23.1 图形的旋转 第2课时
人教版九年级数学上册作业课件 第二十三章 旋 转 图形的旋转 第2课时 旋转作图
![人教版九年级数学上册作业课件 第二十三章 旋 转 图形的旋转 第2课时 旋转作图](https://img.taocdn.com/s3/m/b630fbe888eb172ded630b1c59eef8c75fbf9518.png)
6.如图,正方形 OABC 在平面直角坐标系中,点 A 的坐标为(2,0),
将正方形 OABC 绕点 O 顺时针旋转 45°,得到正方形 OA′B′C′,则
点 C′的坐标为( A.( 2 , 2 )
A) B.(- 2 , 2 )
C.( 2 ,- 2 ) D.(2 2 ,2 2 )
7.(2020·烟台)如图,已知点A(2,0),B(0,4),C(2,4),D(6,6), 连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合 (点A与点C重合,点B与点D重合),则这个旋转中心的坐标为__(4_,__2_)___.
8.如图,在平面直角坐标系中,△A′B′C′由△ABC绕点P旋转得到, 则点P的坐标为__________(_1_,__-__1_)___________.
易错点:对图形的旋转方式考虑不全面 9.如图,如果正方形CDEF经过旋转后能与正方形ABCD重合,那么 图形所在的平面上可作为旋转中心的点共有_3___个.
角形.
解:如图
4.如图,△ABC绕点O旋转,顶点A的对应点为A′,请画出旋转后的
图形.
解:如图
知识点2:在平面直角坐标系中的图形旋转
5.(孝感中考)如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时
针旋转90°得到点P′,则P′的坐标为(
)D
A.(3,2) B.(3,-1) C.(2,-3) D.(3,-2)
解:(1)如图所示,△A1B1C1 即为所求 (2)如图所示,△A2B2C2 即为所 求 (3)三角形的形状为等腰直角三角形 ,OB=OA1= 16+1 =
17 ,A1B= 25+9 = 34 ,即 OB2+OA12=A1B2,∴三角形的形 状为等腰直角三角形
23.1 图形的旋转 第2课时 旋转作图
![23.1 图形的旋转 第2课时 旋转作图](https://img.taocdn.com/s3/m/7723238b81eb6294dd88d0d233d4b14e85243ed8.png)
O
O
β
α
(1)旋转中心不变,改变旋转角(如图).
O1
α
O2
α
(2)旋转角不变,改变旋转中心.
(3)美丽的图案是这样形成的.
用旋转的知识设计图形
运用旋转作图应满足三要素:旋转中心、旋转方向、旋转角,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,选择不同的旋转中心、不同的旋转角会作出不同效果的图案.
轴对称:
下图由四部分组成,每部分都包括两个小”十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?
直线EF与GH相交于图形的中心O,且互相垂直,先把左边的两个“十字”作关于EF的轴对称图形,然后作这两部分关于GH的轴对称图形,这样就可以得到整个图形.
平移:
平移的方向
平移的距离
仅靠平移无法得到
旋转:
下图由四部分组成,每部分都包括两个小”十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?
整个图形可以看作是左边的两个小“十字”绕着图案的中心旋转3次,分别旋转90°、180°、270°前后图形组成的.
平移、 旋转相结合:
先平移
后旋转
下图由四部分组成,每部分都包括两个小“十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?
整个图形可以看作是左边的两个小“十字”先通过一次平移成图形右侧的部分,然后左、右部分一起绕图形的中心旋转90°前后图形组成的.
B
3. 如图,在Rt△ABC中,∠ACB=90°,∠A= 40°,以直角顶点C为旋转中心,将△ABC旋 转到△A′B′C的位置,其中A′、B′分别是A、 B的对应点,且点B在斜边A′B′上,直角边C A′交AB于点D,则旋转角等于( ) A.70° B.80° C.60° D.50°
23.1图形的旋转(第二课时)
![23.1图形的旋转(第二课时)](https://img.taocdn.com/s3/m/df00a6cabb4cf7ec4afed044.png)
(
(3)求四边形OAA1B1 的面积?
