冶金炉渣性能研究
炉渣冶金性能测试实验报告
![炉渣冶金性能测试实验报告](https://img.taocdn.com/s3/m/ae2d641d4a7302768e9939ee.png)
炉渣冶金性能测试实验报告院系: 冶金与资源学院班级:冶105指导老师:组长:组员:实验地点: 安徽工业大学炉渣冶金性能测试文献综述1目前连铸保护渣的状况1. 1国外状况鉴于连铸保护渣技术在现代连铸技术中的重要地位, 工业发达国家将连铸保护渣技术列入高科技范畴, 各研究所、高等院校和企业都投入大量人力、物力进行开发研究。
欧洲煤钢联在20 世纪80 年代末、90 年代初投入大量资金对保护渣原材料、基本组成及特性、在连铸过程中的行为作用和连铸保护渣工业化生产等17 个项目进行了系统研究, 取得了很好效果, 促进了连铸技术的发展;美国材料协会从1996 年开始研究和建立连铸保护渣生产和使用技术标准, 大大促进了保护渣技术的发展; 日本和韩国除了进行大量保护渣基础理论研究外, 还不断开发连铸保护渣生产的在线检测和控制技术。
这些研究和开发一方面形成了连铸保护渣的产业( 如英国Foseco、德国Metal-lurgica 和Stollberg、韩国Stollburg、日本板田和品川等一批生产工艺先进、开发能力较强的连铸保护渣专业化生产厂) , 另一方面大大促进了保护渣理论的深化和提高。
总之, 国外主要进行了三方面的工作:( 1) 进行保护渣基础理论研究, 其目的是开发出适合各种连铸品种和工艺要求的保护渣;( 2) 采用了计算机模拟技术及专家系统, 进行结晶器内保护渣熔化特性模拟及保护渣成分设计;( 3) 建造先进的保护渣生产厂, 生产性能稳定和高质量的保护渣, 并使之商品化, 我国各钢厂进口的保护渣多数从这些厂购进。
目前工业发达国家已经做到连铸保护渣系列化、商品化。
1. 2国内状况我国连铸保护渣自1972 年开始研制, 至今已有30多年的历史, 已经具有研究开发保护渣的能力, 并建成了一批保护渣生产厂。
除了个别品种的保护渣需从国外进口外, 国产保护渣基本上能满足目前国内连铸生产的需要, 而且在保护渣基础理论研究方面有所创新。
炉渣分析报告
![炉渣分析报告](https://img.taocdn.com/s3/m/e3a747b405a1b0717fd5360cba1aa81144318fc4.png)
炉渣分析报告1. 引言本报告旨在对炉渣进行分析,并提供相应的数据和结论。
炉渣是在冶金、炼钢等工艺中产生的副产物,其组成和性质对于工艺的稳定性和产品质量具有重要影响。
通过对炉渣进行详细分析,可以确定其成分、熔点、流动性等关键指标,为企业优化工艺提供数据支持。
2. 实验方法本次实验采用以下方法对炉渣进行分析:2.1 炉渣样品制备从生产中获得炉渣样品后,将样品进行破碎和研磨,使其达到一定的粒度要求。
然后,按照一定比例和要求,将样品与辅助试剂混合均匀。
2.2 炉渣成分分析利用化学分析方法测定炉渣的主要化学成分,常见的有氧化钙、氧化硅、氧化铝、氧化镁等成分的测定。
2.3 炉渣熔点测定使用炉渣熔点仪,将制备好的炉渣样品加热到一定温度,观察炉渣的熔化情况,确定其熔点。
2.4 炉渣流动性测定采用炉渣流动性试验装置,通过对炉渣样品施加特定力度的机械挤压,测定炉渣在不同温度下的流动性能,包括流动度和流动温度。
3. 实验结果根据上述实验方法,我们得到了以下实验结果:3.1 炉渣成分分析通过化学分析,得到炉渣样品的主要成分如下:•氧化钙 (CaO):50%•氧化硅 (SiO2):30%•氧化铝 (Al2O3):10%•氧化镁 (MgO):5%•其他组分:5%3.2 炉渣熔点测定炉渣样品加热到1500°C时开始熔化,完全熔化温度为1650°C。
3.3 炉渣流动性测定在900°C下施加1MPa的挤压力,炉渣样品的流动度为2 cm/s;在1000°C下施加2MPa的挤压力,炉渣样品的流动度为5 cm/s。
流动温度为1100°C。
4. 结论根据以上实验结果分析,可以得出以下结论:1.炉渣样品的主要成分为氧化钙、氧化硅、氧化铝和氧化镁,其中氧化钙含量最高。
2.炉渣样品的熔点较高,完全熔化温度为1650°C,可能需要较高的温度进行处理。
3.炉渣样品的流动性较好,在适当的温度和压力条件下,能够实现较好的流动性。
济钢高炉高Al2O3炉渣渣系优化试验研究
![济钢高炉高Al2O3炉渣渣系优化试验研究](https://img.taocdn.com/s3/m/5001a68084868762caaed584.png)
济钢 高炉 高 AI 炉渣渣 系优化试 验研究 2 O3
李 学付 , 贻 留, 方 杨金 福 , 马继 波 , 杨雄 文
( 济钢集团有限公司 , 山东 济南 20 0 ) 511 摘 要: 以济钢现场高炉 渣样为基 准 , 正交 设计方法 , 采用 设计 了2 组试验方案 , 5 研究 了w A , 1%~ 3 ( 1 ) 5 2 %的高炉炉渣 0 为
区 间 ( 图 3 、 ) 炉 渣 熔化 性 温 度影 响 不 大 。在 见 ab对 图 3 , A ,2 .%、 O 1 . c中 当 1 = 09 Mg = 32 O %为熔 化 性温 度
最低 。此时 , 降低 M O, 渣 的熔化性 温度将 升 g 炉
2 l 2 2 2 3 2 4
此, 必须采取合理的措施 , 降低高 A:, l 对炉渣黏度 O 的影 响 。研 究炉 渣 中铝 、 二元 碱度 对炉 渣黏 度和 熔
化性 温度 的影响 , 提出济钢 高炉合理 的渣 系组 成 。
1 1 1 1 l 3 50 9 0 .0 8 . 1 1 1 1 13 2 5 9 1 . 5 9 . 2 9 11 1 3 25 0 .5 9 . 2 1 12 140 . 0 0 .0 30 2 l 1 1 13 3 0 O 1 .0 9 . 21 1 1 1 13 0 0 3 .0 6 . 2l 1 1 1 l3 3 5 4 .5 9 .
1 1 11 138 . 7 O .5 14 1 1 1 2 1 3 9. 7 1 -O 8 3 1 9 1 1 l37 . 8 .O 28 1 1 1 1 l38 . 8 O .5 41
试验 号 A B c
1 4 1 5 1 6 1 7 l 8 l 9 2 O
2 1 l2 1 3 7 3 3 3 _0 9 . 2 l 1 1 13 5 0 3 2 .0 8 . 2 l 12 l3 90 l 2 .O 8 . 2 1 12 l3 80 2 4 -0 9 .
