还有倒档和超速档,超速档又称为5档。

当汽车要加速超过同向汽车时司机选择5档,典型5档传动比是0.87:1,也就是用大齿轮带动小齿轮,当主动齿轮转0.87圈时,被动齿轮已经转完1圈了。

倒档时输出轴要向相反方向旋转。

如果一对齿轮啮合时大家反向旋转,中间加上一个齿轮就会变成同向旋转。

利用这个原理,倒档就要添加一个齿轮做“媒介”,将轴的转动方向调转,因此就有了一根倒档轴。

倒档轴独立装在变速器壳内,与中间轴平行,当轴上齿轮分别与中间轴齿轮和输出轴齿轮啮合时,输出轴转向会相反。

通常倒档用的同步器也控制5档的接合,所以5档与倒档位置是在同一侧的。

由于有中间齿轮,一般变速器倒档传动比大于1档传动比,增扭大,有些汽车遇到陡坡用前进档上不去就用倒档开上去。

从驾驶平顺性考虑,变速器档位越多越好,档位多相邻档间的传动比的比值变化小,换档容易而且平顺。

但档位多的缺点就是变速器构造复杂,体积大,现在轻型汽车变速器一般是4-5档。

同时,变速器传动比都不是整数,而是都带小数点的,这是因为啮合齿轮的齿数不是整倍数所致,两齿轮齿数是整倍数就会导致两齿轮啮合面磨损不均匀,使得轮齿表面质量产生较大的差异。

手动变速器与同步器手动变速器是最常见的变速器,简称MT。

它的基本构造用一句话概括,就是即指输入轴、轴出轴和中间轴,它们构成了变速器的主体,当然还有一根倒档轴。

手动变速器又称手动齿轮式变速器,含有可以在轴向滑动的齿轮,通过不同齿轮的啮合达到变速变扭目的。

典型的手动变速器结构及原理如下。

输入轴也称第一轴,它的前端花键直接与离合器从动盘的花键套配合,从而传递由发动机过来的扭矩。

第一轴上的齿轮与中间轴齿轮常啮合,只要轴入轴一转,中间轴及其上的齿轮也随之转动。

中间轴也称副轴,轴上固连多个大小不等的齿轮。

输出轴又称第二轴,轴上套有各前进档齿轮,可随时在操纵装置的作用下与中间轴的对应齿轮啮合,从而改变本身的转速及扭矩。

输出轴的尾端有花键与传动轴相联,通过传动轴将扭矩传送到驱动桥减速器。

由此可知,变速器前进档位的驱动路径是:输入轴常啮齿轮-中间轴常啮齿轮-中间轴对应齿轮-第二轴对应齿轮。

倒车轴上的齿轮也可以由操纵装置拨动,在轴上移动,与中间轴齿轮和输出轴齿轮啮合,以相反的旋转方向输出。

多数汽车都有5个前进档和一个倒档,每个档位有一定的传动比,多数档位传动比大于1,第4档传动比为1,称为直接档,而传动比小于1的第5档称为加速档。

空档时输出轴的齿轮处于非啮合位置,无法接受动力传输。

由于变速器输入轴与输出轴以各自的速度旋转,变换档位啮合时存在一个"同步"问题。

两个旋转速度不一样齿轮强行啮合必然会发生冲击碰撞,损坏齿轮。

因此,旧式变速器的换档要采用"两脚离合"的方式,升档在空档位置停留片刻,减档要在空档位置加油门,以减少齿轮的转速差。

但这个操作比较复杂,难以掌握精确。

因此设计师创造出"同步器",通过同步器使将要啮合的齿轮达到一致的转速而顺利啮合。

目前全同步式变速器上采用的是惯性同步器,它主要由接合套、同步锁环等组成,它的特点是依靠摩擦作用实现同步。

接合套、同步锁环和待接合齿轮的齿圈上均有倒角(锁止角),同步锁环的内锥面与待接合齿轮齿圈外锥面接触产生摩擦。

锁止角与锥面在设计时已作了适当选择,锥面摩擦使得待啮合的齿套与齿圈迅速同步,同时又会产生一种锁止作用,防止齿轮在同步前进行啮合。

当同步锁环内锥面与待接合齿轮齿圈外锥面接触后,在摩擦力矩的作用下齿轮转速迅速降低(或升高)到与同步锁环转速相等,两者同步旋转,齿轮相对于同步锁环的转速为零,因而惯性力矩也同时消失,这时在作用力的推动下,接合套不受阻碍地与同步锁环齿圈接合,并进一步与待接合齿轮的齿圈接合而完成换档过程自动变速器自动变速器的选档杆相当于手动变速器的变速杆,一般有以下几个档位:P(停车)、R(倒档)、N(空档)、D(前进)、S(or2,即为2速档)、L(or1,即为1速档)。

