典型缺陷图_共4篇(1)圆形缺陷篇
无损检测射线常见缺陷图集及分析 ppt
2、折痕
折痕(曝光后)1 折痕(曝光后)2
折痕(曝光后)3
1、折痕(曝光后)的表面现象是什么? 折痕的表征为黑月牙显示,其密度高于邻近的胶片区域(黑度较 高)。 2、折痕(曝光后)产生的原因是什么? 曝光后或冲洗过程中过度(或用力)弯曲胶片都会使胶片出现折痕。 3、这些现象何时可能发生? 折痕(曝光后)通常出现在卸下暗袋或洗片夹时处理胶片不当的情 况下发生。 4、如何检测曝光后的折痕? 将一些胶片曝光,然后有意识地将其卷曲或扭折,冲洗胶片,然后 通过反射光检验胶片,您有可能见到一个或多个月牙状的黑痕。 5、如何可以避免折痕(曝光后)? 严格遵守暗室操作规程,始终小心处理胶片,特别避免手指对胶片 施以任何类型的压 力。
折 痕 曝 光 前
1、折痕的表面现象是什么? 折痕(曝光前)的表征为白月牙状显示,其密度低于邻近的胶片区域(黑度较低)。 2、它们产生的原因是什么? 曝光前弯曲胶片用力过大或过猛都会导致这种类型的折痕。 3、这些现象何时可能发生? 通常出现在从包装盒取出胶片或在曝光前装入暗袋时处理不当的情况下。 4、如何检验曝光前的折痕? 有意识地将某些胶片卷曲或扭折,使其曝光,然后按正常方法冲洗。检验胶片,这时您可 能会在胶片处理不当的地方风到一些颜色较淡的折痕。 5、如何可以避免它们? 严格遵守暗室操作规程,始终小心处理胶片,特别避免手指对胶片施以任何类型的压力。
到静电放电现象。如果您看到冲洗的胶片有锯齿状线条或黑色斑 点,则极有可能是出现了静电曝光斑点。 5、如何可以避免? 在相对湿度大于40%的环境下保存胶片,从包装盒取出胶片时避免 快速滑动或移动胶片。
定 影 液 斑 点
1、它们的表面现象是什么? 由定影液产生的斑点表征为一些小白圆点,其密度较周围胶片区域的密度底。 2、它们产生的原因是什么? 在显影之前,溅出的定影液滴,即使极其微量,都有可能导致产生白色斑点。 3、这些现象何时可能发生? 无论何时,只要有化学污染的存在,都可能会发生这种现象。通常发生最多的 是由于暗室布局不当或冲洗不小心引起。 4、如何可以避免它们? 保证胶片装卸区域的安全干燥清洁,不能让定影液溅在胶片上。
铸件常见缺陷(图文并貌)
铸件常见缺陷
名称砂眼气孔缩孔披缝图
片
注释在铸件表面或内部有充塞着型
砂的孔眼。
在铸件内部、表面或近于表面
处有大小不等的光滑孔眼。
一
般为圆球形或近似于球形的团
球形孔洞,孔壁光滑。
形状为不规则的封闭或敞露的
孔洞,孔壁粗糙并带有枝晶
状,常出现在铸件最后凝固的
部位(热节处)。
披缝是铸件表面上厚薄不均匀
的片状金属突起物,常出现在
铸件分型面和芯头部位。
名称粘砂冷隔冲砂掉砂
图片
注释在铸件表面上、全部或部分覆
盖着金属与砂的混合物,或一
层烧结的型砂,致使铸件表面
粗糙。
冷隔是铸件上未完全融合的缝
隙或洼坑,其交接边缘呈圆
角,多出现在远离浇口的铸件
宽大上表面和薄壁处、金属流
股汇合处或激冷部位。
铸件表面上有粗糙不规则的金
属瘤状物,常位于浇口附近。
在铸件其它部位则往往出现砂
眼。
铸件表面的块状金属突起物,
其外形与掉落的砂块很相似。
在铸件其它部位则往往出现砂
眼或残缺。
毛 刺浇 不 足
毛刺是铸件表面上刺状金属突起物,常出现在型和芯的裂缝处,形状极不规则。
由于金属液未完全充满型腔而产生的铸件缺肉。
缺 损变 形渣 眼
在铸件清理或搬运时,损坏了铸件的完整性。
由于收缩应力或型壁变形、开
裂引起的铸件外形和尺寸与图
纸不符。
在铸件内部或表面形状不规
则的孔眼。
孔眼不光滑,里
面全部或部分充塞着渣。
塑胶件的24种常见不良缺陷图片精梳版.ppt
油污NG!