LF炉精炼用渣冶金性能研究
![LF炉精炼用渣冶金性能研究](https://img.taocdn.com/s3/m/9207c1dfb9f3f90f76c61b14.png)
! !! !竺 ! 苎! ! !! 苎 ! 竺 ! ! !! ! ! ! ! !竺 竺 苎竺 ! ! ! ! 竺
・2 7 ・ 2
L F炉 精 炼 用 渣 冶 金 性 能研 究
Pe f r r o man e St c udy o fLF fn n Re i g Fur ac l g M e a l gy i n e Sa t lur
高 瑞 林 Ga ul oR in i
( 中冶 京诚 ( 口 ) 备技术 有 限公司 , 口 1 5 0 ) 营 装 营 1 0 5 ( h n y igh n ( n k n)q ime t eh ooyC .Ld, igo 0 5 C ia) Z og eJn ee g Yig o E up n c n lg oI t.Yn k u 15 0 , hn T 1
要求。
Absr c :Atp e e t ta t r s n,LF f n c e nigi neo e mo ti ot n e h oo d ptd b o q n &S Co, d i h o u to ftp ga e ura er f n so ft s mp ra ttc n lg a o e yCh ng i gI . n t eprd cin o rd i h y Lt o
文献标识码 : A
文章编号 :0 6 4 l (0 0)8 0 2 — 1 10 — 3 12 1 1— 2 7 0
1 未混转炉渣时 L F渣的熔化性能研究 铝矾土等 ) 均为重钢七厂于 实验前提供。 渣料的组成 为 4 %转炉 渣+ 1 11熔化实验 观察 先对未 混转炉渣时 的 L . F渣进行熔 化实验 5 %L 9 F渣, 中 L 其 F渣组成 为 2 .%埋 弧渣+ 0 %精炼 渣。渣料先 94 7. 6 观察 , 实验 渣 样 号 为控 铝 钢 A M 、 铝 钢 B , 2 ,含 渣料 的各 组 分 先破 碎 在 1 K 0 G感 应 炉 中 用 石墨 坩 锅 内预 熔 。 从上 述 的测 试 研 究 可 认 为 , 所 设计 的 L 对 F渣 ( 括 控 铝 钢 和 含 包 至 2 0目 , 分 混 匀 , 后 装 在 石 墨坩 锅 内 , 二 硅 化 钼 炉 内从 室 06 充 然 在 温 缓 慢 升 温 到 15 % 。 结 果 表 明 :对 未 混 转 炉 渣 时 的 L 40 : F渣 , 在 铝 钢 用 两 类 )在 没 有 混 转 炉 渣 时 , 熔 点 在 15 ℃以 上 。按 L , 其 40 F实 15  ̄的温度 内, 4 0C 碳酸盐基本分解完 , 渣不能熔化 , 最后渣发生轻微 际 生 产 混 进 4 %左 右 的 转 炉 渣 时 ,其 熔 点 在 16 —4 0C 0 3 1 17  ̄ 的范 围。 的烧 结 。 三种 方法 测 出 的渣 熔 点 相 差 较 大 , 要 是 测 试 原 理 不 同或 者 说 对 炉 主 12理 论 分 析 由于 设 计 的 L . F渣 在 碳 酸 盐 分 解 完 后 组 分 应 为 渣熔 点的定义不同产生的。未熔炉 渣是 一混合 物, 其熔化是在一定 学术 上定 义 炉 渣 熔 点 为 加 热 时 固 态 完 全 转 变 为 均 匀 液 C O SO 、 1 3M O, 将 Mg a 、 i2A2 、 g 若 O O折算 为 C O, a 根据 C O— i2A23 区 间进 行 的 , a SO一 1 O 相 , 分 , 看出在未混转炉渣时 的 L 成 可 F渣 的 熔 点 都 在 15 ~ 9 0C 相 或冷 却 时 液 相 开 始 出 现 固相 的温 度 。 50 10 o 范 围 , 15 ̄ 的温 度 下 是 不 能 熔 化 的 。 在 4 0C 3 碳 酸 盐 发泡 剂 的选 用 及 其 分解 特性 测 试 分 析 2 混 有 转炉 渣 时 L F渣 的熔 化 性 能 研 究 目前 L F用到 的发泡剂主要有两 类:①碳酸盐 ,常用的有石灰 21二 硅 化 钼 炉 内熔 化 实验 重 钢 实 际 的 L . F生产 中 ,在 L F渣 石、 白云石、 工业碱和 菱镁矿 ; 碳及含碳 化合物 , 的有 焦碳 、 ② 常用 碳 ( 埋弧 渣和精炼 渣 ) 加入前 , 钢包 内 已有部分残余转炉 渣, 根据我们 化硅和 电石等。碳及含碳化合物能与炉渣中(e 或钢中氧起反应 F O) 对重钢生产现场调查 , L 进 F工 位 时 , 包 内 带 进 的 转 炉 渣 约 为 L 放 出大量气体 , 钢 F 且气体产生的速率也较慢 , 有利于延长发泡时间。 但 精炼 总渣量的 4 %左右 , 1 据此 比例 , 我们将设计 出的渣混入转炉渣 , 碳及含碳化合物做 发泡剂具有极易 引起钢水增碳增硅等缺点 , 故我 再测 试 研 究 其熔 化性 能。 们设计的 L F渣选用碳酸盐( 石灰石、 白云石和菱镁矿 ) 作发泡剂。 观测所用渣料( 石灰 石 、 灰 、 石 白云 石 、 矾 土 等 ) 为重 钢 七 厂 铝 均 石灰石 的开始 分解温度 和沸腾 温度分 别为 80 0 ℃和 9 0C: 3  ̄ 菱 镁 矿 的开 始 分 解 温 度 和 沸 腾 温 度 分 别 为 3 0C 60C: 由于 白云 2  ̄和 8  ̄ 于实验前提供。 渣 料 的组 成 为 4 %转炉 渣+ 9 F渣 ,其 中 L 1 5 %L F渣组 成 为 石中 C C Mg O 结合为复杂化合 物, aO与 C 降低 了 Mg O 的活度 , C 所 2. 94 %埋弧渣+ 0 %精炼渣。渣料先在 1K 7. 6 0 G感应炉 中用石墨坩锅 以 白云 石 中 M C , 分 解 温 度 比 单 独 存 在 的 M C , 解 温 度 高 , gO 的 gO 分 预 熔 , 后 将 预熔 渣 ( 组 20 2 0克 ) 电脑 控 制 的二 硅 化 钼 电 阻 因 C C , Mg O 稳 定 , 热 时 Mg O 先 分 解 , 然 每 0~5 在 aO 比 C, 加 C, 白云 石 的分 解 分 为 炉 内观 测 其软 化 、 化 过 程 。观 测 结 果 如 表 1 示 。实 际 生产 中 L 两阶段 , 熔 所 F 第一 阶段 是 M C , g O 分解 , 沸腾点为 7 0 7 0C, 2 ~ 8  ̄ 第二阶段是 精炼终点渣的熔点一般控制在 15 ~ 4 0 3 0 10 ℃左右。从表 1 观测结果 C C 解 , 腾 点 为 90C aO分 沸 0  ̄。 看 , 3、 . Z两 组 渣 的熔 化 温度 偏 高 ; 三 组 的完 全 熔 化 温 度 都 BLZ AM。 后 从 B 、 AM, 的 热 分 析 ,三 个 渣 的 T 曲线 都 存 在 三 个 山 BL、 渣 G 在 13 q左 右 , 4 0C 比通 常 L F精 炼 时控 制 温 度 ( 点 渣 15 40C) 明 显 的 失 重 变 化 , D C曲 线 上 对 应 存 在三 个 显 著 的 吸 热 峰 ( 表 终 3 0 10  ̄ 在 S 见 稍 高 , 由于 L 但 F渣 经 过 精 炼 后 , 分增 加 , 使 熔 化 温 度 降 低 , 4)第一 个失重变化 (3 — 7 ℃) 组 将 因 , 2 0 2 0 应该是渣料 中吸附气体 的挥 发和 此 , 1中后 三组 渣 的熔 化 温 度 可 以满 足 生 产 要 求 。 另 外 从 实 验 过 渣 料 中 结 构 水 挥 发 , C ( H 2 解 失 去 水 变成 C O 因 为在 热 分 表 即 aO �
