高电压技术重点知识整理

合集下载

高电压技术重点复习大纲

高电压技术重点复习大纲

高电压技术重点复习大纲一、引言高电压技术作为电气工程中的重要分支,涉及电力系统、电气设备以及电力传输等方面。

本文将针对高电压技术的重点知识进行复习梳理,帮助读者系统化地理解和掌握该领域的核心概念和理论。

二、高电压技术概述1. 高电压技术的定义和应用范围2. 高电压的基本概念和表示方法3. 高电压技术的主要问题和挑战三、高电压绝缘技术1. 绝缘材料的种类和特性2. 绝缘材料的选用和制备3. 绝缘破坏与击穿机理4. 绝缘水平的评定和试验方法四、高电压设备与技术1. 高电压断路器的结构和工作原理2. 高电压变压器的类型和特点3. 高电压绝缘子的种类和应用4. 高电压电缆的敷设和维护五、高电压输电与配电技术1. 高电压输电线路的设计和选型2. 高电压变电站的布置和运行方式3. 高电压配电系统的组成和保护措施4. 高电压输配电中的功率损耗和电压稳定性问题六、高电压安全与环境保护1. 高电压安全工作的重要性和基本原则2. 高电压事故的预防和应急处理3. 高电压对环境的影响及其治理方法七、高电压技术的新发展1. 高电压技术的新理论和方法2. 高电压技术在可再生能源中的应用3. 高电压技术与智能电网的融合八、总结与展望通过对高电压技术的重点知识的复习,我们可以对该领域的核心概念和理论有较为深入的理解。

面对未来高电压技术的发展,我们应不断学习创新,以推动电气工程的进步和发展。

以上为高电压技术重点复习大纲,通过对各个知识点的梳理和总结,旨在帮助读者更好地掌握和理解高电压技术的核心内容。

有关详细内容和具体的公式推导等细节,建议读者参考相关教材和资料进行进一步学习。

祝愿读者在高电压技术的学习中取得优异的成绩!。

高电压技术复习资料

高电压技术复习资料

高电压技术复习资料
高电压技术是电力工程中的一个重要组成部分,具有广泛应用领域。

因此,对于高电压技术的学习和掌握是非常重要的。

本文将从几个方面对高电压技术的相关知识进行复习。

一、高电压的定义
高电压是指大于常见电压的电压等级,一般情况下指高于1000伏的电压。

高电压技术是指针对高电压的控制和运用所采用的一系列技术和方法。

二、高电压的产生和测量
高电压的产生可以采用变压器和电容器等方式,其中变压器的应用最为广泛。

在高电压测量中,主要采用的是电压表、电位差计和介质损耗测试仪等设备。

三、高电压的应用
高电压技术在电力工程中有许多应用,例如高压输电、变电站的建设以及工业生产中的电源、除尘器等方面。

此外,高电压在科学研究中也有很多用途,如核聚变实验、高温等离子体研究等领域。

四、高电压的危害和防护
高电压如不加控制和保护,可能会带来很大的危害。

高电压会导致电击和火灾等危险,需要采取相应的防护措施。

防护方法包括使用绝缘材料和可靠的接地装置等。

五、高电压技术的发展趋势
随着科技的不断发展和电力工程的不断改进,高电压技术也在不断发展。

未来,高电压技术将更加注重环保和节能,同时也会注重智能化和自动化的应用。

综上所述,高电压技术是电力工程中不可或缺的一部分,具有广泛的应用前景。

通过对高电压技术的复习,可以更好地理解和掌握该项技术,并在实际应用中起到更好的作用。

高电压技术重要知识点

高电压技术重要知识点

高电压技术各章知识点第一篇电介质的电气强度第1章气体的绝缘特性与介质的电气强度1、气体中带电质点产生的方式热电离、光电离、碰撞电离、表面电离2、气体中带电质点消失的方式流入电极、逸出气体空间、复合3、电子崩与汤逊理论电子崩的形成、汤逊理论的基本过程及适用范围4、巴申定律及其适用范围击穿电压与气体相对密度和极间距离乘积之间的关系。

两者乘积大于0.26cm时,不再适用5、流注理论考虑了空间电荷对原有电场的影响和空间光电离的作用,适用两者乘积大于0.26cm时的情况6、均匀电场与不均匀电场的划分以最大场强与平均场强之比来划分。

7、极不均匀电场中的电晕放电电晕放电的过程、起始场强、放电的极性效应8、冲击电压作用下气隙的击穿特性雷电和操作过电压波的波形冲击电压作用下的放电延时与伏秒特性50%击穿电压的概念9、电场形式对放电电压的影响均匀电场无极性效应、各类电压形式放电电压基本相同、分散性小极不均匀电场中极间距离为主要影响因素、极性效应明显。

10、电压波形对放电电压的影响电压波形对均匀和稍不均匀电场影响不大对极不均匀电场影响相当大完全对称的极不均匀场:棒棒间隙极大不对称的极不均匀场:棒板间隙11、气体的状态对放电电压的影响湿度、密度、海拔高度的影响12、气体的性质对放电电压的影响在间隙中加入高电强度气体,可大大提高击穿电压,主要指一些含卤族元素的强电负性气体,如SF613、提高气体放电电压的措施电极形状的改进空间电荷对原电场的畸变作用极不均匀场中屏障的采用提高气体压力的作用高真空高电气强度气体SF6的采用第2章液体和固体介质的绝缘的电气强度1、电介质的极化极化:在电场的作用下,电荷质点会沿电场方向产生有限的位移现象,并产生电矩(偶极矩)。

介电常数:电介质极化的强弱可用介电常数的大小来表示,与电介质分子的极性强弱有关。

极性电介质和非极性电介质:具有极性分子的电介质称为极性电介质。

由中性分子构成的电介质。

极化的基本形式电子式、离子式(不产生能量损失)转向、夹层介质界面极化(有能量损失)2、电介质的电导泄漏电流和绝缘电阻气体的电导:主要来自于外界射线使分子发生电离和强电场作用下气体电子的碰撞电离液体的电导:离子电导和电泳电导固体的电导:离子电导和电子电导3、电介质的损耗介质损耗针对的是交流电压作用下介质的有功功率损耗电介质的并联与串联等效回路介质损耗一般用介损角的正切值来表示气体、液体和固体电介质的损耗液体电介质损耗和温度、频率之间的关系4、液体电介质的击穿纯净液体介质的电击穿理论纯净液体介质的气泡击穿理论工程用变压器油的击穿理论5、影响液体电介质击穿的因素油品质、温度、电压作用时间、电场均匀程度、压力6、提高液体电介质击穿电压的措施提高油品质,采用覆盖、绝缘层、极屏障等措施7、固体电介质的击穿电击穿、热击穿、电化学击穿的击穿机理及特点8、影响固体电介质击穿电压的主要因素电压作用时间温度电场均匀程度受潮累积效应机械负荷9、组合绝缘的电气强度“油-屏障”式绝缘油纸绝缘第二篇电气设备绝缘试验第3章绝缘的预防性试验1、绝缘电阻与吸收比的测量用兆欧表来测量电气设备的绝缘电阻吸收比K定义为加压60s时的绝缘电阻与15s时的绝缘电阻比值。