最新.
16
十六、碰伤:
碰伤
最新.
17
十七、削伤:
削缺(削伤)
最新.
18
十八、气泡:
气泡(透明件中央白泡状)
最新.
19
十九、色差(上下盖阴阳色):
上盖色偏哑
下盖色偏亮
最新.
20
二十、披锋丝(拉丝):
披锋丝(拉丝)NG
最新.
21
二十一、应力痕:
应力痕:因注射时内应力过大而在产品表面形成的光影;
最新.
22
二十二、进胶位发蓝:
进胶点发蓝
最新.
23
二十三、多胶:
多胶 NG
最新.
24
二十四、粘胶:
粘胶 :因模具内侧附着有积炭或脏物导致产品表面少胶;
最新.
25
最新.
8
八、变形:
平面中间拱起变形
柱子弯曲变形
最新.
9
九、混色(异色):
混色
混色(杂色料)
最新.
10
十、划伤(刮伤):
划伤
刮花
最新.
11
十一、烧焦:
烧焦
最新.
12
十二、拖花(拉伤):
拖花(拉伤)
最新.
13
十三、顶高(顶白):
顶高(顶针印)
最新.
14
十四、料花:
料花
最新.
15
十五、油污:
品质培训教材
塑胶件的24种常见缺陷 图片
最新.
1
一、缩水:
缩水(凹痕)
缩水(凹痕)
最新.
2
二、气纹:
气纹
最新.
64个带钢常见缺陷图谱
64个带钢常见缺陷图谱1不规则表面夹杂(夹层)(Irregular Shells)【外观特征】板带钢表面的薄层折叠,缺陷常呈灰白色,其大小、形状不一,不规则分布于板带钢表面。
【产生原因】板坯表面或皮下有非金属夹杂,这些夹杂在轧制过程中被破碎或暴露而形成夹层状折叠。
【检查判断】肉眼检查,钢板和钢带不得有夹层。
2带状表面夹杂(夹层)(Seams)【外观特征】板带钢表面的夹杂呈线状或带状不规则地沿轧向分布,有时以点状或舌状逐渐消失。
【产生原因】板坯皮下的夹杂在轧制出现剧烈延伸、破裂而造成。
【检查判断】肉眼检查,钢板和钢带不得有夹层。
3气泡(Blisters)【外观特征】板带钢表面凸起内有气体,分布无规律,有闭口气泡和开口气泡之分。
【产生原因】板坯由于大量气体在凝固过程中不能逸出,被封闭在内部而形成气体夹杂。
在热轧时,空洞与孔穴被拉长,并随着轧材厚度减薄,被带至产品的表面或边部。
最终,高的气体压力使产品表面或边部出现圆顶状的凸起物或挤出物。
【检查判断】肉眼检查,钢板和钢带不得有气泡。
4结疤(重皮)(Scabs)【外观特征】以不规则的舌状、鱼鳞状、条状或M状的金属薄片分布于带钢表面。
一种与带钢基体相连;另一种与带钢基体不相连,但粘合到表面上,易于脱落,脱落后形成较光滑的凹坑。
【产生原因】由于板坯表面有结疤、毛刺,轧后残留在带钢表面。
或板坯经火焰清理后留有残渣,在轧制中压入表面。
【检查判断】肉眼检查,钢板和钢带不得有结疤。
5分层(Split layer)【检查判断】肉眼检查,钢板和钢带不得有分层。
翘皮(Spills)【检查判断】根据标准和使用要求不同进行【检查判断】。
飞翅(Spills)【外观特征】以不同尺寸的箭形微小折叠不连续地出现在上下任一表面,常出现在带钢边部。
翅。
边裂(Edge cracks)【检查判断】肉眼检查,钢板和钢带不得有边裂。
边部过烧(Burnt edges)【外观特征】沿带钢边部出现的裂痕和裂纹,它可能在带钢的一侧或两侧出现于整个长度上。
塑胶件的24种常见不良缺陷图片ppt课件
塑胶件的24种常见缺陷 图片
可编辑ppt
一、缩水:
缩水(凹痕)
缩水(凹痕)
可编辑ppt
2
二、气纹:
气纹
可编辑ppt
3
三、缺料(走胶不足):
走胶不足
可编辑ppt
缺料
4
四、水口不平:
水口不平
可编辑ppt
5
五、披pt
6
六、夹线(结合线):
夹线 夹线(结合线)
可编辑ppt
25
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
可编辑ppt
26
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
二十、披锋丝(拉丝):
披锋丝(拉丝)NG
可编辑ppt
21
二十一、应力痕:
应力痕:因注射时内应力过大而在产品表面形成的光影;
可编辑ppt
22
二十二、进胶位发蓝:
进胶点发蓝
可编辑ppt
23
二十三、多胶:
多胶 NG
可编辑ppt
24
二十四、粘胶:
粘胶 :因模具内侧附着有积炭或脏物导致产品表面少胶;
可编辑ppt
7
七、黑点:
黑点NG!