金属冶炼中的炉渣特性研究
![金属冶炼中的炉渣特性研究](https://img.taocdn.com/s3/m/1ddd43239a6648d7c1c708a1284ac850ad020405.png)
汇报人:可编辑
2024-01-06
CONTENTS
• 引言 • 金属冶炼基础知识 • 炉渣的物理特性 • 炉渣的化学ห้องสมุดไป่ตู้性 • 炉渣的冶金性能 • 实际应用与案例分析 • 结论与展望
01
引言
研究背景
01
金属冶炼是工业生产中的重要环 节,而炉渣作为冶炼过程中的副 产品,对冶炼效率和产品质量具 有重要影响。
02
随着工业技术的不断发展,对炉 渣特性的研究成为了提高冶炼效 率和资源利用率的关键。
研究目的与意义
研究目的
深入了解炉渣的物理、化学和机 械特性,为优化金属冶炼工艺和 提高资源利用率提供理论支持。
研究意义
通过研究炉渣特性,有助于提高 金属冶炼的效率、降低能耗、减 少环境污染,为工业生产的可持 续发展提供技术支持。
未来研究应进一步拓展不同 条件下炉渣特性的研究,以 更全面地了解炉渣在金属冶 炼过程中的作用。
9字
考虑实际生产过程中各种因 素对炉渣特性的影响,提高 研究的实用性和针对性。
9字
加强炉渣与金属之间相互作 用机制的研究,深入探讨其 微观过程和机理。
9字
结合现代科技手段如计算机 模拟和先进检测设备,对炉 渣特性进行更精确和深入的 研究。
稳定性与反应活性
稳定性
炉渣的稳定性对其在冶炼过程中的行 为具有重要影响。稳定性好的炉渣可 以保持较长时间的稳定状态,有利于 金属的提取和分离。
反应活性
炉渣的反应活性与其在金属冶炼过程 中的行为密切相关。具有较高反应活 性的炉渣可以促进金属的溶解、还原 和分离过程,提高金属回收率。
05
炉渣的冶金性能
研究局限与不足
当前研究主要集中在特定条件下炉渣特性的研究,对于不同冶炼条件下的 炉渣特性研究不够充分。
LF炉精炼研究总结
![LF炉精炼研究总结](https://img.taocdn.com/s3/m/27d459b2770bf78a6429543c.png)
LF工艺操作LF 是一种拥有电弧加热装置的炉外精炼方法,于1971年由日本特殊钢公司提出,它也被叫做钢包加热炉。
LF主体是一个带有底吹氩的钢包,来自转炉或电炉的钢液(无渣)注入到该钢包内,然后钢包被吊车吊运到钢包车上,运往LF处理工位。
在水冷炉盖下方提供三相电极,盖上水冷炉盖,加入高碱度的复合渣,然后通电,那么常压下即可达到埋弧加热的效果。
由于LF处理方法提供电弧加热、复合渣精炼,吹氩搅拌和合金微调等功能,因此LF精炼可达到以下冶金目的:1)通过还原气氛中高碱度复合渣的精炼,LF有很高的脱硫和脱氧能力,钢液中硫含量和溶解氧可降低到20PPm以下,此外夹杂物也可有效的去除。
2) 钢液电弧加热调整钢液温度,加速复合渣熔化;3) 底吹氩方式达到钢液成分和温度的混匀;4) 依靠自动加料系统对钢液进行成分微调。
加热过程转炉出钢1) 钢包条件钢包应当干净,不附带任何残余炉渣;此外,换包周期不能多于4小时,否则钢包必须烘烤加热到1000-1200℃。
钢包内残余钢液或炉渣会引起钢包温降,失去的热量需LF处理补偿,这些因素在LF电脑模型中都需要考虑进去。
2) 挡渣转炉出钢需要进行挡渣,众所周知转炉顶吹终点,钢液中存在一定含量的溶解氧,它与渣中氧保持平衡。
渣中FeO 和 P2O5含量很高。
当还原剂加入钢包钢液中溶解氧含量降低,钢渣间的氧平衡被打破,渣中 FeO 含量减小。
因为炉渣的氧化性降低,发生回磷现象。
因此为了阻止钢液回磷和保证稳定的LF加热过程,转炉出钢要求挡渣。
3)合金和造渣剂的添加为保证钢液成分,出钢过程中需加入合金和还原剂。
LF加热过程钢包精炼工艺包括几个过程,彼此间相互关联。
对于不同钢种,加热操作不尽相同,且处理过程参数均有相关的标准计算模型。
步骤A:搅拌当钢包抵达LF处理位,接通自动快换接头向钢包提供氩气,根据钢种选择不同的吹氩模式。
a) 吹氩量: 150~300Nl/min步骤B:混匀依据钢种提供不同的混匀方法a) 吹氩量: 300~600Nl/minb) 还原剂:硅铁,铝丸不同混匀模式中,还原剂用量是一定的 (~TS).这个步骤分为两个加热阶段,第一阶段持续1分钟,加热速度越慢越好,温度上升大约3℃/mi n,这是起弧阶段。
铜冶金炉渣中综合回收有价金属的探究
![铜冶金炉渣中综合回收有价金属的探究](https://img.taocdn.com/s3/m/c9708991ba4cf7ec4afe04a1b0717fd5360cb2c9.png)
M etallurgical smelting冶金冶炼铜冶金炉渣中综合回收有价金属的探究文燕儒摘要:在铜冶金过程中,会产生大量含有有价金属的炉渣,如果不回收这些炉渣中的有价金属,将形成资源的巨大浪费,这与资源高效利用的要求不符。
基于这种情况,本文对铜冶金炉渣中有价金属的综合回收进行了研究分析,明确了综合回收有价金属的重要性,并介绍了现有的处理技术方法,为后续的铜冶金炉渣资源的二次利用提供了参考。
关键词:铜冶金炉渣;综合回收;有价金属铜矿资源在社会经济发展中扮演着重要角色。
从青铜时代到信息时代,铜矿资源与人类社会的发展密切相关。
凭借其独特的物理化学性质,铜矿资源广泛应用于各个领域,并成为社会经济发展所必需的金属资源。
一般情况下,铜矿主要以化合物的形式存在,尤其是以硫化矿为主。
目前,全球使用的铜矿资源有超过80%来自于铜的硫化矿冶炼。
由于硫化矿含铜品位仅约为1.5%,其开采后需要经过选矿才能进行后续处理。
我国铜矿开采利用行业整体上资源品质较低,矿山规模相对较小,开采数量难以满足冶金行业的需求,更多的铜矿产品需要依赖进口。
鉴于这种情况,我国应合理调整铜矿资源的开发方式,加快对铜冶金炉渣的有效利用研究进展,逐步找出科学合理的综合利用技术,使有限的铜矿资源能够产生更多具有价值的应用产品,逐步满足市场经济发展的需求。
同时也要认识到铜冶金炉渣资源的重要性,科学制定综合回收有价金属的方法,不断提升铜矿资源的利用效率,进一步提高铜矿开采行业的经济效益,推动我国铜冶金行业健康发展。
1 铜冶金炉渣概述铜冶金炉渣是火法炼铜的熔炼及吹炼过程中产生的副产物。
铜渣的成分因冶炼制度、入炉原料的不同而异,一般炉渣中的铜含量在0.5%~3.0%之间。
铜渣的主要成分为铁、硅的化合物,还包括氧化镁、氧化铝等物质。
数据表明,我国每年外排铜渣约800万吨,其中电炉渣产量约为转炉渣的4倍。
我国的铜资源相当匮乏,对于品位较低的铜矿(0.4%~0.5%)进行开采利用成本较高。
炉渣性质和活度计算-7
![炉渣性质和活度计算-7](https://img.taocdn.com/s3/m/ffa9180403d8ce2f00662323.png)
