2018年全国高考文科数学试题及答案-全国1

合集下载

2018年高考文科数学全国卷1(含详细答案)

2018年高考文科数学全国卷1(含详细答案)

数学试题 第1页(共22页)数学试题 第2页(共22页)绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}02A =,,{}21012B =--,,,,,则A B =( )A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设121iz i i-=++,则z =( ) A .0 B .12C .1 D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为()2,0,则C 的离心率( ) A .13B .12CD5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A.B .12πC.D .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC -C .3144AB AC +D .1344AB AC +8.已知函数()222cos sin 2f x x x =-+,则( ) A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A.B.C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( )A .8B.C.D.11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1,A a ,()2,B b ,且2cos 23α=,则a b -=( )A .15BCD .1-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试题 第3页(共22页)数学试题 第4页(共22页)12.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________. 16.ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.三、解答题(共70分。

2018普通高考全国1卷文科数学(附含答案解析)排好版

2018普通高考全国1卷文科数学(附含答案解析)排好版

2018年普通高等学校招生全国统一考试 (新课标Ⅰ卷)文科数学一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合,,则()A.B.C.D.2.设,则()A.0 B.C.D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆:的一个焦点为,则的离心率()A.B.C D.5.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.B.C.D.6.设函数.若为奇函数,则曲线在点处的切线方程为()A.B.C.D.7.在中,为边上的中线,为的中点,则()A.B .{}02A=,{}21012B=--,,,,A B={}02,{}12,{}0{}21012--,,,,121iz ii-=++z=121C22214x ya+=()2,0C1312231O2O12O O12π10π()()321f x x a x ax=+-+()f x()y f x=()00,2y x=-y x=-2y x=y x=ABC△AD BC E AD EB=3144AB AC-1344AB AC-C .D .8.已知函数,则( ) A .的最小正周期为,最大值为3 B .的最小正周期为,最大值为4C .的最小正周期为,最大值为3D .的最小正周期为,最大值为49.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为( ) A .B .C .D .210.在长方体中,,与平面所成的角为,则该长方体的体积为( ) A .B .C .D .11.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则( ) A .BCD .12.设函数,则满足的的取值范围是( )A .B .C .D .二、填空题(本题共4小题,每小题5分,共20分)13.已知函数,若,则________.14.若满足约束条件,则的最大值为________.15.直线与圆交于两点,则 ________.16.的内角的对边分别为,已知,,则的面积为________.3144AB AC +1344AB AC +()222cos sin 2f x x x =-+()f x π()f x π()f x 2π()f x 2πM A N B M N 31111ABCD A B C D -2AB BC ==1AC 11BB C C 30︒8αx ()1,A a ()2,B b 2cos 23α=a b -=151()201 0x x f x x -⎧=⎨>⎩,≤,()()12f x f x +<x (]1-∞,()0+∞,()10-,()0-∞,()()22log f x x a =+()31f =a =x y ,220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤32z x y =+1y x =+22230x y y ++-=A B ,AB =ABC △A B C ,,a b c ,,sin sin 4sin sin b C c B a B C +=2228b c a +-=ABC △三、解答题(共70分。

2018年高考真题——文科数学(全国卷Ⅰ)(详解版)

2018年高考真题——文科数学(全国卷Ⅰ)(详解版)