可编辑ppt
8
八、变形:
平面中间拱起变形
柱子弯曲变形
可编辑ppt
9
九、混色(异色):
混色
混色(杂色料)
可编辑ppt
10
十、划伤(刮伤):
划伤
刮花
可编辑ppt
11
十一、烧焦:
烧焦
可编辑ppt
12
无损检测射线常见缺陷图集及分析.
折 痕 曝 光 前
1、折痕的表面现象是什么? 折痕(曝光前)的表征为白月牙状显示,其密度低于邻近的胶片区域(黑度较低)。 2、它们产生的原因是什么? 曝光前弯曲胶片用力过大或过猛都会导致这种类型的折痕。 3、这些现象何时可能发生? 通常出现在从包装盒取出胶片或在曝光前装入暗袋时处理不当的情况下。 4、如何检验曝光前的折痕? 有意识地将某些胶片卷曲或扭折,使其曝光,然后按正常方法冲洗。检验胶片,这时您可 能会在胶片处理不当的地方风到一些颜色较淡的折痕。 5、如何可以避免它们? 严格遵守暗室操作规程,始终小心处理胶片,特别避免手指对胶片施以任何类型的压力。
未融合
边缘未融合
注意:砂轮片磨伤痕迹(不是未融合)
5、裂纹
定义:裂纹是指材料局部断裂形成的缺陷。 影像特征:底片上裂纹和典型影像是轮廓分明的黑线或黑丝。其细节 特征包括:黑线或黑丝上有微小的锯齿,有分叉,粗细和黑度有时有 变化,有些裂纹影像呈较粗的黑线与较细的黑丝相互缠绕状;线的端 部尖细,端头前方有时有丝状阴影延伸。
纵向裂纹
根部裂纹
横向裂纹
6、咬边
一、常见缺陷及示意图
二、其他几种缺陷 三、常见伪缺陷
表 面 内 边
内 咬 边
错 口
接 头 凹 坑
一、常见缺陷及示意图
二、其他几种缺陷 三、常见伪缺陷
1、压痕
1、压痕的表面现象是什么? 压痕的表征为密度明显低于邻近区域的密度。 2、它们产生的原因是什么? 在曝光前某个胶片区域局部受力严重。 3、这些现象何时可能发生? 产生压痕的主要原因在于暗袋准备过程中胶片处理的 方式不当。在处理过程中,胶片某处可能被压(夹)紧 在暗袋中。掉落到暗袋上的物体同样可能造成压痕。 4、如何检验压痕? 直接从同一包装盒中小心准备另一暗袋胶片,曝光并冲 洗胶片,如果未见到与第一次所见一样的暇疵,则第一次所 见的斑痕很可能就是压痕。 5、如何可以避免压痕? 严格遵守暗室操作规程,始终小心处理胶片,避免对胶 片施以任何类型的压力。
图解焊接缺陷大全
图解焊接缺陷大全该段焊缝,重新焊接。
修复方法:打磨去除该段焊缝,重新焊 弧坑针状气孔:修复方法:打磨去除接。
端部裂纹/焊缝裂纹:修复方法:打磨 不良焊缝外观:修复方法:重新焊接。
去除所有影响焊缝,重新焊接。
焊瘤及飞边:修复方法:打磨,重新焊接。
焊缝,重新焊接。
有影响焊缝,重新焊接。
焊缝不均匀:修复方法:重新焊接。
welldO4(Excess Root Penetration根部焊瘤)welld03(lnsuffucientReinforcement 、增强高)welld07(Root Concavity 、根部凹陷)welld09(lsolated SlagInclusion welld10(WagonTrack SlagLine、线状夹渣)welldO8(Burn Through 、烧穿)单个的夹渣)welld12(Lack of Sidewall Fusion内侧未熔合)welld16(Transverse Crack 、横向裂welld15(Hollow Bead 、夹珠)气孔:焊接方式发生原因防止措施手工电弧焊(1) 焊条不良或潮湿.(2) 焊件有水分、油污或锈.(3) 焊接速度太快.(4) 电流太强.(5) 电弧长度不适合.(6) 焊件厚度大,金属冷却过速.(1) 选用适当的焊条并注意烘干.(2) 焊接前清洁被焊部份.(3) 降低焊接速度,使内部气体容易逸出.(4) 使用厂商建议适当电流.(5) 调整适当电弧长度.(6) 施行适当的预热工作.welld17(Centerline Crack、中心线裂纹)welld18(Root Crack 、根部裂纹)夹渣:未焊透:裂纹CO2气体保护焊 (1) 开槽角度过小,在大电流焊 接时,产生梨形和焊道裂纹. (2) 母材含碳量和其它合金量 过高(焊道及热影区).(3) 多层焊接时,第一层焊道过小. (4) 焊接顺序不当,产生拘束力 过强.(5) 焊丝潮湿,氢气侵入焊道.(6) 套板密接不良,形成高低不 平,致应力集中. (7) 因第一层焊接量过多,冷却 缓慢(不锈钢,铝合金等).(1) 注意适当开槽角度与电流的配合, 必要时要加大开槽角度. (2) 采用含碳量低的焊条. (3) 第一道焊着金属须充分能抵抗收 缩应力.(4) 改良结构设计,注意焊接顺序,焊 后进行热处理. (5) 注意焊丝保存. (6) 注意焊件组合之精度.(7) 注意正确的电流及焊接速度. 埋弧焊接 (1) 对焊缝母材所用的焊丝和 焊剂之配合不适当(母材含碳 量过大,焊丝金属含锰量太 少). (2) 焊道急速冷却,使热影响区 发生硬化.(3) 焊丝含碳、硫量过大. (4) 在多层焊接之第一层所生 焊道力,不足抵抗收缩应力.(5) 在角焊时过深的渗透或偏 析.(6) 焊接施工顺序不正确,母材 拘束力大.(7) 焊道形状不适当,焊道宽度 与焊道深度比例过大或过小. (1) 使用含锰量较高的焊丝,在母材含 碳量多时,要有预热之措施. (2) 焊接电流及电压需增加,焊接速度 降低,母材需加热措施. (3) 更换焊丝. (4) 第一层焊道之焊着金属须充分抵 抗收缩应力.(5) 将焊接电流及焊接速度减低 ,改变极性. (6) 注意规定的施工方法,并予焊接操 作施工指导. (7) 焊道宽度与深度的比例约为 1: 1: 25,电流降低,电压加大.变形:其他缺陷:。
常见缺陷图
General Welding DiscontinuitiesThe following discontinuities are typical of all types of welding.Cold lap is a condition where the weld filler metal does not properly fuse with the base metal or the previous weld pass material (interpass cold lap). The arc does not melt the base metal sufficiently and causes the slightly molten puddle to flow into base material without bonding.Porosity(气孔)is the result of gas entrapment in the solidifying metal. Porosity can take many shapes on a radiograph but often appears as dark round or irregular spots or specks appearing singularly, in clusters or rows. Sometimes porosity is elongated and may have the appearance of having a tail This is the result of gas attempting to escape while the metal is still in a liquid state and is called wormhole porosity. All porosity is a void in the material it will have a radiographic density more than the surrounding area.Cluster porosity(密集气孔)is caused when flux coated electrodes are contaminated with moisture. The moisture turns into gases when heated and becomes trapped in the weld during the welding process. Cluster porosity appear just like regular porosity