2.炉渣结构理论 2.炉渣结构理论
a.分子结构假说的要点 . (1)分子结构假说认为,炉渣是由简单氧化物或曰自由氧化物分子及 )分子结构假说认为, 其相互作用形成的复杂化合物分子所组成。该假说规定的简单氧化物 其相互作用形成的复杂化合物分子所组成 。 该假说规定的简单氧化物 分子有: 分子有 : CaO、MgO、MnO、FeO、SiO2 、 P2O5 、 Fe2O3 、 Al2O3 等 。 、 、 、 、 复杂化合物有 硅 酸 盐 : CaO•SiO2 、 2CaO•SiO2 、 3CaO•SiO2 、 2FeO•SiO2 、 • • • • 2MnO•SiO2等; • 磷酸盐: 磷酸盐:3CaO•P2O5、4CaO•P2O5等; • • 铝酸盐: 铝酸盐:2CaO•Al2O3等; • 铁酸盐: 铁酸盐:CaO•Fe2O3、3CaO•Fe2O3等。 (2)分子结构假说认为,炉渣中只有自由氧化物才能参与金属液间 )分子结构假说认为, 的反应。已经结合为复杂化合物的氧化物不再参与反应。 的反应。已经结合为复杂化合物的氧化物不再参与反应。
熔渣的化学性质375935lg可以用炉渣金属的平衡实验结果来计算然后依上式转化为c熔渣的硫化物容量一般需要实验测定或在实验数据的基础上建立半经验的模型估算通过与流动混合气体的平衡实验测定熔渣的硫化物容量c通过与金属液相平衡的实验测定熔渣的硫化物容量利用熔渣的碱度求硫化物容量高炉渣系3
熔渣的化学性质及组元 活度计算
2.炉渣结构理论 2.炉渣结构理论
例如,炉渣中只有自由 才参与钢渣的脱硫、 例如,炉渣中只有自由CaO才参与钢渣的脱硫、脱磷反应,而已 才参与钢渣的脱硫 脱磷反应, 经结合成2CaO•SiO2、3CaO•SiO2中的 中的CaO不再起脱硫、脱磷作用。 不再起脱硫、 经结合成 不再起脱硫 脱磷作用。 又如,炉渣的氧化能力只取决于渣中自由 的浓度, 又如,炉渣的氧化能力只取决于渣中自由FeO的浓度,而已经结合成 的浓度 2FeO•SiO2中的 中的FeO不再参与炉渣 金属液间的氧化反应。所以,当 不再参与炉渣—金属液间的氧化反应 不再参与炉渣 金属液间的氧化反应。所以, 向渣中加入SiO2时,由于 由于SiO2与CaO、FeO生成了复杂化合物,降低 生成了复杂化合物, 向渣中加入 、 生成了复杂化合物 了渣中自由CaO、FeO的浓度,炉渣的脱硫、脱磷能力及氧化能力均 的浓度, 了渣中自由 、 的浓度 炉渣的脱硫、 随之降低。 随之降低。 因此,炉渣和金属液间的化学反应常用物质的分子式表出, 因此,炉渣和金属液间的化学反应常用物质的分子式表出,它能 简单、直观地说明炉渣组成对反应平衡移动的作用。 简单、直观地说明炉渣组成对反应平衡移动的作用。 在假定炉渣是理想溶液时,自由氧化物的浓度就等于其活度。自由氧 假定炉渣是理想溶液时 自由氧化物的浓度就等于其活度。 化物的浓度等于化学分析所测定的氧化物总浓度与该氧化物结合浓度 之差, 之差,即
电炉冶炼钢渣利用研究
![电炉冶炼钢渣利用研究](https://img.taocdn.com/s3/m/1a883441f7ec4afe04a1df5f.png)
2 电炉冶 炼钢 渣 的综 合利 用
够 产生 6 0 0万以上的经济效益 , 而且还可 以节省 1 0 0万 以上 的钢 将经过三级磁选以后 的二 、 三遍钢渣磨成 提高 电炉钢渣综 合利用率 ,既可 以减少废弃 物的排放量 , 还 渣排 污费用 。由此可见 , 这 可以增加降低企业资 源消耗 ,提高钢铁企业 的盈利能力 和水平。 钢渣粉 应用 于水泥制造 、混凝土 中能够产生更大 的经 济效 益 ,
炼钢企业 主要有转炉炼钢和 电炉炼钢两种方 式 , 其 中前一种 炼钢方 式产 生的钢渣产量较大 、 活性较强 、 碱度较 高 , 更加容易 回 收 和利用 , 其 已经被 广泛 的应用于建筑领域。而电炉钢渣 由于性 能 不稳 定 、 理论研究 与实践研究 比较 少 , 导致 电炉钢渣 在建筑领
2 . 2建 筑 材 料 应 用
利用率 , 也有助 于炼钢企业盈 利能力、 水 平 的提 升 。本 文 中, 笔 者 结 合 自身 的 工 作 经 验 , 以 A 炼钢企 业为例 , 探索
分析 了电 炉 冶 炼钢 渣 的 利 用途 径 。 文 中首 先 概 述 了电 炉 铜 渣 的产生 、 利用价值 . 在 此基 础 上 重 点探 索 分 析 了 பைடு நூலகம்炉 钢 渣利 用模式 、 产 生 的 经 济 价 值 与社 会 价 值 , 以期 对 提 升 炼
多项指标 , 主要 体现在经济指标 的改善 、 冶炼条件变化两个方面 , 炉渣的性质得到 了改善 , 炉渣的稳定性 、 流动性改善较为明显 ; 由
于电炉炼钢温度可 以达到 4 0 0 0度以上 ,在炉 内既能造成氧化气 氛也能够造成还原气氛 , 电炉的脱硫效率 、 脱 磷效率大幅提高 , 因 此, 冶炼 出的钢铁 比高炉性能更佳 。
冶炼厂鼓风炉炉渣含钙、铜高低研析
![冶炼厂鼓风炉炉渣含钙、铜高低研析](https://img.taocdn.com/s3/m/2261933d773231126edb6f1aff00bed5b9f373b5.png)
The Judgment of Calcium and Copper Content of Blast Furnace Slag of Smelter
SU Fenglai (Zijin Mining Group COMMUS SAS, Kolowezi, Congo (Kinshasa)) Abstract: This paper summarizes the production practice of Zijin Mining Group COMMUS SAS since it was put into operation for three years, and puts forward a method to judge the calcium and copper content of the slag by the physical characteristics of the slag (slag temperature, slag fluidity, slag color, etc.), so as to provide guidance for the closed blast furnace smelting practice of copper oxide concentrate in Congo (Kinshasa). Keywords: copper oxide concentrate; slag type; calcium content; copper content
(CaO • 2SiO2)存在。也就是说,若炉渣中没有游离 的二氧化硅,则炉渣的表面就不会出现光面。 3.2渣含铜的判断
在正常的操作条件下,人们可以根据水淬渣的 颜色来判断炉渣含铜的高低。炉渣含铜由高到低的颜 色变化如下:黑红(V 0.6% )—暗红(0.6% ~ 1.0%) -艳红(> 1.0%)。人们可以根据炉渣的颜色恰当
冶金炉渣的研究及综合利用思路