2018年高考真题——文科数学(全国卷Ⅰ)(详解版)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合,,则A. B. C. D.【答案】A【解析】分析:利用集合的交集中元素的特征,结合题中所给的集合中的元素,求得集合中的元素,最后求得结果.详解:根据集合交集中元素的特征,可以求得,故选A.点睛:该题考查的是有关集合的运算的问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.2. 设,则A. 0B.C.D.【答案】C【解析】分析:首先根据复数的运算法则,将其化简得到,根据复数模的公式,得到,从而选出正确结果.详解:因为,所以,故选C.点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得结果,属于简单题目.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.4. 已知椭圆:的一个焦点为,则的离心率为A. B. C. D.【答案】C【解析】分析:首先根据题中所给的条件椭圆的一个焦点为,从而求得,再根据题中所给的方程中系数,可以得到,利用椭圆中对应的关系,求得,最后利用椭圆离心率的公式求得结果.详解:根据题意,可知,因为,所以,即,所以椭圆的离心率为,故选C.点睛:该题考查的是有关椭圆的离心率的问题,在求解的过程中,一定要注意离心率的公式,再者就是要学会从题的条件中判断与之相关的量,结合椭圆中的关系求得结果.5. 已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A.B.C.D.【答案】B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积. 详解:根据题意,可得截面是边长为的正方形,结合圆柱的特征,可知该圆柱的底面为半径是的圆,且高为,所以其表面积为,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和. 6. 设函数.若为奇函数,则曲线在点处的切线方程为A.B.C.D.【答案】D【解析】分析:利用奇函数偶此项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程. 详解:因为函数是奇函数,所以,解得,所以,,所以, 所以曲线在点处的切线方程为,化简可得,故选D.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.7. 在△中,为边上的中线,为的中点,则A. B.C. D.【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.8. 已知函数,则A. 的最小正周期为π,最大值为3B. 的最小正周期为π,最大值为4C. 的最小正周期为,最大值为3D. 的最小正周期为,最大值为4【答案】B【解析】分析:首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为,之后应用余弦型函数的性质得到相关的量,从而得到正确选项.详解:根据题意有,所以函数的最小正周期为,且最大值为,故选B.点睛:该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.9. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.10. 在长方体中,,与平面所成的角为,则该长方体的体积为A. B. C. D.【答案】C【解析】分析:首先画出长方体,利用题中条件,得到,根据,求得,可以确定,之后利用长方体的体积公式详解:在长方体中,连接,根据线面角的定义可知,因为,所以,从而求得,所以该长方体的体积为,故选C.点睛:该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长久显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果.11. 已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则A. B. C. D.【答案】B【解析】分析:首先根据两点都在角的终边上,得到,利用,利用倍角公式以及余弦函数的定义式,求得,从而得到,再结合,从而得到,从而确定选项.详解:根据题的条件,可知三点共线,从而得到,因为,解得,即,所以,故选B.点睛:该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果.12. 设函数,则满足的x的取值范围是A. B. C. D.【答案】D【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有成立,一定会有,从而求得结果.详解:将函数的图像画出来,观察图像可知会有,解得,所以满足的x的取值范围是,故选D.点睛:该题考查的是有关通过函数值的大小来推断自变量的大小关系,从而求得相关的参数的值的问题,在求解的过程中,需要利用函数解析式画出函数图像,从而得到要出现函数值的大小,绝对不是常函数,从而确定出自变量的所处的位置,结合函数值的大小,确定出自变量的大小,从而得到其等价的不等式组,从而求得结果.二、填空题(本题共4小题,每小题5分,共20分)13. 已知函数,若,则________.【答案】-7【解析】分析:首先利用题的条件,将其代入解析式,得到,从而得到,从而求得,得到答案.详解:根据题意有,可得,所以,故答案是.点睛:该题考查的是有关已知某个自变量对应函数值的大小,来确定有关参数值的问题,在求解的过程中,需要将自变量代入函数解析式,求解即可得结果,属于基础题目.14. 若满足约束条件,则的最大值为________.【答案】6【解析】分析:首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式,之后在图中画出直线,在上下移动的过程中,结合的几何意义,可以发现直线过B点时取得最大值,联立方程组,求得点B的坐标代入目标函数解析式,求得最大值.详解:根据题中所给的约束条件,画出其对应的可行域,如图所示:由可得,画出直线,将其上下移动,结合的几何意义,可知当直线过点B时,z取得最大值,由,解得,此时,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.15. 直线与圆交于两点,则________.【答案】【解析】分析:首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形半弦长、弦心距和圆的半径构成直角三角形,利用勾股定理求得弦长.详解:根据题意,圆的方程可化为,所以圆的圆心为,且半径是2,根据点到直线的距离公式可以求得,结合圆中的特殊三角形,可知,故答案为.点睛:该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.16. △的内角的对边分别为,已知,,则△的面积为________.【答案】【解析】分析:首先利用正弦定理将题中的式子化为,化简求得,利用余弦定理,结合题中的条件,可以得到,可以断定A为锐角,从而求得,进一步求得,利用三角形面积公式求得结果.详解:根据题意,结合正弦定理可得,即,结合余弦定理可得,所以A为锐角,且,从而求得,所以△的面积为,故答案是.点睛:该题考查的是三角形面积的求解问题,在解题的过程中,注意对正余弦定理的熟练应用,以及通过隐含条件确定角为锐角,借助于余弦定理求得,利用面积公式求得结果.三、解答题:共70分。