in the radiograph but the indications will be grouped close together.Slag inclusions(夹渣)are nonmetallic solid material entrapped in weld metal or between weld and base metal. In a radiograph, dark, jagged asymmetrical shapes within the weld or along the weld joint areas are indicative of slag inclusions.Incomplete penetration (IP) or lack of penetration (LOP)(未焊透)occurs when the weld metal fails to penetrate the joint. It is one of the most objectionable weld discontinuities. Lack of penetration allows a natural stress riser from which a crack may propagate. The appearance on a radiograph is a dark area with well-defined, straight edges that follows the land or root face down the center of the weldment.Incomplete fusion(未融合)is a condition where the weld filler metal does not properly fuse with the base metal. Appearance on radiograph: usually appears as a dark line or lines oriented in the direction of the weld seam along the weld preparation or joining area.Internal concavity or suck back(内凹)is condition where the weld metal has contracted as it cools and has been drawn up into the root of the weld. On a radiograph it looks similar to lack of penetration but the line has irregular edges and it is often quite wide in the center of the weld image.Internal or root undercut(根部咬边)is an erosion of the base metal next to the root of the weld. In the radiographic image it appears as a dark irregular line offset from the centerline of the weldment. Undercutting is not as straight edged as LOP because it does not follow a ground edge.External or crown undercut(外咬边)is an erosion of the base metal next to the crown of the weld. In the radiograph, it appears as a dark irregular line along the outside edge of the weld area.Offset or mismatch(错边)are terms associated with a condition where two pieces being welded together are not properly aligned. The radiographic image is a noticeable difference in density between the two pieces. The difference in density is caused by the difference in material thickness. The dark, straight line is caused by failure of the weld metal to fuse with the land area.Inadequate weld reinforcement(未焊满)is an area of a weld where the thickness of weld metal deposited is less than the thickness of the base material. It is very easy to determine by radiograph if the weld has inadequate reinforcement, because the image density in the area of suspected inadequacy will be more (darker) than the image density of the surrounding base material.Excess weld reinforcement(焊缝余高过高)is an area of a weld that has weld metal added in excess of that specified by engineering drawings and codes. The appearance on a radiograph is a localized, lighter area in the weld. A visual inspection will easily determine if the weld reinforcement is in excess of that specified by the engineering requirements.Cracks(裂纹)can be detected in a radiograph only when they are propagating in a direction that produces a change in thickness that is parallel to the x-ray beam. Cracks will appear as jagged and often very faint irregular lines. Cracks can sometimes appear as "tails" on inclusions or porosity.Discontinuities in TIG weldsThe following discontinuities are peculiar to the TIG welding process. These discontinuities occur in most metals welded by the process including aluminumand stainless steels. The TIG method of welding produces a clean homogeneous weld which when radiographed is easily interpreted.Tungsten inclusions(夹钨). Tungsten is a brittle and inherently dense material used in the electrode in