高电压技术总结

高电压技术总结
22、极化:电介质在电场的作用下对外呈现电极性的过程。
23、电导:电介质在电场作用下导电的过程。
24、损耗:由电导和有损极化引起的功率损耗。
25、老化:电力系统长期运行时电介质逐渐失去绝缘能力的过程。
26、吸收比:t=60s和t=15s时的绝缘电阻的比值。
27、过电压:电力系统承受的超过正常电压的。
34、击杆率:雷击事故中雷击塔顶的次数与雷击输电线路的总次数之比。
35、绕击率:雷击绕过避雷线击中导线的概率。
36、建弧率:线路中绝缘由冲击闪络变为工频闪络的概率。
37、进线段:输电线路中距离变电站1—2公里的线段。
二、简答
①提高系统的输电能力②增加输电距离③降低线路功率损耗④降低电网传输单位容量的造价。
汤森德理论:①电子碰撞游离产生电子崩的过程是气体放电的主要过程②二次放射是气体自持放电的必要条件。
游离条件:运动质点所具有的总能量一定要大于被撞质点在正常状态下的游离能。
气体的放电电压是气体间隙距离和气体相对密度乘积的函数Uf=f(δ·s)。
4、在多介质绝缘结构中极化和电场分布的关系。
电场分布的静向分量与绝缘的相对介质常数成反比。
第九章
1.内部过电压类型:暂时过电压(工频电压升高、谐振过电压)、操作过电压(切断空载线路~、空载线路合闸~、切断空载变压器~、断续电弧接地~)。
篇二:高电压技术总结复习资料
一、填空和概念解释
1、电介质:电气设备中作为绝缘使用的绝缘材料。
2、击穿:在电压的作用下,介质由绝缘状态变为导电状态的过程。
3、击穿电压:击穿时对应的电压。
2.耐压试验:工频、感应、直流、冲击~。试验结果:①能有效地发现绝缘中危险的集中性缺陷②能对绕组的纵绝缘和相间绝缘进行试验③更易检查出其中的缺陷④能良好地检验高压电气设备对雷电冲击电压和操作冲击电压的耐受能力。

高电压技术重点

高电压技术重点

第一章1.电解质极化有电子位移极化、离子位移极化、转向极化、空间电荷极化四种类型。

2.电子位移极化是弹性的,无能量损耗,完成时间短:10-14 ~10-15s,与温度无关。

3.离子位移极化所需时间:10-12 ~10-13s,无能量损耗,极化率随温度升高略有升高。

4.外电场愈强,转向极化愈强,所需时间:10-6 ~10-2s,电场交变频率升高,极化率减小,有能量损耗。

5.最明显的空间电荷极化是夹层极化,完成时间从几十分之一秒到几分钟,有能量损耗。

6.介质的相对介电常数εr是衡量介质的极化强度的量。

7.金属的电导是电子性电导,负温度系数,气体和液体的电导是离子式电导,正温度系数。

8.金属的电阻有正温度系数,气体和液体有负温度系数。

9.中性液体固体,温度升高,tanδ增大。

第二章1.气体中带电质点的来源:气体分子本身发生电离,气体中的固体液体发生表面电离。

2.激励:一个原子的外层电子跃迁到较远的轨道上去的现象。

所需的能量称为激励能W e。

3.电离:当外界加入的能量很大,使电子具有的能量超过最远轨道的能量时,电子就跳出原子轨道之外,成为自由电子。

这样就使原来的一个中性原子变成一个自由电子和一个带正电荷的离子。

到达电离所需的最小能量称为电离能W i。

4.处于激励状态的原子是不稳定的,在极短时间内,跃迁到外层轨道的电子就会自发的跳回到较内层的轨道上去,这时就会将原来所吸收的激励能以一定频率的单色光(光子)的形式放射出去。

5.电离的形式:撞击电离,光电离,热电离,表面电离。

6.撞击电离的条件:撞击质点所具有的总能量大于被撞击质点在该种状态下所需的电离能,需要一定的相互作用时间和条件。

7.逸出功:从金属表面逸出电子需要的能量。

金属的逸出功一般比气体的电离能小得多。

8.金属表面电离所需能量的获得:加热金属电极,在电极附近加上很强的外电场,用某些具有足够能量的质点撞击金属电极表面,用短波光照射金属表面。

9.气体中带电质点的消失:带电质点受电场力的作用流入电极并中和电量,带电质点的扩散,带电质点的复合。

高电压技术重点知识整理

高电压技术重点知识整理

1.电介质的极化:1.〕电子位移极化 电介质中的带点质点在电场作用下沿电场方向做有限位移,无能量损耗2.〕离子位移极化 有极微量的能量损耗3.〕转向极化4.〕空间电荷极化2.电介质的介电常数代表电介质极化程度〔气体D=1 水D=81 蓖麻油 D=4.2〕3.电介质的电导与金属电导的区别:1.〕形成电导电流的带电粒子不同〔金属导体:自由电子,电介质:离子〕2.〕带电粒子数量上的区别4.影响液体介质电导的因素:温度,电场强度。

5.电介质中的能量损耗:δωδωεCtg U V tg E pV P 22=== 6.tg δ:介质损耗角,绝缘在交变电压作用下比损耗大小的特征参数 7.四种形式电离的产生:撞击电离 光电离 热电离 外表电离 8.气体中带电质点的消失:1.〕带电质点收电场力的作用流入电极并中和电量2.〕带电质点的扩散3.〕带电质点的复合9.自持放电:当场强超过临界场强cr E 值时,这种电子崩已可仅由电场的作用而自行维持和发展,不必再有赖于电离因素,这种性质的放电称为自持放电。

10.汤森德理论只是对较均匀电场和S •δ较小的情况下适用。

11.物理意义:一个电子从阴极到阳极途中因为电子崩〔ɑ过程〕而造成的正离子数为1-de α这批正离子在阴极上造成的二次自由电子数〔r 过程〕应为:)1(-de r α如果它等于1就意味着那个初始电子有了一个后继电子从而使放电得以自持。

12.帕邢定律:在均匀电场中,击穿电压b U 与气体相对密度δ,极间距离S 并不具有单独的函数关系,而是仅与他们的积有函数关系,只要S ⋅δ的乘积不变,b U 也就不变。

13.流柱放电流程:有效电子〔经碰撞游离〕——电子崩〔畸变电场〕——发射光子〔在强电场作用下〕——产生新的电子崩〔二次崩〕——形成混质通道〔流柱〕——由阳极向阴极〔阳极流柱〕或由阴极向阳极〔阴极流柱〕击穿14.电晕放电:电晕放电是极不均匀电场所特有的一种自持放电形式,他与其他形式的放电有本质的区别,电晕放电的电流强度并不取决于电源电路中的阻抗,而取决于电极外气体空间的电导,即取决于外施电压的大小,电极形状,极间距离,气体的性质和密度等。

