高三数学培优训练(一).doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学培优训练(一)

1、设集合}5|||{},29|{≤∈=-≤≤-∈=x Z x x B x Z x x A 且且,则集合B A 的子集的个数是: A .11 B .10 C .15 D .16

2、已知:函数)(x f =3

x x --,321,,x x x ∈R,且021>+x x ,032>+x x ,013>+x x ,则)()()(321x f x f x f ++的值

A .一定大于0 B.一定小于0 C.一定等于0 D.正负都有可能 3、在ΔABC 中,∠A =60°,b =1,这个三角形的面积为3,则ΔABC 外接圆的直径是

A .33 B.

3326 C. 2393 D. 3

39

2 4、已知:)(x f y =的反函数是)(1

x f y -=,将)12(-=x f y 的图像向左平移2个单位,再

关于x 轴对称后所得到的函数的反函数是

A .2)(31x f y -+-=- B. 2)(31x f y ---=- C. 2)(31x f y --= D. 2

)

(31x f y --=-

5、奇函数]),2[)((a x x f y -∈=满足11)2(=-f ,则=)(a f :

A .11

B .-11

C .2

D .-2

6、一个学生通过某种英语听力测试的概率是1/2,他连续测试n 次,要保证他至少有一次通过的的概率大于0.9,那么他测试的次数n 的最小值为:

A .3

B .4

C .5

D .6 7、已知函数)10(,2)1()(2

≤≤+-=x x x x f ,则函数)(x f 的最大值是: A .

39

2

B .274

C .2758

D .

2392+ 8、如图,液体从一个圆锥形漏斗漏入一圆柱桶中,开始时漏斗盛

满液体,经过3秒漏完,圆柱桶中液面上升速度是一个常量,则漏 斗中液面的高度h 与下落时间t 的函数关系的图像只可能是: 9、二项式)),2

(

()1(tan ππ

αα∈+n

的展开式中的第六项是63,而第三项的二项式系数

是21,则=α .

10、已知铜的单晶体的外形是简单几何体,单晶体有三角形和八边形两种晶面,如果铜的单晶体有24个顶点,每个顶点处有3条棱,那么单晶铜的三角形晶面和八边形晶面的数目分别为 和 。

11、给定))(2(log *1N n n a n n ∈+=+,定义使321a a a ⋅⋅……k a 为整数的数)(*

N k k ∈叫

做企盼数,则区间〔1,2004〕内的所有企盼数的和M = 。

12、在某次数学测验中,学号为)4,3,2,1(=i i 的四位同学的考试成绩}90,89,88,87,86{)(∈i f

且满足)4()3()2()1(f f f f <≤<,则四位同学的考试成绩的所有可能情况有 种(用数字作答).

13、记→a =(1,sin 2x ),→b =(2,cos 2x ),且0π<≤x (1)若向量→a 与→

b 的夹角为锐角,求实数x 的取值范围。(2)若→

a //→

b ,且212=+

b a λ,求实数λ。

14、已知函数()a x x f -=,()122++=ax x x g (a 为正常数),且函数()x f 与()x g 的图象在y 轴上的截距相等。(1)求a 的值; (2)求函数()()x g x f +的单调递增区间; (3)若n 为正整数,证明:()()4)5

4(10<⋅n g n f .

15、已知A 、B 、C 是直线m 上的三点,且|AB|=|BC|=6,⊙O ′切直线m 于点A,又过B 、C 作⊙O ′异于l 的两切线,切点分别为D 、E ,设两切线交于点P ,(1)求点P 的轨迹方程 (2)经过点C 的直线l 与点P 的轨迹交于M 、N 两点,且点C 分所成比等于2∶3, 求直线l 的方程.

16、如图所示,已知圆M A y x C ),0,1(,8)1(:2

2定点=++为圆上一动点,点P 在A 上, 点N 在CM 上,且满足N AM NP AP AM 点,0,2=⋅=的轨迹为曲线E.(I )求曲线E 的方程;(II )若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间), 且满足λ=,求λ的取值范围.

高三培优训练(一)参考解答

1——8: DBDA BBDC

9、

3

10、8,6 11、22211- 12、15 13、(1)),8

7()85,22(arctan )22arctan ,0[πππ (2) -2或1 14、(1)由题意,()()00g f =,1||=a 又0>a ,所以1=a (2)()()12|1|2+++-=+x x x x g x f ………5分

当1≥x 时,()()x x x g x f 32+=+,它在[)∞+,1上单调递增;

当1

1-上单调递增。 (3)设()()n g n f n c )(1054⋅=,对于数列{}n c ,解不等式

11

<+n

n c c ,

由0>n c ,上式化为1)5

4

(1032<⋅+n ,

解得7.32

3

8.0lg 21≈->

n 。因N n ∈得4≥n ,于是4321c c c c ≤≤≤, 而 >>>654c c c 所以()()()()4)5

4(10)54(10)54

(1025344<⋅=⋅≤⋅g f n g n f 。 15、(1)|,||||,||||,|||CA CE BA BD PD PE ===

|

|618|

|||||||||||||||||||BC CA AB CE BD PE CE DB PD PC PB =>=+=+=-++=+∴

P ∴点轨迹是B ,C 为焦点,长轴长等于18的椭圆.

以B ,C 两点所在直线为x 轴,线段BC 的垂直平分线为y 轴建立直角坐标系.

则可设椭圆的方程是)0(12222>>=+b a b y a x .72,3,92

=∴==b c a

P ∴点的轨迹方程是).0(172

812

2≠=+

y y x (2)设3

2

)0,3(),,(),,(2211所成的比为分MN C y x N y x M ,

⎪⎪⎩

⎪⎪⎨⎧-=-=⇒⎪

⎪⎪⎪⎩

⎪⎪⎪⎪⎨⎧

++=++=

∴212

12121323

2532

1320321323y y x x y y x x

1)32(721)325(811,1728122222121=-+-∴=+y x y x ① 又172

812222=+y x

② 由①、②消去1)811(94)325(8112

22

22=-+-x x y 得 解得)8,3(,8,322±-±=-=N y x 即

∴由C 、N 可得直线的方程是:0123401234=--=-+y x y x 或

16.解:(1).0,2=⋅= ∴NP 为AM 的垂直平分线,∴|NA|=|NM|.

又.222||||,22||||>=+∴=+AN CN NM CN

∴动点N 的轨迹是以点C (-1,0),A (1,0)为焦点的椭圆. 且椭圆长轴长为,222=a 焦距2c=2. .1,1,22===

∴b c a

∴曲线E 的方程为.12

22

=+y x (2)当直线GH 斜率存在时,

设直线GH 方程为,12

,222

=++=y x kx y 代入椭圆方程 得.2

30.034)21(2

22>>∆=+++k kx x k 得由

设22122122112

13

,214),,(),,(k x x k k x x y x H y x G +=

+-=+则 )2,()2,(,2211-=-∴=y x y x FH FG λλ 又

λ

λλλλ212

2221222122121)1(.,)1(,x x x x x x x x x x x x x ==++∴=+=+∴=∴,

λλλλ222

2

22)1()121(316,213)

1()214(+=++=++-∴k

k k k 整理得 .331

.316214.316323164,2322<<<++<∴<+<∴>λλλ解得k k

又当直线GH 斜率不存在,方程为.3

1

,31,0==

=λx )1,3

1

[,131的取值范围是即所求λλ<≤∴

1

01,

1.3λλ<<∴<<又

相关文档
最新文档