![冶金炉渣的研究及综合利用思路](https://img.taocdn.com/s3/m/35e0563b5a8102d276a22f8b.png)
收稿 日期:2 1-1-1 00 1 3 作者简介:姚艳玲 (9 1 17 一),山西 阳高人,硕士研究生 ,研究方向为冶金技术。 第3 卷 第1 3 期 2 1 -1下 ) 【 1 】 0 1 ( 1 1
务l 匐 化 泣
铁 时 从高 炉 中排 出的一 种 废 渣 。高 炉矿 渣 还 可 用
务l 甸 化
冶金炉渣 的研究及综合利用思路
Sm eli l tng s ag,r ear d com pr ensie tlz i de es ch an eh v u iiaton ofi as
姚艳 玲 ,周
俊
Y AO a .n . Y n 1 g‘ZHO U J n i u
文章编号 :1 0—0 3( 0 1 1 下) 0 1 — 3 9 1 4 2 1) ( 一 1 1 0 0
0 引言
随着我 国冶金行 业的迅猛 发展 ,累积堆存 和新
更好 的利 用这些弃 渣是值 得我们 研 究的 。
企 业 的原 料 条 件 不 同,冶 炼 工 艺 不 同 ,炉 渣 的 产 出量 和 炉 渣 成分 也 不 同,不 同 的企 业 可 能 采 用 不 同 的炉 外 精 炼 设 备 ,其 精 炼 渣 会 有 所 不 同 , 特钢 企 业 还 可能 在 连 铸 之 后 ,设 有 电渣 炉 等 进一
迅速 ,工艺过程 中产生 了越来越 多 的冶炼渣 ,这部 分废弃物 的有效利 用值得 我们去进 一步研 究。
1 冶金炉渣利用的必要性
随 着 冶 金 行业 的快 速 发 展 ,各 国 的 矿 产 资 源 也 在 日益 减 少 。同 样 , 中国 矿产 资 源 也 面 临 着严
重 的 危机 。 如何 能 更 好 的 利 用有 限 的 资 源 创造 更 多的财富 是我们时 刻要重 视 的。 钢 铁 工 业 是 原 材 料 工 业 ,也 是 基 础 工 业 。它 的发展是和整体 经济发展规模和速度相适 应的。 钢 铁产 品又 是 用途 广 、用 量大 的材 料 ,钢 铁 工 业
硅锰合金冶炼生产中炉渣成分、分类、特性与原料粒度、搭配、电阻要求及冶炼操作技术
![硅锰合金冶炼生产中炉渣成分、分类、特性与原料粒度、搭配、电阻要求及冶炼操作技术](https://img.taocdn.com/s3/m/d12992ce5727a5e9846a6152.png)
硅猛合金冶炼生产中炉渣成分、分类、特性与原料粒度、搭配、电阻要求及冶炼操作技术硅锚合金的冶炼中,猛的还原是在成渣过程中依靠炉渣的对流运动来完成的,其渣量约占总量的50%左右。
碳素猛铁、硅镭合金的冶炼均为有渣冶炼,因此研究炉渣的性质,有助于冶炼过程中矿物的互相搭配,改善炉料的适应性,使还原更充分,对合金高产有着极其重要的意义。
一、炉渣成分及分类按冶炼产品不同或加入的溶剂不同,炉渣的化学成分也就不同。
炉渣主要由氧化物组成,不同氧化物有不同的化学性质,一般铁合金生产中常见的氧化物可分为碱性氧化物、酸性氧化物和两性氧化物。
炉渣的形成主要是碱性氧化物与酸性氧化物中和而产生的盐,即硅酸盐、铝酸盐和三重化合物。
冶炼硅猛时MnO与Si02结合成MnO・Si02,使MnO还原不充分,渣中MnO高。
故需要加入与Si02化学亲和力较强的碱性氧化物CaO参加反应:CaO+MnO ・ SiO2=MnO+CaO ・ Si02;使MnO活度提高,并充分还原。
通过炉渣的置换反应使金属氧化物活度提高,有利于氧化物的还原,达到提高产量,降低消耗的目的。
碱性氧化物的加入量是由冶炼品种、冶炼条件、以及炉渣性质决定的。
炉渣的碱度就是渣中碱性氧化物与酸性氧化物之比,用R表/J'* o当R VI称酸性渣,如硅猛合金R二0.6〜0.8;当R >1. 2称弱碱性渣,如生产碳素镭铁R二1. 2〜1. 4;当R>2叫强碱性渣,如中碳铭铁、锐铁。
二、炉渣性质1、熔点:炉渣的熔点主要与炉渣组成有关,SiO2熔点1723°C, A1203 熔点2050°C,纯00熔点2615°C,在冶炼碳素猛铁时炉渣所依据的成分主要有Si02、CaO、MgO、A1203,几种氧化物在相互反应时,能在冶金温度下生成液体化合物或共晶,使熔点低于其单独氧化物的熔点。
2、粘度:冶炼硅猛时碱度过低,硅易还原,炉渣粘度增加,熔池不活跃,冶炼不能顺利进行,渣与合金未能完全分离,金属混在渣中损失大;碱度过高,渣流动性好,严重侵蚀炉衬,降低炉衬寿命,因此合适的粘度对猛铁冶炼至关重要。
南钢炉渣性能分析及优化
![南钢炉渣性能分析及优化](https://img.taocdn.com/s3/m/c70bb10816fc700abb68fc39.png)
元碱度 ( 的降低而降低 。 R) 3 模 拟渣 的实验 方 案及 实验 结果
2 现场 渣 实验方 案及 实 验结 果
取现场 1 个 不同成分 的炉渣试样 , 0 测定其 粘度 和熔化性温度 , 评价其冶金性 能 , 为实验 室深入研 究 提供方向。试样 的成分及实验结果见表 1 和表 2 。
3 2 Mg . O对 炉渣 粘度 的影 响
M o对炉渣粘度的影响的实验结果见 图2和图3 g 。 由图 2知 , 1 , A 含量 为 1. %时 , 0 94 炉渣 粘度 随
M O含量的增加而下降 。M o大于 8 时随 Mg g g % o的
由图 1 知炉渣粘度 随 A : , 量的增 大而升高 , 1 含 0 实验温度愈 高 , 1 , 粘度 的影 响愈 小。15  ̄ A: 对 0 4 0C和
增加粘度明显 下 降 , 而小 于 8 对粘 度 的 影 响则 很 %
小。由图 3知 , A : ,为 1 . % 时 , 度 同 样 随 当 1 0 54 粘
10  ̄ 5 0C条件 下 A: , 1 对粘 度 的影 响 可分 三段 , 0 即① A: , 1 含量大于 1% 的粘度急变段 ; A: , 量为 0 8 ② 1 含 0
以外 , 其余 成分 与 现场渣 相 同。实验 采用 只 变动 单
一
因素的方 法进行。
3 1 A : , 粘度 影 响的 实验 结果 . 1 对 0
实验条件 为 M O8 3 、 : . 1其余 成分 与现 g . % R 1 1 、
场 渣 X一1 同 。 相
维普资讯
关 键词 : 炉渣
粘度 A , M O 渣相优化 1 0 g
Pe f r a e An l ss a tm i a i n o l g a SCO r o m nc a y i nd Op i z to f S a tNI
冶金原理4-冶金炉渣
![冶金原理4-冶金炉渣](https://img.taocdn.com/s3/m/a9cae21314791711cc7917d8.png)
mM =
ON × mO MN
mN =
OM × mO MN
4.2.1 三元系相图的基本知识
4.2.1.2 罗策布浓度三角形的性质 5)重心规则 原物系点M1、M2、M3 的重量分别为m1、m2、m3 ,混合后 形成质量为mO 的新物系点O,则O 必位于连线三角形△M1M2M3 的重心上。
4.2.1.2 罗策布浓度三角形的性质 3)背向性规则 等比例线上物系点的组成在背离其所在顶角的方向上 移动时,体系将不断析出组分,而其内组分的浓度将不断 减少,但其他组分的浓度比则保持不变。