这几个档位的正确使用对于驾驶自动变速器的汽车的人来说尤其重要,下面就让我们一起来熟悉一下自动变速器各档位的使用要领。

P(停车档)的使用发动机运转时只要选档杆在行驶位置上,自动变速器的汽车就很容易地行走。

而停放时,选档杆必须扳入P位,从而通过变速器内部的停车制动装置将输出轴锁住,并拉紧手制动,防止汽车移动。

R(倒档)的使用R位为倒档,使用中要切记,自动变速器汽车不像手动变速器汽车那样能够使用半联动,故在倒车时要特别注意加速踏板的控制。

N(空档)的使用N位相当于空档,可在起动时或拖车时使用。

在等待信号或堵车时常常将选档杆保持在D位,同时踩下制动。

若时间很短,这样做是允许的,但若停止时间长时最好换入N位,并拉紧手制动。

因为选档杆在行驶位置上,自动变速器汽车一般都有微弱的行驶趋势,长时间踩住制动等于强行制止这种趋势,使得变速器油温升高,油液容易变质。

尤其在空调器工作、发动机怠速较高的情况下更为不利。

有些驾驶员为了节油,在高速行驶或下坡时将选档杆扳到N位滑行,这很容易烧坏变速器,因为这时变速器输出轴转速很高,而发动机却在怠速运转,油泵供油不足,润滑状况恶化,易烧坏变速器。

D(前进档)的使用正常行驶时将选档杆放在D位,汽车可在1~4档(或3档)之间自动换档。

D位是最常用的行驶位置。

需要掌握的是:由于自动变速器是根据油门大小与车速高低来确定档位的,所以加速踏板操作方法不同,换档时的车速也不相同。

如果起步时迅速将加速踏板踩下,升档晚,加速能力强,到一定车速后,再将加速踏板很快松开,汽车就能立即升档,这样发动机噪声小,舒适性好。

D位的另一个特点是强制低档,便于高速时超车,在D位行驶中迅速将加速踏板踩到底,接通强制低档开关就能自动减档,汽车很快加速,超车之后松开加速踏板又可自动升档。

S、L位低档的使用自动变速器在S位或L位上处于低档范围,可以在坡道等情况下使用。

下坡时换入S位或L位能充分利用发动机制动,避免车轮制动器过热,导致制动效能下降。

但是从D位换入S位或L位时,车速不能高于相应的升档车速,否则发动机会强烈振动,使变速器油温急剧上升,甚至会损坏变速器。

另外在雨雾天气时,若路面附着条件差,可以换入S位或L位,固定在某一低档行驶,不要使用能自动换档的位置,以免汽车打滑。

同时必须牢记,打滑时可将选档杆推入N位,切断发动机的动力,以保证行车安全。

外文原文Transmission designAs we all know, automobile engine to a certain speed can be achieved under the best conditions, when compared issued by the power, fuel economy is relatively good. Therefore, we hope that the engine is always in the best of conditions to work under. However, the use of motor vehicles need to have different speeds, thus creating a conflict. Transmission through this conflict to resolve.Automotive Transmission role sum up in one sentence, called variable speed twisting, twisting or slow down the growth rate by increasing torsional. Why can slow down by twisting, and the growth rate but also by twisting? For the same engine power output, power can be expressed as N = wT, where w is the angular velocity of rotation, and T Nauru. When N fixed, w and T is inversely proportional to the. Therefore, the growth rate will reduce twisting, twisting slowdown will increase. Automotive Transmission speed gear based on the principle of variable twisted into various stalls of different transmission ratio corresponding to adapt to different operational conditions.General to set up a manual gearbox input shaft, intermediate shaft and output shaft, also known as the three-axis, as well as Dandong axis. Three-axis is the main transmission structure, input shaft speed is the speed of the engine, the output shaft speed is the intermediate shaft and output shaft gear meshing between different from the speed. Different gears are different transmission ratio, and will have a different speed. For example Zhengzhourichan ZN6481W2G manual transmission car-SUV, its transmission ratio are: 1 File 3.704:1; stalls 2.202:1; stalls 1.414:1; stalls 1:1 5 stalls (speeding file) 0.802: 1.When drivers choose a launch vehicle stalls, Plectrum will be 1 / 2 file synchronization engagement with a back stall gear and output shaft lock it, the power input shaft, intermediate shaft and output shaft gear of a stall, a stall the output shaft gear driven, and the output shaft power will be transmitted to the drive shaft (red arrow). A typical stall Biansuchilun transmission ratio is 3:1, that is to say three laps to the input shaft and output shaft to a circle.。

相关文档
最新文档