(完整版)2018年高考文科数学(全国I卷)试题及答案

(完整版)2018年高考文科数学(全国I卷)试题及答案

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{0,2}A =,{2,1,0,1,2}B =--,则A B =I A .{0,2} B .{1,2}C .{0}D .{2,1,0,1,2}--2.设1i2i 1iz -=++,则||z =A .0B .12C .1D 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆22214x y C a +=:的一个焦点为(2,0),则C 的离心率为A .13B .12C .2D .35.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .B .12πC .D .10π6.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u ru u u r u u u r u u ur u u u rC .3144AB AC +u u ur u u u r D .1344AB AC +u u ur u u u r 8.已知函数22()2cos sin 2f x x x =-+,则 A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点(1,)A a ,(2,)B b ,且2cos23α=,则||a b -=A .15B .5 C .25D .112.设函数2,0,()1,0,x x f x x -⎧=⎨>⎩≤ 则满足(1)(2)f x f x +<的x 的取值范围是A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞二、填空题:本题共4小题,每小题5分,共20分。

2018年高考真题——文科数学(全国卷Ⅰ)Word版含详细答案

2018年高考真题——文科数学(全国卷Ⅰ)Word版含详细答案

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}02A =,,{}21012B =--,,,,,则A B =A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为 A .13B .12C .22D .2235.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A.43AB -41AC B. 41AB -43AC C. 43AB +41AC D. 41AB +43AC 8.已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .210.在长方体1111ABCD A BC D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -= A .15B .55C .255D .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题:本题共4小题,每小题5分,共20分。

(完整版)2018年高考全国卷1文科数学试题及含答案

(完整版)2018年高考全国卷1文科数学试题及含答案

2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己の姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目の答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出の四个选项中,只有一项是符合题目要求の。

1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年の新农村建设,农村の经济收入增加了一倍.实现翻番.为更好地了解该地区农村の经济收入变化情况,统计了该地区新农村建设前后农村の经济收入构成比例.得到如下饼图:则下面结论中不正确の是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入の总和超过了经济收入の一半4.已知椭圆C :22214x y a +=の一个焦点为(20),,则C の离心率为A .13B .12C .22D .2235.已知圆柱の上、下底面の中心分别为1O ,2O ,过直线12O O の平面截该圆柱所得の截面是面积为8の正方形,则该圆柱の表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处の切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上の中线,E 为AD の中点,则EB =u u u rA .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则 A .()f x の最小正周期为π,最大值为3 B .()f x の最小正周期为π,最大值为4 C .()f x の最小正周期为2π,最大值为3 D .()f x の最小正周期为2π,最大值为49.某圆柱の高为2,底面周长为16,其三视图如右图.圆柱表面上の点M 在正视图上の对应点为A ,圆柱表面上の点N 在左视图上の对应点为B ,则在此圆柱侧面上,从M 到N の路径中,最短路径の长度为 A .217 B .25 C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成の角为30︒,则该长方体の体积为 A .8B .62C .82D .8311.已知角αの顶点为坐标原点,始边与x 轴の非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -=A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<のx の取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+の最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC の内角A B C ,,の对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC の面积为________.三、解答题:共70分。

2018年全国卷Ⅰ文数高考试题文档版(含答案)

2018年全国卷Ⅰ文数高考试题文档版(含答案)

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}02A =,,{}21012B =--,,,,,则A B =A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为 A .13B .12C .22D .2235.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC + 8.已知函数()222cos sin 2f x x x =-+,则 A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .210.在长方体1111ABCD A BC D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -= A .15B .55C .255D .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题:本题共4小题,每小题5分,共20分。

2018年高考文科数学试题及参考答案(全国I卷)

2018年高考文科数学试题及参考答案(全国I卷)

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1 •答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3 •考试结束后,将本试卷和答题卡一并交回。