2.已知:如图,在△ABC中,∠BAC=1200,以BC为边向 形外作等边三角形△BCD,把△ABD绕着点D按顺时针 方向旋转600后得到△ECD,若AB=3,AC=2,求∠BAD 的度数与AD的长. E
A
1.已知线段A000后的图形. M
B′ A′ N B
O A
例4.在等腰直角△ABC中,∠C=900,BC=2cm,如果 以AC的中点O为旋转中心,将这个三角形旋转1800, 点B落在点B′处,求BB′的长度.
B′
O
C′ C
A A′
B
练一练
如图,在正方形ABCD中,E是CB延长线上一 点,△ABE经过旋转后得到△ADF,请按图回答:
简单的旋转作图
例3
如图,△ABC绕C点旋转后,
顶点A得对应点为点D. 试确定顶点 B对应点的位置以及旋转后的三角
形.
A
E
D
B
C
则△DEC即为所求作.
3、如图,ΔDEF是由△ABC绕某一中心 旋转一定的角度得到,请你找出这旋转 中心. A C
D B E F
旋转中心在对应点连线的垂直平分线上。
.O
简单的旋转作图
C
B
D
(二)、新知学习: 自学教材 P60 例题,画出旋转后的 图形,并写出画法,写出理由。
简单的旋转作图
例1 : 将A点绕O点沿顺时针方向旋转60˚.
点的旋转作法
B
B点即为所求作.
A O
简单的旋转作图
例2 将线段AB绕O点沿顺时针方向旋转60˚.
线段的旋转作法
C
人教版初中九年级上册数学《旋转作图》精品课件
![人教版初中九年级上册数学《旋转作图》精品课件](https://img.taocdn.com/s3/m/2c90b607a9114431b90d6c85ec3a87c240288ae8.png)
教学研讨
感谢你的参与 期待下次再见
甲
还可以用 什么方法把甲 图案变成乙图 案?
可以先将甲图案绕图上的
A点旋转,使得图案被
B 乙
A
“扶直”,然后,再沿AB
方向将所得图案平移到B
甲 点位置,即可得到乙图案
B
A
二、旋转设计作图
合作探究
1.选择不同的___旋__转__中__心_、不同的_旋__转__角_旋转同一个图案,会出 现不同的效果. (1)两个旋转中,旋转中心不变, 旋__转__角__ 改变了,产生了 __不__同___的旋转效果.
方法归纳 旋转作图的基本步骤:
(1)明确旋转三要素: 旋转中心、旋转方向和旋转角度. (2)找出关键点; (3)作出关键点的对应点; (4)作出新图形; (5)写出结论.
A E
F
B
D
考考你:
C
借助上图,如何确定它们的旋转中心位置?
答:找到两条对应点连线段的垂直平分线的交点.
例2. 怎样将甲图案变成乙图案? 乙
∴∠ABE′=∠ADE= 90 ° ,
BE′= DE ,
E′
B
C
因此在CB的延长线上截取点E′,使BE. ′=DE
则△ABE′为旋转后的图形.
想一想:
A
D
还有其他方法确定点E的
对应点E′吗?
E
答:延长CB,以点A为圆心,AE 的
长为半径画弧,交CB的延长线于E', B
C
连接AE',则△ABE'为旋转后的图形.
旋转角都为 60°的旋转图形.