高电压技术复习资料要点

高电压技术复习资料要点

第一章电介质的电气强度1.1气体放电的基本物理过程1.高压电气设备中的绝缘介质有气体、液体、固体以及其他复合介质。

2.气体放电是对气体中流通电流的各种形式统称。

3.电离:指电子脱离原子核的束缚而形成自由电子和正离子的过程。

4.带电质点的方式可分热电离、光电离、碰撞电离、分级电离。

5.带电质点的能量来源可分正离子撞击阴极表面、光电子发射、强场发射、热电子发射。

6.带电质点的消失可分带电质点受电场力的作用流入电极、带电质点的扩散、带电质点的复合。

7.附着:电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,也可能发生电子附着过程而形成负离子。

8.复合:当气体中带异号电荷的粒子相遇时,有可能发生电荷的传递与中和,这种现象称为复合。

(1)复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;(2)复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。

9.1、放电的电子崩阶段(1)非自持放电和自持放电的不同特点宇宙射线和放射性物质的射线会使气体发生微弱的电离而产生少量带电质点;另一方面、负带电质点又在不断复合,使气体空间存在一定浓度的带电质点。

因此,在气隙的电极间施加电压时,可检测到微小的电流。

由图1-3可知:(1)在I-U 曲线的OA 段: 气隙电流随外施电压的提高而增大,这是因为带电质点向电极运动的速度加快导致复合率减小。

当电压接近 时,电流趋于饱和,因为此时由外电离因素产生的带电质点全部进入电极,所以电流值仅取决于外电离因素的强弱而与电压无关。

(2)在I-U 曲线的B 、C 点:电压升高至 时,电流又开始增大,这是由于电子碰撞电离引起的,因为此时电子在电场作用下已积累起足以引起碰撞电离的动能。

电压继续升高至 时,电流急剧上升,说明放电过程又进入了一个新的阶段。

此时气隙转入良好的导电状态,即气体发生了击穿。

(3)在I-U 曲线的BC 段:虽然电流增长很快,但电流值仍很小,一般在微安级,且此时气体中的电流仍要靠外电离因素来维持,一旦去除外电离因素,气隙电流将消失。

高电压技术重点知识整理(6页)

高电压技术重点知识整理(6页)

1.电介质的极化:1.)电子位移极化 电介质中的带点质点在电场作用下沿电场方向做有限位移,无能量损耗2.)离子位移极化 有极微量的能量损耗3.)转向极化4.)空间电荷极化2.电介质的介电常数代表电介质极化程度(气体D=1 水D=81 蓖麻油 D=4.2)3.电介质的电导与金属电导的区别:1.)形成电导电流的带电粒子不同(金属导体:自由电子,电介质:离子)2.)带电粒子数量上的区别4.影响液体介质电导的因素:温度,电场强度。

5.电介质中的能量损耗:δωδωεCtg U V tg E pV P 22=== 6.tg δ:介质损耗角,绝缘在交变电压作用下比损耗大小的特征参数 7.四种形式电离的产生:撞击电离 光电离 热电离 表面电离 8.气体中带电质点的消失:1.)带电质点收电场力的作用流入电极并中和电量2.)带电质点的扩散3.)带电质点的复合9.自持放电:当场强超过临界场强cr E 值时,这种电子崩已可仅由电场的作用而自行维持和发展,不必再有赖于电离因素,这种性质的放电称为自持放电。

10.汤森德理论只是对较均匀电场和S •δ较小的情况下适用。

11.物理意义:一个电子从阴极到阳极途中因为电子崩(ɑ过程)而造成的正离子数为1-de α这批正离子在阴极上造成的二次自由电子数(r 过程)应为:)1(-de r α如果它等于1就意味着那个初始电子有了一个后继电子从而使放电得以自持。

12.帕邢定律:在均匀电场中,击穿电压b U 与气体相对密度δ,极间距离S 并不具有单独的函数关系,而是仅与他们的积有函数关系,只要S ⋅δ的乘积不变,b U 也就不变。

13.流柱放电流程:有效电子(经碰撞游离)——电子崩(畸变电场)——发射光子(在强电场作用下)——产生新的电子崩(二次崩)——形成混质通道(流柱)——由阳极向阴极(阳极流柱)或由阴极向阳极(阴极流柱)击穿14.电晕放电:电晕放电是极不均匀电场所特有的一种自持放电形式,他与其他形式的放电有本质的区别,电晕放电的电流强度并不取决于电源电路中的阻抗,而取决于电极外气体空间的电导,即取决于外施电压的大小,电极形状,极间距离,气体的性质和密度等。

高电压技术复习总

高电压技术复习总

一:填空题1.电离是指电子脱离原子核的束缚而形成自由电子和正离子过程。

2.碰撞电离是气体放电过程中产生带电质点最重要的方式。

3.气体发生放电时,除不断形成带电质点的电离过程外,还存在相反的过程,即带电质点的消失过程,则带电质点的消失情况有:带电质点受电场力的作用流入电极;带电质点的扩散;带电质点的复合4.新电子在向阳极行进过程中会发生碰撞电离,产生两个新电子,电子总数增加到4个。

第三次碰撞增加到8个,即按几何数不断增加,因此将这一剧增的电子流称为:电子崩5.自持放电的条件为:r(ead-1)=1或read=16.汤逊放电理论的适用范围低电压、pd较小。