、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1 •已知集合A= {0,2}, B:={- 2,- 1,0,1,2},则AD B 二A.{0,2}B. {1,2}•{0}D. {-2,-1,0,1,2}2 •设z 2i,则|z|=1 iA . 0B.1C.1 D •223 •某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:文科数学试题第1页(共13页)则下面结论中不正确的是A •新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D •新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的-半2 24•已知椭圆C: X2 - 1的一个焦点为(2,0),则C的离心率为a 4C. -I D •22 3(0,0)处的切线方程为7.在厶ABC中,AD为BC边上的中线,E为AD的中点,贝U EB =1—*--AC41 mAC4f (x) = 2cos2 x -sin2 x 2,则A . f 『(x)的最小正周期为n,最大值为3B .f:(x)的最小正周期为n,最大值为4C .f:(x)的最小正周期为2 n,最大值为35.已知圆柱的上、下底面的中心分别为O i , O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. 1^2 n B . 12n3 26.设函数f (x) = x ■ (a —1)x ax .若C. &、2n D . 10nf(x)为奇函y = f (x)在点A . y - -2x B. y = —x C. y=2x1 3^~!AB AC 4 8.已知函数建设后经济收入构成比例文科数学试题第2页(共13页)D . f 『(X)的最小正周期为2 n,最大值为49 .某圆柱的高为2,底面周长为16,其三视图如右图.文科数学试题第3页(共13页)文科数学试题第4页(共13页)圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A . 2.17 B . 2.5 C . 3D . 210.在长方体 ABCD —ABGU 中,AB =BC =2 , A 。

(完整版)2018年高考文科数学(全国I卷)试题及答案(可编辑修改word版)

(完整版)2018年高考文科数学(全国I卷)试题及答案(可编辑修改word版)

EB A. - 绝密★启用前注意事项:2018 年普通高等学校招生全国统一考试文科数学1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3. 考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共 12 小题,每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 A = {0, 2} , B = {- 2,- 1, 0,1, 2} ,则 A B =A .{0, 2}B .{1, 2}C .{0}D .{-2, -1, 0,1, 2}2.设 z = 1 - i+ 2i ,则| z |=1 + iA. 0B. 1 2C .1D . 3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少 B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半x 2 4. 已知椭圆C : a y 2+= 1 的一个焦点为(2, 0) ,则C 的离心率为 4 A.13B. 12C.2 2D. 2 235. 已知圆柱的上、下底面的中心分别为O 1 , O 2 ,过直线O 1O 2 的平面截该圆柱所得的截面是面积为8 的正方形,则该圆柱的表面积为 A .12 2πB.2π C. 8 2π D. 0π6. 设函数 f (x ) = x 3 + (a - 1)x 2 + ax . 若 f (x ) 为奇函数,则曲线 y = f (x ) 在点(0, 0) 处的切线方程为A. y = -2xB. y = -xC. y = 2xD. y = x 7. 在△ABC 中,AD 为 BC 边上的中线,E 为 AD 的中点,则=3 1AB AC B . 1 - 3 AC 22AB4 4 4 4C . + AB 2 ⎨ ⎩ 3 1 AB ACD . 1 + 3AC4 44 48. 已知函数 f (x ) = 2 cos 2 x - sin 2 x + 2 ,则A. f (x ) 的最小正周期为π ,最大值为3B. f (x ) 的最小正周期为π ,最大值为 4C. f (x ) 的最小正周期为2π ,最大值为3D. f (x ) 的最小正周期为2π ,最大值为 49. 某圆柱的高为 2,底面周长为 16,其三视图如右图.圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到 N 的路径中,最短路径的长度为A. 2B. 2C. 3D. 210. 在长方体 ABCD - A 1B 1C 1D 1 中, AB = BC = 2 , AC 1 与平面 BB 1C 1C 所成的角为30︒ ,则该长方体的体积为A. 8B. 6C. 8D. 8 11. 已知角的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点 A (1, a ) , B (2, b ) ,且cos 2= 2,则3| a - b |=A.15B.5 5C. 2 55D .1⎧2-x , 12. 设函数 f (x ) = ⎨ ⎩1, x ≤ 0,x > 0, 则满足 f (x + 1) < f (2x ) 的 x 的取值范围是A . (-∞, -1]B . (0, +∞)C . (-1, 0)D . (-∞, 0)二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

(完整版)2018全国高考1卷文科数学试题及答案(官方)word版

(完整版)2018全国高考1卷文科数学试题及答案(官方)word版

2018年普通高等学校招生全国统一考试文科数学注意事项:1 •答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2•回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑•如需改动,用橡皮擦干净后,再选涂其它答案标号•回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3 •考试结束后,将本试卷和答题卡一并交回.、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1 .已知集合A0 ,2 , B 2, 1 , 0, 1 , 2,则AI B ( )A •0 , 2B•1, 2 C •0D • 2 , 1 , 0 , 1 ,22•设z 1 i1 i2i,则z( )A • 0B•1 C • 12D •23•某地区经过一年的新农村建设,农村的经济收入增加了一倍•实现翻番•为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例•得到如下饼图:则下面结论中不正确的是()A •新农村建设后,种植收入减少B •新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D •新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半2 24已知椭圆C: J 丁1的一个焦点为2,0,则C的离心率(5•已知圆柱的上、下底面的中心分别为 O i , O 2,过直线。