A' D'
D B'
A
C
C'
人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第2课时教学设计
![人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第2课时教学设计](https://img.taocdn.com/s3/m/73e32999db38376baf1ffc4ffe4733687e21fc88.png)
人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第2课时教学设计一. 教材分析旋转是几何学中的一个重要概念,也是初中数学的重要内容。
本节课主要通过图形的旋转,使学生理解旋转的性质,学会如何对图形进行旋转,并能够运用旋转解决一些实际问题。
教材通过丰富的实例,引导学生探索旋转的规律,培养学生的空间想象能力和抽象思维能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对图形的变换有一定的了解。
但是,对于图形的旋转,可能还停留在直观的认识上,缺乏对旋转性质的深入理解。
因此,在教学过程中,需要通过大量的实例和实践活动,让学生感受旋转的魅力,逐步引导学生掌握旋转的性质和运用。
三. 教学目标1.理解旋转的定义,掌握旋转的性质。
2.学会对图形进行旋转,并能运用旋转解决一些实际问题。
3.培养学生的空间想象能力和抽象思维能力。
4.提高学生的合作交流能力和问题解决能力。
四. 教学重难点1.旋转的性质的理解和运用。
2.对图形进行旋转的方法和技巧。
五. 教学方法1.采用问题驱动法,引导学生主动探索旋转的性质。
2.利用多媒体辅助教学,直观展示图形的旋转过程。
3.采用合作交流的方式,让学生在实践中掌握旋转的方法。
4.通过解决实际问题,培养学生运用旋转解决问题的能力。
六. 教学准备1.多媒体教学设备。
2.旋转的相关教具和模型。
3.练习题和实际问题。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,如旋转门、旋转木马等,引导学生对旋转现象产生兴趣,进而提出本节课的学习主题——图形的旋转。
2.呈现(10分钟)利用多媒体展示图形的旋转过程,让学生直观感受旋转的魅力。
同时,引导学生观察和思考旋转前后图形的变化,初步感知旋转的性质。
3.操练(10分钟)让学生分组进行实践活动,每组选择一个图形,进行旋转操作,并观察旋转前后的变化。
然后,各组汇报实验结果,共同总结旋转的性质。
4.巩固(10分钟)出示一些练习题,让学生运用旋转的性质进行解答。
《图形的旋转(第二课时)》教案
![《图形的旋转(第二课时)》教案](https://img.taocdn.com/s3/m/e95781b581eb6294dd88d0d233d4b14e85243efd.png)
《图形的旋转(第二课时)》教案
画旋转后图形
例:如图,E是正方形ABCD中CD边上一点,以点A为中心,把△ADE顺时针旋转90°.
(1)画出旋转后的图形;
(2)若AD = 4,DE = 3,点E旋转后的对应点
为E’,求EE’的长.
教师出示问题,学生独立完成. 教师展示学生的多种解法,并提示学生思考每种解法的依据,最终引导学生认识到画旋转后图形的本质:画出旋转前各顶点的对应点,确定对应点的依据就是旋转的性质.
旋转设计图案
教师展示图片,学生观察图片,体会把一个图案进行旋转,选择不同的旋转中心,不同点的旋转角,出现不同的效果.
教师给出旋转对称的定义,并介绍实际生活中的应用实例.
小结教师和学生一起回顾本节课所学主要内容.。
人教版初中九年级上册数学《旋转作图》精品课件
![人教版初中九年级上册数学《旋转作图》精品课件](https://img.taocdn.com/s3/m/33892bdc5ebfc77da26925c52cc58bd6318693d2.png)
C
·F O
D
E
课堂小结
旋转的 作图
作旋转图形
作图基本步骤五步
确定旋转中心
找两条对应点 连线段的垂直 平分线的交点
课后作业
1.从教材课后习题中选取; 2.从课时练中选取。
下课了!
四边形EFGH就是四边形ABCD绕O点旋转后的图形.
2.如图,正方形ABCD和正方形CDEF有公共边CD,请设计方案,使 正方形ABCD旋转后能与正方形CDEF重合,你能写出几种方案?
解: 方案一: 把正方形ABCD绕点D
顺时针旋转90°.
B
方案二: 把正方形ABCD绕点C
逆时针旋转90°.
A
方案三: 把正方形ABCD绕CD的 中点O旋转180°.
(5)旋转中心是唯一不动的点;
一、简单的旋转作图
画一画:如图,画出线段 AB绕点A按顺时针方向旋转60°后
的线段.
X
C
作法:(1)如图,以AB为一边按顺时针方向画∠BAX,使 得∠BAX=60°. (2)在射线AX上取点C,使得AC=AB.线段AC为所求.
试一试 画出下图所示的四边形 ABCD 以 O为中心,
旋转角都为 60°的旋转图形.
A' D'
D B'
A
C
C'
B
O
拓展提升
平移和旋转的异同:
①相同:都是一种运动;运动前后不改变图形的形状和大小.
②不同
图形变换 平移 旋转
运动方向
运动量的衡量
直线
移动一定距离
顺时针或逆时针 转动一定的角度
典例精析
例1 如图,E是正方形ABCD中CD边上任意一点,以点A为中
人教版九年级数学上册第23章:旋转作图
![人教版九年级数学上册第23章:旋转作图](https://img.taocdn.com/s3/m/41986f2d366baf1ffc4ffe4733687e21af45ff3b.png)
(4)连结EF、FG、GH、HE,四边形EFGH就是四边
形ABCD绕点O旋转后的图形.