4.2.1 三元系相图的基本知识
4.2.1.2 罗策布浓度三角形的性质 4)杠杆规则 若三元系中有两个组成点M 和N 组成一个新的物系O , 那么O 点必定落在MN 连线上,其位置由M 和N 的质量mM 和 mN 按杠杆规则确定。
4.1.1 二元系相图的基本知识 4.1.1.3 连续原理
连续原理 当决定体系状态的那些 参数连续发生变化时,在 新相不出现、旧相不消失 的情况下,体系中各相的 性质以及整个体系的性质 也连续变化——这时自由 度不会发生变化。
4.1.1 二元系相图的基本知识 4.1.1.4 相应原理 相应原理 给定的一个热力学体系,任一互成平衡的相 或相组(体系点和组分点)在相图中都有一定 的几何元素(点、线、面、体)与之对应。
4.2 三元系相图
4.2.1 三元系相图的基本知识 4.2.1.1 罗策布浓度三角形
M的浓度确定: 的浓度确定: 的浓度确定 • 过M点分别向三个边作平 行线; • 逆时针(或顺时针)方 向读取平行线在各边所 截线段(以顶点开始), 该三条线段就分别表示A、 B和C三组元的浓度
CE = a AF = b
包钢高炉渣脱硫性能的研究
![包钢高炉渣脱硫性能的研究](https://img.taocdn.com/s3/m/249c8a18a2161479171128a9.png)
样, 进行脱硫 实验 。结果表 明, 碱度在 10左 右 , ( O)在 1% ~1 %之间 , ( 1O )小于 1% 的炉渣 , . W Mg 0 3 加 A2 3 5 脱硫 能
力强 , 于包 钢 高炉 生 产 。 适
关键词 : 高炉渣 ; 脱硫能力 ; 硫分 配系数 ; 度 碱
中图 分 类 号 :F 3 . 1 T 5 52 文 献标 识 码 : B 文 章 编 号 :09- 4 8 2 1 )5— 0 9一 4 10 5 3 (0 0 0 0 1 o
第3 第5 6卷 期 21 00年 1 O月. 1 3 No 5
S i n e a d T c n l g fB oo te c e c n e h oo yo a tu S e l
Oco e , 0 0 tb r 2 1
包 钢 高炉 渣 脱硫 性 能 的研 究
( . colfMe l rya dE o g a E gne n , n e i Si c 1Sh o o t l g n cl i l n i r g U i r t o c ne au oc ei v syf e
a d Tc nl yB n ,e i 0 0 3 C ia n eh oo e g B q g 10 8 , hn ; g n
在高炉 冶炼过 程 中 , 高 炉渣 的脱硫 能力 是 降 提
浅析LF炉精炼渣冶金性能的研究现状
![浅析LF炉精炼渣冶金性能的研究现状](https://img.taocdn.com/s3/m/d6722599dd88d0d233d46aa3.png)
浅析L F 炉精炼渣冶金性能的研究现状
李 永春 上海宝山钢铁股份有限公司炼钢厂 上海 2 0 0 9 4 1
会各 界对钢材质量 需求的提 升, 钢 包精 炼炉受到的重视 程度越 来越 大,在 很 多钢铁 台 炼 企业 的钢 包精 炼炉中除采用常规化 的还 原氛埋孤 的加热技 术、 透 气砖 的吹氩搅拌技术 及真 空脱气等较 为成熟的技 术外, 合成渣 的精 炼技 术也得 到着较 为广泛的应 用。文章就 目前合成精 炼渣所具有的作用及 L F 炉精 炼渣冶金 的熔化性能、 脱 硫性能及发泡性能等重点性 能进行研究分 析, 并就L F 炉精炼渣冶金性能的发展趋势等进行 简单分析。 【 关键 字】 L F 炉; 精 炼渣; 冶金性 能
二. L F 炉 精 炼 渣 的冶 金 性能 现 状 1 . L F 炉精炼渣 的熔 化性 能研 究 在 未混转 炉渣 时的L F 炉精炼 渣的熔 化性能 , 对其设计 相关 的熔 化 试验 并就未 混转 炉渣时 的L F 炉 精炼渣 的熔化试 验现 象进行 观察 , 进 行
实验 的精 炼渣 的样 号 选定为 控铝 钢 、 含铝 钢 , 对混 合渣料 进行 破碎 至 2 0 - 6 0 目 的破 碎处理 , 将 其混 合均匀后放 置在试验石墨坩 埚 内, 将其 整 体 放 置于二 氧化钼炉 中升 温至 1 4 5 0  ̄ C , 熔化 试验 的具体表现 为 : 对于未 混 转炉渣 时的L F 炉精炼渣 , 其在 1 4 5 0  ̄ C 的温度状 态下, 精炼渣 中含有 的 碳 酸盐 成分基 本上 已经全 部分解 , 但是精 炼渣并未发生 熔化 , 精炼渣在 最后可 能会 出现 烧结 现象 。 因为在设 计 该实验 时将精 炼渣 中的碳 酸盐 成 分看 作氧化 钙、 氧化 硅、 氧化铝 、 氧化 镁 , 将其 中的氧化镁看作氧化钙 进 行的试 验 , 精炼 渣的熔点 应该在 1 5 5 0 — 1 9 0 0  ̄ C , 所 以1 4 5 0  ̄时精 炼渣
高炉中钛冶炼炉渣性能研究
![高炉中钛冶炼炉渣性能研究](https://img.taocdn.com/s3/m/eab9f1f2fab069dc502201da.png)
31 . .2
试 验 结 果 及 分 析
度 能满 足高 炉冶 炼要 求 。
( )在 Mg 或 TO,一 定 的 条 件 下 , 碱 度 2 O i 随 ( a / i 提 高 , 渣 的粘度 降低 。在 碱 度 ( a / C O SO ) 炉 CO SO, 或 Mg 一 定 时 , TO, 量 的增 加 , 度 增 i ) O 随 i 含 粘
p o e o rton m eho fb a tf n c l r pe ai t d o l s ur a e.s e r a 0 f ly uiie lc lrs u c n e u e pi r n c t e k a b e k t u l tlz o a e o r e a d r d c g io os.
试 验采 用 的基 础渣 样 为宣 钢 6 高 炉 2 0 # 0 7年 3 月 2 t 4 4 1 E 1 :0现 场采 集 的炉渣 , 化学 成分 见表 1 其 。
表 2 各 系 列渣 样 的 化 学 成 分
Ta . Ch mi a o o ii f v r u e e fsa a l b2 e c lc mp st on o a o s s r s o l g s mp e i i
所 减小 ; 碱 度 和 TO 在 i 一 定 时 , Mg 含 量 的 增 随 O 加, 粘度 有 近乎不 变或 增大 的趋 势 。
( )中钛 渣 的 粘 度 在 14 0 o 都 比较 小 , 1 8 C下 均
在 0 6P s . a・ 以下 , 动性较 好 , 温下 中钛 渣 的粘 流 高
在 1 % 一1 % , 属 于高 钛 矿 冶 炼 , 生 产 技 术 经 0 5 都 其 济指标 达 到 或 接 近 相 同 品位 的 普 通 矿 高 炉 冶 炼 水 平 。宣 钢地 处 张家 口地 区 , 周边 铁 矿粉 资源 丰 富 , 精 粉年 产 量 9 0~10 0万 t 湿 量 ) 数 精 粉 均 含 0 0 ( 多 TO , i 低含量 0 2 一 . % , . % 0 5 高含 量 2 0 一3 0 , .% .%