7.棒-板间隙中棒为正极性时电晕起始电压比负极性时略高。

8.在均匀电场中的击穿,若电极布置称,则无<有,无>击穿极性效应,当间隙距离d在1到10cm范围内时,击穿强度比约等于30kv/cm。

9.由于高场强下电极性不同,空间电荷极性不同,对放电发展的影响也不同,这就造成不同极性的高场强电极的电晕起始电压的不同以及间隙击穿电压的不同,称为极性效应。

10.解决电晕放的途径是限制导线的表面场强,最好解决方法是采用分裂导线。

1.国际上大多数国家对于不同极性的标准雷电波形可表示为+1.2|50us或-1.2|50us 。

2.空间电荷对原电场有畸变作用。

3.沿整个固体绝缘表面产生的放电称为闪络。

4.输电线路采用钢化玻璃绝缘子是由于它具有损坏后自爆的特性。

5.引入固体介质的闪络电压比气体的闪络电压低。

6.具有强垂直分量时的沿面放电对绝缘的危害比具有弱垂直分量时的沿面放电对绝缘的危害大。

7.出现滑闪放电的条件: 电场必须有足够的垂直分量, 电场必须有足够的水平分量,电压必须是交变的。

8.目前在世界范围内应用最广泛的划分污秽等级的方法是等值盐密法。

9.采用高电气强度气体 SF6 可削弱气体中的电离强度。

10.石蜡的闪络电压比电瓷高,因为石蜡具有憎水性质。

1.液体电介质有矿物绝缘油、合成绝缘油、植物油三大类。

高电压知识点汇总

高电压知识点汇总

高电压知识点汇总一、气体放电的基本概念。

1. 气体放电。

- 气体中流通电流的各种形式统称为气体放电。

在正常状态下,气体是良好的绝缘体,但在一定条件下(如高电压、强电场等),气体中会出现导电现象。

- 气体放电可分为自持放电和非自持放电。

非自持放电需要依靠外界电离因素(如紫外线、宇宙射线等)才能维持导电;自持放电一旦形成,即使外界电离因素消失,放电仍能持续。

2. 汤逊理论。

- 适用于低气压、短间隙均匀电场中的气体放电。

- 主要观点:电子崩和正离子撞击阴极产生二次电子发射是气体自持放电的主要机制。

- 汤逊第一电离系数α:表示一个电子在沿电场方向运动1cm的过程中与气体分子发生碰撞电离的次数。

- 汤逊第二电离系数β:表示一个正离子撞击阴极表面时产生的二次电子数。

- 根据汤逊理论,自持放电的条件为:e^α d=1+(α)/(β)(d为电极间距)。

3. 流注理论。

- 适用于高气压、长间隙、不均匀电场中的气体放电。

- 主要观点:电子崩发展到足够强时,电子崩中的空间电荷会使电场发生畸变,产生局部强电场,从而引发光电离,形成流注。

流注不断发展贯穿两极间的间隙,导致气体击穿。

- 与汤逊理论的区别:汤逊理论没有考虑空间电荷对电场的畸变作用,而流注理论强调了空间电荷和光电离在放电过程中的重要性。

二、液体和固体介质的电气特性。

1. 液体介质的电气特性。

- 极化。

- 液体介质在电场作用下会发生极化现象。

极化类型主要有电子式极化、离子式极化和偶极子极化。

- 电子式极化:电子云相对于原子核的位移产生的极化,其特点是极化建立时间极短(10^-15sim10^-16s),极化过程中不消耗能量。

- 离子式极化:离子晶体中正负离子在电场作用下的相对位移产生的极化,建立时间约为10^-13s,极化过程中也基本不消耗能量。

- 偶极子极化:极性分子在电场作用下沿电场方向取向产生的极化,建立时间较长(10^-10sim10^-2s),极化过程中消耗能量。

高电压技术考点整理.总结

高电压技术考点整理.总结

1.电介质按物质形态分为:气体介质、液体介质、固体介质2.电器设备中:外绝缘:由气体介质和固体介质联合构成内绝缘:由液体介质和固体介质联合构成3.气体的电离类型:碰撞电离、光电离、热电离4.气体的放电现象有击穿和闪络两种现象。

5.I气体介质的电气特性一.气体放电分为:自持放电和非自持放电非自持放电:当施加电压U<Uc 时,需要外界电离因素才能维持。

自持放电:当施加电压U>Uc 时,气隙中的电离过程仅靠外施电压就可以维持,不再需要外部电离因素。

常见气体放电形式;电晕放电、火花放电,辉光放电,电弧放电,沿面放点八\、电晕放电(电晕放电是极不均匀电场所特有的一种自持放电形式):(名词解释)若构成气体间隙的电极曲率半径很小,或电极间距离很大,当电压升到一定数值时,将在电场非常集中的尖端电极处发生局部的类似月亮晕光的光层,这时用仪表可以观测到放电电流。

随着电压的升高,晕光层逐渐扩大,放电电流也增大,这种放电形式称为电晕放电。

A •均匀电场中B •稍不均匀电场中汤逊理论和流注理论1.汤逊理论:放电的主要原因是电子电离,二次电子来源于正离子 撞击阴极表面溢出电子,溢出电子是维持气体放电的必要条件。

二次电子能否接替起始电子的作用是气体放电的判据。

用于低气压、短气隙——pdv26.66kPa.cm2.流注理论:流注理论认为气体放电的必要条件是电子崩达到某一 程度后,电子崩产生的空间电荷使原有电场发生畸变,大大加强 崩头和崩尾处的电场。

另一方面气隙间正负电荷密度大,复合作 用频繁,复合后的光子在如此强的电场中很容易形成产生新的光 电离的辐射源,二次电子主要来源于光电离。

适用于高气压,长间隙 ----- pd>26.66kPa.cm自持放电的条件:匕 〜10 流注:在正电荷区域内形成正负带电粒子的混合通道, 这个电离 通道称为流注。

不均匀电场的放电 附:不均匀电场分为少不均匀电场(球状电场)和极不均匀电场(棒-棒,棒-板)1. 极性效应:由于高场强电极极性的不同,空间电荷的极性也不同,对 放电发展的影响也不同,这就造成了不同极性的高场强电极的电晕起 始电压和间隙击穿电压的不同。

高电压技术知识点总结

高电压技术知识点总结

高电压技术知识点总结
高电压技术概述
高电压技术是研究电压等级在数千伏以上电力系统及其设备的技术科学。

它涉及电力的产生、传输、分配与使用,以及与此相关的设备和安全措施。

基本概念
- 电压等级:表示电气系统中使用的电压范围。

常见的高电压等级包括10kV、35kV、110kV等。

- 绝缘:指用于隔离导电部分,防止电流泄漏的材料或结构。

- 接地:将电气设备的非载流金属部分与大地相连,以确保人员安全和设备保护。

高压设备
- 变压器:用于升高或降低交流电压的设备,核心部件为铁心和线圈。

- 断路器:能在正常或故障条件下断开电路的开关设备。

- 绝缘子:支撑导体并实现其对地绝缘的器件,有悬垂式和支柱式两种。

高电压测试
- 介电强度测试:检查材料或设备在高电压作用下的绝缘性能。

- 局部放电测试:检测和评估设备在高电压下局部放电活动,以预防潜在故障。

安全措施
- 防护距离:根据电压等级设定的安全距离,以防电击事故。

- 个人防护装备:包括绝缘手套、绝缘鞋、护目镜等,用于保护操作人员。

- 警示标识:明确标示高压危险区域,提醒人员注意安全。

高电压应用
- 输电线路:远距离高效传输电能的重要途径。

- 电力变压器:连接不同电压级别网络的关键设备。

- 电力系统保护:确保电网稳定运行和设备安全的技术和装置。

通过上述内容的学习和理解,可以对高电压技术有一个基础而全面的认识。

务必牢记安全第一,正确使用和维护高电压设备,确保电力系统的稳定和可靠运行。

(完整)高电压重点知识复习

(完整)高电压重点知识复习

第一章 电介质的电气强度第一节平均自由行程长度:单位行程中的碰撞次数Z 的倒数λ。

影响因素:气体分子的半径、温度、气压。

迁移率:E vk =,表示带电粒子在单位场强(m /1V )下沿电场方向的漂移速度。

电离:产生带电粒子的物理过程,气体放电的首要前提。

使基态原子或分子中结合最松弛的那个电子电离出来所需的最小能量称为电离能,外界能量必须大于电离能才能使电离发生。

四种电离方式:光电离、热电离、碰撞电离、电极表面的电离其中引起碰撞电离的条件为i e W Ex q ≥。

电极表面的电离的四种方式:正离子撞击阴极表面、光电子发射、热电子发射、强场发射。

负离子的形成:当电子与气体分子碰撞时,有可能引起碰撞电离而产生出正离子和新电子,也可能会发生电子和中性分子结合形成负离子(称为附着)。

对放电的形成起什么作用及其原因:负离子的形成并没有使气体中的带电粒子数改变,但却能使自由电子数减少,因而对气体放电的发展起抑制作用。

带电粒子的消失三种形式:1.在电场驱动下作定向运动,到达电极时消失于电极上而形成外电路中的电流2.因扩散现象而逸出气体放电空间3.带电粒子的复合第二节发生电子崩后抵达阳极的电子数:d a e n n α0= 电子碰撞电离系数E BPApe -=α,表明该系数与场强和气压有关。