随堂即练
2.如图,正方形ABCD和正方形CDEF有公共边CD,请设计方案,使正 方形ABCD旋转后能与正方形CDEF重合,你能写出几种方案?
解: 方案一: 把正方形ABCD绕点D
新课讲解
1 简单的旋转作图
画一画:如图,画出线段 AB绕点A按顺时针方向旋转60°后的
线段.
X
C
作法:(1)如图,以AB为一边按顺时针方向画∠BAX,使得 ∠BAX=60°; (2)在射线AX上取点C,使得AC=AB,线段AC即为所求.
新课讲解
试一试
画出下图所示的四边形 ABCD 以 O为中心,旋转角都为 60°的旋转图形.
顺时针旋转90°;
B
方案二: 把正方形ABCD绕点C
逆时针旋转90°;
A
方案三: 把正方形ABCD绕CD的
中点O旋转180°.
C
·F O
D
E
课堂总结
旋转的 作图
作旋转图形
作图基本步骤五步
确定旋转中心
找两条对应点 连线段的垂直 平分线的交点
B
C
BE′= DE ,
∴ 在CB的延长线上截取点E′,使BE ′=DE .
则△ABE′为旋转后的图形.
新课讲解
想一想:
还有其他方法确定点E的
A
D
对应点E′吗? E
答:延长CB,以点A为圆心,AE 的长
为半径画弧,交CB的延长线于E',连 B
C
结AE',则△ABE'为旋转后的图形.
★旋转作图的基本步骤: (1)明确旋转三要素: 旋转中心、旋转方向和旋转角度. (2)找出关键点; (3)作出关键点的对应点; (4)作出新图形; (5)写出结论.
九年级数学上册第二十三章旋转23.1图形的旋转第2课时旋转作图课件人教版
![九年级数学上册第二十三章旋转23.1图形的旋转第2课时旋转作图课件人教版](https://img.taocdn.com/s3/m/3be25b846137ee06eef9182a.png)
(2)如答图,画出对称点 D,连接 AD,AD 可以看作是由 AB 绕着点 A 逆时针 旋转 90°得到的.
【点悟】 解答此题时应熟练掌握平移、轴对称、旋转的特征.
当堂测评
1.[2018 春·巴州区期末]如图 23-1-16,把以∠ACB 为直角的△ABC 绕点 C 按 顺时针方向旋转 85°,使点 B 转到点 E,点 A 转到点 F,得到△CEF,则下列结论 错误的是( D )
归类探究
类型之一 非网格中的旋转作图 如图 23-1-14,已知将四边形 ABCD 绕点 O 顺时针旋转一定角度后,使
点 A 落在点 A′处,试作出旋转后的图形.
图 23-1-14
解:图略. 作法:(1)连接 OA,OA′; (2)连接 OB,OC,OD,分别以 OB,OC,OD 为始边,点 O 为顶点,顺时针 作∠BOB′,∠COC′,∠DOD′,并使∠BOB′=∠COC′=∠DOD′=∠ AOA′,OB′=OB,OC′=OC,OD′=OD; (3)顺次连接 A′,B′,C′,D′四点. 故四边形 A′B′C′D′就是所要求作的图形.
出了格点三角形 ABC(顶点是网格线的交点)和点 A1. (1)画出一个格点三角形 A1B1C1,并使它与△ABC 全等且点 A 与 A1 是对应点; (2)画出点 B 关于直线 AC 的对称点 D,并指出 AD 可以看作是由 AB 绕点 A
经过怎样的旋转而得到的.
图 23-1-15
解:(1)(答案不唯一)如答图,利用△ABC≌△A1B1C1,图形平移,可得出△ A1B1C1.
图 23-1-19
3.[2018 春·金牛区期末]在平面直角坐标系中,△ABC 的位置如图 23-1-20.(每 个小方格都是边长为 1 个单位长度的正方形).
23.1图形的旋转2
![23.1图形的旋转2](https://img.taocdn.com/s3/m/33e92e8f71fe910ef12df88a.png)
2、 如图:ABC是等边三角形,D是BC上一点, ABD经过 旋转后到达ACE的位置。
(1)旋转中心是哪一点? (2)旋转了多少度?(3如果M是AB的中点,那么经过上述旋
转后,点M转到了什么位置? 解:(1)旋转中心是A; (2)旋转了60度; B D (3)点M转到了AC的中点位置上.