1。

2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A • 12 2B . 12D . 106. 设函数f 1 x 2ax .若为奇函数,则曲线 y f x 在点o ,o 处的切线方程为7. 8. ( )A . y 2x在△ ABC 中, 3 uun A . -AB43 uunC . — AD 为BC 边上的中线,E 为AD1 ujir AC 4 1 uur — AC 4C.y 2x的中点,则 uuEB1 juu -AB 3uurB3 AC4 41 uuu -AB 3uur D3 AC4 4已知函数f x2 2cos x 2sin x 2,则(的最小正周期为 ,最大值为 的最小正周期为,最大值为C . f x的最小正周期为 ,最大值为3 的最小正周期为,最大值为49.某圆柱的高为 2,底面周长为16,其三视图如图所示,圆柱表面上的点 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 在此圆柱侧面上,从 M 到N 的路径中,最短路径的长度为()A . 2 17B . 2 5C . 3(M B ,则A1B1C1D1 中,AB10.在长方体ABCD BC 2 , AG与平面BB1C1C所成的角为30,则该长方体的体积为()A. 8B. 6 2C. 8.2D. 8 - 3x 2y 2 < 0x y 1 > 0 ,则z 3x 2y 的最大值为 y < 015. _________________________________________________________________ 直线y x 1与圆x 2y 22y 3 0交于A , B 两点,贝U |AB ______________________________________________ ._ 2 2 216. __________________________ △ ABC 的内角 A , B , C 的对边分别为 a , b , c ,已知 bsinC csinB4asinBsinC ,b c a 则△ ABC 的面积为.三、解答题(共70分。

2018年高考全国1卷 文科数学试卷及答案(清晰word版)

2018年高考全国1卷 文科数学试卷及答案(清晰word版)

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己得姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目得答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷与答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出得四个选项中,只有一项就是符合题目要求得。

1.已知集合,,则A. B. C. D.2.设,则A. B. C. D.3.某地区经过一年得新农村建设,农村得经济收入增加了一倍,实现翻番、为更好地了解该地区农村得经济收入变化情况,统计了该地区新农村建设前后农村得经济收入构成比例,得到如下饼图:则下面结论中不正确得就是A.新农村建设后,种植收入减少B.新农村建设后,其她收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入得总与超过了经济收入得一半4.已知椭圆得一个焦点为,则得离心率为A. B. C. D.5.已知圆柱得上、下底面得中心分别为,,过直线得平面截该圆柱所得得截面就是面积为得正方形,则该圆柱得表面积为A. B. C. D.6.设函数、若为奇函数,则曲线在点处得切线方程为A. B. C. D.7.在中,AD为BC边上得中线,E为AD得中点,则A. B.C. D.8.已知函数,则A.得最小正周期为,最大值为B.得最小正周期为,最大值为C.得最小正周期为,最大值为D.得最小正周期为,最大值为9.某圆柱得高为2,底面周长为16,其三视图如右图、圆柱表面上得点M在正视图上得对应点为A,圆柱表面上得点N在左视图上得对应点为B,则在此圆柱侧面上,从M到N得路径中,最短路径得长度为A. B.C. D.10.在长方体中,,与平面所成得角为,则该长方体得体积为A. B. C. D.11.已知角得顶点为坐标原点,始边与x轴得非负半轴重合,终边上有两点,,且,则A. B. C. D.12.设函数则满足得得取值范围就是A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。

2018年全国统一高考数学试题(文)(Word版,含答案解析)

2018年全国统一高考数学试题(文)(Word版,含答案解析)

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±7.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42B .30C .29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入 开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .7210.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .312-B .23-C .312- D .31-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(f ff++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