tungsten inert gas welding. If improper welding procedures are used, tungsten may be entrapped in the weld. Radiographically, tungsten is more dense than aluminum or steel; therefore, it shows as a lighter area with a distinct outline on the radiograph.Oxide inclusions are usually visible on the surface of material being welded (especially aluminum). Oxide inclusions are less dense than the surrounding materials and, therefore, appear as dark irregularly shaped discontinuities in the radiograph.Discontinuities in Gas Metal Arc Welds (GMAW)The following discontinuities are most commonly found in GMAW welds. Whiskers are short lengths of weld electrode wire, visible on the top or bottom surface of the weld or contained within the weld. On a radiograph they appear as light, "wire like" indications.Burn-Through(烧穿)results when too much heat causes excessive weld metal to penetrate the weld zone. Often lumps of metal sag through the weld creating a thick globular condition on the back of the weld. These globs of metal are referred to as icicles. On a radiograph, burn through appears as dark spots, which are often surrounded by light globular areas (icicles).Radiograph Interpretation – Castings(铸件)The major objective of radiographic testing of castings is the disclosure of defects that adversely affect the strength of the product. Casting are a product form that often receive radiographic inspection since many of the defects produced by the casting process are volumetric in nature and, thus, relatively easy to detect with this method. These discontinuities of course, are related to casting process deficiencies, which, if properly understood, can lead to accurate accept-reject decisions as well as to suitable corrective measures. Since different types and sizes of defects have different effects of the performance of the casting, it is important that the radiographer is able to identify the type and size of the defects. ASTM E155, Standard for Radiographs of castings has been produced to help the radiographer make a better assessment of the defects found components. The castings used to produce the standard radiographs have been destructively analyzed to confirm the size and type of discontinuities present. The following is a brief description of the most common discontinuity types included in existing reference radiograph documents (in graded types or as single illustrations).RADIOGRAPHIC INDICATIONS FOR CASTINGSGas porosity or blow holes are caused by accumulated gas or air which is trapped by the metal. These discontinuities are usually smooth-walled rounded cavities of a spherical, elongated or flattened shape. If the sprue is not high enough to provide the necessary heat transfer needed to force the gas or air out of the mold, the gas or air will be trapped as the molten metal begins to solidify. Blows can also be caused by sand that is too fine, too wet, or by sand that has a low permeability so that gas can't escape. Too high a moisture content in the sand makes it difficult to carry the excessive volumes of water vapor away from the casting. Another cause of blows can be attributed to using green ladles, rusty ordamp chills and chaplets.Sand inclusions and dross are nonmetallic oxides, appearing on the radiograph as irregular, dark blotches. These come from disintegrated portions of mold or core walls and/or from oxides (formed in the melt) which have not been skimmed off prior to introduction of the metal into the mold gates. Careful control of the melt, proper holding time in the