场强很大时,α急剧增大,气压过大或过小时α都较小。

(电子碰撞电离系数越大击穿电压越低)第三节汤逊放电的γ过程及汤逊放电全过程:(1)正离子撞击到阴极表面发生表面电离,使阴极释放出二次自由电子的过程称为γ过程(2)在电极的气隙中,因外界电离因子产生出自由电子,这些自由电子在电极两端电压的作用下向阳极移动,当空间的电场强度足够大,这些电子将引起碰撞电离,产生出新的电子,新的电子又将引发碰撞电离,如此持续就会产生电子崩。

在碰撞电离过程中产生的正离子在电场的作用下撞击阴极,当场强足够大时,初始电子崩的正离子能在阴极上产生的新电子数大于或等于由外界电离因子产生的电子,那么即使除去外界电离因子的作用,放电也能够自持。

高电压技术考试复习知识点

高电压技术考试复习知识点

高电压技术考试复习知识点高电压技术复习资料1. 原子的电离:中性原子在外界因素作用下,获得足够大的能量,可使原子中的一个或几个电子完全摆脱原子核的束缚,形成自由的电子和正离子的过程。

2. 电离的条件:原子从外界获取的能量大于原子的电离能。

3. 气体原子电离的因素:电子或正离子与气体分子的碰撞、各种光辐射、高温下气体的热能。

4. 电离的形式:碰撞电离、光电离、热电离、表面电离(外界电离因素作用,电子从电极表面释放)。

5. 去电离过程:即带电粒子消失的过程,带电粒子从电离区消失,或者削弱其产生电离。

带电离子的运动、扩散、复合以及电子的附着作用都属于这样的作用。

6. 带电粒子的扩散:带电粒子不断从高浓度区域移向低浓度区域,使各种带电粒子浓度变得均匀的现象。

是由于热运动造成的。

7. 气体放电分类:自持放电与非自持放电。

8. 自持放电:由天然辐射作用产生电离形成正离子和电子,在高电场作用下,电子加速碰撞气体分子,产生新的电子和离子,电离过程像雪崩一样发展,称为电子崩。

正离子撞击阴极又产生新的电子崩,即使外界不传给起始电子,放电过程能持续下去的现象。

不需要其他任何外加电离因素而仅由电场的作用就能维持的放电。

9. 汤逊理论:当外加电压足够高时,一个电子从阴极出发向阳极运动,由于碰撞游离形成电子崩,因碰撞游离而产生的新的正离子在电场作用下向阴极运动,并撞击阴极,至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极的电子,则放电达到自持放电的过程。

10. 汤逊理论适用范围:均匀电场、低气压、Pd 较小的条件下在放电实验的基础上建立的。

11. 汤逊放电理论实质:碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极表面逸出电子,逸出电子是维持气体放电的必要条件,所逸出的电子是否能够接替起始电子是自持放电的判据。

12. 流注理论:解决汤逊理论不能解释的在高气压、Pd 大时的放电外形(具有分支的细通道,而按汤逊理论,整个电极空间连续进行)、放电时间(实测时间比计算值小得多)、击穿电压(击穿电压计算值与实验值不一致)、阴极材料(击穿电压与材料无关)等问题,并在总结这些实验现象的基础上形成。

高电压技术最全总结

高电压技术最全总结

由光辐射引起气体原子(或分子)的游离称为光游离
(3)热游离
因气体分子热运动状态引起的游离称为热游离。
其实质仍是碰撞游离和光游离,能量来源不同而已。
(4)表面游离 ——放在气体中的金属电极表面游离出自由电子的现象
逸出功:使电子从金属便面逸出所需要的功
金属表面游离的途径
(1)正离子撞击阴极
(2)光电子发射
(1)碰撞游离
1 2
mv2
=
eEx
≥ Wi
条件:x ≥ Ui E
当带电质点具有的 动能积累到一定数值后,在与气体 原子(或分子)发生
碰撞时,可以使后者产生游离,分裂成正离子和电子,这种由碰撞而引起的游
离称为碰撞游离
当原子或分子有可 能在外界给予的能量小于电离能但 大于激励能时发生的
激励称为分级电离
(2)光游离
第 1 章 气体的绝缘强度 1.1 气体放电的基本物理过程 1.1.1 气体中带电质点的产生和消失 气体电介质的放电特性 绝缘介质:气体、固体、液体及其复合介质 空气在强电场下放电特性:
气体在正常状态下 是良好的绝缘体,在一个立方厘米 体积内仅含几千个带 电粒子,但在高电压下,气体从少量电符会突然产生大量的电符,从而失去绝 缘能力而发生放电现象。气体由绝缘状态突变为良导电状态过程称为击穿。 放电形式:
1
(3)强场发射(冷发射) (4)热电子发射
一些金属的逸出功(eV)
金属
逸出功