马钢冶炼含钛矿炉渣性能的研究
![马钢冶炼含钛矿炉渣性能的研究](https://img.taocdn.com/s3/m/3fd52a28af45b307e87197c3.png)
因其 具 有 炉渣 性 能 的普 遍 性 , 被广 大 高 炉工 作 者 而 所接 受 。 是 , 但 由于原燃 料状 况不 一致 会导致 渣 系结 构 的变化 , 马钢 一铁 厂 、 铁 厂的渣 系则 为 C O— 如 二 a
S0: i 一Mg O—A1 一Ti 五 元 渣 系 , 且 各 组 元 O。 O2 而 的变化 会极 大地 影 响炉渣 的性 能 。 因此 , 建立满 足高
20 0 2年 第 2期
・
安 徽 冶 金
试验研究 ・
马 钢 冶 炼 含钛 矿 炉渣 性 能 的 研 究
苏 允 隆 吴 俐 俊 宋 灿 阳
( 马鞍 山钢铁 股份 有 限公 司)
摘 要 通过 对马钢第一 、 第二 炼铁 厂 高 炉现 场 炉 渣 及 试 验 室 配 制 渣 样 的 性 能 测 试 与 矿 相 分 析 . 出含 钛 矿 得
1 前 言
造 渣 是 高炉 冶响 , 不需护 炉 的情况 下 , 在 一般认 为它是 导致 炉渣 粘
度上升 的原 因之一 。
但 要实 现金 属与 氧化 物 的分离 , 还要 满 足高炉 高产 、 优质 、 耗 、 寿的 需要 。炉渣 性能 表现 在粘 度 ( ) 低 长 1、 熔 化性 温 度 ( ) 其脱 硫 性能等 方 面 。 T熔 及 高 炉 炉渣 性能 的研 究 较 多 , 尤其 是对 四元 渣 系
C O—SO 一Mg a i O— A1 的 性 能 研 究 较 为 普 遍 , O。
基 于 以上论 述 , 本课 题将 重 点研 究 马 钢含 钛矿 炉渣 中Al 、 O、 O Mg Ti 含量 变化 对 炉渣性 能 的影 O。
响 , 出合 理 的 、 找 适用 于马 钢 中型 高炉 冶炼 的炉 渣结 构, 为降低 生铁 成本 、 形成 配矿 一造 渣 系统 预测模 型
安钢高炉渣的性能及利用研究
![安钢高炉渣的性能及利用研究](https://img.taocdn.com/s3/m/d3d2b96b1eb91a37f1115c92.png)
0 前言 高炉渣的利用在美 、日 、法 、英 、德等国 ,基本上
达到排渣和利用平衡 ,目前已经出现了很多经营和 利用高炉渣的公司和工厂 [ 1 ] 。高炉渣资源化既不 仅可以变废为宝 ,又能减少环境污染 、土地占用 ,从 而达到经济效益与社会效益双赢的局面 。本文研究 了安钢高炉渣的产生和性质 ,并通过烧结工艺获得 了微晶玻璃样品 ,为安钢高炉渣的资源的广泛利用 开发了一条新途径 。 1 高炉渣的产生和处理
sys实验室系统进行差式扫描热量分析 (D ifferential
scanning calorimetry, DSC) 。实验中采用高纯 A l2 O3 坩埚 ,升温速度为 10K /m in,空气气氛 ,气体流动速
度为 30m l/m in。
炉渣微粉体的比表面积测量采用多点氮气吸附
法 (B ET吸附法 ) 。利用美国 QUANTACHROM E 公
图 3 高炉渣晶化后的 XRD 曲线
2. 4 高炉渣微粉的显微结构 将高炉渣在 A l2 O3 研钵中粉碎后 ,过 200 目的
筛网 ,取样在扫描电镜下观察其微观形貌 ,图 4为炉 渣的 SEM 照片 。从图 4中可以看出 ,炉渣主要为玻 璃体块状颗粒 ,很少发现气孔 。颗粒边缘棱角分明 , 说明玻璃状物质结构致密 ,硬度较高 ,高炉渣在研磨 粉碎的过程中 ,颗粒从气孔处破裂开来 ,因此高炉渣 棱角分明 ,边缘锐利清晰 ,形状多为不规则状 。
表 3 不同球磨时间高炉渣微粉特性
球磨时间 / h
平均粒径 / μm
比表面 / m2 ·g - 1
16
12. 50
3. 66
24
8. 50
164. 83
72
4. 50
77. 67
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一冶金炉渣性能研究保护渣的作用在浇注过程中,要向结晶器钢水面上不断添加粉末状或颗粒状的渣料,称为保护渣。
保护渣的作用有以下几方面:(1)绝热保温防止散热;(2)隔开空气,防止空气中的氧进入钢水发生二次氧化,影响钢的质量;(3)吸收溶解从钢水中上浮到钢渣界面的夹杂物,净化钢液;(4)在结晶器壁与凝固壳之间有一层渣膜起润滑作用,减少拉坯阻力,防止凝壳与铜板的粘结;(5)充填坯壳与结晶器之间的气隙,改善结晶器传热。
一种好的保护渣,应能全面发挥上述五个方面作用,以达到提高铸坯表面质量,保证连铸顺行的目的。
保护渣的种类根据设计的保护渣组成,再选用合适的原料经过破碎、球磨、混合等制作工序就制成了保护渣。
有四种类型。
(1)粉状保护渣:是多种粉状物料的机械混合物。
在长途动输过程中,由于受到长时间的震动,使不同比重的物料偏析,渣料均匀状态受到破坏,影响使用效果的稳定性。
同时,向结晶器添加渣粉时,粉尘飞扬,污染了环境。
(2)颗粒保护渣:为了克服污染环境的缺点,在粉状渣中配加适量的粘结剂,做成似小米粒的颗粒保护渣。
制作工艺复杂,成本有所增加。
(3)预熔型保护渣:将各造渣料混匀后放入预熔炉熔化成一体,冷却后破碎磨细,并添加适当熔速调节剂,就得到预熔性粉状保护渣。
预熔保护渣还可进一步加工成颗粒保护渣。
预熔保护渣制作工艺复杂,成本较高。
但优点是提高保护渣成渣的均匀性。
(4)发热型保护渣:在渣粉中加入发热剂(如铝粉),使其氧化放出热量,很快形成液渣层。
但这种渣成渣速度不易控制,成本较高,故应用较少。
连铸结晶器保护渣的原来按构成材料的功能可分为,基料(包括天然的和人工合成的——烧结型、预熔型,其中有水泥熟料、硅灰石、石英、玻璃粉等)、溶剂(主要有纯碱、冰晶石、莹石及含氟化合物等),溶速控制剂——碳质材料(炭黑、石墨和焦炭等)。
连铸结晶器保护渣的品种繁多:(1)、按基料的化学成分可分为:Sio2——CaO——AL2O3、sio2——AL2O3——caF2、SIO2——AL2O3——na2o,其中sio2——cao——al2o3最为普遍。
在此基础上加入少量添加剂(碱金属或碱土金属氟化物、氟化物、硼化物等)和控制溶速的炭质材料(炭黑、石墨和焦炭等)。
(2)、按形状可分为:粉状连铸结晶器保护渣(机械混合成形)、颗粒连铸结晶器保护渣实心颗粒渣,圆盘造粒法成型的是球型实心颗粒连铸结晶器保护渣)、中空球形颗粒连铸结晶器保护渣(采用喷雾造粒法成型)。
(3)、按使用的原材料可分为原始材料混合型、半预溶型和预溶型。
预溶连铸结晶器保护渣还可进一步制造成预溶颗粒保护渣。
(4)、按铸坯断面分:方坯(细分成:小方坯、大方坯、不锈钢方坯连铸结晶器保护渣);矩形坯;板坯(细分成:低碳钢板坯、中碳钢板坯、高碳钢板坯、超低碳钢板坯、09cu钢板坯、大板坯高拉速、宽版坯连铸结晶器保护渣);薄板坯;圆坯;异形(H形)坯连铸结晶器保护渣、发热型开浇渣等;(5)、按拉坯速度分:中低拉速、高拉速连铸结晶器保护渣;(6)、按钢种分:低碳钢、中碳钢、高碳钢、低合金钢、合金钢连铸结晶器保护渣。
钢种与保护渣的关系连铸保护渣技术,作为连铸生产的关键技术之一,对连铸生产的顺行和铸坯质量有着至关重要的影响,尤其是铸坯表面缺陷,基本上都是在结晶器内形成的,与保护渣有直接关系。
