初三数学弧长和扇形面积公式版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.圆周长:r 2C π=

圆面积:2r S π=

2.圆的面积C 与半径R 之间存在关系R 2C π=,即360°的圆心角所对的弧长,因此,1°的圆心角所对的弧长就是

360R 2π。 n °的圆心角所对的弧长是180R n π 180R n π=∴l

*这里的180、n 在弧长计算公式中表示倍分关系,没有单位。

3.由组成圆心角的两条半径和圆心角所对的弧所围成的圆形叫做扇形。

发现:扇形面积与组成扇形的圆心角的大小有关,圆心角越大,扇形面积也就越大。

4.在半径是R 的圆中,因为360°的圆心角所对的扇形的面积就是圆面积2R S π=,所以圆心角为n °的扇形面积是:

R l R n S 213602==π扇形

(n 也是1°的倍数,无单位)l 为弧的长 5.圆锥的侧面展开图与侧面积计算

圆锥的侧面展开图是一个扇形,这个扇形的半径是圆锥侧面的母线、圆心是圆锥的

顶点、弧长是圆锥底面圆的周长。

圆锥侧面积是扇形面积。

如果设扇形的半径为l,弧长为c,圆心角为n(如图),则它们之间有如下关系:

同时,如果设圆锥底面半径为r,周长为c,侧面母线长为l,那么它的侧面积是:圆锥的全面积为:2r

πl

+

圆柱侧面积:rh

2π。

相关文档
最新文档