B/
O
C C/
A A/
B
已知:如图,在△ABC中,∠BAC=1200, 以BC为边向形外作等边三角形△BCD, 把△ABD绕着点D按顺时针方向旋转600 后得到△ECD,若AB=3,AC=2,求 ∠BAD的度数与AD的长.
E A C
B
D
图形的旋转
图形的旋转
在平面内,将一个图形绕一个定点旋转一 定的角度,这样的图形运动叫做图形的旋转. 这个定点叫旋转中心.旋转的角度称为旋转角. 旋转的决定因素: 图形的旋转不改变图形的形状、 旋转中心和旋转角度(旋转方向 )。 大小,只改变图形的位置 . 说说这些旋转现象有什么共同特征?
旋转的基本性质
. M
A
E C
例、已知线段AB和点O,请画出线 段AB绕点O按逆时针旋转1000后的 图形. M
B′ A′
N
B
O A
练习1、⑴如图,画出△ABC绕点A按逆 时针方向旋转900后的对应三角形; ⑵如果点D是AC的中点,那么经过上述 旋转后,点D旋转到什么位置?请在图中 将点D的对应点 C B' D′表示出来. C' (3).如果 D AD=1cm,那么点 D' D旋转过的路径 B A 是多少?
2、如图,将点阵中的图形绕点O按逆时 针方向旋转900,画出旋转后的图形.
O
·
九年级数学上册教学课件《旋转作图与坐标系中的旋转变换》
![九年级数学上册教学课件《旋转作图与坐标系中的旋转变换》](https://img.taocdn.com/s3/m/eb7d73746fdb6f1aff00bed5b9f3f90f76c64de4.png)
旋转中心 旋转方向 旋转角
顺时针 逆时针
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题.
01
找
找出旋转中心、旋转方向、旋转角以 及表示图形的关键点(如顶点)
02 连 连接图形的每一个关键点与旋转中心
03
转
把连线绕旋转中心按旋转方向旋转相 同的角度(旋转角的度数)
举例: 画出旋 转后的 三角形.
04
截
在旋转后所得的射线上截取与关键点到旋转中 心距离相等的线段,得到各关键点的对应点
05
作
按原图顺次连接各关键点的对应点,并标上 相应字母,写出结论
知识点一 用旋转的知识作图
例 如图,E是正方形ABCD中CD边上任意
一点,以点A为中心,把△ADE顺时针旋转90°,
画出旋转后的图形.
A
D
想一想:本题中作图
E
的关键是什么?
确定点E的对应点E' B
C
解:因为点A是旋转中心,所以它的对应点是 点A .
正方形ABCD中,AD=AB,∠DAB=90°,所以旋
逆时针旋转,画出旋转后的图形.【教材P62习题23.1 第3题】
A
A
P'
BP
C
BP
C
解:如图所示,△ACP'即为所求作的图形.
3. 分别画出△ABC绕点O逆时针旋转90°和
180°后的图形. 【教材P62习题23.1 第4题】
B'' A''
解: 旋转90° 后的图形 如图所示.
C' C''
OC
B'
转后点D与点 B 重合.