1.8

3.1

3.9

3.9
氧化铜
5.3
气体中负离子的产生
电子与气体分子或 原子碰撞时,不但有可能发生碰撞 电离产生正离子和电
子,也有可能发生电子附着过程形成负离子。

高电压技术部分知识点复习

高电压技术部分知识点复习

《高电压技术》部分知识点复习第一部分 高电压绝缘及其试验(1-6章)重点:高压绝缘中电介质的电气特性及高压设备的绝缘预防性试验。

气体的绝缘特性1、汤逊理论:(气体伏安特性)基本理论,带电粒子产生的条件,:外界加入的能量大于或等于电离能。

产生的方式:碰撞电离,光电离、热电离、表面电离、负离子的形成。

去游离条件,:去游离的方式:带电质点受电场力的作用流入电极中和电量;带电质点的扩散、带电质点的复合。

’电子崩的发展规律:气体发生撞击电离,电离出来的电子和离子在场强的驱引下又加入到撞击电离过程,于是,电离过程就像雪崩一样增长起来。

及自持放电条件,:汤逊理论的局限性:δS>0.26cm,气隙击穿电压与按汤森德理论计算出来的数值差异较大。

对δS 较大时的很多气隙放电现象无法解释。

比如放电形式、阴极材料、放点时间。

汤逊理论适用范围。

:低气压、短间隙的情况和较均匀场中。

2、不均匀场放电特性:流注理论,:由初崩中辐射出的光子,在崩头、崩尾外围空间的局部强场中衍生出二次电子崩并汇合到主崩通道中来,使主崩通道不断向前、后延伸的过程。

电子崩的发展规律:有效电子(经撞击电离)→电子崩(畸变电场)→发射光子(在强电场作用下)→产生新的电子崩(二次崩) →形成混质通道(流注)→由阳极向阴极(阳极流注)或由阴极向阳极(阴极流注)击穿.及自持放电条件:δS>0.26cm,即产生流注的条件,适用范围:δS>0.26cm 的均匀电场和不均匀电场各种电压作用的放电特性:放电时延的定义:从电压达到U0的瞬时起,到气隙完全被击穿为止的时间,u 50%在何处:气隙被击穿的概率为50%的冲击电压峰值,接近伏秒特性带的最下边缘。

3.、提高抗电强度的措施:改善电场分布、采用高度真空、增大气压、采用耐电强度高的气体。

4、沿面放电的三个阶段及提高沿面放电电压的措施:电晕放电、刷形放电、滑闪放电措施:屏障、屏蔽、加电容极板、消除窄气隙、绝缘表面处理、改善局部绝缘体的表面电阻率、强制固定绝缘沿面各点的电位、附加金具、阻抗调节。

高电压技术知识点总结

高电压技术知识点总结

高电压技术知识点总结一、填空和概念解释1、电介质:电气设备中作为绝缘使用的绝缘材料。

2、击穿:在电压的作用下,介质由绝缘状态变为导电状态的过程。

3、击穿电压:击穿时对应的电压。

4、绝缘强度:电介质在单位长度或厚度上承受的最小的击穿电压。

5、耐电强度:电介质在单位长度上或厚度所承受的最大安全电压。

6、游离:电介质中带电质点增加的过程。

7、去游离:电介质中带电质点减少的过程。

8、碰撞游离:在电场作用下带电质点碰撞中性分子产生的游离。

9、光游离:中性分子接收光能产生的游离。

10、表面游离:电极表面的电荷进入绝缘介质中产生的游离。

11、强场发射:电场力直接把电极中的电荷加入电介质产生的游离。

12、二次电子发射:具有足够能量的质点撞击阴极放出电子。

13、电晕放电:气体中稳定的局部放电。

14、冲击电压作用下的放电时间:击穿时间+统计时延+放电形成时延15、统计时延:从间隙加上足以引起间隙击穿的静态击穿电压的时刻起到产生足以引起碰撞游离导致完全击穿的有效电子时刻。

16、放电形成时延:第一个有效电子在外电场作用下碰撞游离形成流注,最后产生主放电的过程时间。

17、50%冲击放电电压:冲击电压作用下绝缘放电的概率在50%时的电压值。

18、沿面放电:沿着固体表面的气体放电。

19、湿闪电压:绝缘介质在淋湿时的闪络电压。

20、污闪电压:绝缘介质由污秽引起的闪络电压。

21、爬距:绝缘子表面闪络的距离。

22、极化:电介质在电场的作用下对外呈现电极性的过程。

23、电导:电介质在电场作用下导电的过程。

24、损耗:由电导和有损极化引起的功率损耗。

25、老化:电力系统长期运行时电介质逐渐失去绝缘能力的过程。

26、吸收比:t=60s和t=15s时的绝缘电阻的比值。

27、过电压:电力系统承受的超过正常电压的。

28、冲击电晕:输电线路中由冲击电流产生的电晕。

29、雷暴日:一年中听见雷声或者看见闪电的天数。

30、雷暴小时:一年中能听到雷声的小时数。

高电压技术概念重点

高电压技术概念重点

1、气体介质的击穿:当加在气体间隙上的电场强度达到某一临界值后,间隙中的电流会突然剧增,气体介质会失去绝缘性能而导致击穿,这种现象称为气体介质的击穿,也称气体放电。

2、气体间隙击穿后的放电形式:火花放电、电弧放电、电晕放电。

3、电晕:极不均匀电场中,局部强场区形成的自持放电现象,伴有蓝紫色晕光。

4流注理论:电子崩发展到一定程度发生光电离,引起新的强烈电离和二次电子崩,二次电子崩以更大的多的电离强度向阳极发展或混入崩尾的正离子群中。

这些电离强度和发展速度远大于初始电子崩的新放电区以及它们不断汇入初崩通道的过程称为流注。

5、激发:气体原子在外界因素的作用下,吸收外界能量使其内部能量增加,这时气体原子核外的电子将从离原子核较近的轨道跳到离原子核较远的轨道上去,此过程称为原子的激发,也称激励。

6、游离:如果中性原子由外界获得足够的能量,以致使原子中的一个或几个电子完全脱离原子核的束缚而成为自由电子和正离子(即带电质点),此过程称为原子的游离,也称电离。