ladle and skimming of the melt during pouring will minimize or obviate this source of trouble.Shrinkage is a form of discontinuity that appears as dark spots on the radiograph. Shrinkage assumes various forms but in all cases it occurs because molten metal shrinks as it solidifies, in all portions of the final casting. Shrinkage is avoided by making sure that the volume of the casting is adequately fed by risers which sacrificially retain the shrinkage. Shrinkage can be recognized in a number of characteristic by varying appearances on radiographs. There are at least four types: (1) cavity; (2) dendritic; (3) filamentary; and (4) sponge types. Some documents designate these types by numbers, without actual names, to avoid possible misunderstanding.Cavity shrinkage appears as areas with distinct jagged boundaries. It may be produced when metal solidifies between two original streams of melt, coming from opposite directions to join a common front; cavity shrinkage usually occurs at a time when the melt has almost reached solidification temperature and there is no source of supplementary liquid to feed possible cavities.Dendritic shrinkage is a distribution of very fine lines or small elongated cavitiesthat may vary in density and are usually unconnected.Filamentary shrinkage usually occurs as a continuous structure of connected linesor branches of variable length, width and density, or occasionally as a network.Sponge shrinkage shows itself as areas of lacy texture with diffuse outlines,generally toward the mid-thickness of heavier casting sections. Sponge shrinkagemay be dendritic or filamentary shrinkage; filamentary sponge shrinkage appearsmore blurred because it is projected through the relatively thick coating between the discontinuities and the film surface.Cracks are thin (straight or jagged) linearly disposed discontinuities that occur after the melt has solidified. They generally appear singly and originate at casting surfaces.Cold shuts generally appear on or near a surface of cast metal as a result of two streams of liquid meeting and failing to unite. They may appear on a radiograph as cracks or seams with smooth or rounded edges.Inclusions are nonmetallic materials in a supposedly solid metallic matrix. They may be less or more dense than the matrix alloy and will appear on the radiograph, respectively, as darker or lighter indications. The latter type is more common in light metal castings.Core shift shows itself as a variation in section thickness, usually on radiographicviews representing diametrically opposite portions of cylindrical casting portions.Hot tears are linearly disposed indications that represent fractures formed in ametal during solidification because of hindered contraction. The latter may occurdue to overly hard (completely unyielding) mold or core walls. The effect of hottears, as a stress concentration, is similar to that of an ordinary crack; how tearsare usually systematic flaws. If flaws are identified as hot tears in larger runs of a casting type, they may call for explicit improvements in technique.Misruns appear on the radiograph as prominent dense areas of variable dimensions with a definite smooth outline. They are mostly random in occurrence and not readily eliminated by specific remedial actions in the process.Mottling is a radiographic indication that appears as an indistinct area of more or less dense images. The condition is a diffraction effect that occurs on relatively vague, thin-section radiographs, most often with austenitic