设点E的对应点为点E'. 因为旋转后的图形与旋转前的
九年级数学上册 第二十三章 旋转 23.1 图形的旋转 第2课时 图形的旋转—作图与设计教案
![九年级数学上册 第二十三章 旋转 23.1 图形的旋转 第2课时 图形的旋转—作图与设计教案](https://img.taocdn.com/s3/m/e8bbb85625c52cc58ad6be00.png)
第2课时 图形的旋转——作图与设计※教学目标※【知识与技能】理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.【过程与方法】经历对生活中旋转现象的观察、推理和分析过程,学会用数学的眼光看待生活中的有关问题,体验数学与现实生活的密切联系.【情感态度】进一步培养学生学习数学的兴趣和热爱生活的情感,体会生活中的旋转美,培养学生的美感,增强学生的艺术创作能力和艺术欣赏能力.【教学重点】用旋转的有关知识画图.【教学难点】根据需要设计美丽图案.※教学过程※一、情境导入提问 (1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?请同学独立完成下面的作图题.如图,△AOB 绕O 点旋转后,G 点是B 点的对应点,作出△AOB 旋转后的三角形.分析:要作出△AOB 旋转后的三角形,应找出三方面:第一,旋转中心O ;第二,旋转角∠BOG ;第三,A 点旋转后的对应点A′.二、探索新知从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.出示课件,展示月牙图案,教师手动鼠标,慢慢出现两片、三片……,形成图案,让学生通过观察,感受图案的形成过程,然后教师出示问题,让学生进行思考探究.问题:(1)你能说出上述图案是怎样得到的吗?(2)如果仅给你一片月牙形图案,你能设法得到图中的图案吗?(3)谈谈你对这些图案形成过程的认识?利用课件进一步展示“月牙”的旋转,让学生感受不同的旋转效果:(1)改变旋转角;(2)改变旋转中心.三、掌握新知例下面的图形是某设计师设计图案的一部分,请你运用旋转变换的方法,在方格纸中将图形绕点O顺时针依次旋转90°,180°,270°,依次画出旋转后的图形,你会得到一个美丽的图案,涂色部分不要涂错,否则不能出现理想的效果,你来试一试吧!分析:运用“对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角相等”等旋转的特征,很容易得到旋转后的图案.答案:四、活动操作把一个三角形进行旋转:(1)选择不同的旋转中心、不同的旋转角,看看旋转效果;(2)改变三角形的形状,看看旋转效果.五、巩固练习请以下列图形为基本图形,利用旋转进行图案设计.(1)(2)(3)六、归纳小结通过这节课的学习,你有哪些收获?你觉得利用旋转进行图案设计需要注意哪些问题?※布置作业※从教材习题23.1中选取.※教学反思※在现实世界中,广泛存在着物体的旋转,数学生研究图形的旋转,就是从抽象中而来的.当我们画一个经过旋转后的图形,在纸上毕竟是不可能再现其真实的移动过程,这个过程只能存在于想象中,所以我们注重的是旋转后的结果,即经过旋转后的图形.要准确画出一个经过旋转后的图形,尤其是旋转结构复杂的图形,就需要一定的方法.我们知道:点动成线,线动成面,面动成体.因此旋转图形的基本思路为:面的旋转通过线段(特殊线段)的旋转实现;线段的旋转通过点(特殊点)的旋转实现.。
2022年秋人教版(河北专版)九年级上学期数学作业课件:23.1图形的旋转第2课时旋转的性质与旋转作
![2022年秋人教版(河北专版)九年级上学期数学作业课件:23.1图形的旋转第2课时旋转的性质与旋转作](https://img.taocdn.com/s3/m/df9214ed951ea76e58fafab069dc5022aaea46d1.png)
知识点2:旋转作图及利用旋转设计图案
7.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是(
)
C
8.如图,已知△ABC与点O,画出△ABC绕点O逆时针旋转80°得到的三角 形.
解:如图所示.
9.(2017秋·张家口期中)在如图所示的平面直角坐标系中,已知△ABC.
(1)将△ABC沿x轴负半轴方向平移4个单位长度得到△A1B1C1,画出图形并 写出点A1的坐标;
接DE. (1)求证:AD=DE; (2)求∠DCE的度数; (3)若BD=1,求AD,CD的长.
16.把两个全等的等腰直角三角板ABC和EFG(其直角边长均为4)叠放在一 起(如图1),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合, 现将三角板EFG绕点O按顺时针方向旋转(旋转角α满足条件:0°<α<90°), 四边形CHGK是旋转过程中两三角形的重叠部分(如图2).在上述旋转过程 中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?请证明你 的发现.
)
C
11.(2017·福建)如图,网格纸上正方形小格的边长为1.图中线段AB和点P
绕着同一个点做相同的旋转,分别得到线段A′B′和点P′,则点P′所在的单位
D 正方形区域是(
)
A.1区 B.2区 C.3区 D.4区
12.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以 由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对 应点,连接AB′,且A,B′,A′在同一条直线上,则AA′的长为_________.