7、游离的形式:碰撞游离、光游离、热游离、表面游离。

8、放电的理论:汤逊理论适用于低气压短间隙,电子的碰撞电离和正离子阴极表面电离;流注理论适用于高气压长间隙,电子的碰撞电离和空间光电离。

不同点:(1)放电外形流注放电是具有通道形式的。

汤逊理论气体放电应在整个间隙中均匀连续地发展。

(2)放电时间流注理论流注发展更迅速,击穿时间比由汤逊理论推算的小得多。

9、自持放电:指仅依靠自身电场的作用而不需要外界游离因素来维持的放电。

10、冲击电压的标准波形三个参数所取的范围:T1= (1.2±30% )us,T2=(50±20% ) us。

冲击电压除了T1 及T2 外,还应指出其极性。

标准波形通常可以用符号±1.2/50 us表示。

11、U50%就是指在该冲击电压作用下,击穿百分比为50%,用U50%来反映绝缘耐受冲击电压的能力。

12、伏秒特性曲线:同一波形、不同幅值的冲击电压作用下,间隙上出现的电压最大值和放电时间的关系曲线,称为间隙的伏秒特征曲线。

高电压技术复习资料

高电压技术复习资料

高电压技术复习资料高电压技术是电气工程中的重要领域,它涉及到高电压的产生、传输、测量和保护等方面。

对于理解和应用高电压技术,需要掌握一定的基础知识和技能。

本文将简要介绍高电压技术的复习资料,以期对学习者有所帮助。

一、基础知识篇高电压技术的基础知识篇主要包括电场与电势、电荷、电介质、几何模型和等效电路等内容。

掌握这些知识是理解和解决高电压问题的基础。

建议学习者可以查阅相关教材,例如《高压技术实验教程》、《高压技术基础》等。

二、设备与技术篇高电压技术的设备与技术篇主要包括高压发生器、变压器、高压开关、避雷器、绝缘材料和监测与诊断技术等方面。

这些设备和技术的正确应用和操作至关重要,关系到高电压系统的安全和稳定性。

针对这方面的学习,建议阅读《高电压技术手册》、《高压技术设备与技术》等教材。

三、工程应用篇高电压技术的工程应用篇主要包括输电线路、变电站、电力电子设备、高压绝缘测试和防雷等领域。

这些应用是高电压技术的主要实践对象,涉及到极为复杂的电气系统和设备。

对于学习者来说,可以学习相关的案例分析和仿真实验,并了解最新的工程进展。

推荐的参考书籍包括《高压工程案例解析》、《电力电子技术及应用》和《高压绝缘技术与设备》等。

四、安全管理篇高电压技术的安全管理是学习和应用高电压技术的重要环节。

在操作高电压设备时,必须严格遵守安全规程和标准,确保人身安全和设备正常运行。

这部份的复习资料可以参考相关的安全手册和规章制度,例如《高压电设备安全操作规程》、《高压工程安全管理手册》等。

总之,高电压技术的复习资料需要涵盖理论知识、设备技术、工程应用和安全管理等方面。

对于初学者和已经掌握一定基础知识的学习者来说,都需要不断地学习和实践,不断提高自己的技能和能力。

希望本文能够为广大高电压技术学习者提供一些借鉴和参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.电介质的极化:1.)电子位移极化 电介质中的带点质点在电场作用下沿电场方向做有限位移,无能量损耗2.)离子位移极化 有极微量的能量损耗3.)转向极化4.)空间电荷极化2.电介质的介电常数代表电介质极化程度(气体D=1 水D=81 蓖麻油 D=4.2)3.电介质的电导与金属电导的区别:1.)形成电导电流的带电粒子不同(金属导体:自由电子,电介质:离子)2.)带电粒子数量上的区别4.影响液体介质电导的因素:温度,电场强度。

5.电介质中的能量损耗:δωδωεCtg U V tg E pV P 22=== 6.tg δ:介质损耗角,绝缘在交变电压作用下比损耗大小的特征参数 7.四种形式电离的产生:撞击电离 光电离 热电离 表面电离 8.气体中带电质点的消失:1.)带电质点收电场力的作用流入电极并中和电量2.)带电质点的扩散3.)带电质点的复合9.自持放电:当场强超过临界场强cr E 值时,这种电子崩已可仅由电场的作用而自行维持和发展,不必再有赖于电离因素,这种性质的放电称为自持放电。

10.汤森德理论只是对较均匀电场和S •δ较小的情况下适用。

11.物理意义:一个电子从阴极到阳极途中因为电子崩(ɑ过程)而造成的正离子数为1-de α这批正离子在阴极上造成的二次自由电子数(r 过程)应为:)1(-de r α如果它等于1就意味着那个初始电子有了一个后继电子从而使放电得以自持。

12.帕邢定律:在均匀电场中,击穿电压b U 与气体相对密度δ,极间距离S 并不具有单独的函数关系,而是仅与他们的积有函数关系,只要S ⋅δ的乘积不变,b U 也就不变。

13.流柱放电流程:有效电子(经碰撞游离)——电子崩(畸变电场)——发射光子(在强电场作用下)——产生新的电子崩(二次崩)——形成混质通道(流柱)——由阳极向阴极(阳极流柱)或由阴极向阳极(阴极流柱)击穿14.电晕放电:电晕放电是极不均匀电场所特有的一种自持放电形式,他与其他形式的放电有本质的区别,电晕放电的电流强度并不取决于电源电路中的阻抗,而取决于电极外气体空间的电导,即取决于外施电压的大小,电极形状,极间距离,气体的性质和密度等。

15.不均匀电场气隙的击穿:短气隙击穿(极性效应)长气隙的击穿(先导放电) 16.先导过程:当气隙距离较长时,(约1m 以上),存在某种新的,不同性质的放电过程,称为先导过程17.雷电放(长气隙放电)电包括雷云对,雷云对雷云和雷云部放电现象18.下行的负极性雷通常可以分为三个主要阶段,即先导放电,主放电和余光放电 19.击穿时间:1.)升压时间t0——电压从0升到静态击穿电压U0所需时间2.)统计时延ts ——从电压达到U0的瞬时起到气隙中形成第一个有效电子为止的时间3.)放电发展时间tf ——从形成第一个有效电子的瞬时起到气隙完全被击穿为止的时间 20.影响平均统计延时的因素: 1.)电极材料 2.)外施电压 3.)短波光照射4.)电场情况21.影响放电发展时间的因素: 1.)间隙长度 2.)电场均匀度 3.)外施电压22.击穿电压公式:S S U b δδ53.64.24+= [KV (peak )]23.提高气隙击穿电压的方法: 1.)改善电场分布 2.)采用高度真空 3.)增高气压4.)产用高耐电强度气体5.)SF6气体的应用24.电击穿:由于电场的作用使介质中的某些带电质点积聚的数量和运动的速度达到一定程度,使介质失去了绝缘性能,形成导电通道,这样的击穿称为电击穿。

25.热击穿:在电场的作用下,介质的损耗发出的热量多于散逸的热量,使介质温度不断上升,最终照成介质本身的破坏,形成导电通道,这样的击穿称为热击穿。

26.影响固体电介质击穿电压的因素 1.)电压作用时间的影响 2.)温度的影响3.)电场均匀度和介质厚度的影响4.)电压频率的影响5.)受潮度的影响6.)机械力的影响7.)多层行的影响8.)累积效应的影响27.固体介质的老化中最主要的是:电老化,热老化和综合性的环境老化 28.影响液体电介质击穿电压的因素 1.)液体介质本身品质的影响 2.)电压作用时间的影响 3.)电场情况的一影响 4.)温度的影响 5.)压强的影响29.油本身的某些品质因素对耐电压强度的影响 1.)化学成分 2.)含水量 3.)含纤维量4.)含炭量5.)含气量30.提高液体电介质击穿电压的方法1.)提高并保持油的品质2.)覆盖3.)绝缘层4.)极间障31.提高并保持油的品质的方法1.)压力过滤法2.)真空喷雾法3.)吸附剂法32.电气设备绝缘试验:1.)耐压试验(破坏性试验)模设备绝缘在运行中可能受到的各种电压,对绝缘施加与之相等的或更为严峻的电压,从而考验绝缘耐受这i类电压的能力。