2018年高考真题——文科数学(全国卷Ⅰ)+【Word版答案含解析】

2018年高考真题——文科数学(全国卷Ⅰ)+【Word版答案含解析】

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合,,则A. B. C. D.【答案】A【解析】分析:利用集合的交集中元素的特征,结合题中所给的集合中的元素,求得集合中的元素,最后求得结果.详解:根据集合交集中元素的特征,可以求得,故选A.点睛:该题考查的是有关集合的运算的问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.2. 设,则A. 0B.C.D.【答案】C【解析】分析:首先根据复数的运算法则,将其化简得到,根据复数模的公式,得到,从而选出正确结果.详解:因为,所以,故选C.点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得结果,属于简单题目.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.4. 已知椭圆:的一个焦点为,则的离心率为A. B. C. D.【答案】C【解析】分析:首先根据题中所给的条件椭圆的一个焦点为,从而求得,再根据题中所给的方程中系数,可以得到,利用椭圆中对应的关系,求得,最后利用椭圆离心率的公式求得结果.详解:根据题意,可知,因为,所以,即,所以椭圆的离心率为,故选C.点睛:该题考查的是有关椭圆的离心率的问题,在求解的过程中,一定要注意离心率的公式,再者就是要学会从题的条件中判断与之相关的量,结合椭圆中的关系求得结果.5. 已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A.B.C.D.【答案】B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积. 详解:根据题意,可得截面是边长为的正方形,结合圆柱的特征,可知该圆柱的底面为半径是的圆,且高为,所以其表面积为,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和. 6. 设函数.若为奇函数,则曲线在点处的切线方程为A.B.C.D.【答案】D【解析】分析:利用奇函数偶此项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.详解:因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.7. 在△中,为边上的中线,为的中点,则A. B.C. D.【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.8. 已知函数,则A. 的最小正周期为π,最大值为3B. 的最小正周期为π,最大值为4C. 的最小正周期为,最大值为3D. 的最小正周期为,最大值为4【答案】B【解析】分析:首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为,之后应用余弦型函数的性质得到相关的量,从而得到正确选项.详解:根据题意有,所以函数的最小正周期为,且最大值为,故选B.点睛:该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.9. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.10. 在长方体中,,与平面所成的角为,则该长方体的体积为A. B. C. D.【答案】C【解析】分析:首先画出长方体,利用题中条件,得到,根据,求得,可以确定,之后利用长方体的体积公式详解:在长方体中,连接,根据线面角的定义可知,因为,所以,从而求得,所以该长方体的体积为,故选C.点睛:该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长久显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果.11. 已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则A. B. C. D.【答案】B【解析】分析:首先根据两点都在角的终边上,得到,利用,利用倍角公式以及余弦函数的定义式,求得,从而得到,再结合,从而得到,从而确定选项.详解:根据题的条件,可知三点共线,从而得到,因为,解得,即,所以,故选B.点睛:该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果.12. 设函数,则满足的x的取值范围是A. B. C. D.【答案】D【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有成立,一定会有,从而求得结果.详解:将函数的图像画出来,观察图像可知会有,解得,所以满足的x的取值范围是,故选D.点睛:该题考查的是有关通过函数值的大小来推断自变量的大小关系,从而求得相关的参数的值的问题,在求解的过程中,需要利用函数解析式画出函数图像,从而得到要出现函数值的大小,绝对不是常函数,从而确定出自变量的所处的位置,结合函数值的大小,确定出自变量的大小,从而得到其等价的不等式组,从而求得结果.二、填空题(本题共4小题,每小题5分,共20分)13. 已知函数,若,则________.【答案】-7【解析】分析:首先利用题的条件,将其代入解析式,得到,从而得到,从而求得,得到答案.详解:根据题意有,可得,所以,故答案是.点睛:该题考查的是有关已知某个自变量对应函数值的大小,来确定有关参数值的问题,在求解的过程中,需要将自变量代入函数解析式,求解即可得结果,属于基础题目.14. 若满足约束条件,则的最大值为________.【答案】6【解析】分析:首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式,之后在图中画出直线,在上下移动的过程中,结合的几何意义,可以发现直线过B点时取得最大值,联立方程组,求得点B的坐标代入目标函数解析式,求得最大值.详解:根据题中所给的约束条件,画出其对应的可行域,如图所示:由可得,画出直线,将其上下移动,结合的几何意义,可知当直线过点B时,z取得最大值,由,解得,此时,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.15. 直线与圆交于两点,则________.【答案】【解析】分析:首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形半弦长、弦心距和圆的半径构成直角三角形,利用勾股定理求得弦长.详解:根据题意,圆的方程可化为,所以圆的圆心为,且半径是2,根据点到直线的距离公式可以求得,结合圆中的特殊三角形,可知,故答案为.点睛:该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.16. △的内角的对边分别为,已知,,则△的面积为________.【答案】【解析】分析:首先利用正弦定理将题中的式子化为,化简求得,利用余弦定理,结合题中的条件,可以得到,可以断定A为锐角,从而求得,进一步求得,利用三角形面积公式求得结果.详解:根据题意,结合正弦定理可得,即,结合余弦定理可得,所以A为锐角,且,从而求得,所以△的面积为,故答案是.点睛:该题考查的是三角形面积的求解问题,在解题的过程中,注意对正余弦定理的熟练应用,以及通过隐含条件确定角为锐角,借助于余弦定理求得,利用面积公式求得结果.三、解答题:共70分。