一、不同钢种对保护渣性能设计要求不同成分的钢种.其钢水特性及其凝固特点有别,从而决定了对保护渣性能方面的要求。
1、低碳钢首先钢中w(C)<0.08%或0.06%。
这类钢高温机械性能好,凝固过程中不存在严重的相变体积变化,内应力及裂纹敏感性小,故通常以较高拉坯速度进行生产,以提高生产率。
基于低碳钢本身的凝固特点和质量要求,设计时主要考虑渣的润滑及消耗。
较高拉速要求尽量增大结晶器热流,加速钢水凝固,防止粘结漏钢,这要求保护渣结晶温度低、凝固温度适中,以确保低碳钢结晶器保护渣在950℃以上处于非晶体状态,使发生粘结漏钢的可能性最小。
在高速浇注时,为使足够的液态保护渣能流入铸流和结晶器内表面之间的区域,确保良好的润滑和足够的消耗,通常保护渣粘度选择较低的范围。
另外,此类钢种初生铁素体坯壳中[P]、[S]偏析小,初生坯壳强度高,铸坯振痕较深,故应使用保温性能较好的保护渣,提高弯月面初生坯壳温度,有利于减轻振痕过深带来的危去。
因此,连铸低碳钢满足以上各要求,就要通过设计具有一定的传热性能、良好的保温性能、良好的非金属吸收、良好的润滑和性能稳定的保护渣来获得。
2、中碳钢中碳钢钢水凝固过程中发生己δ→γ相变,体积强烈收缩,此钢种裂纹敏感性大,容易产生表面裂纹,特别是高拉速时。
避免纵横向裂纹是首要考虑的问题,为此,中碳钢用保护渣设计的重点应放在控制从铸坯传往结晶器的热流上,限制结晶器热通量,希望保护渣具有较大热阻。
因此,应选用凝固温度高、结晶温度也高的保护渣,利用结晶质膜中的“气隙”,使保护渣传热速度减缓,有助于减小铸坯在冷却过程中产生的热应力。
3、高碳钢此钢种的特点是热强度差;浇铸温度和浇铸速度较低;同时容易产生粘结漏钢。
高碳钢容易粘结,这与初始生成的坯壳凝固收缩小有关。
故高碳钢保护渣设计的重点应放在保证润滑上。
为此,设计该保护渣的粘度和凝固温度要低些,渣膜玻璃化倾向要大些,以保证良好的润滑性能,但也要考虑高硫钢热强度差的特点,适当调节保护渣的热阻。
另外,由于高碳钢液相线温度低,浇铸温度较其它钢种要低,保护渣性能设计也要考虑此温度的影响,为了防止钢水冻结,高碳钢要使用隔热性能好的保护渣,体积密度要低,碳的加入量可稍高些甚至可达20%左右。
4、特殊钢特殊钢钢水成分相差较大,这种类型的保护渣配方较为复杂,往往根据钢的用途及易出现缺陷的状况而特殊配制,例如不锈钢,硅钢及含Nb、V、Ti及稀上的钢种等。
二、连铸工艺参数对保护渣性能设计要求1、拉速连铸机的拉坯速度是连铸生产的重要工艺参数之一。
随着拉速提高,保护渣耗量减少。
保护渣的消耗量是液渣渗入铸坯与结晶器之间空隙的平均量的1个量度,因此成为1个重要的过程控制参数,其值一般要求在0.3kg/m2以上。
拉坯速度提高则保护渣消耗降低,而保护渣的消耗量不足将导致铸坯的润滑和传热状况不良,为此设计高速连铸用保护渣时应提高其熔化速度、降低其粘度及凝固温度,以改善液渣的流入特性,满足液渣消耗的要求。
同时,为了提高熔化速度,应当减少堆积密度,减少碳含量和增加碳酸盐含量以及选择合理原料及其物性。
拉速提高,传往结晶器的热流增大。
这是由于拉速提高,钢水在结晶器中停留时间缩短,坯壳温度增高,凝固坯壳厚度减薄,同样的钢水静压力更容易使坯壳与结晶器壁接触,这样有利于传热,使热流密度随拉速的提高而增大。
因此,对于高速连铸保护渣,应适当降低凝固温度及结晶温度,减小渣膜厚度,保证结晶器传热良好,但也应考虑到各钢种的临界热流值。
2、铸坯断面形状方坯与板坯的不同首先在于结晶器内腔的表面积与体积之比即比表面不同。
板坯220mm×1500mm,从2、3代表薄板坯100mm×1000mm、50mm×1300mm,小方坯160mm×160mm、130mm×130mm,且板坯及小方坯的拉速均为1.5m/min左右的情况总结如下,铸坯的比表面增加时,保护渣耗量(kg/m2)急剧减少,且板坯的比表面小于方坯。
由于板坯比表面小,保护渣消耗快,进而要求较快的熔化速度,因此适于板坯的保护渣熔化速度快于方坯保护渣。
另外,方坯对所用保护渣的粘度不是很敏感,故常使用高粘度渣以减少夹渣和浸入式水口的侵蚀,这是由于方坯的比表面大,要求的渣消耗量(kg/m2)较少,连铸过程中较容易满足要求。
其次,由于板坯连铸时在宽度方向上液面波动较大,因此要求保护渣熔速较快,以形成足够的液渣层厚度,覆盖整体的钢液表面。
另外,板坯连铸机多用来生产低、中碳钢,而方坯除浇铸中碳钢外,还生产众多的高碳钢。
保护渣的生产研究现状生产工艺如下:1、烧结型或预溶型基料生产工艺原料矿石破碎——原料制粉——配料——造块——干燥——烧结或熔炼——冷却——制粉、待用2、实心颗粒保护渣生产工艺原料准备——配料——搅拌混合——干式球磨——加水搅拌——圆盘/挤压造粒——烘烤筛分、包装3、空心颗粒保护渣生产工艺原料准备——配料——搅拌合——水磨制浆——喷雾造粒——筛分——冷却、包装——检测、待用五、保护渣对连铸坯质量的影响保护渣是加入到结晶器钢水面上,保护渣的好坏主要是影响铸坯的表面质量:(1)铸坯表面纵裂纹:纵裂纹是来源于结晶器弯月面区初生坯壳厚度的不均匀性。
钢水面上液渣不能均匀流入分布到铸坯四周,导致凝固壳厚薄不均,在坯壳较薄之处容易产生应力集中,当应力超过凝壳的高温强度时就产生了裂纹。
研究指出,结晶器钢液面上的液渣层保持5~15㎜,可以显著减少板坯表面纵裂纹。
纵裂还与渣子粘度(η)、熔化速度(tf)和拉速(V)有关。
有人指出:η/tf比值愈大,纵裂指数愈小。
如渣子温度1300℃,η/tf=1,纵裂指数为6,η/tf=2,纵裂指数为0。
有人认为:对连铸板坯η•V控制在2~3.5。
方坯η•V控制在5,可使渣膜均匀,传热稳定,润滑良好,可显著减少裂纹。
(2)夹渣:铸坯夹渣可分为表面夹渣和皮下夹渣。
夹渣尺寸大小不等。
由几毫米到十几毫米,夹渣在表面深浅也不一样。
夹渣严重危害产品表面质量,因此在热加工之前必须予以清除。
结晶器坯壳卷入渣子,是夹渣的重要来源。
如坯壳表面形成了渣斑,此处导热性差、凝壳薄,形成了一个高温“热点”,是造成出结晶器坯壳漏钢原因之一。
铸坯表面夹渣物组成主要是钙长石和钙黄长石,这两个化合物中A12O3均大于20%,它们熔点分别为1550℃和1590℃,容易使渣子结团。
在结晶器液面波动太大,浸入式水口插入太浅,液面翻动会把渣子卷入。
六、连铸保护渣主要理化性能保护渣配制好后,要测定渣子的理化性能,主要的理化指标有以下几项:(1)化学成分:各牌号的保护渣,应分析化学成分,各氧化物的含量应在所规定的范围内,这是最起码的指标。
(2)熔化温度,将渣粉制成Φ3×5mm的试样,在专门仪器上把试样加热到圆柱体变为半球形的温度,定义达到半球点的温度叫熔化温度。
(3)粘度:它表示渣粉熔化成液体的流动性能。
而渣子流动性对熔渣吸收夹杂物和坯壳的润滑效果有重要影响。
通常是用扭摆粘度计或旋转粘度计测定1300℃渣子的粘度,来比较不同渣子的流动性。
(4)熔化速度:熔化速度是衡量渣子熔化过程的快慢,关系到结晶器钢液面上能否形成稳定的三层结构和需要的液渣层厚度。
熔速可用标准试样在规定温度(如1300℃或1400℃)下完全熔化成液体所需的时间来表示。
也可用一定重量的保护渣粉,加热到规定温度,在单位面积和时间内形成液渣量来表示。