2022年秋人教版(河北 专版)九年级上学期数 学作业课件:23.1图形 的旋转第2课时旋转的性
数学:23.1《图形的旋转》(第2课时)课件(人教新课标九年级上)
![数学:23.1《图形的旋转》(第2课时)课件(人教新课标九年级上)](https://img.taocdn.com/s3/m/3cc703a36c85ec3a86c2c5a0.png)
九年级数学上册23.1《图形的旋转》(第2课时)教案新人教版
![九年级数学上册23.1《图形的旋转》(第2课时)教案新人教版](https://img.taocdn.com/s3/m/4d285aae0975f46526d3e105.png)
23.1 图形的旋转(第2课时)教学内容1.对应点到旋转中心的距离相等.2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前后的图形全等及其它们的运用.教学目标理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.重难点、关键1.重点:图形的旋转的基本性质及其应用.2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.教学过程(一)复习引入(学生活动)老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.请独立完成下面的题目.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?(老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.(二)板书标题,呈现教学目标:理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.(三)引导学生自学:阅读P57-59页,完成58、59页的练习,并思考下列问题:1.旋转作图应注意哪几个方面?2.你对运用旋转知识作图有什么看法?6分钟后,检查自学效果(四)学生自学,教师巡视:学生认真自学,教师巡视学生练习完成的情况。
(四)检查自学效果:请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,•再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,•在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′形状和大小有什么关系?老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心相等.2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,•即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同和大小相等,即全等.综合以上的实验操作和刚才作的(3),得出(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B•对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,•又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连结CD(2)以CB为一边作∠BCE,使得∠BCE=∠ACD(3)在射线CE上截取CB′=CB则B′即为所求的B的对应点.(4)连结DB′则△DB′C就是△ABC绕C点旋转后的图形.例2.如图,四边形ABCD是边长为1的正方形,且DE=14,△ABF是△ADE的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连结EF,那么△AEF是怎样的三角形?分析:由△ABF是△ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到.•△ABF与△ADE 是完全重合的,所以它是直角三角形.解:(1)旋转中心是A点.(2)∵△ABF是由△ADE旋转而成的∴B是D的对应点∴∠(3)∵AD=1,DE=14∴AE=2211()4=174∵对应点到旋转中心的距离相等且F是E的对应点∴AF=17 4(4)∵∠EAF=90°(与旋转角相等)且AF=AE ∴△EAF是等腰直角三角形.(五)应用拓展例3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M•在AK 的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.解:∵四边形ABCD、四边形AKLM是正方形∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90°∴△ADM是以A为旋转中心,∠BAD为旋转角由△ABK旋转而成的∴BK=DM(六)课堂训练课本59—61页(七)归纳小结(学生总结,老师点评)本节课应掌握:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.(八)课后作业《感悟》第42---44页。
人教版九年级数学上册 23.1 图形的旋转 第2课时课件
![人教版九年级数学上册 23.1 图形的旋转 第2课时课件](https://img.taocdn.com/s3/m/be39a72f28ea81c759f578b2.png)
一、选择题(每小题 6 分,共 12 分) 9.如图所示,边长为 1 的正方形 ABCD 绕点 A 逆时针旋转 30
°到正方形 AB′C′D′,图中阴影部分的面积为( A )
A.1-
3 3
3 B. 3
C.1-
3 4
1 D.2
,第 9 题图)
,第 10 题图)
10.如图,如果正方形 ABCF 旋转后能与 CDEF 重合,那么图
• 8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。下午12时59 分5秒下午12时59分12:59:0521.11.7
8.(8分)如图,将一个钝角△ABC(其中∠ABC=120°)绕 点B顺时针旋转得△A1BC1,使得C点落在AB的延长线上的 点C1处,连接AA1.
23.1 图形的旋转
第2课时 旋转作图
1.在旋转的过程中,要确定一个图形旋转后的位置,除了应 了解图形原来的位置外,
还应了解 旋转中心、 旋转方向 和 旋转角 .
2.旋转作图的步骤: (1)首先确定 旋转中心、旋转方向和 旋转角 ; (2)其次确定图形的关键点; (3)将这些关键点沿指定的方向旋转指定的角度; (4)连接 对应点,形成相应的图形.
单位,再向下平移8个单位(或将 线段AC先向下平移8个单位,再 向右平移6个单位) (2)F(-1,-1) (3)画出如图所示的图
【综合运用】
15.(16分)如图①,在△ABC中,AB=AC,∠BAC=90°, D,E分别是AB,AC边的中点,将△ABC绕点A顺时针旋转α 角(0<α<180°),得到△AB′C′(如图②).
心用有序数对表示是 (5,2) .
3.(4分)在如图所示的方格纸中,每个小方格都是边长为1个 单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶 点叫做格点).画出△ABC绕点O逆时针旋转90°后的△A′B′C′.