2.)检查性试验(非破坏性试验)测定绝缘某些方面的特性,并据此间接地判断绝缘状况33.绝缘电阻是反映绝缘性能的最基本的指标之一,通常都用兆欧表来测量绝缘电阻34.测量绝缘电阻能有效的发现下例缺陷:1.)总体绝缘质量欠佳2.)绝缘受潮3.)两极间有贯穿性的导电通道4.)绝缘表面情况不良测量绝缘电阻不能发现下例缺陷:1.)绝缘中的局部缺陷(入非贯穿性的局部损伤,含有气泡等)2.)绝缘的老化(因为老化了的绝缘其绝缘电阻还可能是相当高的)35.测定泄露电流于兆欧表相比具有以下特点:1.)所加直流电压较高,能揭示兆欧表不能发现的某些绝缘缺陷2.) 所加直流电压是逐渐升高的,则在升压过程中,从所测电流与电压关系的线性度,即可指示绝缘情况3.)兆欧表刻度的非线性度很强,尤其在接近高量程段,刻度甚密,难以精确分辨,微安表的刻度则是基本上是线性的,能精确读取。

tg的方法有很多种,瓦特法,电桥法,不平衡电桥法等,其中以电桥法的准确度为36.测δ最高,最通用的是西林电桥法。

tg能有效的发现绝缘的下例缺陷:37.测δ1.)受潮2.)穿透性导电通道3.)绝缘能含气泡的电离,绝缘分层,脱壳4.)绝缘老化劣化,绕组上附积油泥5.)绝缘油脏污,劣化等tg法是很少有效果的:但是对于下例缺陷,δ1.)非穿透性的局部损坏2.很小部分绝缘的老化,劣化3.个别的绝缘弱点38.局部放电的测试分为:直接法和平衡法39.较准确的测压法是直接测被试品两端的高压,主要有: 1.)测量球隙2.)静电电压表(s.v )3.)分压器配用低压仪表4.)高压电容器配用整流装置 40.直流高压的测量 1.)棒隙或球隙2.)电阻分压器配合低压仪表3.)用高值电阻与直流电流表串联4.)静电电压表41.冲击高压试验(冲击电压发生器原理电路图)42.架空线的波阻抗zrhIogr h In r h n z 213826022100==I ∏=εμ (Ω) 43.无损单导线线路波过程的基本规律由以下方程决定⎪⎪⎭⎪⎪⎬⎫⋅-=⋅=+=+=f f q q f q f q i z u i z u i i i u u u 44.无限长直角波通过电感后改变为一指数波头的行波,串联电感起了来波上升速率的作用。

45.为了降低入侵波的陡度可以使用串联电感或并联电容的措施,对于波阻抗很大的设备(如发电机)要想用串联电感来降低入侵波陡度一般是有困难的,通常用并联电容的方法。

46.雷电流:流经被击物体的电流iz 与被击物体的阻抗zj 有关,zj 越大则iz 越小,反之则iz 越大,当zj=0时,流经被击物体的电流呗定义为雷电流,用iL 表示。

(雷电通道波阻抗z0=300欧姆)47.描述脉冲波形的主要参数有:峰值,波前时间和半峰值时间。

48.雷暴日是一年中有雷电的日数,雷暴小时是一年中有雷电的小时数。

49.避雷针保护围 1.)单只避雷针:⎪⎪⎭⎪⎪⎬⎫=<=≥)p 2h -(1.5h 2h )p h -(h 2x x x x x x r hr h h 时,当时,当h 为避雷针高度,hx 为被保护物体高度p 为高度影响系数(h ≤30m 时,p=1,30<h ≤120m 时,hp 5.5=。

Rx 为保护半径) 50.避雷器的作用是限制过电压以保护电气设备 51.避雷线的作用是保护输电线路52.避雷针的作用是保护集中场所的设备53.阀型避雷器的基本元件为间隙和非线性电阻,阀片的电阻值与流过的电流有关,具有非线性特征,电流越大电阻越小。

54.避雷器的选用:选用避雷器时,应是避雷器的额定电压与安装该避雷器的电力系统的电压等级相同,并且应是避雷器的灭弧电压大于其安装处母线上可能出现的最高工频电压。

55.避雷器的保护性能一般以保护比(残压/灭弧电压)来说明,保护比越小,说明残压越低或灭弧电压越高,则避雷器的保护性能越好。

56.接地可以分为工作接地、保护接地和防雷接地。

57.输电线路上出现的大气过电压有两种:一种是雷直击于线路引起的,称为直击雷过电压;一种是雷击线路附近地面,由于电磁感应所引起的,称为感应雷过电压。

58.雷击线路时线路绝缘不发生闪络的最大雷电电流幅值称为“耐雷水平”,以kV 为单位。

59.每100km 线路每年由雷击引起的跳闸次数称为“雷击跳闸率。

”60.输电线路的感应雷过电压分为:雷击线路附近时,线路上的感应雷过电压和雷击线路杆塔时,导线上的感应过电压。

61.雷直击于有避雷线线路的情况可以分为三种,即雷击杆塔塔顶、雷击避雷线档距中间和雷绕过避雷线击于导线——称为“绕击”。

62.雷击杆塔塔顶次数与雷击线路总次数的比值称为击杆率g 。

63.塔顶电位64.塔顶电位幅值U td)6.2(gtch L td L R I U +=β65.建弧率定义:冲击闪络转为稳定工频电弧的概率称为建弧率。

(%)145.475.0-=E η66.输电线路的防雷措施有:架设避雷线,降低杆塔接地电阻,架设耦合地线,采用不平衡绝缘方式,装设自动重合闸,采用消弧线圈接地方式,装设管型避雷器,加强绝缘。

67.发电厂和变电所的主要防雷措施:在发电厂、变电所装设阀型避雷器以限制入侵雷电波的幅值,使设备上的过电压不超过其冲击耐压幅值;在发电厂、变电所的进线上设置进线保护段,以限制流经避雷器的雷电流和限制入侵雷电波的陡度;对直接与架空线相连的旋转电机(称直配电机)在电机母线上装设电容器,限制入侵雷电波陡度以保护电机匝间和中性点绝缘。

67.避雷线的保护角应为︒20左右。

69.发电厂厂房一般不装设避雷针,以免发生反击事故和引起继电保护的误动作。

70.⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧断续电弧接地过电压切断空载变压器过电压空载线路合闸过电压切断空载线路过电压操作过电压参数谐振过电压铁磁谐振过电压线性谐振过电压谐振过电压升高甩负荷引起的工频电压电压升高不对称短路引起的工频空载长线的电容效应工频电压升高暂时过电压内部过电压71.比较电介质中各种极化的性质和特点72.电介质电导与金属电导的本质区别: 1‐4电导形式 电导率 金属导体 (自由电子)电子电导 γ很大 气体,液体,固体(自由电子、正离子、负离子、杂质电导、自身离解、杂质、离子) 离子电导γ很小 ρ很大 73.总结比较各种检查性试验方法的功效:非破坏性试验,即检查性试验,包含的种类:绝缘电阻试验、介质损耗角正切试验、局部放电试验、绝缘油的气相色谱分析等极化种类产生场合 所需时间 能量损耗 产生原因 电子式极化 任何电介质 10-15s 无 束缚电子运行轨道偏移 离子式极化 离子式结构电介质 10-13s几乎没有 离子的相对偏移 偶极子极化 极性电介质 10-10~10-2s 有 偶极子的定向排列 夹层极化多层介质的交界面10-1s ~数小时有自由电荷的移动。

相关文档
最新文档