2018年高考全国1卷文科数学(含答案)

2018年高考全国1卷文科数学(含答案)

将 n=1 代入得,a2=4a1,而 a1=1,所以,a2=4.
将 n=2 代入得,a3=3a2,所以,a3=12.
从而 b1=1,b2=2,b3=4.
(2){bn}是首项为 1,公比为 2 的等比数列.
由条件可得
an1 n 1

2an n
,即
bn+1=2bn,又
b1=1,所以{bn}是首项为
1,公比为
5/9
绝密★启用前
2018 年普通高等学校招生全国统一考试
文科数学试题参考答案
一、选择题
1.A
2.C
3.A
4.C
5.B
6.D
7.A
8.B
9.B
10.C
11.B
12.D
二、填空题
13.-7 三、解答题
14.6
15. 2 2
16. 2 3 3
17.解:(1)由条件可得
an+1=
2(n n
1)
an

A.0
B. 1 2
C.1
D. 2
3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村
的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:
则下面结论中不正确的是
A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
,x≤0 ,则满足 ,x 0
f
x
1

f
2x 的
x
的取值范围是
A. ,1
B. 0,

2018年全国1卷文科数学高考试题及参考答案word

2018年全国1卷文科数学高考试题及参考答案word

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,,则A.B.C.D.2.设,则A.0 B.C.D.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆:的一个焦点为,则的离心率为A.B.C.D.5.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A.B.C.D.6.设函数.若为奇函数,则曲线在点处的切线方程为A.B.C.D.7.在△中,为边上的中线,为的中点,则A.B.C.D.8.已知函数,则A.的最小正周期为π,最大值为3B.的最小正周期为π,最大值为4C.的最小正周期为,最大值为3D.的最小正周期为,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A.B.C.D.210.在长方体中,,与平面所成的角为,则该长方体的体积为A.B.C.D.11.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则A.B.C.D.12.设函数,则满足的x的取值范围是A.B.C.D.二、填空题(本题共4小题,每小题5分,共20分)13.已知函数,若,则________.14.若满足约束条件,则的最大值为________.15.直线与圆交于两点,则________.16.△的内角的对边分别为,已知,,则△的面积为________.三、解答题:共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{0,2}A ,{2,1,0,1,2}B,则AB =A .{0,2}B .{1,2}C .{0}D .{2,1,0,1,2}--2.设1i2i 1iz -=++,则||z = A .0B .12C .1D .23.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆22214x y C a +=:的一个焦点为(2,0),则C 的离心率为A .13B .12C .22D .2235.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π6.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =C .3144AB AC + D .1344AB AC + 8.已知函数22()2cos sin 2f x x x =-+,则 A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点(1,)A a ,(2,)B b ,且2cos23α=,则||a b -=A .15B .5 C .25D .112.设函数2,0,()1,0,x x f x x -⎧=⎨>⎩≤ 则满足(1)(2)f x f x +<的x 的取值范围是A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞二、填空题:本题共4小题,每小题5分,共20分。

13.已知函数22()log ()f x x a =+. 若(3)1f =,则a = .14.若x ,y 满足约束条件220,10,0,x y x y y --⎧⎪-+⎨⎪⎩≤≥≤ 则32z x y =+的最大值为 .15.直线1y x =+与圆22230x y y ++-=交于A ,B 两点,则||AB = .16.ABC △的内角A ,B ,C 的对边分别为a ,b ,c . 已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为 .三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