stainless steel. Mottling is caused by interaction of the object's grain boundary material with low-energyX-rays (300 kV or lower). Inexperienced interpreters may incorrectly consider mottling as indications of unacceptable casting flaws. Even experienced interpreters often have to check the condition by re-radiography from slightly different source-film angles. Shifts in mottling are then very pronounced, while true casting discontinuities change only slightly in appearance.Radiographic Indications for Casting Repair WeldsMost common alloy castings require welding either in upgrading from defective conditions or in joining to other system parts. It is mainly for reasons of casting repair that these descriptions of the more common weld defects are provided here. The terms appear as indication types in ASTM E390. For additional information,see the Nondestructive Testing Handbook, Volume 3, Section 9 on the "Radiographic Control of Welds."Slag is nonmetallic solid material entrapped in weld metal or between weld material and base metal. Radiographically, slag may appear in various shapes, from long narrow indications to short wide indications, and in various densities, from gray to very dark.Porosity is a series of rounded gas pockets or voids in the weld metal, and is generally cylindrical or elliptical in shape.Undercut is a groove melted in the base metal at the edge of a weld and left unfilled by weld metal. It represents a stress concentration that often must be corrected, and appears as a dark indication at the toe of a weld.Incomplete penetration, as the name implies, is a lack of weld penetration through the thickness of the joint (or penetration which is less than specified). It is located at the center of a weld and is a wide, linear indication.Incomplete fusion is lack of complete fusion of some portions of the metal in a weld joint with adjacent metal; either base or previously deposited weld metal. On a radiograph, this appears as a long, sharp linear indication, occurring at the centerline of the weld joint or at the fusion line.Melt-through is a convex or concave irregularity (on the surface of backing ring, strip, fused root or adjacent base metal) resulting from complete melting of a localized region but without development of a void or open hole. On a radiograph, melt-through generally appears as a round or elliptical indication.Burn-through is a void or open hole into a backing ring, strip, fused root or adjacent base metal.Arc strike is an indication from a localized heat-affected zone or a change in surface contour of a finished weld or adjacent base metal. Arc strikes are caused by the heat generated when electrical energy passes between surfaces of the finished weld or base metal and the current source.Weld spatter occurs in arc or gas welding as metal particles which are expelled during welding and which do not form part of the actual weld: weld spatter appears as many small, light cylindrical indications on a radiograph.Tungsten inclusion is usually denser than base-metal particles. Tungsten inclusions appear most linear, very light radiographic images; accept/reject decisions for this defect are generally based on the slag criteria.Oxidation is the condition of a surface which is heated during welding, resulting in oxide formation on the surface, due to partial or complete lack of purge of the weld atmosphere. Also called sugaring.Root edge condition shows the penetration of weld metal into the backing ring or into the clearance between backing ring or strip