二次函数基础测试题及解析

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数基础测试题及解析

一、选择题

1.如图是二次函数2y ax bx c =++的图象,其对称轴为1x =.下列结论:①0abc >;②20a b +=;③930a b c ++<;④若12310,,,23y y ⎛⎫⎛⎫

-

- ⎪ ⎪⎝⎭⎝⎭

是抛物线上两点,则12y y >.其中正确的结论有( )

A .1个

B .2个

C .3个

D .4个

【答案】B 【解析】 【分析】

由抛物线开口方向得到a <0,根据对称轴得到b=-2a >0,由抛物线与y 轴的交点位置得到c >0,则可对①进行判断;由b=-2a 可对②进行判断;利用抛物线的对称性可得到抛物线与x 轴的另一个交点为(3,0),则可判断当x=3时,y=0,于是可对③进行判断;通过二次函数的增减性可对④进行判断. 【详解】

解:∵抛物线开口向下, ∴a <0,

∵抛物线的对称轴为直线12b

x a

=-= ,∴b=-2a >0, ∵抛物线与y 轴的交点在x 轴上方,

∴c >0,

∴abc <0,所以①错误; ∵b=-2a ,

∴2a+b=0,所以②正确;

∵抛物线与x 轴的一个交点为(-1,0),抛物线的对称轴为直线x=1, ∴抛物线与x 轴的另一个交点为(3,0), ∴当x=3时,y=0,

∴930a b c ++=,所以③错误;

∵抛物线的对称轴为直线x=1,且抛物线开口向下, ∴当x 1<时,y 随x 的增大而增大 ∵103132

-

<-<

点13,2y ⎛⎫

- ⎪⎝⎭

到对称轴的距离比点210,3y ⎛⎫- ⎪⎝⎭

对称轴的距离近, ∴y 1>y 2,所以④正确.

故选B . 【点睛】

本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.

2.如图是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,m ),且与x 铀的一个交点在点(3,0)和(4,0)之间,则下列结论:①abc >0;②a ﹣b +c >0;③b 2=4a (c ﹣m );④一元二次方程ax 2+bx +c =m +1有两个不相等的实数根,其中正确结论的个数是( )

A .1

B .2

C .3

D .4

【答案】C 【解析】 【分析】

根据抛物线的开口方向和与坐标轴的交点及对称轴可判别a ,b ,c 的正负;根据抛物线的对称轴位置可判别在x 轴上另一个交点;根据抛物线与直线y=m 的交点可判定方程的解. 【详解】

∵函数的图象开口向上,与y 轴交于负半轴 ∴a>0,c<0

∵抛物线的对称轴为直线x=-2b a

=1 ∴b<0

∴abc >0;①正确;

∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,

∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间. ∴当x=-1时,y<0,

即a-b+c<0,所以②不正确; ∵抛物线的顶点坐标为(1,m ), ∴

2

44ac b a

- =m , ∴b 2=4ac-4am=4a (c-m ),所以③正确; ∵抛物线与直线y=m 有一个公共点, ∴抛物线与直线y=m+1有2个公共点,

∴一元二次方程ax 2+bx+c=m+1有两个不相等的实数根,所以④正确. 故选:C . 【点睛】

考核知识点:抛物线与一元二次方程.理解二次函数性质,弄清抛物线与一元二次方程的关系是关键.

3.二次函数2(,,y ax bx c a b c =++为常数,且0a ≠)中的x 与y 的部分对应值如表:

下列结论错误的是( ) A .0ac < B .3是关于x 的方程()2

10

ax b x c +-+=的一个根;

C .当1x >时,y 的值随x 值的增大而减小;

D .当13x

时,

()210.ax b x c +-+>

【答案】C 【解析】 【分析】

根据函数中的x 与y 的部分对应值表,可以求得a 、b 、c 的值 然后在根据函数解析式及其图象即可对各个选项做出判断. 【详解】

解:根据二次函数的x 与y 的部分对应值可知: 当1x =-时,1y =-,即1a b c -+=-, 当0x =时,3y =,即3c =, 当1x =时,5y =,即5a b c ++=,

联立以上方程:135a b c c a b c -+=-⎧⎪

=⎨⎪++=⎩,

解得:133a b c =-⎧⎪

=⎨⎪=⎩

∴2

33y x x =-++;

A 、1330=-⨯=-

B 、方程()210ax b x c +-+=可化为2230x x -++=,

将3x =代入得:232339630-+⨯+=-++=,

∴3是关于x 的方程()2

10ax b x c +-+=的一个根,故本选项正确;

C 、233y x x =-++化为顶点式得:2

321()2

4

=--+y x , ∵10a =-<,则抛物线的开口向下,

∴当3

2x >

时,y 的值随x 值的增大而减小;当32

x <时,y 的值随x 值的增大而增大;故本选项错误;

D 、不等式()2

10ax b x c +-+>可化为2230x x -++>,令2y x 2x 3=-++,

由二次函数的图象可得:当0y >时,13x ,故本选项正确;

故选:C . 【点睛】

本题考查了待定系数法求二次函数解析式、二次函数的性质、二次函数与不等式的关系,根据表中数据求出二次函数解析式是解题的关键.

4.如图,抛物线y=ax 2+bx+c (a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a ﹣b+c ,则P 的取值范围是( )

A .﹣4<P <0

B .﹣4<P <﹣2

C .﹣2<P <0

D .﹣1<P <0

【答案】A 【解析】 【分析】

相关文档
最新文档