已知数列{}n a 满足11a =,12(1)n n na n a +=+. 设nn a b n=. (1)求1b ,2b ,3b ;(2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式. 18.(12分)如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒. 以AC 为折痕将ACM △折起,使点M 到达点D 的位置,且AB DA ⊥.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.m)和使用了节水龙头50天的日用水量数据,某家庭记录了未使用节水龙头50天的日用水量数据(单位:3得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7)频数 1 3 2 4 9 26 5使用了节水龙头50天的日用水量频数分布表日用水量[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) 频数 1 5 13 10 16 5 (1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图;m的概率;(2)估计该家庭使用节水龙头后,日用水量小于0.353(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)设抛物线22C y x =:,点(2,0)A ,(2,0)B -,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠. 21.(12分)已知函数()e ln 1x f x a x =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间;(2)证明:当1e a ≥时,()0f x ≥.(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分。

22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xO y 中,曲线1C 的方程为||2y k x =+. 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.(1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.23.[选修4-5:不等式选讲](10分)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.绝密★启用前2018年普通高等学校招生全国统一考试文科数学试题参考答案一、选择题 1.A 2.C 3.A 4.C 5.B 6.D7.A8.B9.B10.C11.B12.D二、填空题 13.7- 14.615.2216.233三、解答题 17.解:(1)由条件可得12(1)n n n a a n++=. 将1n =代入得,214a a =,而11a =,所以,24a =. 将2n =代入得,323a a =,所以,312a =. 从而11b =,22b =,34b =.(2){}n b 是首项为1,公比为2的等比数列. 由条件可得121n na a n n +=+,即12n n b b +=,又11b =,所以{}n b 是首项为1,公比为2的等比数列.(3)由(2)可得12n na n-=,所以12n n a n -=⋅. 18.解:(1)由已知可得,90BAC ∠=︒,BA AC ⊥. 又BA AD ⊥,所以AB ⊥平面ACD . 又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,3DC CM AB ===,32DA =. 又23BP DQ DA ==,所以22BP =. 作QE AC ⊥,垂足为E ,则QE13DC . 由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,1QE =. 因此,三棱锥Q ABP -的体积为1111322sin 451332Q ABP ABP V QE -=⨯⨯=⨯⨯⨯⨯︒=△S .(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m 3的频率为 0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m 3的概率的估计值为0.48. (3)该家庭未使用节水龙头50天日用水量的平均数为11(0.0510.1530.2520.3540.4590.55260.655)0.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为21(0.0510.1550.25130.35100.45160.555)0.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 20.解:(1)当l 与x 轴垂直时,l 的方程为2x =,可得M 的坐标为(2,2)或(2,2)-. 所以直线BM 的方程为112y x =+或112y x =--.(2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以ABM ABN ∠=∠.当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,11(,)M x y ,22(,)N x y ,则120,0x x >>. 由2(2),2y k x y x=-⎧⎨=⎩得2240ky y k --=,可知12122,4y y y y k +==-.直线BM ,BN 的斜率之和为121222BM BN y y k k x x +=+++211212122()(2)(2)x y x y y y x x +++=++. ①将112y x k =+,222yx k =+及1212,y y y y +的表达式代入①式分子,可得 121221121224()2()y y k y y x y x y y y k +++++=880k-+==.所以0BM BN k k +=,可知BM ,BN 的倾斜角互补,所以ABM ABN ∠=∠. 综上,ABM ABN ∠=∠.(1)()f x 的定义域为(0,)+∞,1()e x f x a x '=-.由题设知,(2)0f '=,所以212ea =.从而21()e ln 12e x f x x =--,211()e 2e x f x x'=-.当02x <<时,()0f x '<;当2x >时,()0f x '>. 所以()f x 在(0,2)单调递减,在(2,)+∞单调递增.(2)当1ea ≥时,e ()ln 1e x f x x --≥.设e ()ln 1e xg x x =--,则e 1()e x g x x'=-.当01x <<时,()0g x '<;当1x >时,()0g x '>. 所以1x =是()g x 的最小值点. 故当0x >时,()(1)0g x g =≥.因此,当1e a ≥时,()0f x ≥.22.解:(1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=. (2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线. 记y 轴右边的射线为1l ,y 轴左边的射线为2l . 由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22=,故43k =-或0k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,2=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为4||23y x =-+.23.解:(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.x f x x x x --⎧⎪=-<<⎨⎪⎩≤≥ 故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立.若0a ≤,则当(0,1)x ∈时|1|1ax -≥;若0a >,|1|1ax -<的解集为20x a <<,所以21a≥,故02a <≤. 综上,a 的取值范围为(0,2].选择题解析:一、选择题:本题共12小题,每小题5分,共60分。

相关文档
最新文档