and the base metal. It appears inradiographs as a sharply defined film density transition.Root undercut appears as an intermittent or continuousgroove in the internal surface of the base metal, backingring or strip along the edge of the weld root.Real-time RadiographyReal-time radiography (RTR), or real-time radioscopy, is a nondestructive test (NDT) method whereby an image is produced electronically rather than on film so that very little lag time occurs between the item being exposed to radiation and the resulting image. In most instances, the electronic image that is viewed, results from the radiation passing through the object being inspected and interacting with a screen of material that fluoresces or gives off light when the interaction occurs. The fluorescent elements of the screen form the image much as the grains of silver form the image in film radiography. The image formed is a "positive image" since brighter areas on the image indicate where higher levels of transmitted radiation reached the screen. This image is the opposite of the negative image produced in film radiography. In other words, with RTR, the lighter, brighter areas represent thinner sections or less dense sections of the test object.Real-time radiography is a well-established method of NDT having applications in automotive, aerospace, pressure vessel, electronic, and munition industries, among others. The use of RTR is increasing due to a reduction in the cost of the equipment and resolution of issues such as the protecting and storing digital images. Since RTR is being used increasingly more, these educational materials were developed by the North Central Collaboration for NDT Education (NCCE) to introduce RTR to NDT technician students.Real-time Radiography: An Introductory Course Module for NDT Students Download PDF File。
无损检测射线常见缺陷图集及分析-精选文档
纵向裂纹
根部裂纹
横向裂纹
6、咬边
一、常见缺陷及示意图
二、其他几种缺陷 三、常见伪缺陷
表 面 内 凹
根 部 内 凹
表 面 咬 边
内 咬 边
错 口
接 头 凹 坑
一、常见缺陷及示意图
二、其他几种缺陷 三、常见伪缺陷
1、压痕
1、压痕的表面现象是什么? 压痕的表征为密度明显低于邻近区域的密度。 2、它们产生的原因是什么? 在曝光前某个胶片区域局部受力严重。 3、这些现象何时可能发生? 产生压痕的主要原因在于暗袋准备过程中胶片处理的 方式不当。在处理过程中,胶片某处可能被压(夹)紧 在暗袋中。掉落到暗袋上的物体同样可能造成压痕。 4、如何检验压痕? 直接从同一包装盒中小心准备另一暗袋胶片,曝光并冲 洗胶片,如果未见到与第一次所见一样的暇疵,则第一次所 见的斑痕很可能就是压痕。 5、如何可以避免压痕? 严格遵守暗室操作规程,始终小心处理胶片,避免对胶 片施以任何类型的压力。
折 痕 曝 光 前
1、折痕的表面现象是什么? 折痕(曝光前)的表征为白月牙状显示,其密度低于邻近的胶片区域(黑度较低)。 2、它们产生的原因是什么? 曝光前弯曲胶片用力过大或过猛都会导致这种类型的折痕。 3、这些现象何时可能发生? 通常出现在从包装盒取出胶片或在曝光前装入暗袋时处理不当的情况下。 4、如何检验曝光前的折痕? 有意识地将某些胶片卷曲或扭折,使其曝光,然后按正常方法冲洗。检验胶片,这时您可 能会在胶片处理不当的地方风到一些颜色较淡的折痕。 5、如何可以避免它们? 严格遵守暗室操作规程,始终小心处理胶片,特别避免手指对胶片施以任何类型的压力。
2、折痕
折痕(曝光后)1
折痕(曝光后)2
折痕(曝光后)3
塑胶件的种常见不良缺陷图片ppt课件
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
26
品质培训教材
塑胶件的24种常见缺陷 图片
1
一、缩水:
缩水(凹痕)
缩水(凹痕)
2
二、气纹:
气纹
3
三、缺料(走胶不足):
走胶不足
缺料
4
四、水口不平:
水口不平
5
五、披锋(毛边):
披锋
毛边
6
六、夹线(结合线):
夹线 夹线(结合线)
7
七、黑点:
黑点NG!
8
八、变形:
平面中间拱起变形
柱子弯曲变形
9
九、混色(异色):
混色
混色(杂色料)
10
十、划伤(刮伤):
划伤
刮花
11
十一、烧焦:
烧焦
12
十二、拖花(拉伤):
拖花(拉伤)
13
十三、顶高(顶白):
顶高(顶针印)
14
十四、料花:
料花
15
十五、油污:
油污NG!
16
十六、碰伤:
碰伤
17
十七、削伤:
削缺(削伤)
18
十八、气泡:
气泡(透明件中央白泡状)
19
十九、色差(上下盖阴阳色):
上盖色偏哑
下盖色偏亮
20
二十、披锋丝(拉丝):
披锋丝(拉丝)NG
21
二十一、应力痕:
应力痕:因注射时内应力过大而在产品表面形成的光影;
22
二二、进胶位发蓝:
进胶点发蓝
23
二十三、多胶:
多胶 NG
24
二十四、粘胶:
粘胶 :因模具内侧附着有积炭或脏物导致产品表面少胶;
焊接缺陷图例
焊缝术语图列一、未融合的各种位置
二、接头未融合
四、未焊满
六、各种类型的裂纹
1、火口开裂
2、表面裂纹
3、热影响区裂纹
4、层状撕裂
5、纵向裂纹
6、根部裂纹
7、根部表面裂纹
8、角裂纹
9、趾裂纹
10、横向裂纹
11、焊道下裂纹
12、焊缝融合线裂纹
13、焊道金属裂纹
七、横向裂纹纵向裂纹
八、趾裂纹
九、焊道下裂纹
10、焊道余高
12、凸形角焊缝
13、下凹焊道
14、各种焊缝裂纹图列
1、火口开裂
2、表面裂纹
3、热影响区裂纹
4、层状撕裂
5、纵向裂纹
6、根部裂纹
7、根部表面裂纹
8、角裂纹
9、趾裂纹
10、横向裂纹
11、焊道下裂纹
12、焊缝融合线裂纹
13、焊道金属裂纹
(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,
感谢您的配合和支持)。